3 euch I Multiple Choice (33 points)

- 1. An exothermic reaction causes the surroundings to:
- (A) warm up
- B. become acidic
- C. expand
- D. decrease in temperature
- E. release CO₂
- 2. When heat is absorbed by the system and work is done by the system on the surroundings then
- A. q is negative and w is positive.
- B. both q and w are positive.
- C. both q and w are negative.
- Dq is positive and w is negative.
- E. q is positive for endothermic processes and w is positive for endothermic processes.
- 3. Select the correct electron configuration for sulfur (Z = 16).

- A. $1s^21p^62s^22p^6$ B. $1s^22s^22p^83s^23p^4$ C. $1s^22s^22p^83s^23p^2$ D. $1s^22s^22p^63s^23p^4$ E. $1s^22s^22p^63s^23d^4$
- 4. Which two of the four electron configurations below represent elements that would have similar chemical properties?
- $(1) 1s^2 2s^2 2p^4$
- (2) $1s^2 2s^2 2p^5$
- (3) $[Ar]4s^23d^{10}4p^3$
- (4) $[Ar]4s^23d^{10}4p^4$
- A. (1) and (2)
- B. (1) and (3)
- (C)(1) and (4)
- **D**. (2) and (4)
- E. (2) and (3)
- 5. Which of these elements exhibits chemical behavior similar to that of potassium?
- A. magnesium
- (B) sodium
- C. sulfur
- D. chlorine
- E. iron

- 6. Which of these atoms has the smallest radius?
- A. Al
- (B)P
- Č. As
- D. K
- E. Na
- 7. Which one of these ions has the largest radius?
- A. Cl
- B. K⁺
- $(\widehat{C})S^{2-}$
- D. Na⁺
- $E. O^{2-}$
- 8. The shape of an atomic orbital is associated with
- \triangle . the principal quantum number (n).
- B) the angular momentum quantum number (1).
- C. the magnetic quantum number (m_l) .
- D. the spin quantum number (m_s) .
- E. the magnetic and spin quantum numbers, together.
- 9. Which of the following is a correct set of quantum numbers for an electron in a 3d orbital?
- A. n = 3, l = 0, $m_l = -1$
- B. n = 3, l = 1, $m_l = +3$
- C. n = 3, l = 2, $m_l = 3$
- D. n = 3, l = 3, $m_l = +2$
- $(E)n = 3, l = 2, m_l = -2$
- 10. Which one of the following sets of quantum numbers is not possible?

	n	1	m_l	m_s
а	4	3	-2	+1/2
b	3	0	1	-1/2
С	3	0	0	+1/2
d	2	1	1	-1/2
е	2	0	0	+1/2

- A. a
- (B) b
- C. c
- D. d
- E. e

Student:					<u></u>			<u> </u>	
11. The orbita	_	m for a gro	ound-state r	nitrogen aton	1 is 3	yts			
1s	2s ↑↓ ↑↓ ↑	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	<u>↑</u>						
d) $\uparrow \downarrow$ e) $\uparrow \downarrow$	<u>↑</u> ↓ <u>↑</u> ↓	<u>↑</u>	<u>†</u>						
A. a B. b C. c D. d									
E. e									
**	•	22 points)							
12. (3 points)	_alk	al. me	415	<u> </u>		_ is the nan	ne of the e	lements in (Group IA.
13. (3 points) an electron.	elect "EA	in at	Erify	is the ener	gy released	d when a si	ngle atom	in the gas p	hase accepts
14. (4 points)	What is	the total n	umber of el	lectrons that	can occupy	y the 4 <i>d</i> ort	oitals?	<u>3</u>	
15. (12 points for examples of arrows to indicate diagrams, if the	of electr cate elec	on configu etrons and	rations, if t their spin, a	his term is n nd labeling tl	ot clear to the orbitals.	you.) Also (Look at	o draw an Question	orbital diag l1 for exam	ram, using oles of orbital
[Ar]	452	3110	402	6 po.	ints				
	#	4	4 - 12 - 3 J	#74	7	7 -		6 po.	175
	45		>વ		40		•		
4 A.						l's va			
					tollo	wed 1	5 21	16	

III. Calculations (40 points). SHOW WORK FOR CREDIT

16. (10 points) Given the following ΔH° values,

$$H_2(g) + {}^{1}\!/_{2}O_2(g) \to H_2O(l)$$

$$\Delta H^{\circ} = -285.8 \text{ kJ/mol}$$

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$

$$\Delta H^{\circ} = -187.6 \text{ kJ/mol},$$

calculate ΔH°_{rxn} for the reaction $H_2O_2(l) \rightarrow H_2O(l) + \frac{1}{2}O_2(g)$ -98.2

17.(10 points) A 0.1375-g sample of solid magnesium is burned in a constant-volume bomb calorimeter that has a heat capacity of 3024 J/°C. The temperature increases by 1.126 °C. Calculate the heat given off by the burning Mg in kJ/mol. Q=MCAT 32

100	7
/Stuc	ieni:

18. (10 points) The enthalpy of combustion of acetylene C_2H_2 is described by $C_2H_2(g) + (5/2)O_2(g) \rightarrow 2CO_2(g) + H_2O(1)$

Calculate the ΔH°_{rxn} , given the following enthalpies of formation: $\Delta H^{\circ}_{f}[CO_{2}(g)] = -393.5 \text{ kJ/mol}$, $\Delta H^{\circ}_{f}[H_{2}O(l)] = -285.8 \text{ kJ/mol}$, and $\Delta H^{\circ}_{f}[C_{2}H_{2}(g)] = +226.6 \text{ kJ/mol}$.

19. (10 points) Calculate the wavelength (in nm) of the photon emitted when an electron in a hydrogen atom falls from the n=4 state to the n=2 state.

$$\Delta E = -2.18 \times 10^{-18} J \left(\frac{1}{4} - \frac{1}{16} \right)$$

$$= -4.09 \times 10^{-19} J$$

$$\frac{4.09 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{ J} \cdot \text{s}} = \frac{4.09 \times 10^{-19} \text{ J}}{6.17 \times 10^{14} \text{ Hz}}$$

$$\lambda = \frac{4.09 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{ J} \cdot \text{s}} = \frac{3.00 \times 10^{8} \text{ m/s}}{6.17 \times 10^{14} \text{ s}^{-1}} = \frac{3.00 \times 10^{8} \text{ m/s}}{6.17 \times 10^{14} \text{ s}^{-1}} = \frac{4.87 \times 10^{-7} \text{ m}}{3.00 \times 10^{14} \text{ s}^{-1}}$$

$$\times \frac{\ln m}{10^{-9}m} \text{ or similar}$$

$$= 487 \text{ nm}$$

ignure SF,