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The Internet has become a central means of communication on a global scale. Its emergence over the last
two decades has been facilitated by the introduction of congestion control methodologies such as TCP, that
allow millions of users to share network resources without causing congestion collapse. Beginning with the
work of Frank Kelly [2], researchers have discovered that many currently used protocols designed to minimize
congestion and to provide some notion of "fairness" can be viewed as a distributed, iterative algorithm for
solving a global optimization problem. With this it is now possible to use mathematical analysis to help
study, characterize and design protocols.
The model we will study is based on the work of Wang, Li, Low and Doyle [5] who developed distributed
algorithms for maximizing network utility through joint control of congestion and routing. They considered
two routing allocation strategies. The �rst, multipath routing occurs when a number of paths connecting
a source and destination may be available and the goal is to assign tra�c and bandwidth rates along the
routes so that network utility is maximized. The second approach, single path routing, is on the other end
of the spectrum of path speci�cation. Again there are multiple paths linking a source and destination, but
only a single path is selected, for example a path with minimum cost. Wang et al proved that there is no
duality gap for the multipath optimization problem. However in general there is a duality gap for the single
path problem. They established the equivalence between the existence of an equilibrium for the algorithm
and the absence of a duality gap for the single path problem. Yet even though there is an equilibrium it can
be unstable. Wang et al proposed the addition of a static component to the link costs in order to stabilize
it. The following equations model a congestion control protocol with a random route allocation scheme that
relaxes the requirement for a single path of minimum cost, but also reduces the number of eligible paths that
would have to be considered in the multipath case. This is done by constraining the entropy of the route
distribution. By varying the entropy, the route allocation scheme dials between single path and multipath
routing. We want to determine the dynamics of this model as the entropy varies.
We represent a computer network as a planar graph with nodes representing locations in the network. In
the literature, the total amount of bandwidth to send information from one part of the network to another
is controlled by an agent called a source. There are several routes a source can take to its destination and
we assume each route is de�ned by a set of uni-directional links indexed by l = 1, · · ·L. These links are
represented in the graph as weighted edges, where an edge weight is the link capacity. Sources are indexed
by s, and tra�c is assigned to route r ∈ R(s) with probability βrs where R(s) is the set of all routes used
by source s. If pl(k) is the link cost at time k and cl is the capacity of the lth link then the equations of
the model are

pl(k + 1) = H

pl(k)− h

cl −∑
s

xs(k)
∑

r∈Rs(l)

βsr(k)

 l = 1, · · ·L (1)

βsr(k) = exp(−γs(k)dr(k))/Zs(k) (2)

where H is the Heaviside function, dr(k) =
∑

l∈r pl(k) is the cost of route r at time k, h is a step size and
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Figure 1: A simple example: the two link network.

Zs(k) =
∑

r∈R(s) exp(−γs(k)dr(k)). The variable γs(k) is the solution of the implicit equation,

γs(k)Ds(k) + log(Zs(k)) = hs, Ds =
∑

r∈R(s)

βsr(k)dr(k) (3)

The model equations are completed by a relation between the bandwidth rate xs(k) and Ds(k), the mean
route cost at time k for positive constants w and M .

xs(k) = min

((
w

Ds(k)

)1/2

, M

)
(4)

Equations (2) and (3) force the route distribution βsr(k) to be the unique distribution of entropy hs with
the smallest mean route cost at each time step k. Recall that for any probability distribution βs = {βsr}r∈R(s)

the entropy of the distribution is

H(βs) = −

 ∑
r∈R(s)

βsr log βsr

 . (5)

Thus the condition on the route distributions is H(βs) = hs. This constant entropy requirement will constrain
the set of values {pl | l = 1 · · ·L} for which a bounded γs(k) exists. The precise set depends on the network
topology and capacity of the links. To illustrate these points we end with a practice problem for a two link
topology depicted as a graph with two nodes, an origin and destination node and two links joining them.
(see �gure 1). Each route consists of a single link labeled 1 or 2. The equations (1)-(4) for this system are:

p1(k + 1) = H (p1(k)− h [c1 − xs(k)βs1(k)]) (6)

p2(k + 1) = H (p2(k)− h [c2 − xs(k)βs2(k)])
βs1(k + 1) = exp (−γkp1(k)) /Zs(k)
βs2(k + 1) = exp (−γkp2(k)) /Zs(k)

where c1, c2 are the link capacities and βs1, βs2 are the probabilities that tra�c is directed to links 1 or 2
respectively. If we note that in this case, the route costs at time k are p1(k) and p2(k) respectively and the
mean route cost is Ds(k) = βs1p1(k) + βs2p2(k), then γk is the solution of the implicit equation (3) and
xs(k) is given by equation (4).

In [1] we analyzed (6) for a range of parameters that made (6) more tractable. We �rst observed that if
hs < log 2 then there is no bounded solution of equation (3), for any values in the set {p = (p1, p2) | p1 = p2}.
Thus we chose initial values of p in the region {p = p1, p2) | p1 < p2 }. Fix the link capacities so that
c1/c2 = λ > 1. Our choice of capacities automatically provide a reference value of hs around which we can
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perturb (see [1] ). In light of this, it turns out that changing the route allocation distribution is a way to
change hs Given an hs there is a unique β (up to interchange between β and 1−β), such that hs = H(β, 1−β).
Let

β
(hs)
1 /β

(hs)
2 = λ+ µ. (7)

If µ = 0 then hs is the entropy of the route distribution de�ned by the link capacities c1, c2. If µ < 0 then
one can show that hs increases and the allocation approaches the equal weight multipath pattern. For µ > 0,
the entropy decreases and we approach the single path scheme, i.e. the selection of the route with the largest
capacity and lowest mean price and therefore the largest bandwidth rate.
Some questions we would like to answer are

• Can we rigorously establish that the equilibrium points of (6) are solutions of the original optimization
problem when one of the coordinates vanishes? Does the method of proof generalize to other topologies?

• Is there a stable (sub-gradient?) iterative method for obtaining optimal solutions of the problem when
µ < 0 if they exist?
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