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Two-dimensional rotation matrices 
Consider the 2x2 matrices corresponding to rotations of the plane.  Call Rv(θ) the 2x2 matrix 
corresponding to rotation of all vectors by angle +θ.   
Since a rotation doesn’t change the size of a unit square or flip its orientation, det(Rv) must = 1. 
Consider what happens to the unit vectors �1

0� and �0
1� when rotated CCW by angle θ: �1

0� gets 

sent to �cos𝜃𝜃
sin𝜃𝜃�, and �0

1� gets sent to �−sin𝜃𝜃
cos 𝜃𝜃 �.   

 
Therefore a vector 𝑣𝑣1 = �

𝑣𝑣1𝑥𝑥
𝑣𝑣1𝑦𝑦�  gets sent to a new vector, 𝑣𝑣2 = �

𝑣𝑣2𝑥𝑥
𝑣𝑣2𝑦𝑦�,  

where �
𝑣𝑣2𝑥𝑥
𝑣𝑣2𝑦𝑦� = �𝑣𝑣1 cos 𝜃𝜃 − 𝑣𝑣2 sin𝜃𝜃

𝑣𝑣1 cos 𝜃𝜃 + 𝑣𝑣2 sin𝜃𝜃� .   

We can write this transformation of v1 to v2 as a matrix equation: 
 𝑣𝑣2 = 𝑅𝑅𝑣𝑣(𝜃𝜃)𝑣𝑣1 (1.0) 
where 
 𝑅𝑅𝑣𝑣(𝜃𝜃) = �cos 𝜃𝜃 −sin𝜃𝜃

sin𝜃𝜃 cos 𝜃𝜃 � (1.1) 
 

 
 
Equations 1.0 and 1.1 illustrate the important idea that a matrix can be thought of as the 
“instructions” for a linear transformation of a vector to another vector.  A 2x2 matrix represents a 
transformation that maps the set of all 2D vectors, i.e. all points in the x-y plane, into a new set of 
2D vectors (or, equivalently, a new set of points).  A 3x3 matrix maps 3D vectors into 3D 
vectors. The transformation represented by matrix Rv in equation 1.1 is a rotation, but other 
values for the matrix elements would give other transformations. 
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Fig. 1.  Left: Vectors with coordinates �1
0� and �0

1�, before rotation.  Right: After 

rotation CCW by angle θ, the vectors have coordinates �cos𝜃𝜃
sin𝜃𝜃� and �−sin𝜃𝜃

cos𝜃𝜃 �. 
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Multiple rotations: To rotate twice, just multiply two rotation matrices together.  The “angle 
sum” formulae for sine and cosine can be derived this way.  We know from thinking about it that 
when doing rotations of the plane, it doesn’t matter whether you first rotate by 30, then by 60, or 
if you rotate by 60, then 30: You end up in the same place either way: rotated 90 from where you 
started.  The fact that the order doesn’t matter means that, if our 2D rotation matrices act the way 
real 2D rotations act, they should commute: in other words, for example, Rv (30)*Rv (60) should 
equal Rv (60)*Rv (30) (and both should = Rv (90)).  It can be shown that the 2-dimensional (i.e. 
2x2) rotation matrices DO commute, as expected.  (The 3D rotation matrices do not commute; 
more on this below.) 
 
Exercise 1: Show det(Rv) = 1. 
Exercise 2: Show that two ways of figuring out the inverse of Rv give same answer. 

First way: Compute Rv
-1 using formula for inverse of a 2x2 matrix. 

Second way: Compute Rv
-1 by considering what you have to do to “go back to where you 

started”.  In case of an initial rotation by +θ, the way to go back is to rotate by -θ.  So plug in 
(-θ) for θ in the original Rv matrix to find Rv

-1. 
 
Rotations of vectors vs. rotation of axes 

For more information on this topic, see Young-Hoo Kwon’s web site: 
http://kwon3d.com/theory/transform.html . You may also find pages at Wolfram Mathworld useful: 
http://mathworld.wolfram.com/RotationMatrix.html and 
http://mathworld.wolfram.com/RotationMatrix.html, for example. 

 
Rotations, as described in the preceding section, are vector rotations: transformations that take 
vectors and “move them” to new positions, by rotating them. 
A closely related, but subtly different, concept is to change the way we describe a vector, but not 
change the vector itself.  This is called (in math books) a change of basis; it is also called a 
change of reference system or a change of coordinates. It means that instead of expressing a 
vector in terms of its components along the unit vectors i, j, k, we express the same vector in 
terms of its components (or projections) along a new set of basis vectors i’, j’, and k’.  
 

The term basis, and basis vectors, refers to a set of vectors that can be linearly combined, using scalar 
multiplication and vector addition, to point to any vector in the vector space.  It takes 2 basis vectors to 
“span” (i.e. get to all points in) a 2D space, 3 basis vectors to span 3D, etc.  It is convenient, but not 
required, that basis vectors have length 1.  A set of basis vectors to span 2 dimensions need not be 
orthogonal they just can’t be parallel.  A set of basis vector that span 3 dimensions need not be orthogonal 
they just can’t all lie in the same plane. 

 
We can use matrix multiplication to compute the components of vectors in the new reference 
system.  To do this, we have to know the coordinates of the new basis vectors in terms of the 
original reference frame.  (We’re dotting the vector with the new unit vectors to find its 
components in the new frame of reference.  Matrix multiplication is just a convenient way of 
computing the dot products.) 
 
An important special case of changing the reference frame is a rotation (and translation) of the 
reference frame.  This is common in biomechanics.  In this case, the new basis vectors are just 
rotated versions of the original ones.  So if the original basis vectors have unit length and are 
orthogonal, the new ones will too. 
 

http://kwon3d.com/theory/transform.html
http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/RotationMatrix.html


Rotation of the reference frame in two dimensions  
The new reference frame is rotated by angle θ relative to the original frame.  Then the 
components of the original unit vectors i=�10� and j=�01�, expressed in the new frame of reference, 

are given by � cos 𝜃𝜃
− sin𝜃𝜃� and �sin𝜃𝜃

cos 𝜃𝜃�.  A point p, located at �
𝑥𝑥
𝑦𝑦� in the original reference frame is 

located at �𝑥𝑥
′

𝑦𝑦′�in new reference frame.  The figure below illustrates this situation. 

 
The two ways of describing the point’s location are related as follows: 

 �𝑥𝑥′𝑦𝑦′� = � cos𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos 𝜃𝜃� �

𝑥𝑥
𝑦𝑦� (1.2) 

or 
 𝒗𝒗′ = 𝑹𝑹𝒄𝒄(𝜃𝜃)𝒗𝒗 (1.3) 
where Rc(θ) is the matrix associated with a rotation of the coordinate axes by θ, and v and v’ are 
vectors describing the location of a point in the original reference frame and in the rotated-by-θ 
frame, respectively. 
 𝑅𝑅𝑐𝑐(𝜃𝜃) = � cos 𝜃𝜃 sin𝜃𝜃

− sin𝜃𝜃 cos𝜃𝜃� (1.4) 
One way of thinking about the rotation of coordinates matrix is that the columns of Rc are the 
projections of the original basis vectors (which are i=�10� and j=�01�) onto the basis vectors i’ and 

j’ of the rotated frame. Thus column 1 of Rc is �𝑖𝑖 ∙ 𝑖𝑖′𝑖𝑖 ∙ 𝑗𝑗′� , and the second column is �𝑗𝑗 ∙ 𝑖𝑖′𝑗𝑗 ∙ 𝑗𝑗′�.  (The 

inner product, denoted by a dot operator, gives the projection of one vector onto another.) 
Note that Rc(θ) equals Rv(-θ)  (equation 1.1 above). This is due to the fact that rotation of the 
coordinate frame by θ is like rotation of all the vectors by -θ.  
 
Rotation-of-reference-frame in 3D 

Tom Kepple’s HESC690 notes (2010) use a diferent convention than Jim Richards’s notes.  Tom K takes 
the unit vectors of the body’s coordinate system (LCS) and makes them the rows of a rotation matrix.  TK 
says that Jim Richards takes the unit vectorsof the body’s coordinate system (LCS) and makes them the 
columns of a rotation matrix.   
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Fig. 2.  Left: Point p has coordinates (x,y) in the 
original reference system, whose basis vectors are 
i and j.  Right: The same point, p, has coordinates 
(x’,y’) in the rotated coordinate system, whose 
basis vectors are i’ and j’. 

i i’ 



We now consider rotation of the coordinate frame in three dimensions.  If column vector v is the 
location of a point, or the orientation of an axis, in the original coordinate system, and if column 
vector v’ is the same point’s location, or axis’s orientation, in the rotated system, then  
 𝒗𝒗′ = 𝑹𝑹𝒄𝒄𝒗𝒗 (1.5) 
We want to find mathematical formulas for Rc in terms of the rotation angles about the different 
axes.  We start with the matrices for rotation of coordinate frame about the principal axes. A 
rotation of coordinate frame by ψ about the z-axis is described by 

 𝑅𝑅𝑧𝑧(𝜓𝜓) = �
𝑐𝑐(𝜓𝜓) 𝑠𝑠(𝜓𝜓) 0
−𝑠𝑠(𝜓𝜓) 𝑐𝑐(𝜓𝜓) 0

0 0 1
� . (1.6) 

The positive angular direction is determined by the right-hand rule, in which the thumb points 
along the positive axis. Figure 1, above, describes this rotation (except now we are calling the 
angle of rotation ψ, instead of θ).  In three dimensions, the z axis, not shown, is coming out of the 
page. 
 
A rotation of coordinate frame by θ about the y-axis is described by 

 𝑅𝑅𝑦𝑦(𝜃𝜃) = �
𝑐𝑐(𝜃𝜃) 0 −𝑠𝑠(𝜃𝜃)

0 1 0
𝑠𝑠(𝜃𝜃) 0 𝑐𝑐(𝜃𝜃)

� . (1.7) 

Figure 2, below, illustrates this rotation. In the figure, the y axis is coming out of the page toward 
the reader. 

 
A rotation of coordinate frame by φ about the x-axis is described by 

 𝑅𝑅𝑥𝑥(𝜙𝜙) = �
1 0 0
0 𝑐𝑐(𝜙𝜙) 𝑠𝑠(𝜙𝜙)
0 −𝑠𝑠(𝜙𝜙) 𝑐𝑐(𝜙𝜙)

� . (1.8) 
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Fig. 2.  Left: Point p has coordinates (x,y,z) in the 
original reference system. Basis vectors i and k.are 
shown. Basis vector j (which points out of the 
page) and the y coordinate are not shown. Right: 
The same point, p, has coordinates (x’,y’,z’) in the 
rotated coordinate system, whose basis vectors are 
i’, j’, k’.  Vector j’ points out of the page and is 
not shown. Because the rotation is about the y 
axis, vector j’ is the same as vector j, and therefore 
the y coordinate is the same in both coordinate 
systems: y’=y.  

k k’ 



Figure 3, below, illustrates this rotation. In the figure, the x axis is coming out of the page toward 
the reader. 

 
If we rotate the coordinate system by angle ϕ about x, then by angle θ about the (new) y’, then by 
angle ψ about the (new new) z”, we get 

 
 (1.9) 
 
(Equation above agrees with Winter, 3rd ed. (2005), Eq. 7.15, p. 183.) 
Multiplying matrix Tc times a vector gives a new vector, which is the original vector expressed 
in terms of the new rotated reference frame.  The same rotations in a different order will give a 
different result.  In other words, these rotation matrices do not commute.  Order matters. 
See Winter, 3rd ed., pp. 169-170, or http://mathworld.wolfram.com/Eulerangles.html.  I think 
Winter’s Eq. 6.19 (3rd ed.) and Eq. 8.19 (4th ed.) are wrong. 
 
Going backwards 
The preceding section explained how to compute the coordinates of a point in a new reference 
system, if the rotation angles of the new system, relative to the old, are known.  In biomechanics 
we often want to do the opposite, i.e. we want to go backward.  We can measure the coordinates 
of points after they have been moved from their original position, and from those measurements, 
we wish to deduce the rotation angles.  Typically, the proximal segment axes are considered the 
original reference frame, and we desire to know the rotation of the distal segment relative to the 
proximal segment.  Example: orientation of thigh relative to pelvis.  (Note that we are just 
interested in rotations, not translations, for now.)  The anatomical axes of both segments are 
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Fig. 3.  Left: Point p has coordinates (x,y,z) in the 
original reference system. Basis vectors j and k are 
shown. Basis vector i (which points out of the 
page) and the x coordinate are not shown. Right: 
The same point, p, has coordinates (x’,y’,z’) in the 
rotated coordinate system, whose basis vectors are 
i’, j’, k’.  Vector i’ points out of the page and is 
not shown. Because the rotation is about the x 
axis, vector i’ is the same as vector i, and therefore 
the x coordinate is the same in both coordinate 
systems: x’=x.  

j j’ 

http://mathworld.wolfram.com/Eulerangles.html


determined from markers on the segments. We call the proximal segment axes i=(ix,iy,iz), j, and k 
(orthogonal unit direction vectors expressed in terms of the global, or laboratory, reference 
system, the GRS). We can define a 3x3 matrix 

 𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = (𝒊𝒊 𝒋𝒋 𝒌𝒌) = �
𝑖𝑖𝑥𝑥 𝑗𝑗𝑥𝑥 𝑘𝑘𝑥𝑥
𝑖𝑖𝑦𝑦 𝑗𝑗𝑦𝑦 𝑘𝑘𝑦𝑦
𝑖𝑖𝑧𝑧 𝑗𝑗𝑧𝑧 𝑘𝑘𝑧𝑧

� (1.10) 

whose columns are the vectors i, j, and k, expressed in the GRS.  The anatomical axes of the 
distal segment are i’=(ix’, iy’, iz’), j’, and k’ , expressed in the GRS. We define a 3x3 matrix 

 𝑹𝑹𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅 = (𝒊𝒊′ 𝒋𝒋′ 𝒌𝒌′) = �
𝑖𝑖𝑥𝑥′ 𝑗𝑗𝑥𝑥′ 𝑘𝑘𝑥𝑥′
𝑖𝑖𝑦𝑦′ 𝑗𝑗𝑦𝑦′ 𝑘𝑘𝑦𝑦′

𝑖𝑖𝑧𝑧′ 𝑗𝑗𝑧𝑧′ 𝑘𝑘𝑧𝑧′
�  (1.11) 

whose columns are the vectors i’, j’, and k’.   
We measure Rprox and Rdist experimentally, by motion capture of the marker locations on the 
proximal and distal segments. We want to use those results to determine an experimental value 
for the rotation-of-coordinates matrix Tc .  Once we have the experimental estimate of Tc, we 
compare it to the analytic formula for Tc , which is given by eq. 1.9, for the case of rotation about 
X, then about rotated Y, then about twice-rotated Z.   Finally, we will compute the rotation 
angles (ϕ, θ, ψ) that will give an analytic matrix that matches the experimentally-measured 
matrix. These are the joint angles which we are seeking to determine. 
We determine the experimental value of Tc by remembering (by analogy with the 2D case 
discussed above) that column 1 of Tc is the projection of i along the axes defined by i’, j’, and k’. 

 𝑻𝑻𝒄𝒄𝑖𝑖1 = �
𝐢𝐢’ ∙ 𝐢𝐢
𝐣𝐣’ ∙ 𝐢𝐢
𝐤𝐤’ ∙ 𝐢𝐢

� (1.12a) 

Column 2 of Tc is the projection of j along i’, j’, and k’: 

 𝑻𝑻𝒄𝒄𝑖𝑖2 = �
𝐢𝐢’ ∙ 𝐣𝐣
𝐣𝐣’ ∙ 𝐣𝐣
𝐤𝐤’ ∙ 𝐣𝐣

� (1.12b) 

Column 3 of Tc is the projection of k along i’, j’, and k’: 

 𝑻𝑻𝒄𝒄𝑖𝑖3 = �
𝐢𝐢’ ∙ 𝐤𝐤
𝐣𝐣’ ∙ 𝐤𝐤
𝐤𝐤’ ∙ 𝐤𝐤

� (1.12c) 

We combine the three preceding equations: 

 𝑻𝑻𝒄𝒄 = �
𝑡𝑡11 𝑡𝑡12 𝑡𝑡13
𝑡𝑡21 𝑡𝑡22 𝑡𝑡23
𝑡𝑡31 𝑡𝑡32 𝑡𝑡33

� = �
𝐢𝐢’ ∙ 𝐢𝐢 𝐢𝐢’ ∙ 𝐣𝐣 𝐢𝐢’ ∙ 𝐤𝐤
𝐣𝐣’ ∙ 𝐢𝐢 𝐣𝐣’ ∙ 𝐤𝐤 𝐣𝐣’ ∙ 𝐤𝐤
𝐤𝐤’ ∙ 𝐢𝐢 𝐤𝐤’ ∙ 𝐣𝐣 𝐤𝐤’ ∙ 𝐤𝐤

� (1.13) 

where t11=i’∙i, t12=i’∙j, t13=i’∙k, t21=j’∙i, etc.  This matrix is also called the direction cosines 
matrix, because the inner product of two unit vectors is the cosine of the angle between them: 
i’∙i=cos a, where a=angle between i’ and i, and so on. 
 
Matrix Tc can be written as 

 𝑻𝑻𝒄𝒄 = �
𝐢𝐢’𝑻𝑻
𝐣𝐣’𝑻𝑻

𝐤𝐤’𝑻𝑻
� (𝒊𝒊 𝒋𝒋 𝒌𝒌) (1.14) 

which can be written as 
 𝑻𝑻𝒄𝒄 = 𝑹𝑹𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅𝑻𝑻𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 . (1.15) 



We measure Rdist and Rprox experimentally during motion capture, during each video frame, from 
markers attached to body segments. Therefore we can use eq. 1.13 to compute Tc during each 
video frame. 

 
There is another way to think about Rprox, Rdist, and the transformation between them.  Rprox and Rdist are 
rotation matrices.  They describe i,j,k and i’,j’,k’ in the GRS, and they are also the rotation matrices that 
describe how to move the ijk of the GRS to the ijk and i’j’k’ of the two LRSs.  Since Rprox and Rdist are sets 
of orthogonal unit vectors, there is a rotation Tv that move the vectors of Rprox into the vectors of Rdist.  We 
define  

Tv Rprox = Rdist 
Therefore 

Tv Rprox Rprox-1 = Rdist Rprox-1 
Tv = Rdist Rprox-1 

But for rotation matrices, inverse = transpose, so 
𝑻𝑻𝒗𝒗 = 𝑹𝑹𝒅𝒅𝒊𝒊𝒅𝒅𝒅𝒅𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑻𝑻 

Now we (finally) have the measured Tc.  It can be calculated from marker motion capture data at 
each time point.  The measured Tc is independent of which Cardan or Euler sequence we prefer.  
(More on that in a moment.)  Next, we want to know the joint rotation angles, i.e. how much 
flexion/extension, ab/adduction, and/or internal/external rotation is necessary to move the distal 
segment from the “reference” position to the observed position, which is the position specified 
by the distal segment axes i’, j’, k’.  We mentioned above that the 3D rotation matrices do not 
commute: that means a sequence of rotations about certain axes will get you to a different final 
orientation if you do them in a different order.  Therefore, to find the joint angles, we have to 
specify the order of rotation, for example: flex/ext followed by ab/ad followed by int/ext rotate, 
or another sequence.  Furthermore, we could do rotations about 3 different axes (x-y-z, z-x-y, 
etc.), or we could rotate about axis 1, then axis 2, then axis 1 again (x-y-x, y-z-y, etc.).  
Sequences that fit the x-y-z pattern are called Cardan sequences; x-y-x type sequences are called 
Euler sequences.  There are 6 of each.  The choice of sequence depends on practical and 
anatomical considerations.  Note that, when an Euler sequence is used, the first axis of rotation 
has moved to a new orientation, due the second rotation, by the time we rotate about it again 
during the third and final rotation.  This is important, because if it hadn’t moved, then the first 
and third rotations would be equivalent to a single rotation, and we would only have 2 degrees of 
freedom in our overall sequence, not the 3 we need to achieve any possible final orientation.   

 
Example: The International Shoulder Group made recommendations for axis definitions and joint motion 
for upper limb joints, including the “thoracohumeral” joint (Wu et al., J Biomech 2005). (The 
thoracohumeral joint does not really exist anatomically. There is a thoracoclavicular joint, a 
scapuloclavicular joint, and a glenohumeral joint.  But the motion at these anatomically-real joints is hard to 
quantify, because the position and orientation of the clavicle and scapula are hard to measure.  Therefore 
the hypothetical thoracohumeral joint, which skips the clavicle and scapula, is often analyzed.)  ISG define 
+X pointing anteriorly, +Y pointing superiorly, and +Z pointing to the right, for the thorax and for the 
humerus in the resting position.  ISG recommends (section 2.4.7) analyzing thoracohumeral motion as an 
internal/external rotation about Y, followed by an “elevation” about the rotated X, followed by a final 
internal/external rotation about the twice-rotated Y.  This is a Y-X-Y sequence. This way of analyzing 
shoulder joint angles works well for motions that are principally ab/adduction (as traditionally defined), but 
it also has some disadvantages. See file matrices_rotations_2.doc for more detail, and see powerpoint 
presentation by James Richards for animations, and for comparison of the different sequences, and which 
ones work well for which types of movements. 
 

We know the measured rotation matrix Tc from analysis of 3D motion capture data (equation 
1.13).  We find the values of φ, θ, and ψ to make the elements in the “analytical” rotation matrix 
Tc match the experimentally-measured Tc.  Equation 1.9, above, is the analytic rotation matrix 



for the sequence x-y-z, in which there is a rotation by angle φ about the x axis, then by angle θ 
about the y axis, and finally by ψ about the z axis.  The analytic matrices for other sequences, 
such as y-x-y, z-y-x, etc., are different than the matrix in eq. 1.9.  Different rotation sequences 
will require different angles to match the experimental Tc, due to the non-commutativity of the 
3D rotation matrices.  
 
Gimbal lock 
Gimbal lock is a problem that can occur with three-dimensional rotations described by Cardan 
sequences.  It occurs when the “middle angle”, the angle of the second rotation, is 90°.  The 
middle angle is called θ above.  When θ = π/2, then cos θ=0 and sin θ=1, the T matrix above 
simplifies to  

Simpler is not necessarily better, though: when we experimentally determine the elements tij of 
the matrix T in this situation, we cannot “go backwards” to figure out φ and ψ .  (It is easy to 
figure out θ: if we experimentally measure a T matrix in which t31=1, then, by comparison to the 
analytic T matrix above (which is for rotation about x, then y’, then z”), we see that sin θ=1, 
which means θ= π/2.)  The reason we cannot determine φ and ψ is that the elements of T 
predicted by the theory of rotations, when θ= π/2, as shown above, don’t depend on φ and ψ 
individually; they only depend on the sum of φ and ψ.  So our experimental measurement, in this 
situation, allows us to know the sum of φ and ψ , but not their individual values.  
(φ+ψ=arcsin(t12).)  This situation is called gimbal lock.  You can see it with a tinkertoy model of 
rotation about 3 axes: bicycle pedal effect.  In the model, you can rotate about x and z 
simultaneously (i.e. change φ and ψ simultaneously, keeping their sum constant) without altering 
the orientation of the final coordinate frame.  So the rotation model of the change in axes has no 
unique solution in this case.  It is reassuring that the physical and mathematical analyses are 
telling us the same thing. 
You may think that gimbal lock is not something to worry about, since it is highly unlikely that 
we would ever experimentally observe a Tc matrix with t31=1.000 and t11=t21=t32=t33=0.  Fair 
enough.  But we might observe a matrix pretty close to that, and if we do, the estimated values 
assigned to φ and ψ will become very sensitive to small measurement errors.  The shoulder joint 
is one at which gimbal lock problems may occur. If the humerus is abducted 90°, i.e. straight out 
from the trunk, and if our rotation sequence has ab/adduction as the middle rotation, we have a 
gimbal lock problem.  This position, or quite close to it, occurs during an overhand throw or 
tennis serve. A solution might be to describe the motion using helical axes, or by a different 
sequence, such as the Euler sequence recommended by the ISG (Wu et al., J Biomech 2005). 
 
Appendix: Winter’s Approach to 2D Coordinate System Transformations 
This section is similar to the section above on two-dimensional rotations. but it uses the notation 
and approach of D.A.Winter, 3rd edition, sections 6.2.6, 6.2.7, 7.0, 7.1, and Winter, 4th ed., 
sections 7.0, 7.1, 8.2.6, 8.2.7.  A warning about notation: Winter uses R and r to denote position 
vectors, which differs from our usual habit of using upper case for matrices and lower case for 
vectors.  Some authors use R for rotation matrices, but Winter uses A in these sections of his 
book.   This section of the notes follows Winter’s notation. 
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Suppose a point a has coordinates 𝐑𝐑𝐚𝐚 = �𝑋𝑋𝑎𝑎𝑌𝑌𝑎𝑎
� in the global reference system (the GRS). 

Suppose there is a local reference system 1 (LRS1) with the same origin as the GRS but rotated 
with respect to it, by an angle θ.  The coordinates of point a in LRS1 are 𝐫𝐫𝟏𝟏𝐚𝐚 = �

𝑥𝑥1𝑎𝑎
𝑦𝑦1𝑎𝑎�  

(There is just one Global Reference System for a data record, but there may be many local 
reference systems for the same data - for example, the LRS of the pelvis, the LRS of the hip, etc.  
We’ll use uppercase for data expressed in terms of the Global Reference System, and lower case 
for data expressed in terms of a local reference system.) 

 
 
How are Ra and r1a related?  One can prove the following: 
 

 𝑋𝑋𝑎𝑎 = 𝑥𝑥1𝑎𝑎 cos𝜃𝜃 − 𝑦𝑦1𝑎𝑎 sin𝜃𝜃
𝑌𝑌𝑎𝑎 = 𝑥𝑥1𝑎𝑎 sin𝜃𝜃 + 𝑦𝑦1𝑎𝑎 cos𝜃𝜃  (local to global) (A.1) 

 
This can be rewritten with matrices: 

 �𝑋𝑋𝑎𝑎𝑌𝑌𝑎𝑎
� = � cos𝜃𝜃 −sin𝜃𝜃

 sin𝜃𝜃 cos𝜃𝜃 � �
𝑥𝑥1𝑎𝑎
𝑦𝑦1𝑎𝑎� (A.2) 

 
or 
 𝐑𝐑𝐚𝐚 = 𝐀𝐀 𝐫𝐫𝟏𝟏𝐚𝐚 (local to global) (A.3) 
 
where A is the rotation-of-coordinates matrix 
 𝐀𝐀 = �cos𝜃𝜃 −sin𝜃𝜃

sin𝜃𝜃 cos𝜃𝜃 � = �c −s
s c � (A.4) 

 
(c=cosθ, s=sinθ).  The first column of A is the global coords that i would have after it (the vector 
i, not the coordinate system) is rotated by angle +θ.  The second column of A is the global 
coordinates that j would have after being rotated by angle +θ. 
There are two different interpretations of A, both valid.   
1.  A moves a vector by angle +θ.  Ar1=r2, where r1 and r2 are the coordinates of the vector 
before and after rotation by +θ.  There is no change of coordinate system.  
The matrix A is the same as the matrix Rv(θ) in equation 1.1.  It is the transpose, or inverse 
(they’re the same for rotation matrices), of the matrix Rc(θ), in equations 1.3 and 1.4.   
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a a 

Fig. A1.  Left: Point a in the Global Reference 
System coordinates.  Right: Point a in local 
reference system 1 coordinates, with GRS axes 
shown for reference. 



2. Matrix A re-expresses any vector in terms of a new coordinate system (i.e. in terms of a new 
basis).  Original basis = LRS, new basis=GRS.  In other words Ar=R, where r and R are the 
same point, expressed in LRS and GRS respectively. The LRS is rotated by +θ with respect to 
the GRS. A doesn’t move the vector.  Why aren’t A and Rc(θ) the same, since they both describe 
rotations of coordinate systems? Because Rc(θ) goes from GRS to LRS and A goes from LRS to 
GRS.   
 
Now consider a second local reference system, LRS2.  It is rotated like LRS1, but, unlike LRS1, 
LRS2 is also offset, i.e. the origins of the GRS and LRS2 are not the same.  In other words, the 
coordinate systems are related by a translation as well as a rotation. 

 
If the coordinates of origin of LRS2 are R2 = (X2, Y2)  in the GRS, then Ra and r2a are related as 
follows: 

�𝑋𝑋𝑎𝑎𝑌𝑌𝑎𝑎
� = �𝑋𝑋2

𝑌𝑌2� + �cos θ − sin𝜃𝜃
sin𝜃𝜃 cos θ � �

𝑥𝑥𝑎𝑎
𝑦𝑦𝑎𝑎� 

(some subscripts in above eqn missing - due to bug in how MS Word saves eqn as HTML?) (A.4) 
 
or 

𝐑𝐑𝐚𝐚 = 𝐑𝐑𝟐𝟐 + 𝐀𝐀 𝐫𝐫𝟐𝟐𝐚𝐚 
 (A.5) 
As before, the columns of A are the coordinates of i and j after rotation by angle +θ.  As before, 
A may be thought of as  
1. The matrix that rotates a vector by +θ, when it multiplies that column vector.  It does not 
change coordinate systems.  
2. The matrix that changes a vector’s representation (when A multiplies that column vector) from 
LRS coordinates to GRS coordinates, where the LRS is rotated by +θ relative to the GRS. Note 
that this is different from the matrix Rc in equations 1.3 and 1.4 above.  Rc converts a vector 
representation in the oppostite direction: from the GRS to the LRS. 
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Fig. A2.  Left: Point a in the Global Reference 
System coordinates.  Right: Point a in local 
reference system 2 coordinates, with GRS axes 
and offset shown for reference. 
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