This is an open-book, open notes exam. No electronic devices are allowed.

1. (5 points each) Fill in the missing reagent, product or starting material. Stereochemistry is important!

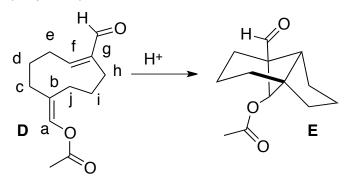
c.
$$\xrightarrow{Br}$$
 \xrightarrow{NaCN} ? $C_6H_{10}BrN$

2. (20 points) Which product would be formed, and why? Explain in detail.

$$CH_3O \longrightarrow H$$

$$CH_3$$

3. (20 points) Using any monosubstituted benzene that contributes six carbons to the final product, and any other pieces that contribute three or fewer carbons to the final product, outline a synthesis of $\bf A$.


4. (20 points) Deduce the structure of C, and draw an arrow-pushing mechanism for the conversion of B to C.

Br
$$C$$
 t -BuOK C
 $C_{11}H_{18}O_2$

IR: 3051, 2977, 2934, 2853, 1729, 1367 cm⁻¹

¹³ C NMR:	¹ H NMR:
172.3, s	5.7, m, 2H
133.9, d	3.05, m, 1H
131.2, d	2.55, dd, J = 6.5, 15.1 Hz, 1H
80.1, s	2.42, dd, J = 5.4, 15.1 Hz, 1H
42.3, d	2.2, m, 4H
41.8, t	1.46, s, 9H
31.8, t	
29.5, q (3)	
28.1, t	

5. (20 points) Outline a mechanism for the transformation of $\boldsymbol{\mathsf{D}}$ to $\boldsymbol{\mathsf{E}}.$

bb	bf