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1 Introduction 

The stability of fiber pulling is considered here; of particular interest in this MPI is the diameter 
variation of the fiber during pulling, and trying to quantify the variation of the diameter with flow 
and pulling conditions. The pulling of a fiber was studied at MPI 2001 [1); the progress there was 
based in significant measure on P. Howell's thesis [2). However, the stability of the solution was 
not considered in that study.· 

The stability of pulling an solid fiber has been studied before; the isothermal case includes 
[3, 6, 7, 4, 5] and a summary of older work, including a number of non-Newtonian models can be 
found in Pearson's book [8]. Studies of the nonisothermal case include [9, 10, 11] and many others; 
a modern review can be found in the D.Phil. thesis of Voyce [12]. 

More modern issues ar concerned with the dynamics of the instability. Some surveys have 
pointed out the variety of diameter fluctuations that can occur [13, 14, 15, 16, 17). Stability 
analyses of different types suggest that fibers being pulled may be unconditionally stable [11] or 
chaotic [19]. The discrpancy may be explained in part by the conditions under which the modeling 
are done; when the pulling velocity is specified the instability, known as draw resonance occurs; 
when the pulling force is specified, the instability may not occur [12, 18]. 

Many modern studies involve fibers that do· not have uniform properties in the cross section. 
These may include holey fibers with air inclusion (see e.g., [20, 21, 22, 23]) or different glass materials 
from say doping (e.g., (24)). • These efforts may aim to decrease losses from signals, increase flexibility 
of the fiber, or both. For a modern review, see Voyce's thesis or [22], e.g. 

There are two aspects that were studied. One is to try the idea of boudinage (French for 
sausage); stretching or compression of fluids containing viscous inclusions of different viscosity of 
fluid may lead to instability as is seen in geological flows and models (e.g., (25, 26, 27, 28)). In 
the limit of this view, the curvature from starting with a thick blank and ending with a thin 
fiber (necking) is neglected, and the blank is uniformly stretched in the absence of any instability. 
However, stretching can induce instability; a varicose instability may form with shapes that are 
characteristic in tension (boudinage) and compression (inverse boudinage or mullions) (25, 26]. 
Circular shapes may become distorted [25, 29] and initially flat layers may develop varicose or 
sinuous (folding) instabilities (e.g., [25, 26, 27, 281). 

In this work, we focus· on varicose instability for viscous inclusions, and ignore the possibility 
of fold instabilities. We use the term boudinage to refer to the stretching of included viscous layers 
and the resulting instability that results from stretching. We hope that context will make clear 
the distinction between the approach to modeling as opposed to shapes obtained after instability 
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(boudinage vs mullions). 
The practical idea for fibers of interest here is to have different viscosities at different initial 

radii, and then stretch; will instability occur in the isothermal case? In the best situation, the 
model has more viscous fluid at its core and at the outer radius, with a less viscous region between. 
This situation would model a holey region in an annulus that acts to keep light inside the fiber. 

2 Estimates 

We now estimate the sizes of some parameters. The fiber speed Vis taken to be 25 x 10- 6m/s in 
the region of interest at the hot end of the fiber near the die head and V = 25m/s far from the 
blank where the fiber has effectively reached its final diameter. The length Lo along the fiber in 
the region of interest is Lo = 2.5m. Thus a time scale may be Lo/V = 0.ls. The final radius of the 
fiber is Rf= 125 x 10- 6m; the initial blank radius is H,i = 125 x 10- 3m. Let€= R,i/L = 5 x 10- 4 _ 

The viscosity depends on the temperature of the glass and the material. We use a minimum 
value of the viscosity in the range of µ = 103 to 4 x 105Pa·s and a maximum value in the range 
µ = 106 to 2 x 107Pa·s. We use a density of p = 2500kg/m 3 . 

Using the low speed V = 25 x 10- 6m/s and low viscosity µ = 103Pa•s, we approximate the 
conditions near the blank with the Reynolds number Re = pV Lo/µ ~ 10- 3 . For the conditions 
far from the blank, we use the high speed V = 25m/s and low viscosityµ= 107Pa·s, we find the 
Reynolds number to be Re ~ 10- 2 . 

3 Boudinage 

3 .1 Formulation 

In isothermal formulation of stretching of a viscous inclusion is considered; the centerline of the fluid 
is assumed to be straight. We nondimensionalized the governing equations with length Lo = 2.5m 
and pulling speed V in the axial direction (z); ELo and EV in radial direction. Time was scaled 
with The pressure was scaled with a viscous scale. 

The two fluid case with an initial state of coaxial fluids with length Lo with inner radius a1 (z, t) 
and outer radius a2(z, t). The inner fluid (viscosity µ1) is thus located in O::; r < a1(z, t) and the 
outer fluid (viscosity µ2) is in a1(z, t) < r ::; a2(z, t). 

The nondimensional equations in the fluid i, with i = 1, 2, are 

Here µCl)= 1, µ(2) = µ12- St= pgLVµ/V is the Stokes number. 
At r = 0, we have symmetry, w~) = u(l) = 0. 
At the outermost radius r = a2(z, t), we have 

a2,t + wC2>a2,z = uC2
) 

2 

(4) 



r 

(5) 

(6) 

These are, respectively, the kinematic, the tangential stress and the normal stress conditions. The 
parameter Ca= ui/(µ< 1>v) is the capillary number based on the inner fluid and u = u2/u 1 is the 
surface tension ratio. 

At r = a1 (z, t), we continuity of the velocity components, u<1) = u<2> and w<1> = w<2), as well 
as the kinematic, the tangential stress and the normal stress conditions, respectively: 

~l,t + w<1>a1,z = u(l) 

€2a (u(2) _ w(2)) + !(l - €2a2 )(w<2) + €2u(2)) = l,z ,r ,z 2 l,z ,r ,z 

€
2a (u<1) - uP>) + !(1 - f

2a2 )(uP> + E2u<1>) l,z ,r ,z 2 l,z ,r ,z , 

-p(l) + 2µ [u<1) _ a2 (w(l) + €2u(l)) + €2a2 w<1>] = 1 + €2a2 ,r l,z ,r ,z l,z ,z l,z 

-p(2) + 2µ [u(2) _ a2 (w(2) + €2U(2)) + €2a2 w(2)] 
1 + €2a2 ,r 2,z ,r ,z 2,z ,z 

2,z 

1 [1 + E2
(atz - a1a1,zz)] 

- ECa(l) a1 (1 + €2atz)3/2 • 

(7) 

(8) 

(9) 

The viscosity contrast is defined as µ12 = µ<2>/µ<1>; we note that µ12 = 1/m, where mis the 
viscosity ratio used by Smith [25]. In what follows we neglect surface tension (Ca---t oo), inertia 
(Re= 0) and gravity (St= 0). 

3.1.1 One fluid 

By eliminating the outer fluid, we can recover the one-fluid case. The derivation of the evolution 
equations for a slender fiber have been derived many places elsewhere, e.g. [2, 22]. They are 
equations for the leading order axial velocity component w0 (z, t) and cross-sectional area A(z, t) as 
follows: 

A,t + (woA),z.....:. 0, and (3Awo,z), z = 0. (10) 

See Howell's thesis for a derivation of a solution in this case. Note that the leading order axial 
velocity is independent of the radial coordinate and it was obtained at the next .order (not leading 
o_rder); these equations may be thought of as mass conservation and an axial force balance. We 
expect similar things to happen in the two fluid case. 

3.1.2 Two fluids 

We use a regular expansion of all dependent variables in even powers of€ starting from O; e.g., 
w(r, z, t) = wo + €2W2 + .... 
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The leading order equations are, for the inner fluid on O < r < a1(z, t), 

! (ru(l)) + w(l) 
r 0 ,r O,z 0, 

1 ( (1)) - rw r 0,r ,r - o, 

-p(l) + [! (ru(l)) ] - 0. 0,r r 0 r 
' ,r 

For the outer fluid in a 1 (z, t) < r < a2(z, t), we have 

! (ru<2)) + w<2) 
r O ,r O,z - o, 

1 ( (2)) o, • 
- rw -r 0,r ,r 

(2) [1 ( (1)) ] 0. -Po,r + µ12 - ru 0 -
r ,r ,r 

On the interface between fluids 1 and 2 at r = a1 (z, t) we have 

(1) 
a1,t + Wo a1,z = 

(1) 
Uo 

(1) (2) 
Uo - Uo 

(1) 
Wo = 

(2) 
Wo 

(1) 
Wo,r = 

(2) 
µ12Wo,r 

(1) ( (1) (1)) (2) ( (2) (2)) 
-Po,r + 2 Uo,r - a1,zWo,r + Po,r - 2µ12 uo,r - a1,zWo,r - 0. 

On the outer surface at r = a2(z, t), we have 

(2) 
- Uo 

- 0 

= 0. 

Integrating what is left of the momentum equations for each fluid shows that 

w&1) = C1{z, t) In r + C2(z, t), 

w&2) = C3(z, t) 1n r + C4(z, t). 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

For the inner fluid, C1 = 0 for a bounded solution; from the shear stress condition at the interface, 
we must have 0 3 = 0. Thus, the leading order axial velocity in both fluids is independent of radius. 
We let 

(27) 

then using mass conservation in each fluid, we find 

(28) 
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Integrating the radial momentum equation gives the pressures, namely, 

(1) (1) C ( ) Po -w 0 z+ 5 z,t, 
' 

p~
2

) -w~~~ + C6(z, t). 

Using the normal stress boundary conditions reveals that C5 = C6 = 0 and so 

p(l) = -w(l) and p(2) = -w(2) 
0 ~z O ~z· 

(29) 

(30) 

(31) 

It remains to determine the axial velocity components and the evolutions of the free boundaries 
locating the radial extent of the fluids; we must go the next order to find these quantities. 

Going to next order allows us to close the system. The leading order equations for the free 
surfaces and the leading order axial velocity component may be expressed in terms of the cross 
sectional areas as follows: 

A1,t + (A1 wo),z - 0, (32) 

A2,t + (A2wo),z - 0, (33) 
1 1 
al [3(1 - M2)A1wo,zL + a

2 
[3µ12A2wo,zL 0. (34) 

Here the Ai with i = 1, 2 is the cross sectional area within a 1 and a2 respectively; w0 is the leading 
order axial velocity component that is a single function in both fluids. 

3.2 Results 

3.2.1 Numerics for two fluids 

We tried a method of lines approach. We mapped the PDEs to a fixed domain with the variable 
( = z/L(t) so that in the new variable we have O :s; ( :s; l. We then applied centered finite difference 
methods on a uniform mesh for the spatial derivatives. The resulting system is differential-algebraic, 
though it was solved with essentially an ODE approach. The method first solved the algrebraic 
problem for axial velocity component Woj for all j on the grid points and then solved the ODE's 
for the a1j(t) and a2j(t) at the grid points using either ode45 or ode15s in Matlab. The code for 
the two fluid case is in Appendix B. 

The initial conditions for computation are given by A1((, 0) = 61 sin(21r() + .A1 and A2((, 0) = 
62 sin(21r() + .A2. 

3.2.2 A first case 

We begin with some sample computations where we chose µ12 = 2, .A1 = 1, A2 = 1.5 and 61 = 
62 = 0.1; the results are shown in Figure 1. The left hand panel shows Ai((, t), i = 1, 2, which is 
the total cross-sectional area within each fluid surface, as a function of space and time. The right 
hand panel compares the maximum and minimum values of the total cross-sectional area for each 
interface as a function of time. The subscripts are left off in the legend to reduce clutter; the lower 
curve in each case is for the inner interface located by A1 and the upper curve is for the outer 
interface located by A2. Note the logarithmic scales on each ordinate and the periodicity of the 
solution. There is a consistently a localized increase in amplitude with a relatively broad flat valley 
between. This strongly resembles the boudinage pictures from the geological papers, which justifies 
the original ansatz of the work. We now go on to vary the amplitude of the initial conditions and 
the viscosity ratio. 
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Figure 1: Left: Inner and total area as a function of ( for different times. The 
nonlinearity in the instability is apparent. Right: Minimum and ma.ximum film 
area, and their ratio, with time for µ 12 = 2, ih = 1, A2 = 1.5 and 61 = 62 = 0.1. 
The maxima in the area appear to asymptote to a constant value. while the mimirna 
appear to take on power law behavior (constant slope) at the latest times. 

3.2.3 Varying the initial conditions 

5 

The rapidity with which the constant maximum area and the power law decrease in the minimum 
radii is obtained is accelerated when the initial disturbance amplitude is increased. Figure 2 shows 
results for a smaller disturbance amplitude and a slower development. Compare the results shown 
in Figure 1. 

So far, the sinusoidal disturbances have been in phase. We now try the case when they are 
out of phase with µ12 = 2, .A1 = 1, A2 = 1.5 and 6'1 = -6'2 = 0.1; results are shown in Figure 3. 
The maxima end up lining up anyway after an early adjustment period. The instability has been 
accelerated, with the minimum areas four to five times thinner in the out-of-phase case. The 
numerical instability is visible by t = 4 now, so it is encouraged in this case as well. 

3.2.4 Changing the viscosity ratio 

We now make a more viscous outer annulus compared to the core. We show results for /t12 = 5, 
A1 = 1, A2 = 1.5 and 6'1 = 6'2 = 0.1 in Figure 4. These results develop much more slowly than 
for the smaller viscosity ratio for this in phase disturbance. For the out of phase disturbance with 
same high viscosity contrast, namely µ12 = 5, A1 = 1, A2 = 1.5 and 6'1 = -6'2 = 0.1 in Figure 5. In 
this case, the boudinage instability is promoted, with a large area contrast at the end time being 
observed. We don't yet know why the instability is promoted or retarded by these combinations in 
the nonlinear regime. 

'\Ve now make the core 5 times more viscous than the outer layer, so that we compute for 
{t12 = 1/5, A1 = 1, A2 = 1.5 and 81 = 62 = 0.1 in Figure 6. The boudinage instability is promoted 
in this case relative to the out of phase disturbance for the same parameters to follow, and although 
it is a little slower to develop, this case is similar to the µ 12=5 case. For the out of phase case, we 
compute for µ12 = 1/5, A1 = 1, A2 = 1.5 and 81 = 6'2 = 0.1 in Figure 7. In this case, the boudinage 
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Figure 2: Left: Inner and total area as a function of ( for different times. The 
nonlinearity in the instability develops more slowly with the smaller initial amplitude 
of the disturbance in the initial condition. Right: Minimum and maximum film area, 
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Figure 3: Left: Inner and total area as a function of ( at different times 
for µ12 = 2, .A1 = 1, .A2 = 1.5 and 61 = -62 = 0.1; compare with 
in phase case shown in Figure 1. Right: Minimum and maximum film 
area, and their ratio, with time. The boudinage instability of the fiber 
is encouraged compared to the in-phase case. 
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Figure 4: Left: Inner and total area as a function of ( for different times for µ 12 = 5, 
.A1 = 1, .A2 = 1.5 and <)i = 02 = 0.1. The nonlinearity in the instability develops 
much more slowly with the increased viscosity contrast and an in-phase disturbance 
in the initial condition. Right: Minimum and ma.."Ximum film area, and their ratio, 
with time. Note the small amplitude ratio at the last time. 
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Figure 5: Left: Inner and total area as a function of ( for different times for µ12 = 5, 
.A1 = 1, A2 = 1.5 and 61 = -62 = 0.1. Here we have only integrated to t = 4.5 
to avoid disastrous numerical instability. Right: Minimum and maximmn film area, 
and their ratio, with time. Note the very large amplitude ratio at the last time; 
the instability from boudinage was promoted by the high viscosity ratio and out of 
phase disturbance. 
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and their ratio, with time. Note the very large amplitude ratio at the last time; 
the instability from boudinage was promoted by the high viscosity ratio and out of 
phase disturbance. 
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Figure 7: Left: Inner and outer thickness as a function of ( for different times 
for µ12 = 1/5, A1 = 1, A2 = 1.5 and 61 = -62 = 0.1. Right: Minimum and 
maximum film thickness, and their ratio, with time. Note the smaller amplitude 
ratio at the last time; the instability from boudinage has been retarded by out of 
phase disturbance. 
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instability is retarded from the out of phase disturbance. 

3.2.5 Numerical instability 

Now for a bit more about the numerical instability. Making the initial conditions for the surface 
closer together promotes the numerical instability, while increasing the separation seems to less it. 
We show results for A2 = 1.25 and A2 = 2 with .A1 = 1 and <h = 82 = 0.1 as before in Figure 8 At 
this time we have not analyzed or fully understood the numerical instability. 

3.2.6 Linear stability for two fluids 

V1/e now discuss the linear stability of the boudinage case with concentric fluids of different viscosity 
which was numerically solved in the previous section. \Ve studied the cla..'>S of perturbations for 
L(t) = Vt, that is, constru1t pulling speed and sinusoidal variation in the area. This corresponded 
to the numerical computations in the previous section. For the stability analysis is is convenient 
to put the equations on a fixed domain via the transformation ( = z/ L(t) as for the numerics; the 
equations are then 

0. 

i<; 
A2,t - yA2,<; + (A2wo),<: = 0. 

1 1 
ai [3(1 - µ12)A1 wo,d, + a

2 
[3µ12A2wo,(L;, - 0. 

We will make use of L(t) = Vt where Vis the constant stretch speed and we pose 
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(37) 

(38) 



r 

I 

I -• 

[ 

l 

1: 

J 

{39) 

(40) 

where 6 « 1 is the perturbation amplitude and ¼ is the volume inside the respective outer radii 
of the fluid. 

Substituting the solution forms into the equations and linearizing gives, for the areas, 

A 'WO( 
A1,t + Vt = 0, 

A 'WO( 
A2t+ v' =0. ' t 

We can then use the last equation to solve for the quantity 

Here we made use of 

(Vi/½) 312(1 -µ12).A1 + µ12.A2 1 
(V1/V2)312(1 - µ12) + µ12 t 

1 ( Vi )-1/2 A 

JAi = 1rVt (1 ~ A16/2 + ... ). 

Solving for the area perturbation equation, we find 

We now hypothesize sinusoidal disturbances in (, namely, 

substitution gives 
d.A1 d.A2 (Vi/V2)3l2(1 - µ12).A1 + µ12A2 1 
dt.= dt = (Vi/V2)312(1 - µ12) + µ12 t 

(41) 

{42) 

{43) 

(44) 

(45) 

(46) 

(47) 

We can see that the initial change in the size of the amplitude of the perturbations depends on the 
size of the perturbations, the viscosity contrast between the different materials and the phase of the 
disturbances (i.e., the sign of the disturbance amplitudes). However, trends are not immediately 
apparent. 

Suppose that we now wish to make the phase of the disturbances explicit; we choose A2 = ±IA2I 
and then find 

d.A1 = ± dlA2I = (Vi/½) 312(1 - µ12)A1 + µ12(±IA2I) 1 
dt dt (Vi/V2) 3l2(1 - µ12) + µ12 t 

(48) 

The sign change between the two areas for the initial change may explain why the out of phase 
case (minus sign) decays and then the in phase shape appears during the nonlinear evolution. 
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3.3 Discussion 

We've explored the stretching in the two fluid case, and only considered the effect of differing 
viscosities in an inclusion. The case with an out-of-phase disturbance and a less viscous core 
seemed to be the most unstable, showing a ratio of maximum to minimum approaching 104 is when 
integrating to t = 5. This extreme value is reminiscent of the extreme instability shown in Smith 
[25] in geologic formations. At such extreme values, it is reasonable to expect that other physics 
may be needed, e.g., surface tension and inertia. 

The idea that a boudinage-type instability may occur and contribute in fiber pulling appears 
to be a good one. 

4 Conclusion 

Remaining tasks for the future are manifold. A critical extension is to the three-fluid case. The 
inclusion of gravity, inertia, surface tension and non-Newtonian effects on the boundinage/mullions 
instability would be of interest. This is certainly accessible given appropriate time. 

Another direction is to consider the effect of thermal perturbations on the pulling when there 
is taper in the drawn fiber. 
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Appendix A: Nonlinear and linearized problem in terms of radii, 

In case it is useful, the problems in terms of radii for two-fluid Boudinage are given here. We first 
record the eq In terms of the radii ai(z, t) with i = 1, 2, we may write the equations as follows: 

2a1a1,t + (a?wo),z - 0, 

2a2a2,t + (a~wo),z - 0, 

~ [3(1 - µ12)a~wo z] + ~ [3µ12a~wo z] - 0. 
a1 ' z a2 ' z 

The boundary conditions are again wo(O, t) = 0, w(L, t) = L with periodicity in the ai. 
A z-independent solution is available for the radii, namely 

with a.1(0) = ✓ 1r~O) = R10, 

with a.2(0) = ✓ 1r~O) = R20, 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

Here we have made use of cylindrical geometry at all times where ¾(t) = 1rL(t)[ai(t)]2, with i = 1, 2. 
Applying the perturbations 

a1(z,t) - ii1(t)+8d1(z,t) 

a2(z, t) = a2(t) + 8a2(z, t) 

wo(z, t) = wo(t) + 8wo(z, t) 

and linearizing gives the linear stability problem as follows: 

(55) 

(56) 

(57) 

2(a1&1,t + a.1ii1,t) + [2a1ii1wo + (a1)2wo],z = 0, (58) 

2(a2&2 t + a2a2 t) + [2a2&2wo + (a2)2wo] = o, (59) 
' , ,z 

;
1 

[3(1- µ12)(2a1a1wo.z + (ai) 2wo.z)L + ;
2 

[3µ12(2a2ii2wo.z + (a2)2wo.z)L = o. (60) 

It is convenient for analysis to choose L( t) = Vt so that we pull with constant speed; then wo = V z 
and wo(O, t) = w0(L, t) = 0 corresponds to no perturbation to the pulling speed, and the radii are 
initially sinusoidal. 
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Appendix B: Code for single fluid case 

function [t,z,y] = onefluid1(N,tout,imethod,Amean,Ainit) 
% function [t,z,y] = onefluid1(N,tout,imethod,Amean,Ainit) 
% 
% one fluid code for Corning problem 
% uses either ode45 or ode15s with finite difference MOL 
¼ manually solves for algebraic variable, so really solving odes 
¼ Input 
¼ N = total number of grid points (including ends) 
% tout= final time 
o/. imethod = 1 for ode45, 2 for ode15s 
o/. Amean = initial mean area 
¼ Ainit = amplitude of initial inner area perturbation 
¼ Binit = amplitude of initial total area perturbation 
o/. Output 
% t = output times 
¼ z = spatial mesh 
o/. u = dependent variable solution; each row is a different time 
o/. and 1:N is A 

% N = 201; ¼number of total node points 
z = linspace(0,1,N); 

A= Ainit*sin(2*pi*z)+Amean; o/. Initial State 

% Boundary conditions 
wO = O; 
wL = 1; 

options= odeset('RelTol',1e-6,'AbsTol',1e-6); 
if (imethod==1) 

[t,y]= ode45(©timeDer,[0 tout],A,options,wO,wL,N); 
else 

[t,y]= ode15s(©timeDer,[0 tout],A,options,wO,wL,N); 
end 
o/.surf(y) 
%keyboard 
o/.hold off 
figure; 
for i = 1:length(t) 

plot3(diag(t(i)*eye(N)),z, y(i,1:N)*(t(i)+1)); 
hold on 

end 
ymin = (min(y'))'; 
ymax = (max(y'))'; 
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yrat = ymax./ymin; 
figure 
semilogy(t,yrat, 1

-
1 ,t,ymin,'-. 1 ,t,ymax, 1

--', 1 LineWidth 1 ,2); 
xlabel( 1 t 1

); 

legend( 1 ln(r_{max}/r_{min}) 1 , 1 ln(r_{min}) 1 , 1 ln(r_{max}) 1 ,2); 
figure; 
il = round(length(t)/4); 
i2 = round(length(t)/2); 
i3 = round(length(t)*3/4); 
semilogy(z,y(1,:), 1 • 1 ,z,y(i1,:),'--',z,y(i2,:), 1 -. 1 ,z,y(i3,:), 1 - 1 ,z,y(end,:),'. 1

); 

legend(gca,num2str(t(1)),num2str(t(i1)),num2str(t(i2)),num2str(t(i3)),num2str(t(end)),1); 

end 

%keyboard 

function Adot = timeDer(t,A,wO,wL,N) 

% Finite difference implementation to compute w 

z = linspace(0,1,N); 
delZ = z(2)-z(1); 
W(1:N) = wO; 
W(N) = wL; 

Mat= zeros(N-2,N-2); 
RHS = zeros(N-2,1); 

Mat(1,1) = -(A(3)+2*A(2)+A(1)); % N = 2 
Mat(1,2) = A(3)+A(2); 
RHS(1,1) = -(A(2)+A(1))*W(1); 

Mat(N-2,N-3) = A(N-l)+A(N-2); % N = N-1 
Mat(N-2,N-2) = -(A(N)+2*A(N-1)+A(N-2)); 
RHS(N-2,1) = -(A(N)+A(N-1))*W(N); 

nodeID = 3; 
for i = 1:N-4 

Mat(i+1,i) = A(nodeID)+A(nodeID-1); 
Mat(i+1,i+1) = -(A(nodeID+1)+2*A(nodeID)+A(nodeID-1)); 
Mat(i+1,i+2) = A(nodeID+1)+A(nodeID); 
nodeID = nodeID+1; 

end 

Wsol(2:N-1) = Mat\RHS; 
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l . 

Wsol(l) = W(l); ¼ wL 
Wsol(N) = W(N); ¼ wR 

o/. To compute Adot 
Ldot = 1; 
L = 1; 

o/. 
¼ for i = 1:N-1 
¼ Adot(i) = (Ldot/L)*(i-1)*(A(i+1)-A(i)) - ... 

(A(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)*(A(i+1)-A(i)))/(L•delZ) 
% end 
¼ Adot(N) = (Ldot/L)*(N-l)*(A(i)-A(i-1)) - ... 

(A(i)*(Wsol(i)-Wsol(i-l))+Wsol(i)*(A(i)-A(i-1)))/(L*delZ) 
o/. Adot = Adot'; 

for i = 2:N-1 
Adot(i,1) = -(Wsol(i+1)*A(i+1) - Wsol(i-1)*A(i-1))/(2*delZ*L) + ... 

z(i)*Ldot*(A(i+1)-A(i-1))/(2*delZ*L); 
end 
Adot(l,1) = -A(1)•(-Wsol(3)+4•Wsol(2)-3•Wsol(1))/(2*delZ*L); 
Adot(N,1) = -A(N)*(3*Wsol(N)-4*Wsol(N-1)+Wsol(N-2))/(2*de1Z*L); 

end 
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Appendix C: Code for two fluid case 

function [t,z,y] = twofluid1(N,tout,imethod,Amean,Bmean,Ainit,Binit,visrat) 
o/. function [t,z,y] = twofluid1(N,tout,imethod,Ainit,Binit) 
o/. 

o/. two fluid code for Corning problem 
¼ uses either ode45 or ode15s with finite difference MOL 
¼ manually solves for algebraic variable, so really solving odes 
¼ Input 
¼ N = total number of grid points (including ends) 
¼ tout= final time 
¼ imethod = 1 for ode45, 2 for ode15s 
¼ Amean = initial inner mean area 
¼ Bmean = initial total mean area 
¼ Ainit = amplitude of initial inner area perturbation 
o/. Binit = amplitude of initial total area perturbation 
o/. visrat = viscosity ratio (outer/inner) 
o/. Output 
% t = output times 
o/. z = spatial mesh 
% y = dependent variable solution; each row is a different time 
o/. and 1:N is A, N+1:2*N is B 

o/.N = 201; ¼total number of node points 
z = linspace(0,1,N); 

A= Ainit*sin(2*pi*z)+Amean; ¼ Initial State 
B = Binit*sin(2*pi*z)+Bmean; % Initial State 
o/. Boundary conditions 
wO = O; 
wL = 1; 
statevec = [A,B]'; 
options= odeset('RelTol',1e-6,'AbsTol',1e-6); 
if (imethod == 1) 

[t,y]= ode45(©timeDer,[0 tout] ,statevec,options,wO,wL,N,visrat); 
else 

[t,y]= ode15s(©timeDer,[O tout],statevec,options,wO,wL,N,visrat); 
end 
%figure 
%surf (y ( : , 1 : N)) ; 
¼hold on 
o/.surf(y(:,N+1:2*N)); 
hold off 
figure 
waterfall(y(:,1:N)); 
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l . 

figure 
for i = 1:10:length(t) 

plot3(diag(t(i)*eye(N)),z, y(i,1:N)*(t(i)+1)); 
hold on 
plot3(diag(t(i)*eye(N)),z,y(i,N+1:2*N)*(t(i)+1)); 

end 

figure 
yinmin = (min(y(:,1:N)'))'; 
yinmax = (max(y(:,1:N)'))'; 
youtmin = (min(y(:,N+1:2*N)')) 1 ; 

youtmax = (max(y(:,N+1:2*N) 1
))

1
; 

yinrat = yinmax./yinmin; 
youtrat = youtmax./youtmin; 
semilogy(t,yinrat, 1 -

1 ,t,yinmin, 1 -. 1 ,t,yinmax,'--',t,youtrat, 1 - 1 , ••• 

t,youtmin, 1 -.',t,youtmax,'-- 1 ,'LineWidth 1 ,2); 
xlabel( 't 1 ); 

legend('ln(r_{max}/r_{min})','ln(r_{min})','ln(r_{max})',2); 

figure 
i1 = round(length(t)/4); 
i2 = round(length(t)/2); 
i3 = round(length(t)*3/4); 
semilogy(z,y(1,1:N),'. ',z,y(i1,1:N), 1

--' ,z,y(i2,1:N), '-. ',z,y(i3,1:N), '-', ... 
z,y(end,1:N),'. 1 ,z,y(1,N+1:2*N), 1 .',z,y(i1,N+1:2*N), 1 -- 1 ,z,y(i2,N+1:2*N), ... 
'-. ',z,y(i3,N+1: 2*N), 1

-' ,z,y(end,N+l: 2*N),'. ', ... 
1 Line Width' , 2) ; 

legend(gca,num2str(t(1)),num2str(t(i1)),num2str(t(i2)),num2str(t(i3)),num2str(t(end)),3); 
xlabe1( 1 \zeta 1 ); ylabel('A_1(\zeta,t), A_2(\zeta,t)'); 

% keyboard 

function Dotvec = timeDer(t,statevec,wO,wL,N,Mu) 

%the A and Bare areas, not radii. 
A= statevec(1:N,1); 
B = statevec(N+1:2*N,1); 
%Mu= 2; 

% Finite difference implementation to compute w 

z = linspace(0,1,N); 
delZ = z(2)-z(1); 
W(1:N) = wO; 
W(N) = wL; 
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Mat= zeros(N-2,N-2); 
RHS = zeros(N-2,1); 

Mat(1,1) = -(A(3)+2•A(2)+A(1))•(1-Mu)/sqrt(A(2)) -
(B(3)+2•B(2)+B(1))•Mu/sqrt(B(2)) ; % N = 2 

Mat(1,2) = (A(3)+A(2))•(1-Mu)/sqrt(A(2)) + (B(3)+B(2))•Mu/sqrt(B(2)); 
RHS(1,1) = -(A(2)+A(1))•W(1)•(1-Mu)/sqrt(A(2)) -(B(2)+B(1))•W(1)*Mu/sqrt(B(2)); 

Mat(N-2,N-3) = (A(N-1)+A(N-2))•(1-Mu)/sqrt(A(N-1)) + ... 
(B(N-1)+B(N-2))*Mu/sqrt(B(N-1)) ; % N = N-1 

Mat(N-2,N-2) = -(A(N)+2*A(N-1)+A(N-2))*(1-Mu)/sqrt(A(N-1))- ... 
(B(N)+2•B(N-1)+B(N-2))*Mu/sqrt(B(N-1)); 

RHS(N-2,1) = -(A(N)+A(N-1))•W(N)*(1-Mu)/sqrt(A(N-1))- ... 
(B(N)+B(N-1))•W(N)•Mu/sqrt(B(N-1)) 

nodeID = 3; 
for i = 1:N-4 

Mat(i+1,i) = (A(nodeID)+A(nodeID-1))*(1-Mu)/sqrt(A(nodeID))+ ... 
(B(nodeID)+B(nodeID-1))*Mu/sqrt(B(nodeID)) 

Mat(i+1,i+1) = -(A(nodeID+1)+2*A(nodeID)+A(nodeID-1))•(1-Mu)/sqrt(A(nodeID))- ... 
(B(nodeID+1)+2*B(nodeID)+B(nodeID-1))•Mu/sqrt(B(nodeID)); 

Mat(i+1,i+2) = (A(nodeID+1)+A(nodeID))•(1-Mu)/sqrt(A(nodeID))+ ... 
(B(nodeID+1)+B(nodeID))•Mu/sqrt(B(nodeID)); 

nodeID = nodeID+1; 
end 

Wsol(2:N-1) = Mat\RHS; 
Wsol(1) = W(1); % wL 
Wsol(N) = W(N); % wR 

% To compute Adot and Bdot 
Ldot = 1; 
L = 1; 

o/. for i = 1:N-1 
o/. Adot(i,1) = (Ldot/L)•(i-1)*(A(i+1)-A(i)) - ... 

(A(i)•(Wsol(i+1)-Wsol(i))+Wsol(i)•(A(i+1)-A(i)))/(L*delZ) 

o/. 

o/. end 
i = 1; 

Bdot(i,1) = (Ldot/L)*(i-1)*(B(i+1)-B(i)) - ... 
(B(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)•(B(i+1)-B(i)))/(L•delZ); 

Adot(1,1) = (Ldot/L)*(i-1)*(A(i+1)-A(i)) - ... 
(A(i)•(Wsol(i+1)-Wsol(i))+Wsol(i)*(A(i+1)-A(i)))/(L•delZ) 

Bdot(1,1) = (Ldot/L)•(i-1)•(B(i+1)-B(i)) - ... 
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i = N; 
Adot(N, 1) 

Bdot(N,1) 

= 

= 

(B(i)*(Wsol(i+1)-Wsol(i))+Wsol(i)*(B(i+1)-B(i)))/(L*delZ); 

(Ldot/L)*(N-1)*(A(i)-A(i-1)) - ... 
(A(i)*(Wsol(i)-Wsol(i-1))+Wsol(i)*(A(i)-A(i-1)))/(L*delZ) 

(Ldot/L)*(N-1)*(B(i)-B(i-1)) - ... 
(B(i)*{Wsol(i)-Wsol(i-1))+Wsol(i)*(B(i)-B(i-1)))/{L*delZ) 

for i = 2:N-1 
Adot(i,1) = -(Wsol(i+1)*A(i+1) - Wsol(i-1)*A(i-1))/(2*de1Z*L) + 

z(i)*Ldot*(A(i+1)-A(i-1))/(2*delZ*L); 
Bdot(i,1) = -(Wsol(i+1)*B(i+1) - Wsol(i-1)*B(i-1))/(2*delZ*L) + 

z(i)*Ldot*(B(i+1)-B(i-1))/(2*delZ*L); 
end 
% Adot(1,1) = -A(1)*(-Wsol(3)+4*Wso1(2)-3*Wsol(1))/(2*delZ*L); 
% Bdot(1,1) = -B(1)*(-Wsol(3)+4*Wsol(2)-3*Wsol(1))/(2*delZ*L); 
¼ 
% Adot(N,1) = -A(N)•(3•Wsol(N)-4•Wsol(N-1)+Wsol(N-2))/(2*delZ*L); 
¼ Bdot(N,1) = -B(N)*(3*Wsol(N)-4*Wsol(N-1)+Wsol(N-2))/(2*delZ*L); 

Dotvec = [Adot;Bdot]; 
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