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The detailed study of electromyograms (EMGs) is a course (or career) in itself.  In this set of notes we will 
focus on understanding a few points about the analysis of the signals. 
 
Stages in EMG signal processing 

 
 
1. Raw signal amplification 
Record EMG in differential mode, i.e. measure difference in voltage between two electrodes, which may be 
surface or needle electrodes. 
 
2. Analog filtering 
Analog filtering, usually band pass, is applied to the raw signal before it is digitized.  Band pass filtering 
removes low and high frequencies from the signal.   
Low frequency cutoff of band pass filter removes baseline drift sometimes associated with movement, 
perspiration, etc., and removes any DC offset.  Typical values for the low frequency cutoff are 5 to 20 Hz.  If 
the mean value of the signal is not zero before high pass or band pass filtering, it will be afterward, because 
these filters remove low frequency components of a signal, and so they force the mean value to be zero or 
nearly zero.  
High frequency cutoff of band pass filter removes high frequency noise and prevents aliasing from occurring in 
the sampled signal.  The high frequency cutoff should be quite high so that rapid on-off bursts of the EMG are 
still clearly identifiable.  Typical values are 200 Hz – 1 kHz.  
Seniam recommendations for surface EMG: high pass with 10-20 Hz cutoff, lowpass “near 500 Hz” cutoff, in 
most cases. 
ISEK recommendations for surface EMG: high pass with 5 Hz cut off, low pass with 500 Hz cutoff. 
ISEK recommendations for intramuscular and needle EMG: low pass with 1500 Hz or higher cutoff; high pass 
not specified. 
 
Table of analog filtering and sampling parameters for EMG signals from selected journal articles. 
Muscle flow fhigh SR Source 
ta, pl, mg, so, tp 40 400, ~80 250 Chen & Shiavo 1990 
ta, mg 6 400 1000 Abraham in LVSP, ed Chugani, 1998 
Bb 5 1000 (2p Cheb) 2000 Burden & Bartlett 1999 
Bb 10 450 (2p) 1024 Rainoldi et al 1999 
mg, ta 20? 800? 1000 Lamontagne et al 2002 
vl, vm, st, bf 20 450 1000 Burden et al 2003 
vl, vm, st, bf, rf, mg 5.5 600 1000 Benoit et al 2003 
mg, ta 16 600 1000 Roetenberg et al 2003 

1. Raw signal amplification (differential mode) 
2. Analog band pass filter 
3. Analog to digital conversion at a steady sampling rate 
4a. Rectify and digital low pass filter (‘linear envelope’) 
      or 
4b. Root mean square (RMS) filter 
5. On, off time determination 
6. Time-frequency analysis 



Vl 10 500 1000 Solnik et al 2008 
ra, d, lmf 10 1000 2000 Hodges & Hui 1996 
st, sm, bf 5 1000 2500 Onishi et al 2002 
st, bf, gm, rf, ta, so, al 150 1000 2500 Mulroy et al 2003 

al=adductor longus, bb=biceps brachii, bf=biceps femoris, d=deltoid, gm=gluteus maximus, lmf=lumbar 
multifidus, mg=medial gastrocnemius, ra=rectus abdominis, rf=rectus femoris, sm=semimembranosus, 
st=semitendinosus, ta=tibialis anterior, tp=tibialis posterior, vl=vastus lateralis, vm=vastus medialis 
All electrodes are surface electrodes except Mulroy et al., Onishi et al., (both fine wire) and Hodges & Hui 
(surface and fine wire). 
flow, fhigh = low, high frequencies of the analog band pass filter used before the signal is sampled; SR=sampling 
rate.  Values for flow, fhigh, and SR are in Hz. 
 
3. Analog to digital conversion 
Seniam and ISEK unwisely recommend a sampling rate of at least twice the frequency of the cutoff frequency 
of the analog low pass filter used, in other words, sampling rate of at least 1000 Hz if the low pass filter cutoff 
frequency is 500 Hz.  I recommend a higher sampling rate (at least five times the nominal low pass filter cutoff 
frequency) to avoid aliasing, because analog low pass filters roll off slowly, so there can be significant power at 
frequencies well above the cutoff frequency.  Thus, if the high frequency cutoff is 500 Hz, a sampling rate of 
2.5 KHz or more is recommended. 
 
3a. Digital high-pass filter 
Some authors apply a digital high-pass to the signal to remove movement and other artifacts.  Example: Solnik 
et al., “6th order, high pass filter at 20 Hz”, for surface EMG from vastus lateralis. 
 
4a. Rectify and digital low pass filter 
Take the absolute value of the signal. This is also called full wave rectification. The rectification step is 
essential for getting the shape or “envelope” of the EMG signal.  One might think the envelope could be 
captured by simply low-passing the un-rectified signal to smooth it.  The reason this doesn’t work well by itself 
is that the EMG signal is naturally nearly zero mean, with fast oscillations that swing quickly and more or less 
equally on either side of zero.  If you smooth such a signal you just get zero – not very useful.  If one first 
rectifies, the negative swings turn into positive swings. 
 
The rectified signal is low pass filtered, with in the 5 – 100 Hz range, and the result looks like the “envelope” of 
the original signal.  One way to low pass filter a signal is to simply take the mean value, in a window which 
“slides” along the signal. Some authors advocate this “rectify and mean” approach.  Such a moving–average 
window is an example of a finite impulse response (FIR) filter.  If the window is symmetric and centered, then 
it will not alter the phase, or timing, of the signal. Filters that do not alter the phase are said to have “zero phase 
shift”. Another way to low pass filter the rectified signal is to use a discrete version of a traditional low pass 
filter such as Butterworth or Chebyshev. These are “infinite impulse response” (IIR) filters.  An IIR filter is 
often applied in both the forward and backward directions, because this results in zero phase shift. 
 
The combination of rectification and low pass filtering is also called finding the “linear envelope” of the signal, 
since the filtering operation meets the mathematical definition of linearity (although the absolute value 
operation does not), and, because it is low pass, it captures the “envelope” of the signal.   
 
Pseudo-code to compute the “linear envelope” with a zero-phase Butterworth filter  

Assume raw data=x(t), xm=mean(x(t)).   
If, as is usually the case, the raw data was high-pass filtered or band-pass filtered, then its mean will be 
zero already. 
y(t) = |x(t)-xm)| 
zButter(t) = y(t) filtered with Butterworth filter in forward and reverse directions 



 
Pseudo-code to compute the envelope with a rectify-and-mean approach (window width=Tw seconds=Nw 

points) 
y(t)=|x(t)-xm)| 
zMA(t)=(Sum of y(t) from t-Tw/2 to t+Tw/2) / Nw 

 
4b. RMS value (alternative to 4a) 
An alternative way to capture the EMG envelope is to compute the root mean square (RMS) value of the signal 
within a window which “slides across” the signal.  The RMS value of the signal that is in the window is plotted 
at the center of the window, to avoid time shifts in the envelope relative to the signal.  This approach is 
mathematically only slightly different from the rectify-and-lowpass approach.  For example, De Luca CJ, J 
Appl Biomech, 1997, shows results using a 25 ms wide RMS window. 
 
Pseudo-code for envelope detection with a RMS window (width=Tw seconds=Nw points) 

y(t)=(x(t)-xm)2 
zMA(t)=sqrt((Sum of y(t) from t-Tw/2 to t+Tw/2) / Nw) 

 
I can think of at least two reasons for the popularity of RMS methods of analysis: 1. if the signal values are 
normal random deviates, then the RMS approach can be shown to be an optimal method for estimating the 
standard deviation of the underlying normal distribution.  2. If the signal were a voltage applied across a 
resistor, the mean square method correctly predicts the power (heat) that will be dissipated in the resistor - 
which has an intuitive appeal as a measure of "strength of signal". 

A reason to be wary of the RMS method is that if the signal values are NOT normally distributed, particularly if 
outliers occur more often than predicted by the normal distribution (which, by the way, seems to be the case in 
many laboratory measurements), then the RMS method is liable to make significant estimation errors.  Mean-
of-the-absolute-value methods are not as sensitive to outliers, and are less likely to make big errors when the 
data is non-normal.  Median-based methods are even more robust, but I have not seen them used in EMG 
analysis. 
 

 



Figure 1 Frequency response of “envelope detectors” designed for 20 Hz cutoff. 
Figure 1 shows the frequency response of the envelope detection for Butterworth, moving average, and root 
mean square (RMS) methods.  The x axis indicates the frequency of sinusoidal modulation of a simulated raw 
EMG.  The value on the y axis is the ratio of the amplitude of the envelope, to the amplitude of the modulation 
the raw signal.  A 2nd order Butterworth filter was used twice for zero phase.  The adjusted cutoff frequency of 
the Butterworth was 25 Hz, in order to achieve a net cutoff frequency (attenuation=0.71) of fco=20 Hz after both 
filter passes.1  The moving average window width set to Tw=22 ms, in order to achieve a cutoff frequency 
fco=20 Hz for the moving average filter.2  The figure shows that the Butterworth and moving average filter 
attenuate by 0.71 at 20 Hz, as expected.  The theoretical response of the moving average filter is also shown and 
is the same as the moving average filter response measured with simulated EMGs.3  The moving average and 
RMS filters have very similar frequency responses, with rather poor lowpass filter characteristics: non-
monotonic in the stop band, and attenuation~=0.2 at f~=3*fco.  The zero-phase Butterworth filter has a response 
closer to unity in the passband, and closer to zero in the stopband, than either the moving average or the RMS 
filter.  The cutoff frequency for the RMS filtered (defined as the frequency where attenuation=0.71) is very 
slightly lower than for the moving average filter with the same width.4  (Results computed and plotted with 
linear_envelope_filter_analysis.m; image file emg_fig1.jpg.) 
 

 
Figure 2 Frequency response of “envelope detectors” designed for 5 Hz cutoff. 
Figure 2, like Figure 1, shows the frequency response of the envelope detection for Butterworth, moving 
average, and root mean square (RMS) methods.  The desired final cutoff frequency for the Butterworth filtering 
is now 5 Hz instead of 20 Hz, and as a result a window width of 88 ms has been chosen (four times longer 
window to get four times lower cutoff frequency).  In this case a 4th order Butterworth was used instead of a 
second order Butterworth.  The results in the figure show that the Butterworth and moving average filters do 
attenuate by 0.71at 5 Hz, as expected.  The 4th order Butterworth’s frequency response is closer to unity in the 
pass band and cuts off more sharply than the 2nd order Butterworth in Figure 1.  A key point is that a wider 
window results in a lower cutoff frequency.  (Image file emg_fig2.jpg) 
 



 
Figure 3 Biceps brachii EMG envelope detection with 20 Hz cutoff. 
The application of these filters to a real EMG (obtained from biceps brachii during a brief strong voluntary 
contraction) is shown above.  Figure 3 shows envelopes detected with a 20 Hz, 2 pole Butterworth and with 22 
ms wide moving average and RMS filters, as in Figure 1.  A zoomed in view of the start of muscle activity is 
shown on the right side.  The envelopes are very similar.  The envelope detected with the Butterworth is 
smoother than the moving average or RMS envelope.  (Image file emg_fig3.jpg) 
 
 

 
Figure 4 Biceps brachii EMG envelope detection with 5 Hz cutoff. 
Figure 4 shows envelope detection with a 4th order Butterworth with a net cutoff frequency of 5 Hz, and with 88 
ms wide moving average and RMS windows, with a zoomed-in view on the right.  The three envelopes are 
quite similar.  The Butterworth envelope detected with a 4th order filtered applied twice shows undershoot 
before it rises.  (Image file emg_fig4.jpg) 
 
Envelope detection using cutoff frequencies of 5 to 20 Hz (which correspond to window widths of 
approximately 22 to 88 ms) are reasonable for many situations.   
 
Matlab code to find linear envelope of a signal 
Lowpass filter frequency = 50 Hz.  Sampling rate = 10000 Hz. 



When specifying frequencies for digital filters in Matlab, the frequencies should be normalized by the Nyquist 
frequency. 
>> x=load (’wcr0301164a.emg’); 
>> Fs=10000; 
>> Fnyq=Fs/2; 
(Line above is Nyquist frequency.  Next line rectifies signal after removing mean value.) 
>> y=abs(x-mean(x)); 
(Next line defines desired final cutoff frequency, in Hz.) 
>> fco=20;  
 Next line creates 2nd order Butterworth low pass filter.  The cutoff frequency is adjusted upward by 25% 
because the filter will be applied twice (forward and backward).  The adjustment assures that the actual -3dB 
frequency after two passes will be the desired fco specified above.  This 25% adjustment factor is correct for a 
2nd order Butterworth; for a 4th order Butterworth used twice, multiply by 1.116. 
>> [b,a]=butter(2,fco*1.25/fnyq); 
Next line filters the rectified data forward and backward. 
>> z=filtfilt(b,a,y); 
Next lines create a vector of time values for plotting, plot the data versus time: raw data in blue, offset vertically 
for visibility, rectified  data in green, and linear envelope in red.  Axis labels and a legend are also added. 
>> plot(t,x-mean(x)-4,'b',t,y,'g',t,z,'r'); 
>> xlabel('Time (s)'); ylabel('EMG (V)'); 
>> legend('Raw (offset)','Rectified','Linear envelope'); 
 
Matlab code to compute and plot spectra 
Next lines creates vector of frequencies present in the spectra, up to the Nyquist frequency. 
>> N=length(x); 
>> freqs=0:SR/N:fnyq; 
Next: compute fft and plot the amplitude spectrum, up to the Nyquist frequency. 
>> xfft = fft(x-mean(x)); 
>> figure;  
>> plot(freqs,abs(xfft(1:N/2+1))); 
Next: compute and plot the power spectrum, up to the Nyquist frequency. 
>> Pxx = xfft.*conj(xfft); 
>> figure; 
>> plot(freqs,abs(Pxx(1:N/2+1))); 
 
5. On/off times 
One often uses the EMG to determine the times at which muscles “turn on” and “turn off”.  An automatic on/off 
detection algorithm with graphical display, and which allows user override, may be used. 
 
5a. A standard approach for on and off time estimation is to determine the times at which the envelope of the 
signal (determined using methods above: remove mean value (if any), rectify, digital low pass filter) exceeds a 
threshold.  The threshold may be given by  

𝑇𝑇ℎ𝑟𝑟𝑒𝑒𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  𝜇𝜇 + 𝐽𝐽𝐽𝐽 
where µ and σ are the mean and standard deviation of the envelope during a period of inactivity, and J is a 
constant.  Di Fabio used a 3σ threshold, i.e. J=3.  Hodges and Bui (1996) required that the mean of the points in 
a sliding window of width Tw exceed the threshold.  The time of the first point in the window was considered 
the threshold crossing time.  They used a digital 6th order elliptic low pass filter with cutoff frequency fco.  They 
did not specify whether it was a zero phase (forward and backward) implementation.  They tried three values 
for J (1, 2, 3), three values for Tw (10, 25, 50 ms), and three values for fco (10, 50, 500 Hz).  They used all 27 
possible methods on 300 EMGs (surface and fine wire) and compared the on-times to the on-times found by an 
experienced examiner.  They found good agreement (no statistically significant difference) between the 
computerized and human-determined on-times, for all traces and for low-and high-background traces, with two 



of the twenty-seven combinations: (J, Tw, fco) = (3, 25 ms, 50 Hz) and (1, 50 ms, 50 Hz).  See also Di Fabio 
(1987), Bogey et al. (1992).  
 
5b. A generalized likelihood ratio method for determining EMG on and off times has been described by Staude 
(2001).  In this method, the raw (zero mean) recorded EMG, x(k), is presumed to be a Gaussian white noise 
signal which has been altered due to filtering by tissues, electrodes, etc.  The filtering is assumed to be 
autoregressive with transfer function H(z):  

𝐻𝐻(𝑧𝑧) =
1

1 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2 + ⋯+ 𝑎𝑎𝑝𝑝𝑧𝑧−𝑝𝑝
 

The user estimates a1 through ap from the spectrum of the “quiet” signal.  The measured signal is then filtered 
with “whitening filter” Hw, which is the inverse of H, to give a signal with a white spectrum: 

𝐻𝐻𝑤𝑤(𝑧𝑧) = 1 + 𝑏𝑏1𝑧𝑧−1 + 𝑏𝑏2𝑧𝑧−2 + ⋯+ 𝑏𝑏𝑞𝑞𝑧𝑧−𝑞𝑞 

where p=q and bi=ai.  The whitened signal y(k) is therefore given by 

𝑦𝑦(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) + 𝑏𝑏1𝑥𝑥(𝑘𝑘 − 1) + 𝑏𝑏2𝑥𝑥(𝑘𝑘 − 2) + ⋯+ 𝑏𝑏𝑞𝑞𝑥𝑥(𝑘𝑘 − 𝑞𝑞) 

The signal y(k) is used for detection of on-time.  Staude et al. (2001) used p=8 with sampling rate=1 kHz.  The 
theory behind the following method is that y(k) is presumed to have a constant variance up to time t0, after 
which the variance changes.  After t0, the variance is presumed to step to a new level or to ramp up (increase 
linearly with time).  We will describe the step-change detection algorithm, since it is slightly simpler, and gives 
results similar to the ramp detection algorithm (Staude et al., 2001). 
 
A maximum likelihood estimate of variance before change is computed from M samples of y(k) during a quiet 
initial period: 

𝜎𝜎02 =
1
𝑀𝑀
�𝑦𝑦2(𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 

Then a window of constant width W is moved across y(k).  At each position of the window, a log-likelihood 
ratio 𝑔𝑔(𝑘𝑘) = 𝑆̂𝑆𝑘𝑘−𝑊𝑊+1

𝑘𝑘  is computed and compared to a threshold h.   

𝑆̂𝑆𝑗𝑗=𝑘𝑘−𝑊𝑊+1
𝑘𝑘 =

𝑊𝑊
2

(𝜌𝜌�(𝑗𝑗,𝑘𝑘) − ln 𝜌𝜌�(𝑗𝑗, 𝑘𝑘) − 1) 

where 

𝜌𝜌�(𝑗𝑗,𝑘𝑘) =
1
𝑊𝑊∑ 𝑦𝑦2(𝑖𝑖)𝑘𝑘

𝑖𝑖=𝑗𝑗

𝜎𝜎02
 

Note that 𝜌𝜌�(𝑗𝑗,𝑘𝑘) is the ratio of the estimated variance in the window to the baseline variance estimate.  The 
alarm is sounded at time ta=k , the first time when g(k)≥h , and corresponds to a window covering y(j=k-W+1) 
to y(k).  Then the transition time t0 is estimated more precisely by  

𝑡𝑡0 = arg max
𝑊𝑊≤𝑗𝑗≤𝑡𝑡𝑎𝑎

𝑆̂𝑆𝑗𝑗
𝑡𝑡𝑎𝑎+∆ 

“where Δ is an appropriate dead zone which ensures that a minimum number of observations is available for 
parameter estimation” (Staude et al. 2001).  This means t0 equals the value of j which maximizes the log 
likelihood 𝑆̂𝑆𝑗𝑗

𝑡𝑡𝑎𝑎+∆ , which is computed using a variable-width window going from j (which moves from W to ta) 
to k (which is fixed at ta+ Δ).  Staude et al. (2001) obtained good results with M=200 (width for estimation of 
baseline variance), W=25 (moving window width), h=10 (threshold for log likelihood alarm), and Δ=100 
(number of points in the dead zone, used after alarm sounds), where sampling rate=1 kHz. 
 



5c. Li et al. (2007) report that the Teager-Kaiser energy (TKE) operator gives more accurate EMG onset times 
than a conventional threshold method or a generalized likelihood ratio method, especially when signal to noise 
ratio is poor.  They used simulated EMGs.  Solnik et al (2008), using real EMGs, found more accurate onset 
times with the TKE operator than with a conventional threshold method.  Neither Li et al. (2007) nor Solnik et 
al. (2008) report about off time accuracy.  The TKE operator gives a transformed signal y(n), as follows: 

𝑦𝑦(𝑛𝑛) = 𝑥𝑥2(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 + 1)𝑥𝑥(𝑛𝑛 − 1) 
where x(n) is the EMG and n is the sample number.  Threshold crossing detection was done on signal y(n) .  The 
threshold was defined as 

𝑦𝑦 𝑡𝑡ℎ𝑟𝑟 =  𝜇𝜇 + 𝐽𝐽𝐽𝐽 
where µ and σ are the mean and standard deviation of y(n) during a period of inactivity, and J was set to 8 (after 
testing different possible values of J).  The alternate, “conventional”, processing was full wave rectification 
followed by threshold crossing detection with a threshold of three times the standard deviation of the rectified 
signal during inactivity.  They did not say whether they low-pass filtered the rectified signal or whether they 
required a certain number of consecutive points to exceed threshold for detection. Solnik et al. (2008) report 
that the TKE operator gives more accurate EMG onset times than conventional threshold detection, suing 
surface EMG from vastus lateralis.  They high-pass filtered the raw EMG before applying the TKE operator 
(“6th order, high pass filter at 20 Hz”) They low-pass filtered the TKE signal y(n) (“6th order, zero-phase low-
pass filter at 50 Hz”) before threshold detection.  They used J=15.  The alternate, “conventional”, processing 
was (apparently) high-pass filtering, then full wave rectification, then low pass filtering.  For the conventionally 
processed signal, a threshold of 3 standard deviations was used (J=3).    For conventional and TKE operator 
signals, threshold crossing was defined as the first point to cross the threshold and stay above threshold for 25 
or more samples, at a 1 kHz sampling rate. 
 
6. Time-frequency analysis 
The frequency content of the EMG may convey information that is different, and perhaps diagnostically distinct 
from, the information in the linear envelope of the signal.  The problem here is that the “classical” approach to 
frequency analysis is to find the power spectrum of the entire signal, from start to finish.  If the muscle is not at 
a steady level of activation for the entire recording period, then taking the power spectrum of the whole signal is 
not appropriate.  Instead, we need to calculate the frequency content of the signal for short, perhaps 
overlapping, time segments.  This is what time- frequency analysis does.  A moving window (which can be 
rectangular, Gaussian, Hamming, Hanning, etc.; see the discussion of windowing) “slides” across the recording, 
and at each position, the power spectrum of the signal inside the window is computed.  This generates a whole 
family of power spectra – one for each time position of the window.  The power spectrum describes the 
frequency content of the signal at the time corresponding to the “center” of the window, plus some time (the 
window half-width) before and after that time.  The user must decide what window to use, how wide to make it, 
and the step size for moving the window.  Any smooth window - not rectangular! - is a reasonably good choice: 
Gaussian, Hamming, or Hanning, for example.  The width of the window determines the frequency resolution: 
wider window = more frequency resolution, but wider window means averaging together a longer signal 
segment, which is more likely to include dissimilar portions.  A wider window also means that there is poorer 
resolution in the time domain of changes in the frequency content of the signal.  Example: a 50 msec wide 
window will do a good job of resolving a change in frequency content that occurs over 200 msec, and which 
takes another 200 msec to change back again.  However, that same 50 msec wide window will do a poor job of 
resolving a change in frequency content that occurs over 20 msec, and in another 20 msec changes back again.  
A step size of one quarter to one tenth of the window width is reasonable.  Smaller step sizes yield little new 
information, since successive window steps will “see” virtually the same input data.  The frequency resolution 
(in Hz) is ∆f = 1/Tw, where Tw is the window width in seconds.  
 
Copyright © 2004, 2010, 2011, 2012, 2014 W.C. Rose 

1 Theory predicts that fco,net=fco,Butter*0.802, for a second order Butterworth used twice.  Therefore we set fco,Butter=fco,net/0.802., where 
fco,net is the desired final corner frequency of 20 Hz.  

                                                 



                                                                                                                                                                                     
2 Theory predicts that a moving average filter will have a cutoff frequency (3 dB attenuation) fco,MA=0.443/Tw. 
3 The theoretical response of a discrete time moving average filter is H(f)=sin(πfTw)/[Nw*sin(πfdT)] where Nw=window width in 
points, dT=sampling interval in seconds, and Tw=NwdT= window width in seconds. 
4 The numerical tests shown here indicate that the RMS filter has a cutoff frequency fco,RMS=0.42/Tw. 
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SENIAM (Surface EMG for Non-Invasive Analysis of Muscles) was a European project to establish EMG 

standards.  Seniam 8 (1999) was a book with the final recommendations.  Seniam 9 is a CD ROM.  A 
link to a short summary by Stegeman & Hermens is available here.  The Seniam.org web site is not 
online as of 2019. 
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