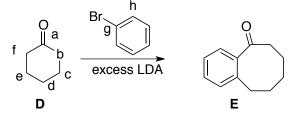

Name_

1. (10 points) Using any pieces that contribute three or fewer carbons to the final product, and any monosubstituted benzene derivative that contributes at most seven carbons to the final product, outline a synthesis of **A**.

2. (10 points) Deduce the structure of **C**, and draw an arrow-pushing mechanism for its formation.

¹³ C NMR	¹ H NMR
172.9, s 33.4, s	4.78, bs, 1H
171.5, s 32.8, t	4.55, bs, 1H 4.12, q, J = 7.2 Hz, 2H
146.8, s 31.3, t	4.09, q, J = 7.2 Hz, 2H
113.3, t 27.4,q	1.8-2.1, m, 5H
61.4, t 24.4, q	1.64, s, 3H 1.3-1.4, m, 2H
61.7, t 20.4, q	1.17, t, J = 7.2 Hz, 3H
55.9, s 14.5, q	1.14, t, J = 7.2 Hz, 3H
49.9, d 14.1, q 39.2, t	0.81, s, 3H 0.78, s, 3H
03. <u></u> , i	0.70, 5, 511


Br

ĊN

Α

3 1	(10 points)Draw ar	arrow-nushing mechanisr	m for the conversion of D to E .	
0.1	(10 points) Draw ar	anow-pushing mechanisi		

bb bf

