
1. (10 points) Outline a synthetic route to A. You may start with any monosubstituted benzene derivative that contributes seven or fewer carbons to the final product, and/or any acyclic piece(s) that contribute(s) three or fewer carbons to the final product. You may assume that o,p-reactions will give the para product if that site is open.

2. (10 points) Deduce the structure of **C**, and draw an arrow-pushing mechanism for its formation.

$$\begin{array}{c|cccc}
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & &$$

13C NMR	¹ H NMR
12.0, q (2)	0.96, t, J = 7.1 Hz, 3H
13.2, q	1.22, t, J = 6.8 Hz, 6H
20.1, t	1.4, m, 4H
32.5, t	2.30, t, J = 7.8 Hz, 2H
33.1, t	2.55, t, J = 7.2 Hz, 2H
41.0, t	2.83, t, J = 7.8 Hz, 2H
48.9, t (2)	3.24, q, J = 6.8 Hz, 4H
49.5, t	6.3, bs, 1H (exchanges)
20.1, t	1.4, m, 4H
32.5, t	2.30, t, J = 7.8 Hz, 2H
33.1, t	2.55, t, J = 7.2 Hz, 2H
41.0, t	2.83, t, J = 7.8 Hz, 2H
48.9, t (2)	3.24, q, J = 6.8 Hz, 4H

3. (10 points)Draw an arrow-pushing mechanism for the conversion of **D** to **E**.

