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Abstract-The present study investigated four different filtering and differentiation sequences for the calculation of 
the higher derivatives from noisy displacement data when using a second-order Butterworth filter and first-order 
finite differences. These were: (1) the conventional sequence (i.e. filtering the displacement data and then differcnu- 
ating); (2) filtering the displacement with a different cut-off frequency depending upon optimal Oth, 1st and 2nd 
derivatives; (3) double filtering and differentiation (only for acceleration); and (4) differentiation and then filtcrlng 
separately in each derivative domain, i.e. treating the noisy higher derivatives as individual signals. Thirty levels 01 
time domain and 30 levels of frequency domain computer-generated pure noise signals, were superimposed on 74 
reference signals which simulated the medialPlateral. anterior-posterior and vertical displacement patterns ofclght 
markers attached to the lower extremity segments during walking. The optimum cut-off frequency for ihr 
displacement, velocity and acceleration data was calculated as the one that produced the minimum root mean 
square error between the reference and noisy data in each derivative domain. The results indicated that the 
conventional strategy has to be reconsidered and modified. as the best results were obtained by the second strategy. 
The optimum cut-off frequency for acceleration was lower than that required for the velocity which in turn was 
lower than the optimum cut-off frequency for displacement. The findings of the present study will contribute to the 
development of existing and future automatic filtering techniques based on digital filteiing. (’ 1997 Elscvier 
Science Ltd 

k’~!:u~rrls: Digital filtering; Smoothing; Differentiation; Recursive 

INTRODUCTION 

Most automatic filtering techniques used in biomechanics which are 
based on digital filtering (DAmico and Ferrigno, 1990; Jackson, 1979; 
Winter rt (I/.. 1974; Yu, 1989) calculate the optimal cut-off frequency by 
considering only the displacement data. The higher derivatives are 
calculated by filtering the displacement data and then differentiating in 
the time or frequency domain. However, the frequency characteristics of 
a signal is different for derivatives of different order. Therefore. a differ- 
ent cut-off frequency might be required for each derivative. 

In the study of Vaughan (1982) in which the criterion was gravi- 
tational acceleration, the best results with a digital filter were obtained 
when data were filtered twice. However it was not justified why the data 
were filtered twice. or why the lowest cut-offwas not initially applied for 
filtering the displacement data. This double filtering-differentiation 
strategy applied for the calculation of acceleration has not yet been 
investigated. 

Hatze (1981) introduced an automatic filtering method (ORFOS) 
which calculates the optimal filtering factor separately in every deriva- 
tive domain. Hence instead of first filtering and then differentiating the 
displacement data, as with the conventional approach, the data were 
first differentiated and then filtered. This procedure guarantees a truly 
optimal regularisation for each of the derivatives (Hatze, 1981). This 
differentiation and filtering sequence is used only by ORFOS and has 
not yet been evaluated. 

It is evident that there are at least three more filtering strategies. 
along with the one conventionally used, that have not yet been investi- 
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gated. In summary the other three strategies are: (a) liltcrine the 
displacement data with a cut-off frequency different from the optimum 
cut-off frequency for displacement;(b) double filtering differentiation: 
and (c) separate tiltering in each derivative domain. 

An understanding of which strategy is more effective UIII enable 
investigators, who use digital filters for smoothing, to obtain more 
accurate results. It will also offer a means to improve the performance 
of existing and future automatic smoothing techniques based on digital 
filters. The purpose of this study was therefore to compare all four 
strategies. Because filtering becomes more important when the lirst and 
second derivatives are examined, the present study will focus on the 
optimal derivation of velocities and accelerations. 

METHODS 

Signnl development* 

Twenty-four signals (3 x 8) simulating the medial--lateral. an- 
terior-posterior and vertical displacements of eight markers attached to 
the right lower segments, during approximately one walking cycle were 
used as reference signals. The source of these signals was the file 
‘woman’ from GAITLAB (Vaughan et ul.. 1992) which was sampled at 
50 Hz. The signals were approximated by Fourier series and then 
reconstructed again in the time domain by using only the first six 
harmonics (cut-off frequency = 6.25 Hz). This procedure ensured that 
the new signals, along with their higher derivatives, are practically 
band-limited and that the associated accelerations were smooth (Fig. I). 

*All signals as well as additional information on signal development 
can be downloaded from the International Society of Blomechanics 
WWW (http:/lwww.kin.ucalgary.ca/isb/giakasI. 
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Fig. 1. Before (line with squares) and after filtering (plain line) the displacement data (A) of the me- 
dial-lateral movement of the marker attached upon the right greater trochanter using truncated Fourier 

series, and the calculated velocity (B) and acceleration (C) patterns. 

A power spectrum analysis suggested that the new reference signals had 
more than 99.7% of the power of the original signal (Winter et al., 1974). 

Two types of noise, with 30 levels each, were generated: one type in 
the time domain (‘random’ noise) and the second in the frequency 
domain (‘white’ noise). Because of the small number of data points in 
each signal (N = 48) the two types of noise had slightly different 
characteristics. The 60 different combinations of noise type and level 
were superimposed onto the 24 reference walking signals giving a total 
number of 1440 noisy signals. The range of the mean added noise. 
0.154.57 mm, was considered typical for video cameras and other 
optoelectronic systems (Dapena, 1978; Ehara et al.. 1995: Leroux rr ul., 

1990; Whittle, 1982). The mean signal-to-noise ratio ranged from 10’ 
(level 30) to 10’ (level 1) approximately. 

Data analysis 

A recursive second-order low-pass Butterworth filter was used to 
filter the data (Vaughan, 1982; Winter, 1979). A reversed mirror. extra- 
polation technique was applied at both ends of the data as suggested by 
Smith (1989) before filtering. The length of the extrapolation at each 
end was half the data set length. First-order finite differences (Miller 
and Nelson, 1973: Vaughan, 1982). which have no smoothing effect 
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Fig. 2. The procedures (Procedure 14) followed. Optimal indicates filtering; lines with arrows indicate 
differentiation. Optimal I: Optimal filtering of displacement; Optimal 2: Filtering of displacement for optimal 
velocity; Optimul 3: Filtering of displacement for optimal acceleration; Optimal 4: Filtering of smoothed 
velocity for optimal acceleration; Optimal 5: Filtering of unsmoothed velocity for optimal velocity: Optimal 
6: Filtering of unsmoothed velocity for optimal acceleration; Optimal 7: Optimal filtering of unsmoothed 
acceleration. RMSE’ D. v. A (i = 14, indicates the Procedure number): Associated root mean square error for 

each data process. 

Table I. Cut-off frequencies required for optimal displacement (Optimul I-Procedure 1). Key: # l = Right metatarsal head V; #2 .= R. Heel: 
# 3 = R. Malleolus; # 4 = R.Tibial tubercle; # 5 = R. Femoral epicondyle; # 6 = R. Greater trochanter; # 7 = R. ASlS; # ] 5 = Sacrum 

Anterior-Posterior 

Random White 

Medialllateral Vertical 
.-___ 

Random White Random White 

# Range M + SD. Range R + SD. Range R 

I 5.8-10 8.0 * 1.2 
7 
; 5.8. 5.8-10 10 8.0 7.9 

* 1.3 
+ 1.3 

4 4.0-m10 6.3 + 1.4 
5 4.6610 6.7 & 1.4 
6 4.410 6.2 * 1.3 
7 3.8-9.6 5.9 f 1.3 

IS 3.0 ~9.2 4.9 * 1.5 

6.4-10 7.7 * 1.0 3.8-10 5.7 
6.4-10 7.5 f 0.9 3.8-10 6.2 
6.4-10 7.4 f 1.0 4.410 6.2 
4.492 6.0 * 0.9 2.0-9.4 5.3 
5.2Z9.4 6.3 + 0.9 2.OG3.6 4.2 
4.s9.2 5.9 + 1.0 3.49.4 5.1 
4.0-7.4 5.6 + 0.9 3.6-9.6 5.5 
2.8-6.0 4.4 * 1.0 3.410 5.1 

Range 

4.4-7.0 
4.4-7.8 
427.6 
1.667.0 
1.8-5.6 
2.6-7.6 
4.&8.8 
2.8-7.8 

M 

5.1 
5.7 
5.7 
4.2 
3.7 
4.3 
5.2 
5.2 

+ S.D. Range M + SD. Range k S.D. 

* 0.9 4.610 7.4 * I.6 5.6-9.6 6.7 2 0.9 
+ 1.0 4.4-10 6.7 & 1.5 5.0-X.4 5 0 + 0.9 
+ 0.9 4.410 6.6 + 1.5 5.0 8.0 6.0 i 0.8 
* 1.5 6.2-10 8.2 * 1.3 6.2.-10 8.1 + 1.0 
+ 1.0 4.2-9.4 6.0 * 1.3 3.8--X.0 5.6 + 0.9 
+ 1.1 4.4-9.4 6.1 + 1.4 4.2.. 7.X 5.6 + 0.9 
& 1.1 3.8-9.4 5.7 + 1.3 3.8.-7.4 5.1 & 0.8 
* 1.4 3.4-8.2 5.4 * 1.2 3.2.-7.7 49 + 0.9 

# Indicates marker number. 

(in order to avoid smoothing of the data through higher order finite 
differences (Pezzack et al., 1977)) were used to calculate the higher 
derivatives. The optimal cut-off frequency was calculated by minimising 
root mean square error (RMSE) between the filtered and reference 
signals in every derivative domain (Oth, 1st and 2nd) (Corradini et ul.. 
1993; Vint and Hinrichs, 1996). 

The four strategies applied are briefly described in Fig. 2. Refer also 
to Fig. 2 for explanation of abbreviations. The cut-off frequencies were 
calculated separately for each data file. Procedure 1 represents the 
conventional strategy used. The displacement was filtered for optimal 
displacement. The higher derivatives were then computed from the 
filtered displacement signals. In Procedure 2, the displacement was 
filtered with a different cut-off frequency depending upon optimal Oth, 
1st and 2nd derivatives. In Procedure 3. the technique used by Vaughan 
(1982) was tested. i.e. double filtering - differentiation. The displacement 
was filtered and differentiated for optimal velocity; the velocity data were 
then filtered with a new cut-off and differentiated for optimal acceler- 
ation. Procedure 4 simulated the strategy used by ORFOS. In the first 
part [Procedure 4(i)], the displacement data were differentiated once, and 
were then filtered in the velocity domain for optimal velocity or along 
with differentiation for optimal acceleration. In the second part [Proced- 
ure *ii)], the displacement data were differentiated twice and then were 
filtered in the acceleration domain for optimal acceleration. 

RESULTS 

Table 1 presents the calculated cut-off frequencies (range. mean and 
standard deviations) for the Y, X and 2 direction of each marker when 
‘random’ and ‘white’ noise is superimposed, using the conventional 
method (Procedure 1). This table shows how important the original 
signal is for the selection of optimal cut-off frequency. For example in 
the anterior-posterior direction, the cut-off frequencies required for the 
three lowest markers (# 1, #2 and #3) were clearly higher than the 
cut-off frequencies required for the three highest ( # 6, # 7 and # 15). 

In all the results and figures presented below, the 30 levels of ‘ran- 
dom’ noise only are shown; similar results, however, were obtained by 
the 30 levels of ‘white’ noise. Fig. 3 shows the mean RMSE for the 
velocity and acceleration when ‘random’ noise is superimposed onto 
the reference data. The lower limit for the stochastic error in each 
estimated derivative was also calculated as a function of measurement 
noise variance, sampling interval, signal bandwidth (cut-off frequency) 
and derivative order using the formula given by Lanshammar (1982). It 
is evident that the level of noise affects dramatically the effectiveness of 
the filter. The lower limit for the stochastic error increases as noise level 
increases. 

The RMSE values in the velocity domain of Procedure 2 were always 
lower than those of Procedure 1 and lower than those of Procedure 4 in 
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Fig. 3. Mean RMSE for the velocity (A) and acceleration (B) when ‘random’ noise is superimposed in the 
reference data. Refer to Fig. 2 for the RMSE abbreviations. The lower limit for the stochastic error was 

calculated using the formula of Lanshammar (1982). 
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Fig, 4. The cut-off frequencies required for procedure 2 for ‘random’ 
noise. Optimal I represents the cut-off frequency used by the conven- 

tional strategy. Refer to Fig. 2 for the abbreviations. 

55 out of 60 cases. Concerning the accelerations, the RMSE produced 
by Procedure 2, in most cases, was lower than all the other procedures. 
The RMSE from procedures 3 and 4(ii) produced in most cases the 
highest RMSE values in the acceleration domain (Fig. 3). 

Generally, the calculated cut-off frequencies decreased as noise level 
increased. Procedure 2 produced the best results and therefore the 
associated cut-off frequencies calculated are only displayed (Fig. 4). It is 
apparent that the cut-off frequencies required for optimal acceleration 
were lower than those required for optimal velocity which in turn were 
lower than those required for optimal displacement. 

DISCUSSION 

Four different filtering strategies (including the conventional filter- 
ing-differentiation strategy), were applied and compared in terms of the 
root mean square error (RMSE) between the reference and smoothed 
signal. The criterion was the minimum RMSE. Two of the strategies 
applied, Procedures 3 and 4(ii), aiming to calculate the acceleration 
(Fig. 3), were found to be inappropriate because they produced very 
high RMSE values. 

The RMSE values increased with noise level. It is evident from 
Fig. 3A (velocity) that the RMSE was approximately as high as the 
lowest stochastic (theoretical) error calculated by the formula found in 
Lanshammar (1982) especially for the low levels of noise. However as 
the noise level increases some systematic error is included and the 
RMSE is much higher than the theoretical error. This is more evident in 
the acceleration domain (Fig. 3B). 

The strategy of double filtering (Procedure 3) produced unacceptable 
results in the acceleration pattern. It is remarkable that the RMSE is 
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lugh even at the very low levels of noise (Fig. 3). ‘The double filtering 
forced the acceleration data to follow a very smooth pattern with 
a tendency to become Rat. i.e. it oversmoothed the data. The fact that 
this strategy produced the best results in digital filtering when used by 
Vaughan (1982). can be explained from the nature of the data used. 
Vaughan’s data had a flat second derivative (gravitational acceleration), 
and therefore the results obtained were ideal as explained above. The 
acceleratmn patterns in this procedure presented boundary problems as 
well. This I:, probably because of the boundary elfects of recursive 
dlgital filters and the application of this type of filtering twice. It is 
therefore suggested that this strategy should be avoided for general 
purpose filtering: however. whenever applied it has to be used with 
caution especially at the boundarIes of the signal. 

‘The ‘reverse’ strategy of differentiating and then filtering (Proced- 
ure -I) did not improve (decrease) the RMSE of the higher derivatives. It 
seemed that the noise was substantially amplified after differentiation 
(ill-posed problem), resulting in a dramatic decrease of the signal-to- 
noise ratio and. consequently, ineirc’ctive filtering. However, the acceler- 
ation calculated from Procedure J(i) was better than the one obtained 
bq Procedure I and sometimes slightly better by Procedure 2. This 
phenomenon was observed at the low levels of noise. Therefore, it might 
bc an alternative strategy that can be applied when the quality of data 
(signal-to-noise ratio) is high and the acceleration is the only derivative 
required. However. it has to bc used with caution because there are also 
edge effects especially in the last 3 to 5 points al the boundaries. 

Generally, Procedures I and 2 produced consistently the best results 
for both velocity and acceleratmn. There was a systematic improvement 
in the higher dernatibes when Procedure 2 was applied compared to 
Procedure I. The application of the second strategy improved the 
average RMSE values by 4.4”/~ in velocity and 13.5% in acceleration 
compared to the first strategy. 

The cut-off frequcncq reqmred in Procedure 1 for the acceleration. 
was iowcr compared to the one required for the velocity, and that 
wah lower than the one required for the displacement data (Fig. 4). 
This occurred because noise is random in the time and frequency 
domains and therefore it is distributed across the range of frequencies. 
Filtering a slgnal with a cut-olTfrequencyJi will allow the noise that is 
just below f, to be magnified through the differentiation procedures 
thus aflecting the reference signal. Therefore, a lower cut-off is required 
to obtain a ‘smoother’ higher derivative. The comparison between 
Procedures I and 2 in average term> suggested that the cut-off fre- 
qucncy for optimal velocity and acceleration was 0.46 f 0.28 Hz and 
0.X6 + 0.36 Hz lower, respeclivcly. than the one estimated for optimal 
displacement. With this filtermg strategy the calculation of the higher 
derivatives was more effective for the data used by the present study. 

The cut-oft frequency in digital filtering of biomechanical data is 
usually over- or under-estimated In the case of over-estimation, i.e. 
using a higher cut-off frequency. more noise will be allowed to pass 
through the littering process; by using the conventional method (Pro- 
cedure I) this noise wilt be amplified leading to erroneous higher 
derivatives. The application of the strategy proposed by the present 
study (Procedure 2) will decrease the high-frequency components in the 
calculation of the velocity and acceleration. In this case. the improve- 
ment in the higher derivatives WIII probably be higher compared to 
those rcportcd above. However there might be cases in which consist- 
ence is needed between posltion. velocity and acceleration; in these 
cabes the conclusion of the present study does not apply and the 
cc)nventional method should be used. 

In conclusion, the rebults of the present study show that the standard 
protocol of filtering displacement data and then. by differentiation. 
calculating the higher derivatives should be avoided. Better results can 
be obtained m hen the displacement data are filtered with different 
cut-o!? frequencies depending on the derivative of interest. The cut-off 
frequency for iiltering the dlsptacement data when the second derivative 
is required. should be lower than the cut-off required for the first and 
this should be lower than the cut-off frequency when only the displace- 
ment data arc required. 

Most automatic techniques based on digital filtering c\tm]ate an 
optimal cut-off by retrieving information only from the &placement 
data. The results of the present study indicate that information fr-om the 
higher derivatives must also be obtained and considered Therefore 
further investigation on these topics is required. The strategies exam- 
ined by the present study need to be applied to other filtering tech- 
niques. 
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