
Example 10.8  Testing the steady-state approximation. ⊕
The steady-state approximation contains an apparent contradiction: we set the time derivative
of the concentration of some species (a reaction intermediate) equal to zero — implying that
it is a constant — and then derive a formula showing how it changes with time.  Actually,
there is no contradiction since all that is required it that the rate of change of the "steady"
species be small compared to the rate of reaction (as measured by the rate of disappearance
of the reactant or appearance of the product).  But exactly when (in a practical sense) is this
approximation appropriate?  It is often applied as a matter of convenience and justified ex
post facto — that is, if the resulting rate law fits the data then the approximation is considered
justified.  But as this example demonstrates, such reasoning is dangerous and possible
erroneous.

We examine the mechanism
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(Note that the second reaction is the reverse of the first, so we have a reversible second-order
reaction followed by an irreversible first-order reaction.)  The rate constants are k1 for the
forward reaction of the first step, k2 for the reverse of the first step, and k3 for the second step.
This mechanism is readily solved for with the steady-state approximation to give
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(TEXT Eq. (10.38)).  With initial concentrations of A and B equal, hence [A] = [B] for all
times, this equation integrates to
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where A0 is the initial concentration (equal to 1 in work to follow).  We can use this as a
diagnostic: if a graph of the reciprocal of the reactant concentration is linear, then the steady-
state law, Eq. (10.xx) is correct.

In this example we shall solve the equations for this mechanism numerically in order
to test the limits of the steady-state approximation.  The differential equations are:
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For simplicity we assume [A] = [B] and designate these quantities as the first variable,
y0.  The second variable is [C] = y1 and the third is [D] = y2.  In entering the equations below,
be careful to distinguish between "decorative" subscripts used for the rate constants — entered
as "k.1:5" (for example) — and the index subscripts used for the vector y, entered as "y[0"
(for example).  Be sure you understand how the equations in the vector D follow from the
differential equations above.



The numbers above use rate constants with the same order of magnitude, but be careful: with
rate constants of greatly different magnitude, these equations can easily become "stiff".  Keep
an eye on the ratio npts/tmax: it should be larger than ke and any individual rate constant.  If
the steady-state law, Eq. (10.xx) is correct, then 1/ke is the half life of the reaction; this
calculation (shown above) can be used to determine tmax but, again, you must be careful: it is
not appropriate in all circumstances.

The solution is shown below.  The steady-state solution is calculated as ss for
comparison (later); ss represents 1/[A] as predicted by the steady-state solution, Eq. (10.xx).
Also we define a quantity mult whose utility is shown in the next box.

The box below shows the concentrations vs. time (left) and the reciprocal of [A] vs. time.
(The intermediate, [C] is multiplied by mult: since this quantity is one, there is no effect, but
other combinations of rate constants may give [C] too small to be seen on the same graph
with the others, and increasing mult is a simple way to make it visible.)

Comparison to the steady-state solution (ss, dashed line, above) makes it clear that the
steady-state solution is not correct in this case, but would you realize that if you were dealing
with real data?  The calculated line (solid) is quite close to linear after the initial transient.
Experimental considerations may prohibit you from obtaining measurements in the region of
the transient — for example, mixing may be incomplete.  Also, initial points are often deviant,
and may be dropped from the analysis; we did exactly that in Example 10.1.  Indeed, this
example illustrates one reason that initial points may be deviant: a rate law may apply only
after an initial transient.
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Next, we will treat the calculated [A] as a data set, selecting points for analysis.  We
want to avoid the initial point since our objective is to see how well the second-order law
works without that point.

The box to the left
demonstrates how to select every
10th point, starting with number 10,
to be used as a data set for linear
regression.  Display the new arrays
with "tx=" and "y=" to see what you

have and to be certain it is what you want.  The slope is the rate constant (kx) which is
compared to the prediction, ke.  The comparison is not good, but would we know that if we
didn't know the answer?  In the box below we calculate the error of the slope and compare the
fitted line to the data with a graph.

The graph looks very good; the residual graph (not shown) would show a clear systematic
deviation, but with real data this could easily be obscured by experimental error (random
scatter).  The correlation coefficient (r) and standard deviation of the calculated rate constant
(σk) are very good.

On one sense, this model is successful: it predicted a second-order rate law and, after
the initial transient, that is what we find.  For practical purposes, calling this a second-order
rate with rate constant 0.0622 is quite correct.  On the other hand, the relationship of the rate
constant to the rates of the individual reactions is not at all what Eq. (10.xx) predicts.  The
steady-state approximation is not correct for this set of rate constants.

Try different rate constants; since there are 3 rate constant to vary (k1, k2 and k3), to get
meaningful comparisons it is best to keep something constant.  For example, fix one of them
and adjust the others, keeping ke constant.  Find conditions for which the steady-state law is
exact: that is, it could not be distinguished from a simple second-order mechanism (A + B →
P) with any reasonable accuracy of the experimental data for [A].  Are there any conditions
that give data that no reasonable person would ever mistake for a second order reaction?.
What controls the length of the initial transient?  In the end, you should be able to state in
explicit, operational terms exactly what the conditions are for the steady-state approximation
to be valid.
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