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Introduction 
 
With the implementation of Common Core State Standards for Mathematics (CCCS-M), 
and the associated assessments, high school students will need frequent problem-solving 
experience to increase their confidence to persevere through them. I am writing this 
curriculum unit for high school math students to give them a historical background of 
logarithms with the hope that they will better understand their usefulness and the 
justification for their properties. I will pose problems with the ultimate goal of students 
truly understanding that logs are exponents of a specific base. Once students internalize 
the idea that logarithms are exponents, I think they will be better prepared to connect the 
properties of logarithms to the laws of exponents that they have already studied. In this 
curriculum unit, students will also solve exponential and logarithmic equations. They will 
apply Polya’s four steps for problem solving to answer real questions that can be solved 
most efficiently with the use of logarithms. The questions relate to nuclear power plant 
disasters, drug testing, carbon dating, and determining time-of-death based on the cooling 
rate of a corpse, as seen on crime scene television. 
 
Rationale 
 
I teach in a vocational school district consisting of four high schools that draw from 
middle schools in all five districts in New Castle County, Delaware. We use the Core 
Plus integrated math curriculum in 90-minute block periods for one 18-week semester; 
students have three to four courses per semester. With some exceptions, students take two 
semesters of Core Plus (1 & 2) in their freshman year, Core Plus 3 in their sophomore 
year, and beginning in the 2013-2014 school year, either go directly to Precalculus or 
take a Trigonometry transition course. Students in Precalculus are typically college 
bound, and the strongest math students in the school. Previously, my Precalculus students 
had never seen logarithms before, and it is the topic that caused them the most difficulty. 
However, our district’s Core Plus 1, 2, & 3 courses were recently realigned, so that 
beginning in Fall 2013, students will be introduced to base-10 logarithms in the earlier 
courses. Therefore, in the future, this curriculum unit may become more appropriate for 
another math course, when logarithms are first introduced. 
 
     My research on the history and use of logarithms brought back my own high school 
memories. I suddenly realized why the topic is not as intuitive for my students as it was 
for me. At the risk of dating myself, I went through high school before inexpensive 



calculators were readily available. I even had to learn how to use a slide rule, but never 
actually used one outside of math class. There were base-10 log tables printed on the 
inside covers of textbooks and we used them to simplify calculations with large numbers. 
For example, it was much easier to rewrite the division 12,547/942 as subtraction of 
logarithms (exponents of base 10 read from a table) than to perform long division. After 
subtracting, we would find the difference in the table and convert it back to the quotient 
of the original problem. As I read more history, I realized that today’s students have 
never had to perform tedious long division or root problems because they all have 
calculators and grew up using them. In fact, some of my students tell me they never 
learned long division. (I believe they never learned it, but I don’t believe they were never 
taught it!) I’m not suggesting we take away calculators to perform numerical 
calculations, but I think students will have a greater understanding of what logarithms 
actually are if they get a sampling of their historical use. 
 
     Current math textbooks introduce logarithms with a definition: y = logb x if and only 
if x = by. The form of the definition may vary, but the basic idea is to define the logarithm 
as the exponent on base, b, that gives the value x. Students are expected to accept the 
definition and then the properties of logarithms. From my experience, they generally 
accept the definition and understand that logarithms are the inverse of exponential 
functions; logs “undo” exponentials, and can be used to solve for a variable that is an 
exponent. However, I feel as though they learn the operations and processes by doing rote 
practice problems, but don’t have a solid conceptual understanding to rely on when faced 
with exponential or logarithmic applications. My goal for this unit is to enhance my 
students’ practice of basic logarithm skills by posing authentic problems that can be 
modeled by exponential functions, and solved using logarithms and problem-solving 
strategies. Real-life topics that can be modeled with exponential or logarithmic functions 
include the decrease of radioactive substances over time, population growth or decay, 
decrease of medication in the bloodstream over time, cooling of a hot beverage or a dead 
body, carbon dating – using the level of carbon-14 remaining in an object to determine its 
age, interest on investments, depreciation of car values, the Richter scale - comparing the 
strength of earthquakes, sound intensity, acidity or alkalinity measured by the pH scale, 
and linearization of data, as in statistics 
 
Background 
 
History 
 
This curriculum unit will begin by connecting the historical significance of logarithms to 
their role in mathematics today. In the first chapter entitled “The History of 
MATHEMATICS as a Teaching Tool,” in an NCTM book, Historical Topics for the 
Mathematics Classroom, Phillip Jones stated “If a perception of structure in an old 
system makes a segment of mathematics easier to comprehend and extend…then these 
new perceptions of structure and symbolism make the teaching, learning, and using of 



mathematics easier.”i By taking my students back to a time without calculators and to 
operations involving large numbers, as in navigation or astronomy, I hope they will 
appreciate the usefulness of logarithms. According to Frank Swetz in the book Learn 
from the Masters, “…the history of mathematics can supply a structure of understanding 
relating reasons with results. History can provide a logic between the definition of a 
mathematical concept and its application….”ii Historically, logarithms converted 
multiplication into addition, division into subtraction, and roots into division by integers. 
Addition and subtraction are far simpler operations than multiplication and division, 
especially as the size of the numbers increases.  
 
     John Napier  (1550–1617), a Scottish landholder, is generally given the credit as being 
the inventor of logarithms. He published the book Mirifici logarithmorum cnanonis 
descriptio in 1614. His book contained tables of logarithms, which reduced the time and 
increased “the accuracy of carrying out numerical computations of multiplication, 
division and…roots.”iii Napier invented logarithms to make astronomers’ calculations 
less time-consuming. A quote I read in multiple sources stated, “the invention of 
logarithms, by shortening the labors, doubled the life of the astronomer.”iv 
 
     Napier’s definition of logarithms was different from our current definition based on 
exponential notation; exponential notation did not even exist at the time. Napier 
investigated ratios of sines of angles that were necessary for computations in astronomy. 
Sines, however, were also defined differently from how they are today. Sines were a 
specific chord length that depended on the radius of a circle.v There may be a connection 
between Napier’s work and the trigonometric identity  
 

 

 
which also replaces multiplication with addition and subtraction. Ultimately, Napier’s 
computations were based on the ratio of two velocities, one on a line segment and the 
other on a ray. It was a ratio of an arithmetic progression and a geometric progression. 
The word logarithm comes from the Greek words arithmos, meaning number, and the 
logos, meaning ratio.vi Napier spent years computing thousands of ratios and then 
published them for public use, which saved others from having to repeat the calculations 
each time they needed them. It turned out that Napier’s computations produced what we 
now refer to as natural logarithms (ln of base e), although the idea of a base was never 
part of Napier’s calculations.vii 
 
     A London professor of geometry named Henry Briggs (1561-1630) was so inspired by 
Napier’s work that he traveled to Scotland to consult with Napier. As a result of his visit, 
Briggs published a different set of logarithm tables in1624. Briggs’ computations 
produced what we refer to as common logarithms (log of base10). Briggs, with 
agreement from Napier, essentially shifted the scale that Napier used so that the 



logarithm of 1 is 0  (log 1 = 0) and the logarithm of 10 is 1 (log 10 = 1).viii This shift 
made the computations simpler, although Briggs carried out his computations to fourteen 
places (not so simple!). 
 
     Early descriptions of logarithms were different from current ones. For example, 
Napier’s logarithms were based on a radius of 107 (used in his calculation of sine ratios). 
He chose such a large number to ensure that all logarithms were positive integers. Briggs’ 
calculations did not consider logarithms of negative numbers, either. It took until 1637 
for symbols for powers of numbers to be introduced by Rene Descartes.ix It was William 
Oughtred that published the theorems log a + log b = log ab, log a – log b = a/b, and log 
am = m log a using words, not symbols, in a booklet in 1652.x Graphic representations of 
logarithms were introduced in the 17th century, along with an understanding of 
functions.xi Finally, in the late 1700’s, Leonhard Euler connected exponential and 
logarithmic functions into a form that we use today,  if and only if  
Or, written as functions,  and .xii 

 
Theory of Logarithms 
 
Computations Before Calculators 
 
The connection between an arithmetic and geometric progression that the early 
mathematicians used is illustrated in Table 1. An arithmetic progression progresses by 
adding a constant value to each term; alternately, an arithmetic progression has a 
common difference between consecutive terms (theoretically, the difference may be 
negative or positive). A geometric progression progresses by multiplying each term by a 
constant value; alternatively a geometric progression has a common ratio between 
consecutive terms (the ratio may be greater than or less than one, but always greater than 
zero). This common ratio is the base of the exponential form illustrated in the third row 
of the table. 
 
 0 1 2 3 4 5 6 (arithmetic progression) 
 1 2 4 8 16 32 64 (geometric progression) 
 20 21 22 23 24 25 26 (geometric, alternate form) 
 

Table 1 
 
Referring to Table 1, the product, 4 x 8 = 32, in the geometric progression corresponds to 
the sum, 2 + 3 = 5 in the arithmetic progression; the results are aligned in the table. 
Recognizing that the numbers in the arithmetic progression are the same as the exponents 
of base-2 corresponding to the values in the geometric progression in the middle row, we 
can add the exponents (aka logarithms) and use the chart to find the product of two 
numbers, provided the exponents refer to the same base.  



 
     The example given in the previous paragraph along with the exponent rule an·am =an+m 
leads to the first property of logarithms: 
 

 [1]   
 

where the values x and y are any two terms of a geometric progression and a>0 is the 
base, or common ratio between consecutive terms in the progression. To demonstrate its 
usefulness in simplifying computations of large numbers, let’s find the product 
(526,000)(7,890,000). We will use base 10 (a = 10) so we can refer to a common log 
table. First, we can write 526,000 as (5.26·105). I am assuming here that high school 
students are familiar with scientific notation from science and previous math classes. 
Writing the number in scientific notation tells us that its logarithm will have a 
fractional/decimal value between 5 and 6 since 105 = 100,000 and 106 = 1,000,000 and 
we are looking for a value in between. Next, using the logarithm table in Appendix 3, we 
find the row for ‘5.2’, and look across to the column labeled ‘6,’ which refers to the value 
0.06, to get 0.7210. Then, applying property [1] we find that log10(526,000) = 5 + 0.7210 
= 5.7210. The integer piece of the logarithm is called the characteristic; it gives us the 
order of magnitude of the number. The decimal part of the logarithm is called the 
mantissa. Using the same process, we find that 7,890,000 = (7.89·106) and 
log10(7,890,000) = 6.8971. Applying property [1] again, we get log10(526,000⋅7,890,000) 
= 5.7210 + 6.8971 = 12.6181. This result tells us that the product of the two large 
numbers is equal to 1012.6181. Furthermore, we know that this number is in the trillions 
because its characteristic is 12, which is equal to 1012. To find an equivalent value, we 
again go to the logarithm table, but this time look “inside” the table (not at row or column 
headings) for 0.6181. It’s in the row labeled “4.1” and the column labeled “5” so 0.6181 
= log(4.15), or 100.618 = 4.15. Finally, we can say that 1012.618 = 4.15·1012 = 
4,150,000,000,000! While it took a lot of words to explain the process, it is still much 
easier, and possibly more accurate, than multiplying large numbers. Something to keep in 
mind is that both the table and numbers I used have only 3 or 4 nonzero digits. 
Multiplication would be even more tedious if there were more nonzero digits. 
 
     The second property of logarithms allows us to rewrite division as subtraction. It 

follows directly from the exponent rule, : 

 

[2]   

 
where x and y are, again, any two terms of a geometric progression and a>0 is the base, 
or common ratio between consecutive terms in the progression. Let’s use the example I 
gave in the Rationale section, 12,547/942, to demonstrate how to avoid long division. 



First, we can write 12,547 = 1.2547·104. At this point we have more than 3 nonzero 
digits, so we have a decision to make – can we round the number to 1.25·104, or do we 
need to interpolate between the values in the table? With the availability of calculators, 
there is no longer a need to interpolate, so I will not demonstrate the process. So, 
continuing on, the logarithm table and property [1] gives us log10(1.25·104) = 4.0969 and 

log10(9.42·102) = 2.9741. Finally, applying property [2],  = 4.0969 – 

2.9741 = 1.1228. Interpreting this result, we find that the quotient of 12,500/942 = 101.1228 

which is a value is between 101 =10 and 102 =100. Going back to the logarithm table, we 
find that 0.1228 is the logarithm of approximately 1.33, and therefore, the quotient is 
1.33·10 =13.3. 
 
     The third property of logarithms allows us to rewrite powers and roots as 
multiplication or division by integers. Briggs used this property to find square roots of 
numbers in creating his logarithm tables. It follows from the exponent rule (bk)n  = bkn: 
 

[3]   
 

First we need to recall that finding the nth root of a number is equal to raising it to the  

power . Then, to find the square root of 64, applying property [3] gives us 

. If we refer to Table 1, we find that log2(64) = 6. Since ½(6) =3, 

we have  and .  
 
     As another example using the base-10 log table in Appendix 3, let’s find . 
First we will use the log table to find log105 = 0.6990. Applying property [3], we get 

. Going back to the log table, we find . 

 
     Before moving on, I would take some time with students to examine the logarithm 
table a little more closely. I think it might be interesting, or at least worthwhile for them 
to see that the values in the table do not increase at a constant rate throughout the table. 
There are greater changes in the mantissa for smaller numbers than there are for larger 
numbers. If time allows, students my be interested to see logarithmic graph paper and 
experiment with graphing some exponential or power (x2 or x3) relations. 
 
Inverse Functions – Still a Necessity with Calculators 
 



While calculators have eliminated the need for logarithms as a way to simplify 
computations, logarithms are still needed for math and science applications. Specifically, 
the common log is the inverse of the exponential function, f(x) = 10x and the natural log 
is the inverse of the exponential function, f(x) = ex. My Precalculus students have studied 
exponential functions in prior math courses. They are able to recognize growth and decay 
functions from patterns in a graph and/or table, and they are able to write the function 
rule based on data or information given. However, before Precalculus, the only way they 
know to solve an exponential equation is by searching for values in a table or on a graph 
using a graphing calculator (or by guess & check). Logarithms are, therefore, a valuable 
mathematical concept if only to reinforce inverse operations in solving equations. As 
stated in the CCCS-M Function Domain (HSF-BF.B.4), students should be able to “find 
inverse functions.” They should be able to solve equations using inverses, write the 
inverse, verify that a function is the inverse of another, and know when a function has an 
inverse and, when it doesn’t, how to produce an inverse by restricting the domain. 
Standard HSF-BF.B.5 states that students should “understand the inverse relationship 
between exponents and logarithms and use this relationship to solve problems involving 
logarithms and exponents.” 
 
Typical, Traditional, Textbook Logarithm Lessons 
 
As stated earlier, most textbooks present a definition of logarithms such as  
  

x= logb y  if and only if y = bx, 
 
followed by the three properties of logarithms 
 

[1]   

              [2]   

              [3]  . 
 

Students practice using the definition and properties to rewrite expressions such as 
 

a) 3n = 243 →  log3 243 = n 
b) log7(8x) = 5 → 75 = 8x  

c)  

d)  

 



Students typically practice enough to apply the definition and properties by rote. I do not 
intend to take this practice out of my curriculum, but I do intend to enhance it with 
problems and/or applications that demonstrate the need for these skills. 
 
     Once students have mastered the skills to work with exponential and logarithmic 
expressions, they begin to solve equations. The simplest exponential and logarithmic 
equations to solve are based on One-to-One Properties: ax = ay if and only if x = y, and 
loga x = loga y if and only if x = y.  
 
     Example A:  2x+3 = 32 
    2x+3  =  25

   rewrite 32 using base 2 
    x + 3 = 5   One-to-One Property 
    x = 2    subtract 3 from each side 
 
     Example B:  log4(2x–5) = log4(x+4) 
    2x – 5 = x + 4  One-to-One Property 
    x = 9    add 5, subtract x from both sides 
 
     To solve an exponential equation with only one exponential term, the first step is to 
apply inverse arithmetic operations (addition/subtraction and multiplication/division), if 
necessary, to isolate the exponential term with the variable in its exponent. Once isolated, 
we apply the inverse of an exponential, which is a logarithm, keeping the equation 
balanced by performing the same operation on both sides. If necessary, we would apply 
additional inverse operations to isolate the variable. The following example could 
represent the time it takes to double a population that grows at a rate of 4% per year. 
 
     Example:    250(1.04)x = 500 
  (1.04)x = 2   divide both sides by 250 
  log (1.04)x = log 2  take log (or ln) of both sides   
          x⋅log 1.04 = log 2  property [3] 

    divide by log 1.04; enter in calculator 

 
      To solve an equation with a single logarithm, we will again need to isolate the 
logarithm first, and then apply the inverse of a logarithm, which is exponential. (The 
process of changing from logarithm to exponential is called exponentiating.)xiii Then, if 
necessary, apply additional inverse arithmetic operations to isolate the variable. The 
following example from chemistry would be used to find the concentration of the 
hydronium ion, [H+], in a solution that has pH = 7.5. 
 
     Example:    definition of pH=7.5 
    divide both sides by -1 



     exponentiate with base 10 
      No additional steps required. 
 
     Some logarithm equations require us to use the properties of logarithms to combine 
terms into a single logarithm before we can apply the inverse operation. The following 
example does not have a context, but illustrates skills used to solve log equations, 
provided the bases for all of the logarithms are the same. 
 
     Example: log6(3x+14) – log65 = log6(2x) 

   property [2] 

     One-to-One Property 

  3x + 14 = 10x   multiply both sides by 5 
  14 = 7x   subtract 3x from both sides 
  x = 2    divide both sides by 7 
 
     Before moving on, I want to add a disclaimer. The CCCS-M standards expect students 
to work with base 2, 10 and e. This unit does not specifically address base e because of 
the space required to explain its origin. However, all properties and operations that I have 
discussed also apply to base e. (In reality, I personally choose natural logs most naturally 
when solving exponential equations.) 
 
Problem-Solving Strategies 
 
In our seminar, we solved a wide variety of problems. We always compared and 
discussed all of the different solutions methods we used. We discussed the mathematics 
involved in each of the problems, and ways to adapt them for varying grade levels. We 
emphasized problem-solving strategies from G. Polya’s book, first published in 1945, 
How to Solve It.xiv Polya outlined and described these four basic steps:  
 

1. Understanding the Problem 
2. Devising a Plan 
3. Carrying Out the Plan 
4. Looking Back 

 
Within each of Polya’s four steps, there are questions we want to encourage our students 
to ask themselves. The questions Polya suggested in 1945 sound just like the first CCSS 
Standard for Mathematical Practice (CCSS.Math.Practice.MP1): “Make sense of 
problems and persevere in solving them.”  
 
Step 1: Understanding the Problem 



 
When faced with a problem, Polya and CCSS-M suggest asking, “What is the unknown?” 
“What information is given?” “What information is not given?” “What do we know about 
the conditions/constraints?” “What prior knowledge do we have that can help us to get 
started on the problem?” “Can we draw a picture or separate the problem into parts to 
help us get started?” 
 
Step 2: Devising a Plan 
 
Some questions we want students to ask themselves when approaching a new problem 
include, “Have we seen any similar problems before?” “What is/are the connection(s) 
between the givens and what I need to find (the unknown)?” “Is there a simpler form or 
special case of this problem we can solve that might lead us toward a solution of the 
original problem?” “What tools (theorems, properties, definitions, etc.) should we use to 
solve the problem?” “Can we restate the problem differently?” “Can we find something 
useful from the given data?” “What other data might we need before we can solve for the 
unknown?” 
 
Step 3: Carrying Out the Plan 
 
In this step, we need our students to persevere and continually ask, “Does this step make 
sense?” “Are we sure it is correct?” If students find they are not getting closer to a 
solution, we want them to change their plan, and carry it out. 
 
Step 4: Looking Back 
 
Again, students should ask themselves, “Does this solution make sense?” Other questions 
include “Are there other methods we could have used?” “Is one method more efficient 
than another?” “Can we use this result for some other problem(s)?” “What strategies 
worked?” “What strategies didn’t work?”  
 
     Because all of the problems I will pose to my students are related to one general topic, 
my emphasis will be on the first two steps – identifying the information given, the 
information needed and how to organize it. That doesn’t mean I will ignore the last two 
steps, especially since these steps require students to monitor themselves and check 
whether each step in their plan and their solution make sense. However, in carrying out 
their plans, I expect them to practice their skills in working with logarithms. 
 
Activities  
 
Lesson 1 – History of Logarithms 
 
Warm-up: Review rules of exponents.  



 

Students will practice simplifying expressions such as , , and 

. If necessary, I will have them write each individual factor to reinforce the rules. 

For example,  =  and  = 

. Having students write the intermediate step for  
will help them remember that both the number 5 and  are being multiplied 3 times (a 
common error is forgetting to raise the constant, 5, to the power of 3).  
 
Instruction:  
 
Students will complete tables, similar to Table 1. The first row of each table contains 
integers beginning with zero, increasing by one. The second row contains the values of 
any base number multiplied by itself (raised to the power of) the number of times 
corresponding to the integer in row one. The third row contains the values from row two 
written in exponential form. Students will complete two or three tables using different 
base values. The third table will have a base value between zero and one, the reciprocal 
of one of the previous tables; values in row 2 should be written as fractions, rather than 
decimals. 
 
Base/multiplier = 10 

0 1 2 3 4 5 6 7 8 
1 10 100 1000 10,000 100,000 1,000,000 10,000,000 100,000,000 

100 101 102 103 104 105 106 107 108 
 

Table 2 
 

Base/multiplier =  
0 1 2 3 4 5 6 7 8 
1  

 

 

 
  

  

   

       

 
Table 3 

 
     Referring to row one in Tables 2 and 3, define an arithmetic progression/sequence 
as an ordered list of numbers in which any two consecutive terms have a common 



difference. The common difference in both tables is 1. Referring to row two in both 
tables, define a geometric progression/sequence as an ordered list of numbers in which 
any two consecutive terms have a common ratio. The common ratio is the multiplier 
identified at the top of Tables 2 and 3. Challenge students to recognize the pattern in row 
one as linear, and the pattern in row two as exponential. 
 
     Next, ask students to find the product of any two numbers from row two (without a 
calculator!), and then find that product in the table (extend the table, if necessary). 
Compare the relationship with the corresponding values in row 1. For example, suppose 

students choose  from Table 3. These values correspond to 2, 4 

and 6 in row one. Students may notice that 2 + 4 = 6. They should try several more 
products until they see the relationship. They should repeat the process for other tables. If 
students are working in pairs, or groups, they should compare their findings with several 
different base/multiplier values. Students should discover that the sum of the numbers in 
the arithmetic sequence corresponds to the product of the corresponding numbers in the 
geometric sequence, and that the relationship holds for all base values. 
 
     At this point, describe how a Scotsman, John Napier, recognized this relationship in 
the late 1500’s. Over more than a decade, Napier calculated thousands of ratios 
connecting arithmetic and geometric progressions, called logarithms, and published them 
in a book in 1614. Another mathematician in Britain, named Henry Briggs, was so 
interested in Napier’s logarithms that he traveled to Scotland to discuss them with Napier. 
They agreed on some adjustments, and Briggs published another set of logarithms in 
1624 using different calculations based on (square) roots of numbers. Having these 
calculations published saved navigators and astronomers from having to repeat 
calculations whenever they needed them. 
 
     To continue illustrating relationships in Tables 2 and 3, again ask students to select 
two numbers from the second row, and divide them. I suspect they will quickly catch on 
that the difference of the numbers in the arithmetic sequence corresponds to the quotient 
of numbers in the geometric sequence. The third relationship students should observe is 
connected to the rule for exponents: (am)n = amn, or a number raised to a power 
(exponent), raised to a second power is equal to the number raised to the product of the 
two powers. Using any number in the geometric sequence of a table, students should 
square the number, cube the number and find the square root of that number to find the 
relationship with the corresponding values in the arithmetic sequence. For example, using 
the number 1000 in row two of Table 2, 10002 = 1,000,000 and the corresponding values 
in row one are 3 and 6. Likewise, 10003 = 1,000,000,000, and by extending the table one 
column, the corresponding values in row one, are 3 and 9. To find square roots, they may 
need to be more strategic by selecting only even values in the arithmetic sequence. For 
example, starting with the number 4 in the arithmetic sequence, the square root of the 
corresponding value, 10,000, is 100, corresponding to 2 in row one. By comparing results 



with other students, they should discover that squaring and cubing a number in the 
geometric sequence corresponds to multiplying the number in the arithmetic sequence by 
2 and 3, respectively. Square root corresponds to dividing the exponent by 2, which is the 
same as multiplying by ½. 
 
     In the final piece of this lesson, ask students if they have used the three relationships 
they just observed in any other contexts in mathematics. If no one can verbalize the 
relationships as the rules of exponents, draw their attention to the third row of each table. 
Finally, define the values in row one as the logarithms of the base. Referring to the third 
row in the table, students should recognize that the logarithm is the exponent on the base, 
and therefore, rules of exponents apply to logarithms. 
 
Formative Assessment (sample): 
 
Since 104 = 10,000, we can write log10(10,000) = 4. Since 24 = 16, we write log2(16) = 4. 

Write the following statements as logarithms: 53 = 125, 122 = 144, and . 

 
Activity 2 – Base 10 Logarithms 
 
Warm-up: Apply number sense to estimate numbers using exponents of base 10. 
 
Students should estimate the exponent on base 10 between two consecutive integers for 
several positive integers, both greater than and less than one. A sample question set with 
answers may look like: 
 
     1) 355 = 10x  Since ,  
     2) 12,498 = 10x  Since ,  
     3) 0.00475 = 10x  Since ,  
 
The next step is to review how to write the numbers in scientific notation as 1) 3.55 x 102, 
2) 1.2498 x 104, and 3) 4.75 x 10-3. This form of the numbers may help students that were 
unsure how to estimate the exponents in the warm-up questions.  
 
Instruction 
 
After a brief discussion about real number exponents existing for numbers such as the 
ones in the Warm-up questions, ask students to use “Guess and Check” to find a more 
accurate estimate of the exponent of base 10. Then, it’s time to introduce a Base 10, or 
Common, Logarithm Table (referred to as “log table” for the remainder of this unit). 
Using the same set of numbers, demonstrate how to use the log table for numbers 

, the first part the number written in scientific notation. This activity reinforces 



exponent rules by breaking numbers written in scientific into two factors having the same 
base, so the exponents can be added: 
 

1) 355 = 3.55 x 102 = 100.5502 x 102 = 102.5502 
2) 12,498 = 1.2498 x 104 = 100.0969 x 104 = 104.0969 
3) 0.00475 = 4.75 x 10-3 = 100.6767 x 10-3 = 10-2.3233 

 
Question #3 above can generate discussion about the relative size of 10-2 versus 10-3, and 
how adding a positive value from the log table to the negative exponent from scientific 
notation leads to a less negative exponent which is larger than -3. Also, provide practice 
using the log table to convert between base 10 logarithms and the equivalent number 
written in standard form. For example, complete Table 4 below. 
 
Base 10 
Logarithm 

Given: 
log x = 3.5888 

Given: 
log x = 1.8579 

Given: 
log x = -2.1500 

Given: 
log x = -0.7190 

Standard 
Form 

 
Ans:  x=3880 

 
Ans: x=72.1 

 
Ans: x=0.00708 

 
Ans: x=0.191 

 
Table 4 

 
     The goal of the next phase of this lesson is to demonstrate to students why log tables 
were useful and timesaving before calculators were available. (They can’t imagine life 
without a calculator, and hearing that textbooks used to have these tables printed on the 
covers fascinates them.) The following problems make use of the tables and exponent 
rules. First, students should pick a number from 10–100 and write it in the form 10x (find 
its logarithm using a base 10 log table). Second, pick a number from 100–1000 and write 
it in the form 10x. The first problem is to multiply the two numbers in their original form 
by hand. Then, multiply using the exponential form of the numbers by adding the 
exponents. Demonstrate how to use the log table to transform the logarithm of the 
product back into a number between 1-10 written in standard form. 
 
     The second problem is to perform long division using the same two numbers by hand. 
Then, perform the same division using the exponential form of the numbers by 
subtracting the exponents and convert it back into standard form. The third problem is to 
square and cube one of the numbers by hand, and then using the exponential form of the 
number. Finally, ask students to estimate the square root of the number between 100-
1000, and refine their estimate using Guess and Check. As a final illustration of the 
power of logarithms, demonstrate that the square root of a number can be found by 
dividing its logarithm by 2 and transforming the result back to standard form. 
 
     Now, students should be prepared to learn and work with the three properties of 
logarithms described in the Background section above. They can and should practice 



rewriting logarithms of products and quotients as the sum and difference of logarithms. 
They should also practice going in reverse to condense a sum/difference into a single 
logarithm. The practice problems should include both variables and numbers 
 
Formative Assessment:      
 
As an Exit Ticket, have students summarize in their own words the process of division 
using logarithms. For example, perform the division 1265/987 while describing the 
process. (Of course, division can be replaced with multiplication or finding the square, 
cube or square root of numbers.) 
 
Activity 3 – Logarithms and Exponentials are Inverse Functions  
 
Warm-up: Practice converting between exponential and logarithmic form  
 
Exponential 
form 

Given: 

 

Ans: 
26 = 64 

Ans: 

 

Given: 

 

Logarithmic 
Form 

Ans: 

 

Given: 
 

log2(64) = 6 

Given: 
 

log1/10(1000) = -
3 

Ans: 

 

 
Table 5 

 
Instruction: 
 
Begin instruction by teaching Polya’s four steps in problem-solving: 1) Understand the 
problem, 2) Devise a plan, 3) Carry out the plan, and 4) Look back to be sure the answer 
makes sense. Have students apply Polya’s four steps in solving a sampling of equations 
algebraically, such as a) linear: 6x – 5 = 13, b) quadratic: (2x+1)2 = 5, c) power: 4x3 = 

32, and d) reciprocal: . Explicitly discuss how understanding the problem 

means recognizing the type of equation (linear, quadratic, etc.) and what it means to solve 
the equation. In devising a plan, students should describe how to use inverse operations to 
isolate variables in the different types of equations. They should then carry out their plan 
to find all solutions, and finally, look back to check their solutions. 
 
     Next, present students with a problem such as 20(2)4x = 1280. This problem could 
describe bacteria growing in a Petri dish for x hours if there were 20 bacteria initially, 
each doubling every 15 minutes, and we want to know how long it will take to reach 
1280 bacteria. Hopefully students will recognize this equation as exponential with the 



variable x representing time, given in hours. Using the previous lesson and warm-up 
activity, I hope students’ plan will be to rewrite the exponential equation as a logarithm. 
Ensure that they isolate the exponential by dividing by 20 (inverse of multiplication) on 
both sides of the equation, simplifying the original to (2)4x = 64. Rewriting in log form 
gives us log2(64) = 4x. If students have not yet learned the Change of Base Theorem 
(mine have not), they will need to recognize that 64 can be written with base two as 26. 
Then the exponent 4x must equal 6, and after dividing again, we find that x = 6/4 = 1.5. 
Ensure that students interpret the result as after1.5 hours of doubling there will be 1280 
bacteria in the dish. To check, substitute x = 1.5 and multiply  
 
     We could change the bacteria example slightly by describing a different Petri dish that 
starts with 10 bacteria with each doubling every 5 minutes. When would the two dishes 
have the same number of bacteria? The equation to solve would be 20(2)4x = 10(2)12x. 
The starting numbers make it an interesting problem with multiple approaches possible. 
Solution #1: Divide both sides by 10 to get 2(2)4x = 212x, which becomes 24x+1 = 212x. If 
students recognize that the exponents must be equal, then 4x+1=12x, x=1/8 hr =7.5 min. 
Solution #2: Rewrite both sides in log form to get log2(20(2)x) = log2(10(2)x). Using 
properties of logarithms, log2(20) + 4xlog2(2) = log2(10) + 12xlog2(2). Subtracting 
4xlog2(2) and log2(10) from both sides gives us log2(20) – log2(10) = 12xlog2(2) – 
4xlog2(2). By using log properties on the left and combining like terms on the right, we 

get . Dividing both sides by log2(2) we end up with 1=8x, 

so x=1/8 hr. Students may also recognize (I can hope) that log2(2) = 1 which is another 
way to simplify the right side of the equation to 12x – 4x = 8x.  
 
     Challenge students to find a solution to a related bacteria problem in which 20 bacteria 
in one dish doubles every 15 minutes while 10 bacteria in the other triples in the same 
time period. When would both dishes contain the same number of bacteria? The equation 
to solve would be 20(2)4x = 10(3)4x. Students now need to decide what to do with two 
different bases. Do they rewrite (2)4x using base 2 and (3)4x using base 3? Or do they use 
the same base for both, and if so, what base? Perhaps they will think to use base 10 for 
both since they know how to find base 10 logarithms from a table, and possibly their 
calculator. The follow-up discussion should lead to the conclusion that logarithms and 
exponentials are inverse functions. 
 
Formative Assessment:  
 
Solve for x. 
     1) log2(2x – 3) = 3     Answer: 23 = 2x – 3; x = 5.5 
     2) log(2x – 3) + log(x – 2) = 2log(x)  Answer: (2x-3)(x-2)=x2; x2-7x+6=0; 
        (x-6)(x-1)=0; x=6 (x=1 does not satisfy) 



     3) 7 + 2log(x) = 6       Answer: log(x)=-1/2;  

 
     At this point, I would refer to a textbook to practice solving all forms of log or 
exponential equations, described in the Background section, using inverse operations and 
inverse functions to isolate and solve for variables. Now that students have a deeper 
understanding of what logarithms are, it would be appropriate to demonstrate how to use 
calculators to find base 10 logarithms instead of using the tables. It may also be 
appropriate to formalize the “Change of Base Theorem,” although they have already used 
it informally in examples they have seen. Finally, I think it would be appropriate to 
introduce natural logarithms at this time. 
 
Activity 4 – Real Problems/Project 
 
Warm-up: Before beginning this project, students will need to do some background 
research, either in class or at home. If desired, it can be a “Jigsaw” activity where 
students are assigned specific questions that they will explain to others. Some useful 
websites are listed in Appendix 2. They should read enough to find answers to the 
following questions: 
 
     1. What is radioactivity? What is half-life? 
     2. What are effects/risks of exposure to radiation? 
     3. Uranium has several isotopes. What is the most abundant isotope, and what must be 
         done to make it useful for nuclear energy? 
     4. How does a nuclear power plant work?  
     5. What are the (most common) by-products of nuclear fission? 
     6. Radiation releases can contaminate the air, water and soil. What are the EPA 
         maximum exposure levels? 
 
Instruction: 
 
Armed with a little bit of knowledge, it’s time apply Polya’s problem solving steps as we 
work through an example from the March 11, 2011 Fukushima Power Plant disaster in 
Japan. One report from NHK-world (15 November 2011) found soil contamination of 
39,000 becquerels/kg of radioactive cesium-137. The government’s safety limit is 5,000 
becquerels/kg, and the half-life of cesium-137 is approximately 30 years.  
 
     Step 1: Understand the problem. The problem is “How long will it be before it is safe 
for people to be outside, exposed to the soil, or to plant food in the soil?” The background 
reading should help students understand the context and vocabulary in the problem. They 
should understand that cesium-137 is a radioactive material that decays slowly; after 30 
years, half of the initial contamination remains in the soil, and after another 30 years (60 



years, total), half of that (one-fourth of the initial) still remains. Students should 
recognize this pattern as exponential decay, and that we need to solve for t when y = 
5000. 
 
     Step 2: Devise a plan. First, we will need to write an equation that models radioactive 
decay using the general exponential form students have learned, y = a(b)x, where a is the 
starting value (also the y-intercept), and b is the base that is multiplied repeatedly. For 
exponential decay, students know that the b value is less than one. A brief discussion 
should establish that the variable x represents time (in years) since the contamination was 
first measured. The information given tells us that t = 30 years when one-half of the 
original amount remains. We can substitute a = 40,000 and y = 20,000. The remaining 
unknown, then, is b. I will suggest we use b = 10 now that they have learned to solve 
exponential equations using base 10 logarithms. But, that means we have substituted for 
all of the variables, so what are we solving for? There must be something unique about 
the exponential decay equation for each radioactive material. Reminding students that 
base 10 raised to the power of 30 will increase the amount of cesium-137, I think I can 
convince them to add a “constant” parameter, k, to the exponent and see what happens. 
 
     Step 3: Carry out the plan. Substitute all known values, and solve for k. 
 

20,000 = 40,000(10)30k 

 

                   (divide by 40,000) 

                 (take log of both sides)  

                (apply property [3]) 

       (log 10 = 1) 

      (divide by 30; enter in calculator) 

 
This result, a negative value for the exponent k, makes sense – a negative exponent 

means we are actually multiplying by , which will give us decreasing values of 

radiation over time. Therefore, the equation for radioactive decay of cesium-137 is 
. We can work with this, or we can apply the power rule of exponents 

to rewrite it as . To answer the question about how 
long until it is safe to be exposed to the soil, we can substitute the safety limit, y = 5000, 
and solve for t. 



 

 

 

 

 
     Step 4: Look Back. The numbers in this example make it very easy to confirm that our 
process and answer makes sense. If the initial contamination is 40,000 bq/kg with a half-
life of 30 years, then 20,000 bq/kg will remain after 30 years, 10,000 after 60 years, and 
5,000 after 90 years. Students should be able to explain why our result of 89 years is 
essentially the same; the difference arises from rounding numbers through the process. 
When people are ready to resume planting food in the soil, they will test it at that time to 
ensure it meets safety requirements, which could very easily change during the 90 years! 
 
Final Assessment/Project: 
 
Students may work alone, or in groups of two or three. They will conduct research on a 
topic of their choice that can be modeled with an exponential or logarithmic function. 
Each group will formulate a question that requires application of logarithms, and get 
approval from the teacher before continuing. The final product will be a presentation 
using computer slides or poster. The key components of the presentation will demonstrate 
Polya’s four problem solving steps: 1) a summary of the problem so observers will 
understand, 2) the plan(s) considered to help answer the question, including any 
additional information they may need, 3) all of the steps used in carrying out the plan 
(including going in the wrong direction and how they knew and changed plans, if that 
occurred) and 4) a clear interpretation of the answer to the question. 
 
Some possible scenarios for students to explore are 
     a) whether a drug test for a job will detect illegal drug use if the test is done one week 
         after a drug was used.  
     b) determining the time of death of a corpse based on body temperature similar to  
         what they see on crime scene TV shows using Newton’s law of cooling 
     c) using carbon-14, a radioactive isotope of carbon, to calculate the age of a skeleton.  
         Carbon dating uses the fact that living organisms constantly ingest carbon-14. After  
         death, no more is ingested, and what was present at the time of death decreases over  
         time with a half-life of 5,700 years. 
     d) radioactive contamination of water, soil, or air from Fukushima, or from other   
         nuclear power plant crises (Chernobyl, Three-Mile Island). 
 
Appendix 1 – Standards 



 
This unit addresses CCSS-M Content standards of Number and Quantity (The Real 
Number System) and Functions (Building Functions, Linear, Quadratic, & Exponential 
Models), HSF-LE.B.5,) 
 
     CCSS.Math.Content.HSN-RN.A.1 Explain how the definition of the meaning of 
rational exponents follows from extending the properties of integer exponents to those 
values, allowing for a notation for radicals in terms of rational exponents. 
 
     CCSS.Math.Content.HSF-BF.B.4 Find inverse functions. 
 
     CCSS.Math.Content.HSF-BF.B.5 (+) Understand the inverse relationship between 
exponents and logarithms and use this relationship to solve problems involving 
logarithms and exponents. 
 
     CCSS.Math.Content.HSF-LE.A.1 Distinguish between situations that can be modeled 
with linear functions and with exponential functions. 
 
     CCSS.Math.Content.HSF-LE.A.2 Construct linear and exponential functions, 
including arithmetic and geometric sequences, give a graph, a description of a 
relationship, or two input-output pairs. 
 
     CCSS.Math.Content.HSF-LE.A.4 For exponential models, express as a logarithm the 
solution to abct = d where a, c, and d are numbers and the base b is 2, 10 or e; evaluate 
the logarithm using technology.  
 
      CCSS.Math.Content.HSF-LE.B.5 Interpret the parameters in a linear or exponential 
function in terms of a context. 
 
This unit also addresses most of the Mathematical Practice standards, especially: 
 
     CCSS.Math.Practice.MP1 Make sense of problems and persevere in solving them. 
 
     CCSS.Math.Practice.MP3 Construct viable arguments and critique the reasoning of 
others. 
 
     CCSS.Math.Practice.MP.4 Model with mathematics. 
 
     CCSS.Math.Practice.MP.5 Use appropriate tools strategically. 
 
Appendix 2 – Nuclear Power and Radiation websites 
 
The websites listed are ones I found useful. There are links to more information from 



each of these websites. Students should follow links of interest to learn more about 
nuclear radiation and nuclear energy. 
 
     www.epa.gov/radiation/ 
     www.nrc.gov/reading-rm/doc-collections/fact-sheets/enrichment.html 
     www.who.int/mediacentre/factsheets/fs371/en/index.html 
     www.epa.gov/radiation/docs/402-k-10-008.pdf  
     http://science.howstuffworks.com/nuclear-power.htm 
 
Appendix 3 – Logarithm Table 
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Why We Need Logarithms: From Early Navigation to Nuclear Meltdown 

 

Being able to compute fluently means making smart choices about which tools to use and when to use them.  Knowing the reasonableness of an answer comes from using good number 
sense and estimation strategies. Mathematics is built on reason and always makes sense. Mathematics can be used to solve problems outside of the mathematics classroom.   
 
Numbers or objects that repeat in predictable ways can be described or generalized.  An operation can be “undone” by its inverse. The inverse relationship between exponents and 
logarithms can be used to solve problems involving logarithms and exponents. Rules of arithmetic and algebra can be used together with notions of equivalence to transform equations so 
solutions can be found. 
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