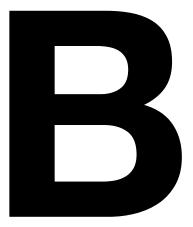
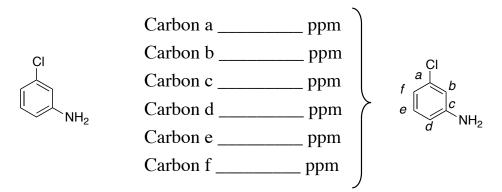
Chem 333, Exam 1 Professor Fox FALL 2013

Your Name_____

Q1) 12 points


Q2) 12 points

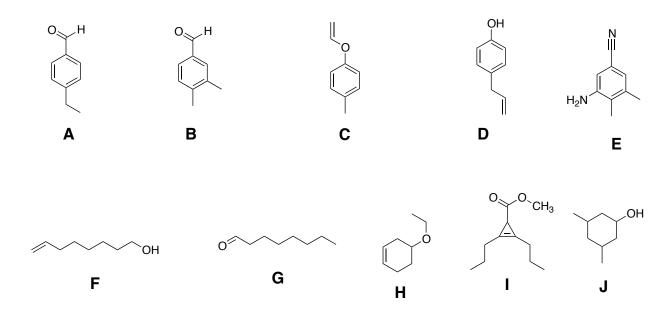
Q3) 16 points

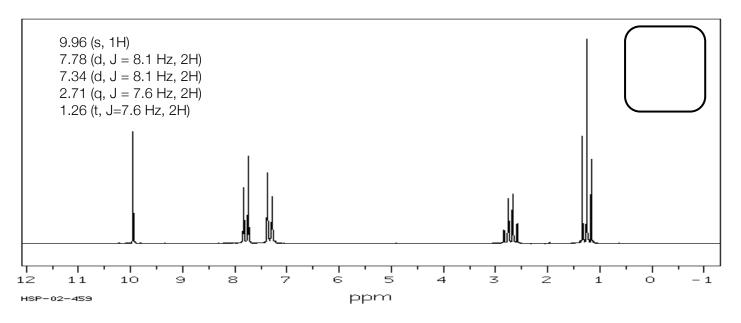

Q4) 25 points

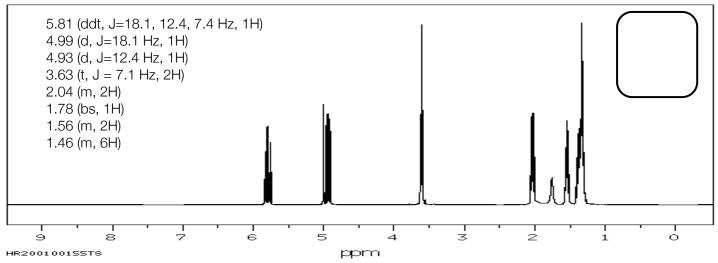
Q5) 33 points

tables at back of exam

 Calculate the chemical shifts for each of the carbons in the following molecule. Place your answers on the line after the appropriate carbon atom. A correct answer should be precise to one decimal place (e.g. 128.5; NOT 129 ppm)
 Your answers must match the correct answer within +/- 0.5 ppm (12 points total)


You may use the area below for scratch work, but it will not be graded


2. Calculate the chemical shifts for each of the labeled protons in the following molecules. Place your answers on the line after the appropriate atom. A correct answer should be precise to two decimal places (e.g. 5.25 ppm; NOT 5.3 ppm)


Your answers must match the correct answer within ± -0.05 ppm (12 points total)

You may use the area below for scratch work, but it will not be graded

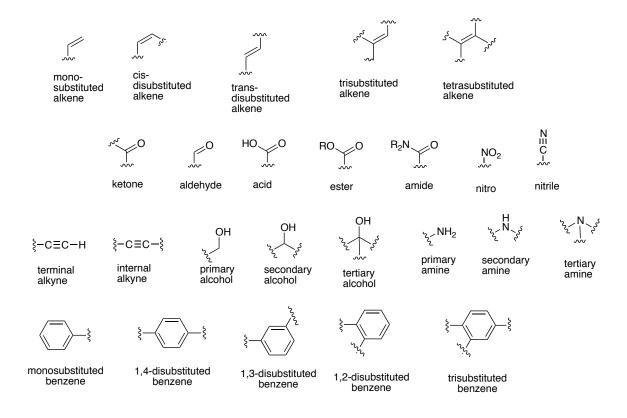
3. Match the following ¹H NMR spectra with one of the following substances. Write your answer in the box along side the spectrum. (8 points each)

C	Н			\cap
Uβ	1 1	1	4	v

145.3, d

112.6, t

72.5, s


39.9, t (2 carbons)

22.0, t

21.5, t (2 carbons)

- a) Calculate the IHD: _____(1 pt)
- b) How many hydrogens are on carbons? _____ (1 pt)
- c) Circle the substructure that is associated with the following ¹³C NMR resonances. If none of the below functional groups exist, then circle "none of the above" (6 points)

145.3 d 112.6, t

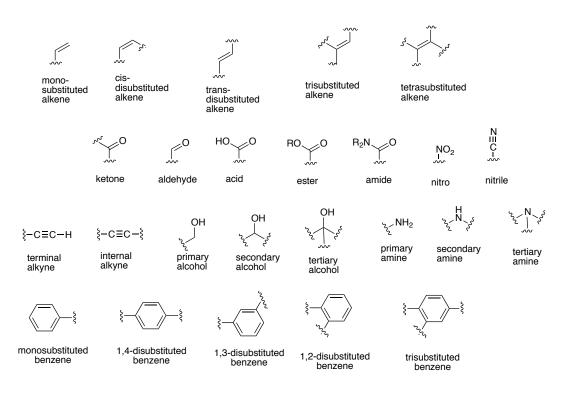
none of the above

$C_8H_{14}O$

145.3, d

112.6, t

72.5, s


39.9, t (2 carbons)

22.0, t

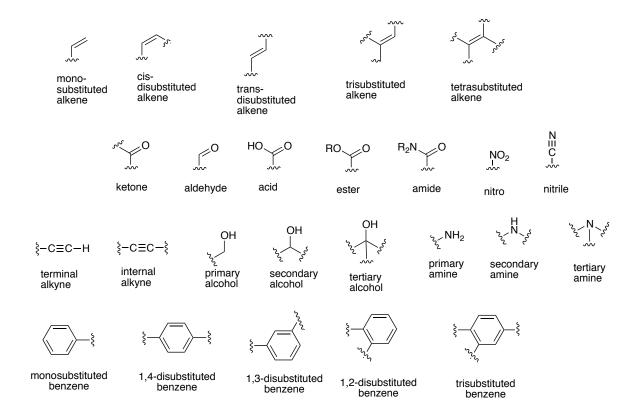
21.5, t (2 carbons)

d) Indentify the functional group associated with 72.5, s.

If the correct functional group is not listed, then circle "none of the above" (6 points)

none of the above

e) Draw the structure (11 points)

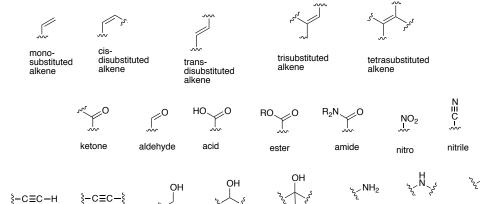


$C_{13}H_{18}O_2$

¹ H NMR	¹³ C NMR
7.70 ppm (d, J=8.0 Hz, 2H) 6.91 ppm (d, J=8.0 Hz, 2H) 3.86 ppm (m, 1H) 2.45 (s, 3H) 1.67 (m, 2H) 1.43 (d, J=7.2 Hz, 3H) 1.33 (m, 2H) 0.96 (t, J=6.9 Hz, 3H)	197 (s) 163 (s) 129 (s) 128 (2 carbons, d) 114 (2 carbons, d) 73 (d) 39 (t) 23 (q) 20 (q) 17(t) 14 (q)
	1 T (Y)

- a) Calculate the IHD: _____(1 pt)
- b) How many hydrogens are on carbons? _____ (1 pt)
- c) Identify the substructure that is associated with the following. (6 pts)

197 (s)


none of the above

$C_{13}H_{18}O_2$

¹ H NMR	¹³ C NMR
7.70 ppm (d, J=8.0 Hz, 2H) 6.91 ppm (d, J=8.0 Hz, 2H) 3.86 ppm (m, 1H) 2.45 (s, 3H) 1.67 (m, 2H) 1.43 (d, J=7.2 Hz, 3H) 1.33 (m, 2H) 0.96 (t, J=6.9 Hz, 3H)	197 (s) 163 (s) 129 (s) 128 (2 carbons, d) 114 (2 carbons, d) 73 (d) 39 (t) 23 (q) 20 (q) 17(t) 14 (q)

d) Identify the substructure that is associated with the following. (7 points) 7.70 ppm (d, J=8.0 Hz, 2H)

6.91 ppm (d, J=8.0 Hz, 2H)

terminal internal alkyne alkyne

1,3-disubstituted benzene

secondary alcohol

primary alcohol

1,4-disubstituted

\$-_______

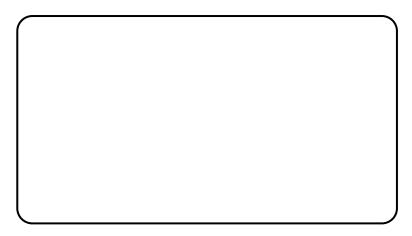
1,2-disubstituted benzene

tertiary alcohol

trisubstituted benzene

secondary amine

tertiary amine


primary amine

none of the above

monosubstituted

benzene

e) Draw the structure (18 points)

