
1. (10 points) Using any piece that contributes three or fewer carbons to the final product, and any monosubstituted benzene derivative that contributes at most seven carbons to the final product, outline a synthesis of $\bf A$.

2. (10 points) Deduce the structure of **C**, and draw an arrow-pushing mechanism for its formation.

IR: 3074, 2927, 2862, 1700, 1640 cm ⁻¹ KH C ₁₁ H ₁₈ O C	13C NMR 215.7, s 137.2, d 116.2, t 49.3, d 43.3, t 40.1, d 34.5, t 32.3, t 25.9, t 24.2 t 12.9, q	1H NMR 1.0-1.1 d, J=8.2 Hz, 3H 1.5-2.0 m, 8H 2.3-2.4, m, 2H 2.6, m, 1H 2.8, m, 1H 5.0, m, 2H 5.71, ddt, J = 15.6, 11.2, 7.1 Hz, 1H
--	--	---

3. (10 points)Draw an arrow-pushing mechanism for the conversion of **D** to **E**.

