Chem 333 Fall 2012 Exam #4 December 3, 2012

Name____Key____

1. (30 points) Deduce the structure of A.

A C₉H₉NO₂

¹ H NMR:	¹³ C NMR:
7.43, t, J = 8.4 Hz, 1H	162.6, s (2)
6.55, d, J = 8.4 Hz, 2H	134.8, d
3.93, s, 6H	114.2, s
	103.4, d (2)
	91.2, s
	56.2, q (2)

1. IHD = 6 no OH, NH

2. Benzene ring with three substituents, ortho to each other

162.6, s (2) says O directly atteched to ring 56.2, q says that these are Me ethers

That leaves CN for the substituent, 114.2, s

2. (30 points) Deduce the structure of B.

-

В	$C_{15}H_{20}O_2$	MS: 232 (90), 163 (100), 115 (45)
¹ H NM	R:	¹³ C NMR:
0.89, s	, 3H	209.6, s
0.96, s	, 3H	158.8, s
1.8, m,	, 2H	136.5, s
2.0, m,	, 2H	128.3, d
245, m	, 2H	123.7, d
3.48, s	, 1H	117.3, d
3.82, s	, 3H	111.9, d
6.8, m,	, 3H	67.4, d
7.25, t, J = 7.8 Hz, 1H	J = 7.8 Hz, 1H	55.2, q
		41.5, t
		40.8, s
		22.5, t
		30.6, t
		22.3, q
		17.3, q
1. IHD =	6 no OH	

2. carbonyl 209.6, s is a ketone from chemical shift cyclohexanone or acyclic

benzene is disubstituted, not symmetrical

OCH₃

from ¹H NMR carbonyl is not directly attached to ring (from chemical shift of carbonyl also)

From 158.8, s, O directly attrached to benzene ring from 55.2, q this is OCH3 from 111.9, d 117.3, d methoxy group has CH ortho to it. no symmetry

SO:

4. a. two methyl groups attached to same carbon, no H's on that carbon, but no symmetry

one more ring

b. 3.48, s, 1H a C-H with no C-H neighbors

c. no extra CH2's, so must be cyclohexanone

3. (40 points) Deduce the structure of C.

ССИ		MS: 228 (40), 171 (100), 130 (35)	
$C_{14}H_{28}O_2$	$_{28}O_2$	IR: 2920, 1	2870, 1756 cm ⁻¹
¹ H NMR:		¹³ C NMR:	
0.95, t, J = 7.2 Hz, 3	SH	173.9, s	25.1, d
0.98, d, J = 6.9 Hz, 6H 1.3-1.7, m, 15 H		62.9, t	25.0, t 22.7, t
		37.4, t	22.7, t 22.5 a (2)
2.29, t, J = 7.4 Hz, 2	2H	34.4, t	14.1, q
4.10, t, J = 7.3 Hz, 2	2H	31.9, t	· 1
		29.3, t	
		29.2, t	

29.1, t

1. IHD = 1 no OH

2. 173.9, s ester 1756 cm-1 also

From MS, loss of 57 0 loss of 98 = McLafferty

but which end has the branching methyls?

25.1, d must be gamma shifted