Hybridization

sp³ Hybridization efficiently bonds to four atoms and lone pairs

Mix 3 carbon p + 1 carbon s to get 4 equivalent sp^3 orbitals ($sp^3 = 1$ part s, 3 parts p)

![hybridization_diagram](image)

We now have 4 sp^3(C)-s(H) bonds of equal length at 109.5° apart.

Hybridization with multiple bonds

We need 3 orbitals to make 3 bonds

Mix 2 carbon p + 1 carbon s to get 3 equivalent sp^2 orbitals

![hybridization_diagram](image)

The remaining orbital is an unhybridized p orbital

Each unpaired electron on carbon forms a bond with the other unpaired electron (this forms a π bond)

This time, we only need 2 orbitals to make 2 bonds:

Mix 1 carbon s, 1 carbon p to get 2 equivalent sp orbitals

![hybridization_diagram](image)

The remaining orbitals are unhybridized p orbitals

Each unpaired electron on carbon forms a bond with the other unpaired electron (this forms a π bond)

Note that these orbitals (p_x and p_z) are 90° apart.
Example Problems

Guide for determining hybridization:

1. Draw a good Lewis structure.
2. Focus on an atom and sum up:
 \# bonded atoms + \# of lone pairs
3. This will give a sum between 2-4:

<table>
<thead>
<tr>
<th>Sum</th>
<th>Hybridization</th>
<th>Geometry</th>
<th>Bond angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>sp</td>
<td>linear</td>
<td>180°</td>
</tr>
<tr>
<td>3</td>
<td>sp(^2)</td>
<td>trigonal planar</td>
<td>120°</td>
</tr>
<tr>
<td>4</td>
<td>sp(^3)</td>
<td>tetrahedral</td>
<td>109.5°</td>
</tr>
</tbody>
</table>

Note: This is a guide not an absolute rule. Atoms will rehybridize to place lone pairs in conjugated p-orbitals if that can lower energy. 3rd row elements can access d-orbitals.

Example Problems

3 bonded atoms + 0 lone pairs

\[\text{sp}^2 \text{ hybridization, 120°C} \]

2 bonded atoms + 2 lone pairs (not shown, but can be determined from a good Lewis Dot structure)

\[\text{sp}^3 \text{ hybridization, } \sim 109.5°C \]

2 bonded atoms + 1 lone pair (*see note above)

\[\text{sp}^2 \text{ hybridization, 120°C} \]

2 bonded atoms + 0 lone pairs

\[\text{sp} \text{ hybridization, 180°C} \]

Challenge Problem!

Identify the hybridization and bond angle of each atom indicated.