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Rationale 
 
Modeling has two significant roles in the Common Core State Standards for Mathematics 
(CCSS-M). It is both a Standard for Mathematical Practice and a Standard for 
Mathematical Content entwined through all of the other six content standards. As we 
move towards full implementation of CCSS-M, students need more exposure and practice 
to become “mathematically proficient.”1 I continually look for applications for students 
to relate the math they learn in the classroom to situations they encounter outside, which 
is what most of the NCTM (National Council of Teachers of Mathematics) Process 
standards, and several of the CCSS-M Mathematical Practice standards demand. I have 
been teaching precalculus at a vocational-technical high school for the last 4 years, and 
had physics added to my schedule this year. Since nearly all of my precalculus students 
take physics, this curriculum unit will integrate the mathematical concepts of vectors, 
trigonometry, and linear and quadratic functions with the physics concepts of one- and 
two-dimensional motion. I am writing this curriculum unit for my physics students, 
primarily in 12th grade; however, this unit could be incorporated into math courses with 
units on quadratic functions, trigonometry, and vectors, as well. 
 
     Traditional math courses offer real-life applications as word problems at the end of 
each chapter. While many examples are familiar to students, they rarely have the 
opportunity to see how formulas were derived. During this unit, students will drop, 
launch, kick, or throw objects and collect data to describe the path of their motion. They 
will blend physical experiments with the Mathematical Modeling Cycle. I view this unit 
as an ideal opportunity to demonstrate the integral connection between science and 
mathematics. 
 
     Within CCSS-M, the fourth Standard for Mathematical Practice is titled “Model with 
mathematics.” It states, “mathematically proficient students can apply the mathematics 
they know to solve problems arising in everyday life, society, and the workplace…. By 
high school, a student might…use a function to describe how one quantity of interest 
depends on another. Mathematically proficient students who can apply what they know 
are comfortable making assumptions and approximations to simplify a complicated 
situation, realizing that these may need revision later. They are able to identify important 
quantities in a practical situation and map their relationships using such tools as 
diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those 
relationships mathematically to draw conclusions. They routinely interpret their 



mathematical results in the context of the situation and reflect on whether the results 
make sense, possibly improving the model if it has not served its purpose.”2 This 
standard describes what we learned in our seminar on Mathematical Modeling. Our 
seminar discussions also emphasized that mathematical models should have quantitative 
and predictive value if they are to be useful. 
 
     In addition to being a Mathematical Practice standard, Modeling is one of the seven 
High School Standards for Mathematical Content in the CCSS-M. As a content standard, 
“modeling links classroom mathematics and statistics to everyday life, work, and 
decision-making.” Because real-world situations are not always the same, students have 
the opportunity to be creative as they gain expertise in the modeling process. Modeling is 
also a process. It is this process that we experienced in our seminar, and that I will 
demonstrate in this curriculum unit. 
 
Background – Mathematics 
 
The system to be modeled in this curriculum unit will be two-dimensional motion, 
specifically projectile motion. Students will also refer to previous experience with one-
dimensional motion. Projectile motion is defined as the trajectory of an object somehow 
“launched” into the air. Once the object is launched, gravity is the only (and constant) 
acceleration acting on it. Students will measure both vertical and horizontal displacement 
of balls as a function of time under varying conditions, including launch velocity, launch 
angle, and initial height. They should recognize the parabolic flight of an object when 
they graph vertical displacement (height) versus time. They may or may not expect the 
graph of horizontal displacement (range) versus time to be linear, but they will certainly 
recognize it as a linear relationship once it is plotted. 
 
    My math students have a lot of experience with quadratic equations. In their Integrated 
Math II course (typically during their freshman year), they studied the effects of the 
parameters a, b, and c on the graphs of quadratic functions of the form y = ax2 + bx + c. 
They began their investigation with the simplest form of a quadratic function, y = ax2. 
They quickly recognized that a positive value of a produces graphs of parabolas that open 
upward, and negative values of a make them open downward. They discovered that 
larger (absolute) values of a make the parabola narrower, or increase/decrease more 
quickly. By exploring equations of the form y = ax2 + c, Integrated Math II students 
found that the value of c is the y-intercept of the graph, the point where the parabola 
intersects the y-axis. In this special case, the parabola is symmetric about the y-axis, and 
the coordinates of the vertex (maximum or minimum) of the parabola are (0, c). Adding 
the linear term to give the quadratic function the form y = ax2 + bx + c, students saw that, 
while the c value remained the y-intercept, the vertical line (axis) of symmetry and the 
vertex shifted either left or right of the y-axis. They later learned that the b value can be 



used to determine the equation for the vertical line (axis) of symmetry �𝑥 = −𝑏
2𝑎
�, but my 

experience with students in later courses tells me that this fact does not stick with them.  
 
     Integrated Math II students solved quadratic equations by looking for specific y-values 
in a table or on a graph in their graphing calculators. They practiced solving quadratic 
equations of the form y = ax2 + c algebraically by isolating x2 and then applying the 
square root property to find two possible (±) solutions. They solved equations of the 
form ax2 + bx = 0 by factoring a common factor, x, and setting each factor equal to zero. 
For example, if a = 4 and b = −12,  
 
          4x2 – 12x = 0  
          4x(x – 3) = 0              equivalent factored form using the Distributive Property 
          4x = 0 or x – 3 = 0     setting each factor equal to zero 
          x = 0 and x = 3          are the two solutions to 4x2 – 12x = 0 
 
Integrated Math II students are also introduced to the mechanics of using the a, b, and c 
values from the equation ax2 +bx + c = 0 in the Quadratic Formula to find two possible 
solutions. They see examples of quadratic equations with two, one, or zero solutions and 
can recognize the number of possible solutions by looking at a graph of the quadratic 
function. 
 
     Students in Integrated Math III (most often sophomores) also study quadratic 
functions. They build on the basic skills they learned in Integrated Math II. They learn to 
find the coordinates of the vertex of a parabola by first factoring expressions in the form 
ax2 + bx, and x2 + bx +c, when possible, then identifying the line of symmetry that is 
midway between these two “zeroes,” or x-intercepts. They then substitute the x-value of 
the line of symmetry into the quadratic function to find its corresponding y-value. 
Students also learn that the line of symmetry is equal to 𝑥 = −𝑏

2𝑎
, the first part of the 

Quadratic Formula. The second part of the formula ±√𝑏
2−4𝑎𝑐
2𝑎

 then determines the distance 
from the line of symmetry to each of the “zeroes,” the x-values that make the equation 
equal to zero. 
 
     Within this unit on solving quadratic equations, Integrated Math III students boost 
their skills for manipulating terms to get an equation into the correct form (i.e. equal to 
zero) to be able to solve it. They reinforce inverse operations and number sense in solving 
them. They are also expected to compare algebraic solutions to graphs of the original 
function(s). One of the contexts for these first two “forays” into quadratic equations is 
profit as a function of the price of tickets to an event: P(x) = -50x2 + 2600x – 22,500. The 
components of this profit equation were derived as part of the unit’s activities. Another 
context is projectile motion in which students are given an equation for height as a 
function of time: h(t) = -16t2 + 40t + 4. However, students are given a weak explanation 



of where the parameters -16, 40 and 4 come from; they are told that -16 represents 
gravity, 40 is the initial velocity and 4, the starting height. 
 
     Students see quadratic equations again in either Integrated Math IV or Intermediate 
Algebra (typically junior year), and then for a fourth time in precalculus. They strengthen 
their factoring skills in these courses; in Integrated Math III, factoring trinomials is 
primarily limited to expressions/equations with a leading coefficient of one. In 
precalculus they learn about complex solutions to quadratic equations, rather than stating 
“no solution.” Precalculus students learn to “complete the square” as a method for 
solving quadratic equations. They also complete the square to find the vertex form of a 
quadratic function in order to graph it and to identify its domain and range.  
 
     Trigonometry is taught in our Integrated Math III course. Students learn to find 
unknown measurements of side lengths and angles in right triangles and non-right 
triangles. Therefore, when they begin Physics, they have experience with the three basic 
trigonometric ratios, sine, cosine and tangent. They also have experience with the Law of 
Sines and the Law of Cosines. They have not, however, been introduced to vectors, and 
how to write velocity in terms of its vertical and horizontal components.  
 
     From my readings and personal experience in the classroom, students are always more 
engaged when they solve real world problems and collect and analyze their own data. 
The physical situation I described earlier will allow students to collect data for situations 
that are very real; all students have thrown and kicked balls and witnessed them flying 
upward and then downward. They will begin with the simplest situations (holding most 
variables constant) and then study the effects of changing more variables in order to 
create models that work in more complex situations and can predict outcomes to specific 
problems. 
 
     In this curriculum unit students will use apparatus (including adjustable ball launchers 
and/or catapults) and videos (pre-made and student-made), to collect data related to 
projectile motion. They will vary the parameters of initial height, initial velocity and 
launch angle to find their effects on the mathematical models (connecting trigonometry 
and quadratic functions). Students will use available electronic measuring device(s) and 
computer software to collect their data. They will use graphing calculators or other 
computer software to analyze their data and to write functions that can be used to predict 
further data points in both the vertical and horizontal directions. The ultimate goal is for 
students to be able to create a mathematical model that will help them predict the ideal 
position and conditions for launching a ball to hit a bulls-eye target. 
 
Background – The Mathematical Modeling Cycle 
 
     In our early seminars, we discussed the meaning of Mathematical Modeling with 
respect to CCSS-M. We learned that there are two common ways that the word modeling 



is referenced in the literature. In the first definition, we begin with a math problem and 
build physical models for students to work with (aka, manipulatives) that help them 
understand the mathematics. In the second, we begin with a physical problem and build a 
mathematical model (e.g. a graph, table, diagram, or function) to explain the physics and 
predict future outcomes. In its simplest form, the mathematical modeling process is a 
cycle that is tested against reality and revised, repeatedly, until it is able to predict a real 
world situation accurately enough for our needs. Figure 1 illustrates the Mathematical 
Modeling Cycle we used in our seminar. 

 
 
 
 
 
 
 
 
 
 
 

The Mathematical Modeling Cycle  
Figure 1 

 
We begin the process with a system or problem. Next, we identify variables that affect 
the situation. In the early stages, some variables that are considered less important should 
be held constant, or ignored. In that way, a simpler model can be developed, tested and 
revised until we can predict broad outcomes from it. More variables can be incorporated 
into revised versions of the model until it meets the requirements of the problem 
situation. Once an acceptable model is formulated we analyze it to draw conclusions, 
interpret the results in terms of the original situation, and finally, report on the 
conclusions or use it to predict future outcomes. 
 
     After working through several modeling examples that were accessible in different 
forms to students at all grade levels, K-12, we were able to categorize two different types 
of models. The first is a descriptive/empirical model that is derived from data. In this type 
of mathematical model, students collect data and summarize it using tables and graphs, 
and, at higher-grade levels, determine the best-fit line and function equation that 
describes the data. The second type of model is an analytical/fundamental model that is 
derived from “physical law.” In this type of model, students use new or familiar concepts 
to understand and explain what they observe. They already have the mathematical tools 
(i.e. formulas, graphs) to describe the physical laws, and use them to answer questions or 
optimize the situation. In this curriculum unit, students will first derive an empirical 
model to describe projectile motion in the vertical and horizontal directions. In the end, 



students will use the concepts they learn to create an analytical model to satisfy specific 
conditions.  
 
     Since students already have experience with objects being thrown, hit or kicked into 
the air coming back down to the ground, they already understand the reality of the 
system. Therefore, after a brief launch discussion, they will move to the second step in 
the modeling cycle: Problem/questions. Students will brainstorm two things: the factors 
that affect projectile motion and questions about objects moving through air. At this 
stage, no questions are unreasonable. From the list, I will have students consider which 
questions need to be answered if their goal is to answer questions about motion. Also 
during this step, students will start to prioritize the key questions to make the process 
manageable; they cannot consider all factors at once. 
 
     Students will need to collect data for the third step in the modeling cycle: Formulate 
mathematical model. Depending on the equipment used, students may be able to see the 
data on a scatterplot instantly, or they can record data in tables and later use hand-drawn 
graphs, graphing calculators or computers to display it. From the graph, students will 
identify what type of model might fit the data best – linear, exponential, polynomial, or 
quadratic – and use technology to find the equation for the best-fit line. 
 
     In the fourth step: Analyze the model/ Simplification, students will discuss the 
usefulness and accuracy of their function equations. At this stage students will analyze 
whether or not there are other factors that affect the motion of the ball that they did not 
yet consider. 
 
     In the fifth step: Prediction, students will predict the answers to further questions such 
as “How long will it take for a heavier or lighter (more or less mass) object to reach the 
ground from a specific height?” or  “What is the optimum angle and/or launch velocity to 
hit a target under given conditions?” They can then perform more experiments to answer 
more questions and revise their mathematical models, adding to the complexity of it with 
each repetition of the cycle. 
 
Background - Physics 
 
Describing One-Dimensional Motion 
  
Early in any physics course, students study motion, beginning with one-dimensional 
motion. They learn that common measurements like speed and distance are not 
descriptive enough because these are scalar quantities (number values). Velocity and 
displacement are the corresponding vector quantities that have both direction and 
magnitude (size). Velocity is the rate of change in displacement over a time  
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d1 is the change in displacement for the time interval t2 – t1. When position is graphed 
versus time (Figure 2), velocity is seen as the slope of the graph. It is positive when the 
 
 
 
 
 
 

 
 
 
 

                            Figure 2 
 
object is traveling in the positive direction (“positive” can be defined according to the 
situation), and negative when traveling in the opposite direction. For nonlinear graphs, 
the average velocity is the slope of the straight line connecting two points on the curve; 
the smaller the time interval, the more accurately the velocity can be calculated. In Figure 
2, the velocity for the object traveling from point A to point B is 𝑣 = 4−13.8

1.5−0.5
= −9.8 m/s. 

The velocity is negative because the object’s displacement is in the downward direction. 
The straight line representing the slope between points A and B is only an approximation 
of the slope because the line does not exactly follow the shape of the curve. The slope for 
the smaller time interval between points C and B would give a closer approximation of 
velocity because the straight line connecting the points very nearly follows the curve: 
𝑣 = 4−6.7

1.5−1.3
= −13.5 m/s. Instantaneous velocity, at one point in time, is the slope of the 

line tangent to the curve at that point. Using calculus, velocity is calculated as the 
derivative of a position-time function and can be evaluated at any point in time. The 
function graphed is h(t) = −4.9t2 + 15. Its derivative, h’(t) = −9.8t, evaluated at point B 
is h’(1.5) = −9.8(1.5) = −14.7 m/s. 
 
     During the brainstorming period, I would expect some students to name mass (or 
weight) as a factor affecting motion. They will be able to test the effect of mass by 
dropping objects of varying mass from a constant height and measuring the time it takes 
to reach the ground. Provided air resistance is not a factor, all objects should reach the 
ground in the same amount of time.  
 
     Next, physics students learn about acceleration. Acceleration is also a vector quantity, 
and is the rate of change in velocity over a time interval. The average acceleration, a, is 



calculated using the formula  where v2 – v1 is the change in displacement for 

the time interval t2 – t1. On a graph of velocity versus time, acceleration is seen as the 
slope of the line. Positive acceleration means the velocity is increasing during the time 
interval, and negative acceleration (i.e. deceleration) means velocity is decreasing. 
Instantaneous acceleration is the slope of the graph at a specific time (the slope of the line 
tangent to the curve at that time for nonlinear graphs). Using calculus, the acceleration is 
the derivative of a velocity-time function, and can be evaluated at any point in time. 
Acceleration is also the second derivative of a position-time function. The acceleration 
for the function graphed in Figure 2 is constant and calculated as h”(t) = −9.8 m/s2, the 
accepted value for acceleration due to gravity. 
 
     Cars traveling on a flat surface are an example of one-dimensional motion in the 
horizontal direction. For cars traveling at a constant rate (velocity), acceleration is zero, 
and the displacement will equal d = vt. For cars traveling at an increasing or decreasing 
rate, the displacement can be calculated by  
 

d = vavt  = 1
2
(vi + vf)∙t = 1

2
[vi + (vi + at)]∙t = 1

2
(2vi + at)∙t = vit + 1

2
at2. 

 
For projectile motion, there is only an initial velocity, with no acceleration other than 
gravity, so the horizontal distance traveled depends only on velocity and time the object 
is in the air. I expect my students to be surprised by this (because it was counterintuitive 
to me) but be able to verify it through experiments. 
 
     An example of one-dimensional motion in the vertical direction is free-falling objects, 
without the effect of air resistance. Falling objects are subject to constant acceleration due 
to gravity, g; the accepted value of g is −9.80 m/s2 or −32 ft/s2. It is my hope that my 
students will be able to verify these values of acceleration due to gravity in their 
experiments in this unit by creating graphs from data that look like Figure 2. 
 
     The same displacement and velocity relationships apply for vertical motion as for 
horizontal motion, except that the value of g is used in place of a. For example, an object 
dropped has an initial velocity, vi, of zero and the displacement calculation becomes d = 
½gt2. If the object is shot straight up, d = vit + ½gt2. The displacement is not equal to the 
total distance traveled by the object because it is a vector having direction. The 
displacement of the object in the upward (positive) direction is cancelled by the same 
displacement in the downward (negative) direction for a total displacement of zero. 
  
Vectors 
 
Vectors will be a new concept for my students. Vectors have a direction and a magnitude, 
and are represented in diagrams with arrows. For simplicity, we can place the tail of at 



least one of the vectors at the origin on a coordinate grid. The length of the arrow 
represents the magnitude of the vector. The angle formed by the vector with respect to the 
positive x-axis, gives its direction. Horizontal vectors (angles equal 0° or 180° from the 
x-axis) can be added by putting the tail of the second vector at the head of the first. The 
sum is then the total length of both vectors lying end-to-end. Likewise, vertical vectors 
(angles equal to 90° or 270° from the x-axis) can be added by placing them head-to-tail 
and finding their total length. 
 
     The fun begins when vectors are neither horizontal nor vertical. In that case, the vector 
can be split into its horizontal and vertical components using trigonometry. In right 
triangle trigonometry, the sine of an angle (sinθ) is defined as the ratio of the length of 
the side opposite the angle to the length of the hypotenuse (the magnitude of the velocity 

vector itself): . Therefore, the vertical component of the velocity, 

as shown in Figure 3, is vy = v⋅sinθ. The cosine of an angle (cosθ) is defined as the ratio 
of the length of the side adjacent to the angle to the length of the hypotenuse: 

. Therefore, the horizontal component of the velocity, as shown 

in Figure 3, is vx = v⋅cosθ. If we know both the horizontal and vertical components, we  
 
 
 
 
 
 
 

Figure 3 
 
can calculate the magnitude of the velocity vector using the Pythagorean Theorem: 
𝑣2 = 𝑣𝑥  2 + 𝑣𝑦2; v is the positive square root of v2. We can also find the angle, θ, formed 
by the velocity vector and the x-axis if we know both the horizontal and vertical 

components using the arctan (inverse) function: . When adding vectors that 

are not all horizontal or vertical, we still put them head-to-tail and then draw the resultant 
vector from the origin (also the tail of the first vector) to the head of the last vector. The 
horizontal component of the resultant is the sum of all horizontal components, and its 
vertical component is the sum of all vertical components. The magnitude of the resultant 
is then found using the Pythagorean Theorem and its direction, 𝜃, (relative to the x-axis) 
using the arctan function defined above.  
 
Describing Two-Dimensional Motion 

v vy 

vx 
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Projectile motion, circular motion, periodic motion and harmonic motion are all examples 
of two-dimensional motion. In all types of two-dimensional motion, the horizontal and 
vertical components are considered independently. In projectile motion (the focus of this 
unit), the path of an object launched into the air is called the trajectory. We can describe 
the horizontal component by two parameters - its initial velocity and angle of release. We 
describe the vertical component by four parameters - its initial height, initial velocity, 
angle of release, and acceleration due to gravity. The independent variable for both 
components is time of flight, and the dependent variable is the displacement vector in 
either direction.  
 
     The horizontal displacement of projectile motion follows a linear path. That is, a graph 
of the horizontal displacement versus time is a straight line having a slope equal to the 
horizontal velocity component. Linear functions are written in the form y = f(x) = mx + 
b, where m is the slope and b is the y-intercept. Students can relate to this relationship 
because they have learned the formula d = rt, where distance is equal to the product of 
rate and time. A common context is a car traveling at a rate of 60 miles per hour for two 
hours will cover a distance of 120 miles. In terms of a projectile, we would write the 
equation as x = vx⋅ t, where displacement is equal to the product of the horizontal velocity 
component and time (notice that mass is not a parameter in this function). The horizontal 
velocity remains constant throughout the object’s flight (refer to Figure 3). 
 
     The vertical displacement of projectile motion follows a parabolic path; its trajectory 
can be described by a quadratic function. Quadratic functions are written in the form y = 
f(x) = ax2 + bx + c. As I stated earlier, my students have studied quadratic functions in 
previous courses and generally recognize the effects of the parameters a and c. In 
projectile motion, the quadratic function takes the form y = ½gt2 + vyt + h0, where g is 
the acceleration due to gravity (g = -9.8 m/s2, or -32 ft/s2), vy is the vertical component of 
the initial velocity and h0 is the initial height (notice that mass is not a parameter in this 
function, either). The vertical velocity decreases as the object rises, equals zero at the 
vertex, and then increases in the negative direction until it reaches the ground. Figure 4 
illustrates both the vertical and horizontal displacement of an object. 
 

 



Figure 43 
 
Teaching The Mathematical Modeling Cycle 
  
System/Reality 
 
The system in this curriculum unit is projectile motion – the trajectory of an object 
moving through air. Students should consider examples of one- and two-dimensional 
motion. Driving a car and dropping a coin are examples of one-dimensional motion.  
Throwing, hitting, or kicking a ball into the air is an example of two-dimensional motion. 
From experience, they know that the ball will initially go up and then come back down. 
  
Problem/questions 
  
According to Joshua Abrams in his article “Teaching Mathematical Modeling and the 
Skills of Representation,”4 the next step in the cycle is posing questions and identifying 
relevant variables. The relevant variables in this system are horizontal distance, vertical 
distance (especially maximum height), launch angle, launch velocity, initial height, and 
time in the air. After defining projectile motion and trajectory, I will ask students to 
brainstorm a list of factors that will affect the trajectory of an object launched into the air. 
I expect mass of the object to be included on the list, but experiments should convince 
them that neither vertical nor horizontal displacements depend on mass.  
 
     Armed with a list of variables, I will arrange students in groups of 3-4 students, and 
ask them to pose as many questions as possible about projectile motion. Next, I will ask 
them to categorize their questions according to whether they can be answered by 
collecting experimental data, answered by conducting research, mathematical modeling, 
etc. A sampling of questions might include  
 
     1. What is the effect of initial velocity on horizontal distance traveled? 
     2. How does the launch angle affect horizontal distance traveled? 
     3. What maximum height can be attained at different initial velocities? 
     4. How does initial velocity affect the time an object is in the air? 
     5. How does mass affect the time an object is in the air? 
     6. At what initial velocity does a rocket need to be launched vertically in order to 
reach a maximum height of 500 miles? 
     7. What horizontal distance can a model rocket launched at a 50° angle with an initial 
velocity of 200 ft/s travel? 
     8. What is the farthest a baseball was thrown? 
     9. What is the longest a football was in the air (hang time)? 
 
Students will be able to answer the first five questions by performing experiments. 
Questions 6, 7 and 8 can be answered once mathematical models are developed, and the 



last two questions can most likely be answered by research. Within the group of 
questions that can be answered by experimentation, I will ask student to prioritize and/or 
order the questions in terms of what can and should be answered first, or prior to other 
questions. In other words, consider whether some questions depend on the results of 
others. Once the groups of students have compiled a list of categorized and prioritized 
questions, I will have them share them with the class. Using the SMART Board, the class 
can work with each category on a different page. Within the experimentation category, 
students can arrange and rank all questions posed by the class. At this point they can add 
more questions, and fit the new ones into the ranking list. The simplest questions, 
connecting only two variables, and easiest to measure, should be at the top of the list.  
 
Formulate a mathematical model 
 
To the extent possible, depending on the size of the class, each group will select a 
different question. Groups will need to design experiments and collect data in order to 
answer their question(s). I would expect them to vary the parameters as much as possible 
and repeat the experiment to ensure reproducibility.  
 
     During this phase of the modeling cycle, I expect students to collect and analyze data 
that will find relationships between 1) vertical displacement versus time, 2) horizontal 
displacement versus time, 3) horizontal displacement versus launch angle, 4) vertical 
displacement versus horizontal displacement, and 5) maximum height versus launch 
angle. I recognize that it will take several iterations of the cycle to find all of these 
relationships, but they need to observe these relationships to deepen their understanding 
of projectile motion. 
 
     To collect data relating vertical displacement versus time, in its simplest form, 
students can drop balls from different heights and measure the time it takes to reach the 
ground. Students should drop objects of varying mass from the same height in order to 
discover/verify that mass has no effect on vertical displacement. It will be more difficult 
to collect data for objects launched upward or horizontally (or any angle in between), 
rather than just dropped. 
 
     I have a set of adjustable, spring-loaded ball launchers made by PASCO for use in the 
classroom (with goggles!). The launchers have three initial velocity settings, and can be 
set to a launch angle between 0 - 90°, where 0° is horizontal and 90° is vertical. My 
science department also has electronic timers made by CPO Science. Photogates 
(producing a beam of light that starts and/or stops the timer when the beam is broken) can 
be plugged into the timers. These photogates can be used to measure initial velocity; the 
timer starts when the launched ball passes through the first light beam and stops when the 
ball passes through the second one. If the photogates are positioned right next to each 
other, the light beams are 2.5 cm apart. Initial velocity can be calculated as 𝑣 = ∆𝑥

∆𝑡
= 2.5

∆𝑡
. 
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In trial experiments, we found that initial velocity was very reproducible; the time varied 
±0.0001 seconds for a constant launch angle and velocity setting. 
 
     With the launchers, the simplest thing to measure is the horizontal distance traveled by 
the ball. In my test trials, after a single launch, I placed a piece of carbon paper under a 
second sheet of paper on the floor in the vicinity of the ball’s landing site. The ball landed 
with enough force to make a mark on the paper, and it was quite simple to do repetitive 
trials. Students can also vary the launch angle and/or launch velocity and measure the 
horizontal distance and/or the time it takes a ball to reach the ground. However, they will 
need to recognize and account for the initial height of the launched ball or build a 
platform level with the launch height. 
 
     Accuracy will be seriously compromised if students depend on vision and reaction 
time to capture height and time data for vertical displacement. My plan is to teach them 
how to use LoggerPro computer software to gather data from videos. I describe the 
software program in a little more detail in Lesson 1, in the Classroom Activities section. 
In Lesson 3 I describe the use of simulations available on the Internet to collect additional 
data. 
 
     Once data is collected, students will look for trends and patterns in their data tables. 
They should also create scatterplots to help analyze their results. My students are all 
adept at using graphing calculators to display scatterplots. They should also be able to 
look at a scatterplot and predict what type of function (linear, polynomial/quadratic, 
exponential, etc.) would best fit the data. They can then use their calculators, or other 
technology, to find the best-fit regression line.  
 
 
      
 
 
 
 
 
 
 
 
 
 
 

Figure 5 
 

     Figure 5 shows my experimental data using the PASCO launcher set on a table 106 
cm above the ground. The ball was launched horizontally (angle = 0°) at three different 



velocities. The data appears to be linear, and a linear regression yields the equation x = 
0.46v – 1.1, where x is the horizontal displacement and v is the initial velocity, with a 
correlation coefficient very nearly 1. 
 
     If students are like me, they will have more questions after their first round of data 
collection. These questions will lead to more experiments and more data collection, and 
more complete mathematical models, which is part of both the Modeling Cycle and the 
Scientific Method.  
 
Analyze the model/simplification 
 
In the analysis section, students should determine whether their models are sufficient to 
describe projectile motion. This stage will require class discussion. The first discussion 
will most likely confirm that mass does not affect vertical displacement; balls of different 
masses dropped (initial velocity is zero) from the same height reach the ground at the 
same time. Students should obtain a mathematical model close to y = -4.9t2 + h0, for 
vertical displacement, y, as a function of time, where h0 is the initial drop height and the 
coefficient -4.9 is ½ the acceleration due to gravity in m/s2.  
 
     The next discussion will be about horizontal displacement versus time. Students’ 
mathematical models should be linear and have the form x = vt. This relationship should 
be straightforward to obtain for balls launched horizontally, as illustrated in Figure 5. 
Analysis of the data in Figure 5 shows that horizontal distance increased at a rate of 0.46 
cm for every 1 cm/s increase in initial velocity. The y-intercept is not equal to zero in this 
example because horizontal displacement was not measured at the same height as the 
launched ball. Students may choose to build platforms to measure horizontal 
displacement at a constant height. That way, when the launch angle is increased, the data 
will show different horizontal distances for the same length of time in the air. At this 
point, I will be able to teach about vectors, specifically the horizontal and vertical 
components of the velocity vector. The mathematical model can then be written as x = 
vx∙t, or x = v∙cos𝜃 ∙t.  
     
     Emphasizing that mathematical modeling is a cycle, future repetitions of the cycle will 
be able to include more inter-connected variables. Once students understand vector 
components, they should be able to use it to find the more complex relationships between 
vertical displacement and time, vertical displacement and horizontal displacement, and 
launch angle and maximum height. At this point, I will also work with them to derive 
analytical models (versus empirical) based on what they already know about 
physics/physical science and quadratic functions. More specifically, students know that 
vertical displacement (as in free fall) is dependent on gravity and is in the negative 
direction. From their math experience, they know that the initial height will be the y-
intercept, or the constant in an equation. In a quadratic equation of the form ax2 + bx + c, 
the linear term, bx, must be derived from upward velocity. Therefore, b can be replaced 



with vy = v∙sin𝜃, and the model becomes y = -4.9t2 + v∙sin𝜃 ∙t + h0. Students with 
sufficient algebraic skills can use substitution to derive the mathematical model for 
vertical displacement as a function of horizontal displacement. Solving for t in x = 
v∙cos𝜃 ∙t yields 𝑡 = 𝑥

𝑣∙𝑐𝑜𝑠𝜃
. Substituting for t in the vertical displacement equation yields 

𝑦 = −4.9
𝑣2∙𝑐𝑜𝑠2𝜃

∙ 𝑥2 + 𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

∙ 𝑥 + ℎ0, which is another quadratic equation. Students can test it 
with varying velocities and launch angles. Equations for maximum height and maximum 
horizontal distance can also be derived using algebraic and trigonometric substitutions 
based on 𝑡 = − 𝑏

2𝑎
= 𝑣∙𝑠𝑖𝑛𝜃

9.8
, the time (x-coordinate) at the vertex of the parabola. 

 
Prediction 
 
The final stage in the modeling cycle is using a mathematical model to predict outcomes. 
Students will compare their experimental data to their models (function equations) to 
determine whether the models sufficiently describe the system. They can predict the 
answers to further questions such as “How long will it take for an object to reach the 
ground from a specific height?” or  “What is the optimum angle and/or launch velocity to 
hit a target under given conditions?” They will need to perform more experiments to 
answer more questions and revise their mathematical models, adding to the complexity of 
it with each repetition of the cycle.  
 
     My ultimate goal is for students to have derived mathematical models for both vertical 
and horizontal displacement versus time, and recognize that the two relationships are 
independent. Finding a model for vertical displacement versus horizontal displacement 
can be done mathematically (analytically) and tested. The launch angle relationships are 
included in the displacement equations because initial velocity is broken into its 
components and used in the appropriate equation. For groups that finish more quickly, I 
will challenge them to find and test a mathematical model for vertical displacement as a 
function of launch angle in order to find the maximum height attainable. 
 
Classroom Activities 
 
The activities described in this section are all data collection activities. These activities 
will be part of the Formulate a mathematical model and Analysis steps of the Modeling 
Cycle. They follow the introductory and brainstorming discussions described in the 
Problem/questions step above. 
 
Lesson 1: Dropping objects 
 
Essential Question: How can free fall be described mathematically?  
 
Activity  



 
Students will bring in an assortment of (non-breakable) objects that they will drop from 
varying heights. This lesson has multiple objectives. It is an opportunity to introduce 
students to equipment that is available to collect data. The equipment may be as simple as 
meter sticks and stopwatches or electronic timers. I also want to introduce students to 
Logger Pro software by Vernier Software. It is available for Windows and Mac 
computers; it is also available as an App for iPads (probably other platforms, as well). 
Logger Pro allows students to take videos using the camera on a (laptop) computer or an 
uploaded video. In the video, students need to include something of a known length so 
they can scale the images. An important point to make to students is that whatever is 
being used to set the scale must be in the same plane (i.e. same distance from the camera) 
as the motion to get accurate results. For example, students could drop a ball next to the 
wall and use the height of a cinderblock, or the height of the blackboard to set the scale. 
Another objective is to address the Inquiry Science Standard. Students will design and 
organize their own experiments, making adjustments as needed, to answer questions 
about free fall. For each experiment, they should measure the mass of each object 
dropped, the initial height, and the time it takes to reach the ground. They will need to 
organize the data in tables and graphs using paper and pencil, or technology. Students 
will collect data in the classroom initially, but will be encouraged to move to stairwells to 
collect data from higher initial heights. 
 
Assessment 
 
The lab report for this activity should include the basic features – Purpose/Problem, 
Hypothesis, Apparatus, Procedure, Data, Evaluation of Data, Results/Discussion and 
Conclusion. Since one objective is to learn and practice inquiry, I will direct students to 
be explicit in their Procedure section. They should include their initial procedures and 
also explain adjustments they had to make as they worked through the experiment to get 
enough usable data to draw conclusions about the posed problem and prove/disprove 
their hypotheses.  
 
     The Evaluation of Data section of students’ lab report coincides the Formulate a 
mathematical model step in the Modeling Cycle. Students will first create tables and 
graphs of their data. Then they will use what they have learned in math classes to find a 
mathematical model (equation for the line of best fit) for their data. I will also 
demonstrate how to use computer software, including Logger Pro and/or Excel, to get 
equations that fit the data. To demonstrate the Prediction step in the Modeling Cycle, 
students will use their models to predict the time for one last ball drop from a starting 
height, h0. As stated earlier, students’ models should be nearly y = h(t) = -4.9t2 + h0 
(noticeably not including mass of the object!) for initial height measured in meters. 
 
Lesson 2: Launching balls 
 



Lesson 1 addressed one-dimensional motion in the vertical direction, and is essential 
before studying projectile motion in two dimensions. Students would have previous lab 
experience with linear motion in the horizontal direction when studying distance vs. 
displacement, speed vs. velocity, and acceleration. At some point during Lesson 2, I will 
need to teach students about vectors - drawing and performing operations on them – so 
they will be able to resolve the velocity vector into its horizontal and vertical 
components. This instruction will include a review of right triangle trigonometry to aid 
students in quantifying the effect of launch angle on vertical and horizontal velocities. 
 
Essential Question: How can motion in two dimensions be described and quantified? 
 
Activity 
 
The first concept for students to understand in two-dimensional motion is the connection 
(actually, lack of connection) between horizontal velocity and the time it takes an object 
to reach the ground. I will have students walk and drop balls, and roll them off desks at 
different rates, each time measuring 1)initial height, 2) how long it takes for the ball to 
reach the ground and 3)where it first touches the ground (relative to where is was 
dropped). After analyzing their data, students should determine that the time for the ball 
to reach the ground is the same number of seconds they get from their mathematical 
models for free fall in Lesson 1. Substituting zero into their free fall models for y, they 
can calculate the time the ball is in the air, and see that it is independent of the horizontal 
motion before being dropped. It may sound simple here, but because there are three 
variables involved, students might need help in isolating the relationships of initial height 
versus time, and horizontal displacement versus time. Video recordings showing the 
ball’s horizontal displacement after being dropped would probably be beneficial. 
 
     To build as complete a mathematical model as possible for projectile motion, students 
will have several days to design experiments and collect data using PASCO launchers, 
catapults, and even taking video cameras into gym classes to capture examples of 
projectile motion (e.g. basketball shots, soccer kicks, baseball/softball hits, etc.). The 
objective of their first few experiments is to address the questions recorded during the 
brainstorming session. If student groups are working on answering different questions, I 
will have each group present their results and mathematical models after one or two days, 
especially if these results are needed prior to addressing more complex questions from 
the list. As we learned in the Modeling Cycle, students should continue to raise more 
questions, adding to the original list, and add more parameters until they have a model 
detailed enough for their needs. 
 
Assessment 
 
Again, students’ lab reports should describe the Inquiry process they went through in 
designing experiments to answer their questions. Their organized data tables and graphs 



should demonstrate that they have reproducible and reliable results for the effect of initial 
velocity and launch angle on vertical and horizontal displacement. As groups near the end 
of their experimentation, I will instruct them that their mathematical models should be 
able to predict the time it would take a ball to reach a specific height above the ground or 
specific horizontal position given the initial parameters of height and velocity. 
 
Lesson 3: Simulations 
 
Computer simulations of projectile motion will allow students to collect additional data in 
an ideal environment. Groups that struggled with data collection in Lesson 2 can use 
simulations to fill in gaps that they may need to complete their mathematical models. 
Groups can also test their models with the “ideal” data generated by simulations since the 
simulations are based on physical laws under ideal conditions. My plan is to use a cannon 
simulation that has free access on the Internet from CK-12. As seen in the screen shot in 
Figure 6, at Level 1 in the simulation, students can adjust the horizontal component of 
velocity; launch angle and vertical velocity are held constant. The ultimate goal of the 
simulation is to hit the target shown on the screen, but for our purposes, the data table and 
graph are just as useful. The screen also shows the constant horizontal velocity 
component and the changing vertical velocity component (decreasing in the upward 
direction to zero as the cannonball rises and increasing in the downward direction as it 
descends), which is reinforcement for the conceptual understanding of projectile motion. 
Higher levels are unlocked once a user hits the target. At Level 2, again, only horizontal 
velocity can be adjusted. Only vertical velocity can be adjusted at Level 3. Both velocity 
components can be adjusted at Level 4. The launch angle can be adjusted for a set launch 
velocity (although it’s labeled as speed on the screen) at Level 5. Once students hit the 
target at Level 5, they can move between levels to use the data, or create more data to 
build or improve their mathematical models. They can also use the data tables to practice 
resolving the velocity into its components (Level 5) or determining the launch angle from 
the given components (Levels 1 to 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Sample screen from Level 1 of CK-12 cannon simulation5 

Figure 6 
 

Assessment 
 
The lab report for this lesson should include explanation and support of students’ 
development of four mathematical models: 
 

1. Horizontal displacement as a function of time 
2. Vertical displacement as a function of time 
3. Vertical displacement as a function of horizontal displacement 
4. Vertical displacement as a function of launch angle 

 
     As a final assessment on projectile motion, my plan is to set up targets on the wall and 
the floor and have students use their mathematical models to determine where and how to 
position the launchers to hit the “bulls-eye.” Because of the number of variables 
involved, students should even be able to find multiple set-up conditions to reach the 
targets. They can test their set-up(s) using computer simulation. Thus, the final 
assessment is also the final step in the Modeling Cycle: Prediction.  
 
Materials 
 
The minimal materials required to collect and analyze data for one- and two-dimensional 
motion are an assortment of balls, or objects of varying mass, a balance, a meter stick, 
timers/stopwatches, and graph paper. I would recommend graphing calculators and/or 
computers loaded with spreadsheet software, such as Microsoft Excel, that is capable of 
performing regressions to find the best-fitting line through a set of data points. Lastly, we 
need a way to launch balls to observe and measure two-dimensional motion. If there are 
no launchers or catapults available, students could build them as a project. An alternative 
is to take videos, or find appropriate simulations on the Internet. If schools have 
technology available – computers or iPads - I think the LoggerPro software/app would be 
a worthwhile investment. 
 
Addressing District Standards 
 
Delaware is adopting the Common Core State Standards for Mathematics (CCSS-M), so 
my District Math Standards follow CCSS. 
 
     Standards for Mathematical Practice – MP4: Model with mathematics 
 
     High School - Modeling: Modeling as a content standard is embedded throughout the 
other content standards 



 
     High School – Functions - HSF-IF.B.6: Interpret functions that arise in applications in 
terms of the context. Calculate and interpret the average rate of change of a function 
(presented symbolically or as a table) over a specified interval. Estimate the rate of 
change from a graph.    
 
     High School – Functions - HSF-LE.A.1b: Construct and compare linear, quadratic, 
and exponential models and solve problems. Recognize situations in which one quantity 
changes at a constant rate per unit interval relative to another. 
 
     High School – Geometry - G-SRT.C.8: Use trigonometric ratios and the Pythagorean 
Theorem to solve right triangles in applied problems. 
 
District Science Standards follow the Delaware Science Standards. This unit addresses 
the following standards for grades 9-12: 
 
     Science Standard 1 – Nature and Application of Science and Technology: Science is a 
human endeavor involving knowledge learned through inquiring about the natural world. 
Scientific claims are evaluated and knowledge changes as a result of using the abilities 
and understandings of inquiry. The pursuit of scientific knowledge is a continuous 
process involving diverse people throughout history. The practice of science and the 
development of technology are critical pursuits of our society. 
 
     Science Standard 3 – Energy and Its Effects: The flow of energy drives processes of 
change in all biological, chemical, physical, and geological systems. Energy stored in a 
variety of sources can be transformed into other energy forms, which influence many 
facets of our daily lives. The forms of energy involved and the properties of the materials 
involved influence the nature of the energy transformations and the mechanisms by 
which energy is transferred. The conservation of energy is a law that can be used to 
analyze and build understandings of diverse physical and biological systems. 
 
     Strand IB: An object has kinetic energy because of its linear motion, rotational 
motion, or both.  The kinetic energy of an object can be determined knowing its mass and 
speed.  The object’s geometry also needs to be known to determine its rotational kinetic 
energy.  An object can have potential energy when under the influence of gravity, elastic 
forces or electric forces and its potential energy can be determined from its position.   
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ADDITIONAL INFORMATION/MATERIAL/TEXT/FILM/RESOURCES 
 
 
 
 

Mathematical Modeling of Motion  
 

Scientific inquiry involves asking scientifically-oriented questions, collecting evidence, forming explanations, connecting explanations to 
scientific knowledge and theory, and communicating and justifying the explanation. Changes take place because of the transfer of energy.  
Energy is transferred to matter through the action of forces. Different forces are responsible for the transfer of the different forms of energy. 
Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and 
statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and 

i  di i  i h d  

What makes a question scientific? What constitutes evidence? When do you know you have enough evidence? Why is it necessary to justify 
and communicate an explanation? How can energy be transferred from one material to another? What happens to a material when energy is 
transferred to it? What is the process of creating a mathematical model with quantitative and predictive value? 

One-dimensional motion/Linear motion Two-dimensional motion/Projecile motion Mathematical modeling 

Required Resources: graphing capability (paper, calculator, computer); technology to perform Regression analyses, computers to access 
simulation software. Additional Resources: balls, balance, measuring devices (meter stick, tape), timers/stopwatches, launchers, catapults, 
video camera, LoggerPro computer software 

How can free fall be described 
mathematically? 

 
 

Nancy Rudolph 

How can mathematical models be used to 
predict set-up conditions for a projectile 
to hit a target? 

How can motion in two dimensions be 
described and quantified? 

Speed (average and instantaneous), 
distance, displacement, velocity, 
acceleration, free fall, rate of change, force 

Projectile motion, vector, component, resultant, 
resolution, scalar, parabolic, trajectory, 
quadratic function, vertex, initial 
height/velocity, angle of elevation 

Analysis, predictive, regression, 
simulation, parameters 
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