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Figure 7.1: Constructive & Destructive Interference 

7. Interference Filters & Diffraction Gratings 
 
In many spectroscopic measurements, the incident, transmitted or emitted 

radiation beams are dispersed by frequency (or wavelength) to increase the 
selectivity and/or information content of the measurement.  We’ve already seen 
why broadband light can be separated into its constituent frequencies using a 
prism, i.e., the dispersion (frequency dependence) of the refractive index.  
However, the use of diffraction or interference phenomena provides much better 
wavelength selection because these exploit the wave nature of light.  Diffraction 
and interference are closely related phenomena; in fact, diffraction can be 
considered interference with scattering.  So to understand diffraction, it is best to 
begin discussing interference. 

Interference occurs when two beams are superimposed.  The 
superposition principle states that constituent electric fields are additive: 

E(z,t)=E1*cos(ωt -kz1)+E2*cos(ωt -kz2). 
Interference arises from the addition of the oscillations of at least two light beams 
that have similar wavelengths.  This is illustrated below for a pair of cosine waves 

of identical wavelength.  The second wave (blue) is phase-shifted by 0° in the top 
left panel and 90° in the top right.  In these pictures, the waves can have different 
z values (abscissa) at the same position on the graph. The frequencies of the 
beams are the same, but the beams are phase-shifted from one another because 
of the different distances (zi) traveled.  The phase shift is kΔz. 
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 Figure 7.1 shows how two beams “interfere” with one another for several 
values of kΔz. For kΔz=0, the figure on the top left, the total electric field is twice 
that of the individual electric fields.  This is “constructive” interference.  As the 
phase shift increases to 90° (π/2), the figure on the top right, the composite 
electric field is less than twice the constituent fields and is phase-shifted from 
both of them. When kΔz=120°, lower left figure, the composite electric field is 
only as large as the constituent fields and its phase is between the two.  Finally, 
as the phase shift reaches one-half the wavelength, lower right figure, the 
amplitude of the composite electric field is zero.  This last case is called 
“destructive” interference.  A key point to understand is that two waves must 
have a well-defined phase relationship to give rise to interference effects.  Waves 
with fixed phases are said to be “coherent”. The most common way of achieving 
coherence is to split a beam of incoherent light.  This is counterintuitive, but is 
based on the idea that components of the wave will constructively interfere with 
each other when a beam is split and recombined.  A second point to remember is 
that while electric fields are additive, irradiances are not.  Consequently, the 
irradiance of a beam produced by destructive interference is small rather than 
precisely zero.   

Several devices utilize interference to isolate or separate radiation by 
frequency.  For example, interference filters are 
designed to pass a narrow wavelength range by 
having an optical cavity (in which interference 
occurs) built into them.  The optical cavity is a thin 
dielectric film that has pathlength d.  The light is 
reflected from the boundaries on each side of the 
cavity, interfering with itself.  The phase difference 
between the incoming beam and its reflected 
image is k(2•dn) because the reflected beam 
travels the distance 2d in the cavity (assuming 
normal incidence, θ=0, even though θ>0 in the 
picture).  Since k≡2π/λ, when d=mλ/2, the phase 
difference between the incoming and reflected 
waves are k2d =2πm, leading to constructive 
interference.  Here the integer m reflects the fact 
that all multiples of λ/2 are “modes” of the optical 
cavity and are transmitted. Thus, the transmitted 
wavelength becomes 2d(n2-sin2θ)1/2 =mλ, where m is an integer representing the 
order (or multiple) of the wavelength passed by the filter for any incident angle or 
dielectric.  As a consequence of the interference laws, the interference filter will 
pass the most light at integer multiples of λ/2 and will pass the least amount of 
light at odd integer multiples of λ/4. 

Interference filters are convenient when there is only one wavelength of 
interest.  A common application of interference filters is in inexpensive optical 
instruments where the various emission lines of a mercury lamp are selected for 
absorbance or fluorescence measurements.  Interference filters typically will 

Interference Filter.  From Engle &
Crouch, Spectrochemical Analysis,

1988.

Glass     Dielectric     Glass

Semireflective
film

From Ingle & Crouch, 1988.
 

Figure 7.2: Interference 
Filter 
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select a wavelength within 1 to 10 nm, depending on the construction of the filter.  
The more selective filters have stronger reflections on either side of the cavity to 
enhance the interference by making the incoming and reflected electric fields 
closer to one another in amplitude.  Holographic interference filters are devices 
that have many cavities evenly spaced at the λ/2 intervals.  Holographic printing, 
which is based on crossed laser beams, produces nearly perfect cavity spacing.   

Fabry-Perot interferometers are devices that have adjustable cavity 
spacings so that the wavelength transmitted by the cavity may be scanned.  
(While there is some confusion around the nomenclature, Fabry-Perot etalons 
are interferometers that have fixed cavity spacings.  Their performance is similar 
that of interference filters, though the construction is different; here the dielectric 
is usually air.)  An entire spectrum can be observed by varying (scanning) the 
cavity spacing of the interferometer.  Unlike the interference filter, the cavity 
spacing of the Fabry-Perot interferometer is much larger than the wavelength of 
light.  The optical wavelengths transmitted are thus very high order modes of the 
interferometer.  The finesse, F, and coefficient of finesse, CF, which measure 
how selective an etalon or filter is for a particular wavelength, depend on the 
reflectivity of the cavity walls. 
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The bandwidth of the transmitted bands and resolving power of the cavity are 
related to F and CF. The full-width at half maximum (intensity) for transmitted 
bands and resolving power (ratio of the mean of two spectral bands that are 
separated by the device divided by the difference in their wavelengths) of an 
etalon (or interferometer position) are 
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These expressions imply that the bandwidth of transmitted bands decreases and 
separation between adjacent bands increases as the reflectivity of the cavity 
walls approaches unity.  The amount of light transmitted by an interferometer is 
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where Φm is the maximum power in a fringe, k is the wavevector (see pg. 3) and 
Δz is the difference in the optical pathlengths of adjacent beams leaving the 
device.  In the interferometer (or etalon) Δz=2dcos(θ).  (See text by Fig. 20 for 
definitions.)    

The Michelson interferometer is a simpler device that utilizes the 
interference caused by a beam overlapping with a split and recombined version 
of itself to analyze the content of light sources.    Beam splitters are integral 
components of most interferometers, so we will digress (a little) from devices 
based on interference briefly to describe them.  The simplest beam splitter 
design is a partially silvered mirror.  Aluminum vapor is deposited on the surface 
of glass so that a fraction of the light, for example 50%, is reflected while the rest 
is transmitted. Dichroic (two color) beamsplitters are designed to reflect one 
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wavelength range and transmit another.  For example, long pass beam splitters 
that reflect high energy photons are useful for separating fluorescence or Raman 
from scattered excitation beams.  Dichroic beamsplitters are more expensive 
than absorption based filters (dyes trapped in glass) but more rugged because 
most of the incident radiation is either reflected or transmitted and cannot 
damage the optic. The performance of dichroic beamsplitters is caused by 
interference.  Alternating layers of optical coatings on glass substrates produce 
constructive interference of some wavelengths and destructive interference of 
others.  Variations in the number, thickness and composition of these coatings 
produce many types of filters.   

In the Michelson interferometer light is split at a 50% beamsplitter then 
recombined to cause 
interference. In the case of 
a monochromatic source, 
whenever the difference in 
the path lengths in the two 
arms is a multiple of the 
wavelength produced by 
the source, constructive 
interference occurs at the 
detector producing a large 
signal.  When the path 
length is an odd multiple of 
one-half the wavelength, 
destructive interference 
occurs and the detector 
signal is small.  Pulling the 
moving mirror at constant speed produces an oscillating signal (called an 
interferogram) whose frequency is depends on the frequency of the source 
radiation. In fact, the frequency of the interferometer signal is proportional to the 
speed of the moving mirror and inversely proportional to the wavelength of the 
radiation.  Scanning (pulling/pushing) the movable mirror thus allows 
straightforward determination of the frequency of the source radiation.  In a later 
section we will see that the spectrum of a polychromatic source can be obtained 
by Fourier transformation of the output of the Michelson interferometer.  

For applications where wavelength tunability (rather than wavelength 
dependence) is desired, other schemes of based on interference are employed.  

 
Figure 7.3: Michelson Interferometer 
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A common scheme is the diffraction grating, which produces interference by 
scattering radiation off evenly spaced scratches that have been etched on a flat 
surface.  The electric field is scattered in all directions (away from the surface) 
when light strikes a scratch mark.  The interference produced by combining the 
scattered fields is illustrated above, where contour plots of oscillating electric 
fields are shown.  The electric field emanating from the point in the lower left 
hand corner (Figure E1) is added to the electric field emanating from the lower 
middle of the surface (Figure E2) to give the total electric field over the area 
(Figure E3).  The result, as Figure E3 shows, is that the electric field will only 
propagate only at certain angles, an effect called diffraction.  Diffraction is thus 
an interference effect in which radiation constructively interferes at particular 
angles.  This angular dispersion physically resolves the components of 
pplychromatic radiation.   

A diffraction grating has many evenly spaced scratches on the surface, 
but the basic principles are easiest to illustrate with just two scratch marks. 
Rather than using contour plots of the electric field (as above), it is simpler to 
draw lines representing the maximum electric field.  The incident light (black) is 
parallel to the surface normal (α=0).  The grating surface is perpendicular to the 
view below, above and below the plane of the page.  Without the scratches, we’d 
see specular reflection off the surface.  Because the scratches produce 
interference, the reflected beam (red) makes an angle, β, with the surface that 
depends on the groove (scratch) spacing, d and the wavelength of the radiation, 
λ.  Diffraction from a surface grating gives multiple orders, m. The dashed blue 

ray is second order.  This is the Raman-Nath diffraction limit. 
Reflective diffraction gratings have been used for decades in optical 

spectrometers, but the problem of multiple orders decreases grating throughput.  
Blazing, where the scratches are etched at angles that push the reflectance into 
the first order, enhances the intensity in the first order.  However, this requires 
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Figure 7.4: Raman-Nath Diffraction 
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advance choice of the wavelength region.  Figure 7.5 illustrates that volume 
gratings eliminate multiple order diffraction. They are made by holography, and 
their general appearance can be thought of as an interference filter rotated 90° 
(the rows of grooves etched in the device form optical cavities of sorts). (The 
gray dots show that the planes of volume gratings are similar to parallel stacks of 
surface scratches). Diffraction from a volume grating gives only first-order 
diffraction. Higher orders destructively interfere. This is the Bragg diffraction limit.  
Given θ as the angle between the grating and the incident light, the figure 

illustrates the familiar Bragg equation, where sin θ= λ/2d. Holographic volume 
gratings have very high diffraction efficiencies (claimed to be close to 100%), with 
all of the light going into the first order, so spectrometers based on these devices 
have much higher detection limits than those based on reflective diffraction 
gratings.  Volume gratings have been introduced to optical spectrometers for a 
number of years now. Commercial spectrometers based on such gratings are 
available.   

A number of monochromator and spectrograph (exit aperture rather than 
exit slit) designs are used to incorporate diffraction gratings into the optical train 
of spectrometers.  The Czernzy-Turner is very commonly used, but the 
compactness of the Littrow design is convenient for many applications.  The 
resolution of these devices depends on the slits and curved mirrors used to direct 
the light to and from the grating as well as the spacing of grooves on the grating, 
as the following equation shows 

  !"slit = 2d
cos#

m f
Wslit  

where Wslit is the slit width, f is the focal length of the curved mirror, d is the 
groove spacing and β is the angle at which the diffracted ray leaves the grating.  
The monochromator throughput, Υ(λ), also depends on these (and related) 
factors.   

Figure 7.5: Bragg Diffraction 
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The etched surface diffraction grating and the holographic volume grating 
are permanent gratings. Useful transient gratings also can be written into 
materials.  For example acousto-optic gratings may be written in quartz. Quartz is 
a piezo-electric material whose density, and thus refractive index, changes with 
applied voltage.  A high frequency, i.e., RF, oscillating voltage induces an 
oscillating density gradient in the quartz.  This grating will diffract radiation at the 
refractive index boundaries.  The acousto-optic grating is transient because it 
disappears when the RF power is off. Ingle & Crouch discuss modulators, which 
modify beam power using this technology.  A more recent development is their 
use as tunable Bragg diffraction gratings.  The entire visible spectrum can be 
scanned in fractions of seconds by varying the RF frequency.   
 


