This is an open-book, open notes exam. Please show your work in detail.

1. (20 points) Deduce the structure of **B**, and fill in the missing reagent(s). You do not need to show mechanisms.

OEt
$$\stackrel{?}{\longrightarrow}$$
 B $C_6H_{10}O$ $\stackrel{13}{\longrightarrow}$ C NMR: $\stackrel{1}{\longrightarrow}$ H NMR: $1.76, d, J = 7.2 \text{ Hz}, 3H$ $1.30.8, d$ $1.76, d, J = 7.2 \text{ Hz}, 3H$ $1.30.8, d$ $1.30.8, d$

2. (20 points) Which product would be formed, and why?

3. (20 points) Outline a synthesis of \mathbf{D} , starting with \mathbf{C} . You may use any reagent that contributes three or fewer carbons to the final product. Your route must control relative configuration, leading to the diastereomer illustrated.

$$C$$
 D

4. (20 points) Deduce the stucture of **F**, and draw an arrow-pushing mechanism for the transformation.

F
$$C_6H_8O$$

1H NMR:
2.05, M, 2H
2.42, m, 4H
150.6, d
6.01, d, J = 10.2 Hz, 1H
129.9, d
7.02, m, 1H
38.2, t
25.8, t
22.8, t

5. (20 points) Draw a detailed arrow-pushing mechanism for the transformation of **G** to **H**.

$$\begin{array}{c|c}
H & O \\
c & b \\
\hline
G & O
\end{array}$$

$$\begin{array}{c|c}
H^+ \\
\hline
-H_2O \\
\hline
H
\end{array}$$

$$\begin{array}{c|c}
bb & bf \\
\hline
\end{array}$$