TABLE 7.5 Rules of Diene Absorption*		
Base value for homoannular diene	253	
Increments for		
Double bond extending conjugation	+ 30	
Alkyl substituent or ring residue	+5	
Exocyclic double bond	+5	
Polar groupings: OAc	+0	
OAlk	+6	
SAlk	+ 30	
Cl, Br	+5	
N(Alk) ₂	+ 60	
Solvent correction ^b	+0	
	$\lambda_{calc} = Tota$	

Α.

*See L. M. Fieser and M. Fieser, Steroids. New York: Reinhold, 1959, pp. 15-24; R. B. Woodward, J. Am. Chem. Soc., 63, 1123 (1941); 64, 72, 76 (1942); A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products. New York: Pergamon (Macmillan), 1964.

^bSolvents have negligible effects upon the λ_{\max} of these $\pi \to \pi^*$ transitions.

CHO Br) -0 -=0
use Table 7.5	
Base (homoannular)	253
C=C (1 X 30)	+30
OR (1 x 6)	+6
Alkyl (3 X 5)	+15
Hal (1 x 5)	+5
Exocyclic	+5
$\lambda_{\max}(\text{calc}) =$	314

TABLE 7.5 Rules of Diene, Absorption*		
Base value for homoannular diene	253	
Increments for		
Double bond extending conjugation	+ 30	
Alkyl substituent or ring residue	+5	
Exocyclic double bond	+5	
Polar groupings: OAc	+0	
OAlk	+6	
SAlk	+ 30	
Cl, Br	+5	
N(Alk) ₂	+ 60	
Solvent correction ^b	+0	

*See L. M. Fieser and M. Fieser, Steroids. New York: Reinhold, 1959, pp. 15-24; R. B. Woodward, J. Am. Chem. Soc., 63, 1123 (1941); 64, 72, 76 (1942); A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products. New York: Pergamon (Macmillan), 1964.

Solvents have negligible effects upon the λ_{\max} of these $\pi \to \pi^$ transitions.

TABLE 7.5 Rules of Diene Absorption*		
Base value for homoannular diene	253	
Increments for		
Double bond extending conjugation	+ 30	
Alkyl substituent or ring residue	+5	
Exocyclic double bond	+5	
Polar groupings: OAc	+0	
OAlk	+6	
SAlk	+ 30	
Cl, Br	+5	
N(Alk) ₂	+ 60	
Solvent correction ^b	+0	
	$\lambda_{calc} = Tota$	

*See L. M. Fieser and M. Fieser, Steroids. New York: Reinhold, 1959, pp. 15-24; R. B. Woodward, J. Am. Chem. Soc., 63, 1123 (1941); 64, 72, 76 (1942); A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products. New York: Pergamon (Macmillan), 1964.

^bSolvents have negligible effects upon the λ_{\max} of these $\pi \to \pi^*$ transitions.

Br ON	
Table 7.5 Base (hetero) C=C	253 30
Alkyl (2) OR NR ₂	10 6 60
$\frac{\text{Exo's}}{\lambda_{\text{max}}(\text{calc})} =$	<u>5</u> 364

D

U G		
ortho		
meta		
para		
		λEtOH max
ArCOR/ArCHO/ArCO ₂ H/ArCO ₂ R		(nm)
Parent chromophore: $Ar = C_6 H_5$		
G = Alkyl or ring residue, (e.g., ArCOR)		246
G = H, (ArCHO)		250
G = OH, OAlk, (ArCO ₂ H and ArCO ₂ R)		230
Increment for each substituent on Ar:		
-Alkyl or ring residue	o-, m-	+3
	p-	+10
-OH, -OCH ₃ , -OAlk	o-, m-	+7
	p-	+25
-O ⁻ (oxyanion)	0-	+11
	m-	+20
3	p-	+78
—C1	o-, m-	+0
	p-	+10
—Br	0-, m-	+2
	p-	+15
-NH ₂	o-, m-	+13
	p-	+ 58
-NHCOCH ₃	o-, m-	· +20
•	p-	+45
-NHCH3	p-	+73
-N(CH ₃) ₂	0-, m-	+20
	p-	+85

	040
Table 7.21	
Base (ArCO2R)	230
o-OR	7
<i>o</i> -alk	3
<i>m</i> -NR2	20
<i>p</i> -Alkyl	10
<u>m-alkyl</u>	
$\lambda_{\rm max}({\rm calc}) =$	270

2. The key to solving this structure is first identifying the symmetric trisubstituted benzene ring from the C13 and the H1-NMR. The nitrile is more subtle, but (with the hint) and the IR it becomes clear that the Nitrogen and the remaining two IHD's are a nitrile.

OH

4. The key is to identify the long chain ethyl ester (it is clearly ethyl by H-NMR and MS).The position of the alcohol is indicated by the alpha cleavage products in the MS: 243 and 143.

constants.

5. This cyclic ketone must be seven-membered or greater based on the IR absorbance at 1705. H-NMR shows that there are only three alpha protons (2.26-2.20 m, 3H) indicating that the substitution must be alpha to the carbonyl. The MS fragmentation for the McLafferty product (111) indicates loss of the isopentyl side-chain making it a seven membered-ring not larger.

3. UV indicates a conjugated double bond. IR confirms that the ketone is not

conjugated. The substitution pattern of the diene is implied by the coupling

[] 0