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Introduction

IMSL C/Stat/Library

The IMSL C/Stat/Library isalibrary of C functions useful in scientific
programming. Each function is designed and documented to be used in research
activities as well as by technical specialists. A number of the example programs
also show graphs of resulting output.

Getting Started

To use any of the C/Stat/Library functions, you must first write aprogram in C to
call the function. Each function conforms to established conventionsin
programming and documentation. First priority in development is given to
efficient algorithms, clear documentation, and accurate results. The uniform
design of the functions makes it easy to use more than one function in agiven
application. Also, you will find that the design consistency enables you to apply
your experience with one C/Stat/Library function to all other C functions that you
use.

ANSI C vs. Non-ANSI C

All of the examples in this documentation conform to ANSI C. If you are not
using ANSI C, you will need to modify your examplesin functions that are
declared or in those arrays that are initialized as type float.

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all
auto arraysthat areinitialized astype float in ANSI C must be initialized as type
static float in non-ANSI C. The following program contains arrays that are
initialized as type float and also a user-defined function:

1 #include <insls.h>
2

3 float fen(int, float[], int, float[]);
4

5 main()

6 {

7 i nt n_observations

= 3‘
8 n_paraneters = 1,
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9 n_i ndependent = 1;

10 fl oat *t heta_hat;

11 f1 oat x[3] ={1.0, 2.0, 3.0};

12 f1 oat y[3] ={2.0, 4.0, 3.0};

13 /* Evaluate the integral */

14 theta_hat = insls_f_nonlinear_regression(fcn, n_paraneters,

15 n_observations, n_independent, x, y, 0);

16 /* Print the result and the exact answer */

17 insls f wite matrix("estimted coefficient”, 1, 1, theta_hat, 0);
18 }

19 float fcn(int n_independent, float x[], int n_paraneters,
20 float theta[])

21 {
22 return exp(theta[0]*x[0]);
23}
If using non-ANSI C, you will need to modify lines 3, 11, 12, 19, and 20 as
follows:
3 float fecn(); /* Function is not prototyped */
11 static float x[3] = {1.0, 2.0, 3.0}:
= {2.0, 4.0, 3.0};

12 static float y[ 3]

19 float fcn(n_independent, x, n_paraneters,

20 t het a) /*Decl aration of variable names*/
20a int n_independent;

20b float x[];

20c int n_paraneters;

20d float thetal]; [ *Type definitions of variabl es*/

The imsls.h File

Theincludefile <i msl s. h>isused in al the examplesin thismanual. Thisfile
contains prototypes for all IMSL-defined functions; the structures,

Imds f regression, Imsls d_regression, Imsls f poly regression,

Imds d_poly regression, Imsls f arma, and Imsls d_arma; and the enumerated
datatypes, Imdls_arma_method, Imsls_permute, Imsls_dummy_method,

Imdls write_options, Imsls_page options, and Imsls_error.

Matrix Storage Modes

In this section, the word matrix is used to refer to a mathematical object and the
word array isused to refer to its representation as a C data structure. In the
following list of array types, the C/Stat/Library functions require input consisting
of matrix dimension values and all values for the matrix entries. These values are
stored in row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a
“result.” For example, in solving linear regression, the pointer points to the
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estimated coefficients. Normally, the input array values are not changed by the
functions.

In the C/Stat/Library, an array is a pointer to a contiguous block of data. An array
is not a pointer to a pointer to the rows of the matrix. Typical declarations are as
follows:

float *a = {1, 2, 3, 4};
float b[2][2] = {1, 2, 3, 4};
float c[] = {1, 2, 3, 4};

Note: if you are using non-ANSI C and the variables are of type auto, the above
declarations would need to be declared as type static float.

General Mode

A general matrix isasguare n x n matrix. The data type of ageneral array can be
int, float, or double.

Rectangular Mode

A rectangular matrix isan m x n matrix. The data type of arectangular array can

beint, float, or double.

Symmetric Mode

A symmetric matrix isasquare n x n matrix A, such that AT=A (The matrix

ATisthe transpose of A.) The data type of asymmetric array can beint, float, or
double.

Memory Allocation for Output Arrays

Many functions return a pointer to an array containing the computed answers. If
the function invocation uses the optional arguments

| MBLS_RETURN_USER, float a[]

then the computed answers are stored in the user-provided array a, and the
pointer returned by the function is set to point to the user-provided array a. If an
invocation does not use | MSLS_RETURN_USER, then a pointer to the function is
internally initialized (through a memory allocation request to nal | oc) and stores
the answers there. (To release this space, f r ee can be used. Both nal | oc and

f r ee are standard C library functions declared in the header.) In thisway, the
allocation of space for the computed answers can be made either by the user or
internally by the function.

Similarly, other optional arguments specify whether additional computed output
arrays are allocated by the user or are to be allocated internally by the function.
For example, in many functions, the optional arguments

Introduction
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| MSLS_ANOVA TABLE, float **anova_t abl e (Output)
I MBLS ANOVA TABLE USER, float anova_table[] (Output)

specify two mutually exclusive optional arguments. If the first option is chosen,
float **anova_t abl e refersto the address of a pointer to an internally allocated
array containing the analysis of variance statistics. On return, the pointer is
initialized (through a memory allocation request to mal | oc), and the array is
stored there. Typically, float *anova_t abl e isdeclared, &anova_t abl e isused
as an argument to thisfunction, and f r ee( anova_t abl e) is used to release the
space. In the second option, the analysis of variance statistics are stored in the
user-provided array anova_t abl e.

Finding the Right Function

The C/Stat/Library documentation is organized into chapters; each chapter
contains functions with similar computational or analytical capabilities. To locate
the right function for a given problem, use either the table of contents located in
each chapter introduction or the al phabetical summary at the end of this manual.

Often, the quickest way to use the C/Stat/Library isto find an example similar to
your problem, then mimic the example. Each function documented has at |east
one example demonstrating its application.

Organization of the Documentation

This manual contains a concise description of each function with at least one
example demonstrating the use of each function, including sample input and
results. All information pertaining to a particular function isin one place within a
chapter.

Each chapter begins with an introduction followed by atable of contentslisting
the functions included in the chapter. Documentation of the functions consists of
the following information:

« Section Name: Usually, the common root for the typefloat and type double
versions of the function.

e Purpose: A statement of the purpose of the function.

» Synopsis: Theform for referencing the subprogram with required arguments
listed.

» Required Arguments: A description of the required arguments in the order of
their occurrence.

Input: Argument must be initialized; it is not changed by the function.

I nput/Output: Argument must be initialized; the function returns output
through this argument. The argument cannot be a constant or an expression.
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Output: Noinitialization is necessary. The argument cannot be a constant
or an expression; the function returns output through this argument.

* Return Value: The value returned by the function.

« Synopsiswith Optional Arguments. The form for referencing the function
with both required and optional arguments listed.

» Optional Arguments: A description of the optional argumentsin the order of
their occurrence.

» Description: A description of the algorithm and references to detailed
information. In many cases, other IMSL functions with similar or
complementary functions are noted.

» Examples: At least one application of this function showing input and
optional arguments.

e Errors: Listing of any errors that may occur with a particular function. A
discussion on error types is given in the “User Errors” section of the Reference
Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the
function.

Alert Errors: List of alert errors that may occur with the function.
Warning Errors: List of warning errors that may occur with the function.
Fatal Errors: List of fatal errors that may occur with the function.

References: References are listed alphabetically by author.

Naming Conventions

Most functions are available in both a tyffmat and a typelouble version, with
names of the two versions sharing a common root. Some functions are also
available in typént. The following list is of each type and the corresponding
prefix of the function name in which multiple type versions exist:

Type Prefix

float insls_f_

double imsls d_
int insls i

The section names for the functions contain only the common root to make
finding the functions easier. For example, the functions

imsls f sinple_statisticsandinmsls _d_sinple_statistics canbe
found inChapter lin the “simple_statistics” section.

Where appropriate, the same variable name is used consistently throughout the
C/Stat/Library. For examplanova_t abl e denotes the array containing the
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analysis of variance statisticsand y denotes a vector of responses for a dependent
variable.

When writing programs accessing the C/Stat/Library, choose C names that do not
conflict with IMSL external names. The careful user can avoid any conflicts with
IMSL namesif, in choosing names, the following rule is observed:

. Do not choose a name beginning witlrél s_" in any combination of
uppercase or lowercase characters.

Error Handling, Underflow, and Overflow

The functions in the C/Stat/Library attempt to detect and report errors and invalid
input. This error-handling capability provides automatic protection for the user
without requiring the user to make any specific provisions for the treatment of
error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages
being automatically printed by the function. Moreover, errors of highest severity
cause program execution to stop. The severity level, as well as the general nature
of the error, is designated by an “error type” with symbolic narBsS_FATAL,

I MSLS_WARNI NG, etc. See the sectidbser Errors”in the Reference Material for
further details.

In general, the C/Stat/Library codes are written so that computations are not
affected by underflow, provided the system (hardware or software) replaces an
underflow with the value 0. Normally, system error messages indicating
underflow can be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensions.

In many cases, the documentation for a function points out common pitfalls that
can lead to failure of the algorithm.

viii « Error Handling, Underflow, and Overflow IMSL C/Stat/Library



Printing Results

Most functions in the C/Stat/Library do not print any of the results; the output is
returned in C variables. The C/Stat/Library does contain some special functions
just for printing arrays. For example, IMSL functioni nsls_f _wite _matrix
is convenient for printing matrices of type float. See Chapter 13, “Printing
Functions’ for detailed descriptions of these functions.

Missing Values

Some of the functions in the C/Stat/Library allow the data to contain missing
values. These functions recognize as a missing value the special value referred to
as “Not a Number” or NaN. The actual value is different on different computers,
but it can be obtained by reference tofilnectioni nsl s_f _machi ne, described

in Chapter 14, “Utilities”

The way that missing values are treated depends on the individual function and is
described in the documentation for the function.
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Chapter 1: Basic Statistics

Routines
1.1 Simple Summary Statistics
Univariate summary statistiCS ...............evvvvvvvvinnnnns simple_statistics 2
Mean and variance inference
for a single normal population......................... normal_one_sample 7
Inferences for two normal populations ............ normal_two_sample 11

1.2 Tabulate, Sort, and Rank

Tally observations into a one-way frequency table.....table_oneway 18
Tally observations into a two-way frequency table.....table_twoway 22
Sort data with options to tally cases

into a multi-way frequency table.............ccccccoeeeiiie. sort_data 27
Ranks, normal scores, or exponential SCOres .........ccccceeeeennee ranks 36

Usage Notes

The functions for computations of basic statistics generally have relatively simple
arguments. In most cases, the first required argument is the number of
observations. The data are input in either aone- or two-dimensional array. As
usual, when atwo-dimensional array is used, the rows contain observations and
the columns represent variables. Most of the functionsin this chapter allow for
missing values. Missing value codes can be set by using function

i msl s_f _machi ne, described in Chapter 14.

Severa functions in this chapter perform statistical tests. These functions

generally return ag-value” for the test, often as the return value for the C

function. Thep-value is between 0 and 1 and is the probability of observing data
that would yield a test statistic as extreme or more extreme under the assumption
of the null hypothesis. Hence, a snilalue is evidence for the rejection of the

null hypothesis.

Chapter 1: Basic Statistics Routines « 1



simple_statistics

Computes basic univariate statistics.

Synopsis
#include <insl . h>

float *insls_f_sinple_statistics (int n_observati ons,
int n_vari abl es, float x[], ..., 0)

The type double functionisi nsl s_d_si npl e_st ati sti cs.

Required Arguments

int n_observations (Input)
Number of observations.

int n_vari abl es (Input)
Number of variables.

float x[] (Input)
Array of sizen_obser vati ons X n_vari abl es containing the data
matrixX.

Return Value

A pointer to an array containing some simple statistics for each of the columnsin
x. If 1 MBLS_MEDI ANand | MSLS_MEDI AN_AND_SCALE are not used as optional
arguments, the size of the matrix is 14 x n_vari abl es. The columns of this
matrix correspond to the columns of x, and the rows contain the following
statistics:

Statistic

Py,
o
=

mean

variance

standard deviation

coefficient of skewness

coefficient of excess (kurtosis)

minimum value

maximum value

range

(N~ |[W|IN]|F]|O

coefficient of variation (when defined)
If the coefficient of variation is not defined, O is returned.

9 number of observations (the counts)

2 « simple_statistics
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Row

Statistic

10 lower confidence limit for the mean (assuming normality)
The default is a 95-percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality)
The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality))

Synopsis with Optional Arguments

#include <i nsls. h>

float *insls_f_sinple_statistics (int n_observati ons,

int n_vari abl es, float x[],

| MSLS CONFI DENCE_MEANS, float confi dence_neans,
| MSLS_CONFI DENCE_VARI ANCES, float confi dence_vari ances,
IMSLS X COL_DIM int x_col _dim

| MSLS_STAT_COL_DI M int stat_col _dim

| MSLS_MEDI AN, or

| MSLS_MEDI AN_AND SCALE,

| MBLS_M SSI NG LI STW SE, or

| MSLS_M SSI NG_ELEMENTW SE,

| MSLS FREQUENCI ES, float frequencies[],

| MSLS_WAEI GHTS, float wei ghts[],

| MSLS RETURN_USER, float sinple statistics[],
0)

Optional Arguments
I MSLS_CONFI DENCE_MEANS, float confi dence_means (Input)

Confidence level for atwo-sided interval estimate of the means
(assuming normality) in percent. Argument conf i dence_means must
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For aone-
sided confidence interval with confidence level c, set

confi dence_neans = 100.0 - 2(100 - ¢). If

I MSLS_CONFI DENCE_MEANS is not specified, a 95-percent confidence
interval is computed.

I MSLS_CONFI DENCE_VARI ANCES, float confi dence_variances (Input)

The confidence level for atwo-sided interval estimate of the variances
(assuming normality) in percent. The confidence intervals are symmetric
in probability (rather than in length). For a one-sided confidence interval
with confidence level c, set confi dence_means =100.0 - 2(100 - c).
If | MSLS_CONFI DENCE_VARI ANCES is not specified, a 95-percent
confidence interval is computed.

Chapter 1: Basic Statistics
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IMSLS X _COL_DI'M int x_col _di m (Input)
Column dimension of array x.
Default: x_col _di m=n_vari abl es

| MBLS_STAT_CCOL_DI' M int stat_col _di m (Input)
Column dimension of the returned value array, or if
I MSBLS_RETURN_USER s specified, the column dimension of array
sinpl e_statistics.
Default: st at _col _di m=n_vari abl es

| MSLS_MEDI AN, or

| MBLS_MEDI AN_AND_SCALE
Exactly one of these optional arguments can be specified in order to
indicate the additional simple robust statistics to be computed. If
| MBLS_MEDI AN is specified, the medians are computed and stored in
one additional row (row number 14) in the returned matrix of simple
statistics. If | MSLS_MEDI AN_AND_SCALE is specified, the medians, the
medians of the absolute deviations from the medians, and asimple
robust estimate of scale are computed, then stored in three additional
rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

| MSLS_M SSI NG_LI STW SE, or

| MSLS_M SSI NG_ELEMENTW SE
If I MBLS_M SSI NG_ELEMENTW SE is specified, all non missing data for any
variableisused in computing the statistics for that variable. If
| MSLS_M SSI NG _LI STW SE is specified and if an observation (row of x)
contains a missing value, the observation is excluded from computations for
al variables. The default is1 MSLS_M SSI NG_LI STW SE. In either case, if
weights and/or frequencies are specified and the value of the weight and/or
frequency is missing, the observation is excluded from computations for all
variables.

| MSLS_FREQUENCI ES, float frequencies[] (Input)
Array of lengthn_obser vat i ons containing the frequency for each
observation.
Default: Each observation has a frequency of 1

| MBLS_WEI GHTS, float wei ghts[] (Input)
Array of lengthn_obser vat i ons containing the weight for each
observation.
Default: Each observation has aweight of 1

I MSBLS_RETURN_USER, float sinmple_statistics[] (Output)
User-supplied array containing the matrix of statistics. If neither
I MSLS_MEDI AN nor | MSLS_MEDI AN_AND_SCALE is specified, the
matrix is14 x n_vari abl es. If | MSLS_MEDI AN is specified, the matrix
is15x n_vari abl es. If | MSLS_MEDI AN_AND_SCALE is specified, the
matrix is17 x n_vari abl es.

4« simple_statistics
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Description

For the datain each column of x, i msl s_f _si npl e_stati sti cs computesthe
sample mean, variance, minimum, maximum, and other basic statistics. This
function also computes confidence intervals for the mean and variance (under the
hypothesis that the sample is from anormal population).

Frequencies are interpreted as multiple occurrences of the other valuesin the
observations. In other words, arow of x with afrequency variable having avalue
of 2 has the same effect as two rows with frequencies of 1. The total of the
frequenciesis used in computing all the statistics based on moments (mean,
variance, skewness, and kurtosis). Weights are not viewed as replication factors.
The sum of the weightsis used only in computing the mean (the weighted mean is
used in computing the central moments). Both weights and frequencies can be 0,
but neither can be negative. In general, a 0 frequency means that the row isto be
eliminated from the analysis; no further processing or error checking is done on
the row. A weight of 0 resultsin the row being counted, and updates are made of
the statistics.

The definitions of some of the statistics are given below in terms of asingle
variable x of which thei-th datumisx;.

Mean
% = E fiwx;
" Z fiw;
Variance
Q = z fwi (% = %,)*
n-1
Skewness

z fwi (x = %,)° /1
[z fiw; (; —)‘(W)zln]g/2

Excess or Kurtosis
z fiws (% ‘iw)4/”
2 2
[z fiw; (% —Xy) /n]

-3

Minimum

Xpmin = MiN(X;)
Maximum

Xmax = Max(X; )
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Range
max _ “‘min
Coefficient of Variation

forx, #0

ol |§m

Median
middle x; after sortingif nisodd
average of middletwo x;’sif niseven

median{x; } :{

Median Absolute Deviation
MAD = median { |x; — median {x;} [}

Simple Robust Estimate of Scale
MAD/®™ (3/4)

where ®™' (3/4) = 0.6745 isthe inverse of the standard normal distribution
function evaluated at 3/4. This standardizes MAD in order to make the scale
estimate consistent at the normal distribution for estimating the standard deviation
(Huber 1981, pp. 107-108).

Example

Data from Draper and Smith (1981) are used in this example, which includes 5
variables and 13 observations.

#i ncl ude <insls. h>

#define N_VARI ABLES 5
#defi ne N_OBSERVATI ONS 13
mai n()
fl oat *sinmple_statistics
fl oat x[1 ={
7., 26., 6., 60., 78.5,
1., 29., 15., 52., 74.3,
11., 56., 8., 20., 104.3,
11., 31., 8., 47., 87.6,
7., 52., 6., 33., 95.9,
11., 55., 9., 22., 109.2,
3., 71., 17., 6., 102.7,
1., 31., 22., 44., 72.5,
2., 54., 18., 22., 93.1,
21., 47., 4., 26., 115.9,
1., 40., 23., 34., 83.8,
11., 66., 9., 12., 113.3,
10., 68., 8., 12., 109.4};
char *row_| abel s[] = {
"means", "variances", "std. dev", "skewness", "kurtosis",
"mnim", "maxi m", "ranges", "C. V.", "counts", "lower nean",
"upper mean", "lower var", "upper var"};

6 « simple_statistics
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sinple_statistics =
N_VARI ABLES, x,

insls_f_sinple_statistics(N OBSERVATI ONS,

0);

inmsls f wite matrix("* * * Statistics * * *\n", 14, N_VARI ABLES

sinple_statistics,

| MSLS ROW LABELS, row | abels,

| MSLS WRI TE_FORNMAT, "%7. 3f",
}

Output
* * % Gtatistics * * *
1 2 3 4 5

nmeans 7.462 48. 154 11.769 30. 000 95. 423
vari ances 34.603 242.141 41.026 280.167 226.314
std. dev 5. 882 15. 561 6. 405 16. 738 15. 044
skewness 0. 688 -0.047 0.611 0. 330 -0.195
kurtosis 0. 075 -1.323 -1.079 -1.014 -1.342
nm ni ma 1. 000 26. 000 4.000 6. 000 72.500
maxi na 21. 000 71.000 23. 000 60.000 115.900
ranges 20. 000 45. 000 19. 000 54,000 43. 400
C. V. 0.788 0.323 0. 544 0. 558 0. 158
counts 13. 000 13. 000 13. 000 13. 000 13. 000
| ower nean 3. 907 38. 750 7.899 19. 885 86. 332
upper nmean 11. 016 57. 557 15. 640 40.115 104.514
| ower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688
normal_one_sample

Computes statistics for mean and variance inferences using a sample from a

normal population.

Synopsis

#include <i nsls. h>

float i msl s_f _normal _one_sanpl e (int n_observations, float x[], ...,

0)

The type double functionisi nsl s_d_nor mal _one_sanpl e.

Required Arguments

int n_observations (Input)
Number of observations.

float x[]

(Input)

Array of lengthn_obser vat i ons.

Return Value

The mean of the sample.
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Synopsis with Optional Arguments
#include <insls. h>

float i msl s_f _normal _one_sanpl e (int n_observations, float x[],
| MSLS CONFI DENCE_MEAN, float confi dence_nean,
I MSLS _Cl _MEAN, float *l ower _limit, float *upper _linmt,
| MBLS_STD DEV, float *std_dev,
I MSLS T_TEST, int *df, float *t, float *p_val ue,
I MSLS T_TEST NULL, float mean_hypot hesi s_val ue,
| MSLS_CONFI DENCE_VARI ANCE, float confi dence_vari ance,
| MBLS_Cl _VARI ANCE, float *I ower linit,
float *upper_limt,
| MSLS CHI _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue,
| MSBLS _CHI _SQUARED TEST NULL,
float vari ance_hypot hesi s_val ue,
0)

Optional Arguments

| MSLS_CONFI DENCE_MEAN, float confi dence_nean (Input)
Confidence level (in percent) for two-sided interval estimate of the
mean. Argument conf i dence_nean must be between 0.0 and 100.0
and is often 90.0, 95.0, or 99.0. For aone-sided confidence interval with
confidence level c (at least 50 percent), set
confi dence_mean =100.0 - 2.0 x (100.0 - ¢). If
| MSLS_CONFI DENCE_MEAN is hot specified, a 95-percent confidence
interval is computed.

I MSLS_Cl _MEAN, float *l ower _limit, float *upper _linmt (Output)
Argument | ower _Ii mi t contains the lower confidence limit for the
mean, and argument upper _| i m t contains the upper confidence limit
for the mean.

| MSLS_STD DEV, float *std_dev (Output)
Standard deviation of the sample.

I MSLS T_TEST, int *df, float *t, float *p_val ue (Output)
Argument df isthe degrees of freedom associated with thet test for the
mean, t isthetest statistic, and p_val ue isthe probability of alarger
tin absolute value. Thet test isatest of the hypothesis p = 1, where 1,
isthe null hypothesis value as described in| MSLS_T_TEST_NULL.

I MSLS T_TEST_NULL, float mean_hypot hesi s_val ue (Input)
Null hypothesis value for t test for the mean.
Default: mean_hypot hesi s_val ue =0.0
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| MSLS_CONFI DENCE_VARI ANCE, float confi dence_variance (Input)
Confidence level (in percent) for two-sided interval estimate of the
variances. Argument conf i dence_vari ance must be between 0.0 and
100.0 and is often 90.0, 95.0, 99.0. For a one-sided confidence interval
with confidence level c (at least 50 percent), set
confi dence_vari ance =100.0 — 2.0 x (100.0 — ¢). If thisoption is
not used, a 95-percent confidence interval is computed.

I MSLS_Cl _VARI ANCE, float *l ower _limit, float *upper _limt (Output)
Contains the lower and upper confidence limits for the variance.

| MSLS CHI _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue (Output)
Argument df isthe degrees of freedom associated with the chi-squared
test for variances, chi _squar ed isthe test statistic, and p_val ue isthe
probability of alarger chi-squared. The chi-squared test is atest of the
hypothesis 0 = og where o isthe null hypothesis value as described
inl MBLS_CHI _SQUARED TEST NULL.

| MSLS _CHI _SQUARED TEST_NULL, float vari ance_hypot hesi s_val ue

(Input)
Null hypothesis value for the chi-squared test.
Default: vari ance_hypot hesi s_val ue =1.0

Description

Statistics for mean and variance inferences using a sample from a normal
population are computed, including confidence intervals and tests for both mean
and variance. The definitions of mean and variance are given below. The
summation in each caseis over the set of valid observations, based on the
presence of missing valuesin the data.

Mean, return value
2%
X =
n

Standard deviation, std_dev

(% —%)°

n-1
Thet statistic for the two-sided test concerning the population mean is given by

_X~Hg
s/+/n

wheresand X aregiven above. This quantity hasa T distribution withn — 1
degrees of freedom.

t
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The chi-squared statistic for the two-sided test concerning the population variance
isgiven by
o _(n-¢’
X =5
)

where sis given above. This quantity has a)(2 distribution with n — 1 degrees of
freedom.

Examples

Example 1

This example uses data from Devore (1982, p. 335), which is based on data
published in the Journal of Materials. There are 15 observations; the mean is the
only output.

#i ncl ude <insls. h>

mai n()

{
#def i ne N_OBSERVATI ONS 15

fl oat

nean;

float x[ N_OBSERVATI ONS] = {
26.7, 25.8, 24.0, 24.9, 26.4,
25.9, 24.4, 21.7, 24.1, 25.9,
27.3, 26.9, 27.3, 24.8, 23.6};

nmean

/* Perform anal ysis */

inmsls_f_normal _one_sanpl e(N_OBSERVATI ONS, x, 0);

/* Print results */

printf("Sanple Mean = 9. 2f", nean);

Sanpl e Mean

Output

= 25.3

Example 2

This example uses the same data as the initial example. The hypothesis
Hy: 1 = 20.0 istested. The extremely large t value and the correspondingly small
p-value provide strong evidence to reject the null hypothesis.

#i ncl ude <insls. h>

mai n()

#def i ne N_OBSERVATI ONS 15
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i nt df ;
float nmean, s, lower limt, upper_limt, t, p_value;
static float x[ N OBSERVATI ONS] = {

26.7, 25.8, 24.0, 24.9, 26.4,

25.9, 24.4, 21.7, 24.1, 25.9,

27.3, 26.9, 27.3, 24.8, 23.6};

/* Perform anal ysis +*/

mean = insls_f_normal _one_sanpl e(N_OBSERVATI ONS, X,
| I\/SLS STD _DEV, &s,
| MBLS CI _MEAN, &l ower linit, &upper limt,
| I\/SLS T _TEST_NULL, 20.0,
| MBLS T _TEST, &df, &, &p_value,
0);

/* Print results */
printf("Sanple Mean = 9%. 2f\n", nean);
printf("Sanple Standard Deviation = 9. 2f\n", s);
printf("95%6 Cl for the nean is (9%.2f,9%.2f)\n", lower_limt,
upper _limt);

printf("df = 9@d\n", df);
printf("t = 9%.2f\n", t);
printf("p-value = 98.5f\n", p_value);

}

Output
Sanpl e Mean = 25.31
Sanpl e Standard Deviation = 1.58

95% Cl for the nmean is (24.44,26.19)
df = 14

t = 13.03

p-val ue = 0.00000

normal_two_sample

Computes statistics for mean and variance inferences using samples from two
normal populations.

Synopsis

#include <i nsls. h>

float i msl s_f _normal _two_sanple (int nl_observations, float x1[],
int n2_observations, float x2[], ..., 0)

The type double functionisi nsl s_d_nor mal _two_sanpl e.

Required Arguments
int n1_observations (Input)
Number of observationsin the first sample, x1.

float x1[] (Input)
Array of lengthnl_obser vat i ons containing the first sample.
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int n2_observations (Input)
Number of observationsin the second sample, x2.

float x2[] (Input)
Array of lengthn2_obser vat i ons containing the second sample.

Return Value

Difference in means, x1_nean — x2_mean.

Synopsis with Optional Arguments
#include <insls. h>

float i msl s_f _normal _two_sanple (int nl_observations, float x1[],

int n2_observations, float x2[],

| MSLS MEANS, float *x1_nean, float *x2_nean,

| MSLS_CONFI DENCE_MEAN, float confi dence_nean,

I MBLS ClI _DI FF_FOR EQUAL_VARS, float *I ower limit,
float *upper _limt,

I MSBLS_Cl _DI FF_FOR UNEQUAL_VARS, float *l ower limit,
float *upper _limt

| MBLS T_TEST_FOR EQUAL_VARS, int *df, float *t,
float *p_val ue,

| MSBLS_T_TEST_FOR UNEQUAL_VARS, float *df, float *t,
float *p_val ue,

I MSBLS T_TEST NULL, float mean_hypot hesi s_val ue,

| MSLS_POOLED_VARI ANCE, float *pool ed_vari ance,

| MSLS_CONFI DENCE_VARI ANCE, float confi dence_vari ance,

I MSLS_Cl _COMMON_VARI ANCE, float *1 ower linit,
float *upper limt,

| MSLS CHI _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue,

| MBLS_CHI _SQUARED_TEST_NULL,
float vari ance_hypot hesi s_val ue,

| MSLS_STD DEVS, float *x1_std_dev, float *x2_std_dev,

| MSBLS_Cl _RATI O VARI ANCES, float *I ower linit,
float *upper _limt,

I MSLS F_TEST, int *df _nunerator, int *df _denoni nat or,
float *F, float *p_val ue,

0)

Optional Arguments
| MSLS_MEANS, float *x1_mean, float *x2_mean (Output)
Means of the first and second samples.

| MBLS_CONFI DENCE_MEAN, float confi dence_mean (Input)
Confidence level for two-sided interval estimate of the mean of x 1
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minus the mean of x2, in percent. Argument conf i dence_nmean must
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent),
set confi dence_mean =100.0 - 2.0 x (100.0 - ¢).

Default: conf i dence_nmean = 95.0

| MSLS_ClI _DI FF_FOR_EQUAL_VARS, float *1 ower |init,
float *upper _linmit (Output)
Argument| ower _Ii mi t contains the lower confidence limit, and
upper _li mi t containsthe upper limit for the mean of the first
population minus the mean of the second, assuming equal variances.

| MSLS_CI _DI FF_FOR_UNEQUAL_VARS, float *| ower linmit,
float *upper _linmit (Output)
Argument| ower _| i mi t contains the approximate lower confidence
limit, and upper _I i mi t contains the approximate upper limit for the
mean of the first population minus the mean of the second, assuming
unegual variances.

| MBLS_T_TEST_FOR EQUAL_VARS, int *df, float *t, float *p_val ue
(Output)
A ttest for y — W, = ¢, where cisthe null hypothesis value. (See the
description of | MSLS_T_TEST_NULL.) Argument df containsthe
degrees of freedom, argument t contains the t value, and argument
p_val ue contains the probability of alarger t in absolute value,
assuming equal means. Thistest assumes equal variances.

| MBLS T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_val ue
(Output)
A ttest for y — W, = ¢, where cisthe null hypothesis value. (See the
description of | MSLS_T_TEST_NULL.) Argument df containsthe
degrees of freedom for Satterthwaite’s approximation, argument
contains the value, and argumept val ue contains the approximate
probability of a larget in absolute value, assuming equal means. This
test does not assume unequal variances.

I MSBLS T_TEST_NULL, float mean_hypot hesi s_val ue (Input)
Null hypothesis value for thetest.
Default:nmean_hypot hesi s_val ue = 0.0

| MSBLS_POOLED_VARI ANCE, float *pool ed_vari ance (Output)
Pooled variance for the two samples.

| MSLS_CONFI DENCE_VARI ANCE, float confi dence_variance (Input)
Confidence level for inference on variances. Under the assumption of
equal variances, the pooled variance is used to obtain a two-sided
confi dence_vari ance percent confidence interval for the common
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varianceif | MSLS_Cl _COMMON_VARI ANCE is specified. Without
making the assumption of equal variances, theratio of the variancesis of
interest. A two-sided conf i dence_vari ance percent confidence
interval for the ratio of the variance of the first sample to that of the
second sample is computed and is returned if

I MSLS_ClI _RATI O_VARI ANCES is specified. The confidence intervals
are symmetric in probability.

Default: conf i dence_vari ance =95.0

I MSLS_CI _COMVON_VARI ANCE, float *I ower _Iimit, float *upper_limt
(Output)
Argument| ower _Ii mi t contains the lower confidence limit, and
upper _I i mi t contains the upper limit for the common, or pooled,
variance.

| MSLS CHI _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue (Output)
The chi-squared test for 0“ = ag where o isthe common, or pooled,
variance, and oy isthe null hypothesis value. (See description of
| MSLS_CHI _SQUARED TEST_NULL.) Argument df contains the degrees
of freedom, argument chi _squar ed contains the chi-squared value, and
argument p_val ue contains the probability of alarger chi-squared in
absolute value, assuming equal means.

| MSLS_CHI _SQUARED TEST_NULL, float vari ance_hypot hesi s_val ue
(Input)
Null hypothesis value for the chi-squared test.
Default: vari ance_hypot hesi s_val ue =1.0

| MSLS_STD DEVS, float *x1_std_dev, float *x2_std_dev (Output)
Standard deviations of the first and second samples.

I MSLS_ClI _RATI O VARI ANCES, float *I ower _linmit, float *upper_limt
(Output)
Argument| ower _I'i mi t contains the approximate lower confidence
limit, and upper _I i mi t contains the approximate upper limit for the
ratio of the variance of the first population to the second.

I MSLS_F_TEST, int *df _numerator, int *df _denoni nator, float *F,
float *p_val ue (Output)
The F test for equality of variances. Argument df _nuner at or and
df _denom nat or contain the numerator degrees of freedom, argument
F contains the F test value, and argument p_val ue contains the
probability of alarger F in absolute value, assuming equal variances.
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Description

Functioni nsl s_f _normal _t wo_sanpl e computes statistics for making
inferences about the means and variances of two normal populations, using
independent samplesin x1 and x2. For inferences concerning parameters of a
single normal population, see functioni nsl s_nor nal _one_sanpl e on page 7.

Lety and cf be the mean and variance of the first population, and let p, and
05 bethe corresponding quantities of the second population. The function
contains test confidence intervals for difference in means, equality of variances,
and the pooled variance.

The means and variances for the two samples are as follows:

71:(ZXJJ/”1), 72:(zxzi)/nz

and
_ 2
Sf:Z(XH_Xl)Z/(nl_l)’ SSZZ(Xzi_Xz) /(n,-1)
Inferences about the Means

The test that the difference in means equals a certain value, for example, L,
depends on whether or not the variances of the two populations can be considered
equal. If the variances are equal and mean_hypot hesi s_val ue equalsO0, the
test is the two-samplet test, which is equivalent to an analysis-of-variance test.
The pooled variance for the difference-in-means test is as follows:

2= (M =D +(n, s,
n+n, -2

Thet statistic is as follows:
X1~ X2 ~Ho
sy(1/ ) +(1/ ny)

Also, the confidence interval for the difference in means can be obtained by
specifying | MSLS_Cl _DI FF_FOR_EQUAL_VARS.

If the population variances are not equal, the ordinary t statistic does not have at
distribution and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and

Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the
Fisher-Behrens test, based on Fisher’'s concept of fiducial probability. A
procedure used IfMBLS_T_TEST_FOR_UNEQUAL_VARS and/or

I MSLS_Cl _DI FF_FOR_UNEQUAL_VARS are specified is the Satterthwaite’s
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite
(Anderson and Bancroft 1952, p. 83).
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Thetest statisticis
t'=(% Xz ~Ho)/ g
where

Sy :\/(sf/nl)+(s§/n2)

Under the null hypothesis of p; — W, = ¢, this quantity has an approximate t

distribution with degrees of freedom df (in
| MBLS_T_TEST_FOR_UNEQUAL_VARS), given by the following equation:

i

(s 1my) (1 n,)
n -1 n,-1

df =

Inferences about Variances

The F statistic for testing the equality of variancesisgiven by F = s, /S5,
where s2,., isthelarger of s? and s2. If the variances are equal, this quantity
has an F distribution with n; — 1 and n, — 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide

whether to use the regular t test or the modified t' on asingle set of data. The

modified t' (Satterthwaite’s procedure) is the more conservative approach to use
if there is doubt about the equality of the variances.

Examples

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on
arithmetic tests of two grade-school classes. The question is whether a group
taught by an experimental method has a higher mean score. Only the difference in
means is output. The data are shown below.

Scores for Standard Group Scores for Experimental Group

72 111
75 118
77 128
80 138
104 140
110 150
125 163

164

169
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#i ncl ude <insls. h>
mai n()

{
#def i ne N1_OBSERVATI ONS 7
#def i ne N2_OBSERVATI ONS 9

float diff_neans;
float x1[ NL_OBSERVATI ONS] = {
72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
float x2[ N2_OBSERVATI ONS] = {
111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
164.0, 169.0};

/* Performanal ysis */
diff_neans = insls_f_normal _two_sanpl e( N1_OBSERVATI ONS, x1,
N2_OBSERVATI ONS, x2, 0);

/* Print results */
printf("\nx1l _nean - x2_nmean = %. 2f\n", diff_neans);

}
Output

x1 mean - x2_mean = -50.48
Example 2

The same data is used for this example asfor the initial example. Here, the results
of the t test are output. The variances of the two populations are assumed to be
equal. It is seen from the output that there is strong reason to believe that the two
means are different (t value of —4.804). Since the lower 97.5-percent confidence
limit does not include 0, the null hypothesisisthat |, < p, would be rejected at
the 0.05 significance level. (The closeness of the values of the sample variances
provides some qualitative substantiation of the assumption of equal variances.)

#i ncl ude <insls. h>
mai n()

{
#def i ne N1_OBSERVATI ONS 7
#defi ne N2_OBSERVATI ONS 9

oat diff_means, lower limt, upper_limt, t, p_value, sp2;
oat x1[ N1I_OBSERVATI ONS] = {
72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0%;
float x2[ N2_OBSERVATI ONS] = {
111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
164.0, 169.0};

i nt df;
fl
fl

/* Performanal ysis */
diff_neans = insls_f_normal _two_sanpl e( N1_OBSERVATI ONS, x1,
N2_OBSERVATI ONS, x2,
| MBLS_POOLED VARI ANCE, &sp2,
I MSLS CI _DIFF_FOR EQUAL_VARS, & ower |limt, &upper_limt,
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| MBLS_T_TEST FOR EQUAL_VARS, &df, &, &p_val ue,
0);

/* Print results */
printf("\nx1l_nean - x2_nmean = %. 2f\n", diff_neans);
printf("Pool ed variance = %. 2f\n", sp2);
printf("95%6 Cl for x1 _nmean - x2_nean is (%. 2f, %. 2f)\n",
lower limt, upper_limt);
printf("df = 9@d\n", df);
printf("t = 9%.2f\n", t)
printf("p-value = 98.5f\n", p_value);

Output

x1 mean - x2_mean = -50.48

Pool ed variance = 434. 63

95% Cl for x1 _nmean - x2_nean is (-73.01,-27.94)
df = 14

t =-4.80

p-val ue = 0.00028

table_oneway

Tallies observations into a one-way frequency table.

Synopsis
#include <i nsl's. h>

float *i nsl s_f _tabl e_oneway (int n_observations, float x[],
int n_intervals, ..., 0)

The type double function isi nsl s_d_t abl e_oneway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of lengthn_obser vat i ons containing the observations.

int n_intervals (Input)
Number of intervals (bins).

Return Value

Pointer to an array of length n_i nt er val s containing the counts.

Synopsis with Optional Arguments
#include <i nsls. h>
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float *i nsl s_f _tabl e_oneway (int n_observations, float x[],
int n_intervals,
| MSLS_DATA BOUNDS, float *mi ni mum float * maxi mum or
| MSLS _KNOWN_BOUNDS, float | ower bound, float upper bound,
or
| MSLS_CUTPAO NTS, float cut points[], or
| MSLS CLASS MARKS, float cl ass_nmarks[],
| MBLS_RETURN_USER, float tabl e[],
0)

Optional Arguments

| MBLS_DATA_BOUNDS, float *ni ni mum float *maxi mum (Output)
If noneis specified or if | MSLS_DATA BOUNDS is specified,
n_i nt erval s intervals of equal length are used with the initial interval
starting with the minimum value inx and the last interval ending with the
maximum valueinx. Theinitia interval is closed on the |left and right. The
remaining intervals are open on the left and closed on the right. When
| MBLS_DATA_BOUNDS is explicitly specified, the minimum and maximum
valuesin x are output in m ni numand maxi num With this option, each
interval isof length (maxi num=—ni ni mum)/n_i nt erval s.

or

| MBLS_KNOWN_BOUNDS, float | ower _bound, float upper _bound (Input)
If I MBLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are
used astheinitial and last intervals. Theinitia interval is closed on the
right and includes| ower _bound asitsright endpoint. The last interval
is open on the left and includes all values greater than upper _bound.
Theremaining n_i nt er val s — 2 intervals are each of length

upper _bound -1 ower _bound

n_intervals-2

and are open on the | eft and closed on the right. Argument
n_i nt er val s must be greater than or equal to 3 for this option.

or

| MBLS_CUTPQO NTS, float cut poi nts[] (Input)
If | MBLS_CUTPO NTS is specified, cutpoints (boundaries) must be
provided in the array cut poi nt s of lengthn_i nterval s — 1. This
option allows unequal interval lengths. Theinitial interval is closed on
theright and includes the initial cutpoint asits right endpoint. The last
interval is open on the left and includes al values greater than the last
cutpoint. The remaining n_i nt er val s — 2 intervals are open on the | eft
and closed on the right. Argument n_i nt er val must be greater than or
equal to 3 for this option.
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or

I MBLS CLASS MARKS, float cl ass_marks[] (Input)
If I MSLS CLASS MARKS is specified, equally spaced class marksin
ascending order must be provided inthe array cl ass_mar ks of length
n_i nt er val s. The class marks are the midpoints of each of the
n_i nt erval s. Eachinterval isassumed to have length
cl ass_marks [1] —cl ass_mar ks [0]. Argument n_i nt er val s must
be greater than or equal to 2 for this option.

None or exactly one of the four optional arguments described above can
be specified in order to define the intervals or bins for the one-way table.

| MSLS_RETURN_USER, float tabl e[] (Output)
Counts are stored inthe array t abl e of lengthn_i nt er val s, whichis
provided by the user.

Examples

Example 1

The data for this example isfrom Hinkley (1977) and Velleman and Hoaglin
(1981). The measurements (in inches) are for precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years.

#i ncl ude <insls. h>

mai n()
t .
i nt n_i nterval s=10
i nt n_observati ons=30
fl oat *t abl e;
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96
1.89, 0.90, 2.05};
table = insls_f_table _oneway (n_observations, x, n_intervals, 0)
insls f wite matrix("counts", 1, n_intervals, table, 0)
}
Output
counts
1 2 3 4 5 6
4 8 5 5 3 1
7 8 9 10
3 0 0 1
Example 2

In thisexample, | MSLS_KNOWN_BOUNDS isused, and | ower _bound = 0.5 and
upper _bound = 4.5 are set so that the eight interior intervals each have width
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(45-0.5)/(10 - 2) =0.5. The 10 interva s are (-, 0.5], (0.5, 1.0], ..., (4.0, 4.5],
and (4.5, «].

#i ncl ude <insls. h>

mai n()
-
i nt
i nt
fl oat
fl oat
fl oat

tabl e

n_observati ons=30;

n_i nt erval s=10;

*t abl e;

| ower _bound=0.5, upper_bound=4.5;

= {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, O0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

i msl s_f_tabl e_oneway (n_observations, x, n_intervals,

| MSLS_KNOWN_BOUNDS, | ower _bound,
upper _bound,
0);

imsls_f_wite_matrix("counts", 1, n_intervals, table, 0);

Output
counts
2 3 4 5 6
7 6 6 4 2
8 9 10
0 0 1
Example 3

In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines
the classintervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike
the previous example, the initial and last intervals are the same length as the
remaining intervals.

#i ncl ude <insls. h>

mai n()
-
i nt
i nt

doubl e
doubl e

doubl e

tabl e

n_i nterval s=10;

n_observati ons=30;

*tabl e;

x[] ={0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1. 89,
0.90, 2.05};

class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25,

2.75, 3.25,3.75, 4.25, 4.75};

i msl s_d_tabl e_oneway (n_observations, x, n_intervals,

| MBLS_CLASS_MARKS, cl ass_narks,
0);

imsls_d wite_matrix("counts", 1, n_intervals, table, 0);
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Output

1 2

2 7

7 8

2 0
Example 4

co
3

6
9
0

unts

In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same
10 intervals asin Example 2. Here again, theinitial and last intervals are semi-
infinite intervals.

#i ncl ude <insls. h>

1. 20,
1.51,
0. 81,
0. 96,

0. 47,
2.10,
2.81,
1.89,

n_interval s,

t abl e,

0);

mai n()
t .
i nt n_interval s=10;
i nt n_observati ons=30;
doubl e *t abl e;
doubl e x[] = {0.77, 1.74, 0.81, 1.20, 1.95
1.43, 3.37, 2.20, 3.00, 3.09,
0.52, 1.62, 1.31, 0.32, 0.59,
1.87, 1.18, 1.35, 4.75, 2.48,
0.90, 2.05};
doubl e cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0, 4.5};
table = insls_d_tabl e oneway (n_observations,
| MSLS_CUTPQO NTS, cutpoints,
0);
insls_d wite_matrix("counts", 1, n_intervals,
}
Output
counts
1 2 3 4
2 7 6 6
7 8 9 10
2 0 0 1

table twoway

Tallies observations into two-way frequency table.

Synopsis

#include <i nsls. h>

float *insls_f_table_twoway (int n_observations, float x[],
float y[], int nx, int ny,

The type double functionisi nsl s_d_t abl e_t woway.

y 0)
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Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of lengthn_obser vat i ons containing the data for the first
variable.

float y[] (Input)
Array of lengthn_obser vat i ons containing the data for the second
variable.

int nx (Input)
Number of intervals (bins) for variable x.

int nx (Input)
Number of intervals (bins) for variabley.

Return Value

Pointer to an array of size nx by ny containing the counts.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _tabl e_twoway (int n_observati ons, float x[],

float y[], int nx,int ny,

| MSLS_DATA BOUNDS, float *xmi n, float *xmax, float *ym n,
float *ymax, or

I MSLS_KNOAN_BOUNDS, float xI o, float xhi, float yl o,
float yhi, or

| MBLS_CUTPO NTS, float cx[], float cy[], or

| MSLS CLASS MARKS, float cx[], float cy[],

| MBLS_RETURN_USER, float tabl e[],

0)

Optional Arguments

| MSLS_DATA BOUNDS, float *xI o, float *xhi, float *yl o, float *yhi
(Output)
If noneis specified or if | MSLS_DATA BOUNDS is specified,
n_i nt er val s intervals of equal length are used. Let xnmi n and xmax be
the minimum and maximum values inx, respectively, with similar
meanings for ymi n and ynmax. Then, t abl e[ 0] isthetally of
observations with the x value less than or equal to
xmi n + (xmax — xmi n)/nx, and they value less than or equal to
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ymi n + (ymax —ymi n)/ny. When | MSLS_DATA_BOUNDS is explicitly
specified, the minimum and maximum valuesinx and y are output in
Xxm n, xmax, ym n, and ymax.

or

| MSLS_KNOAN_BOUNDS, float xI o, float xhi, float yl o, float yhi (Input)
Intervals of equal lengths are used just asin the case of
| MSLS_DATA BOUNDS, except the upper and lower bounds are taken as
the user supplied variables x| o, xhi , yl o, and yhi , instead of the actual
minima and maximain the data. Therefore, the first and last intervals for
both variables are semi-infinite in length. Argumentsnx and ny must be
greater than or equal to 3.

or

I MSLS_CUTPO NTS, float cx[], float cy[] (Input)
If | MBLS_CUTPO NTS is specified, cutpoints (boundaries) must be
provided in the arrays cx and cy, of length nx and ny respectively. The
taly int abl e[ 0] isthe number of observations for which thex valueis
lessthan or equal to cx[ 0] , and they value islessthan or equal to
cy[ 0] . Thisoption alows unequal interval lengths. Argumentsnx and
ny must be greater than or equal to 2.

or

| MSBLS_CLASS MARKS, float cx[], float cy[] (Input)
If | MBLS_CLASS MARKS is specified, equally spaced class marksin
ascending order must be provided in the arrays cx and cy. The class
marks are the midpoints of each interval. Each interval is taken to have
lengthcx[ 1] —cx[ 0] inthex directionand cy[ 1] —cy[ 0] inthey
direction. The total number of elementsint abl e may be lessthan
n_observati ons. Argumentsnx and ny must be greater than or equal
to 2.

None or exactly one of the four optional arguments described above can be
specified in order to define the intervals or bins for the one-way table.

| MSLS_RETURN_USER, float tabl e[] (Output)
Counts are stored in the array table of size nx by ny, which is provided
by the user.

Examples

Example 1

The datafor x in this example are the same as those used in the examples for
t abl e_oneway. Thedatafor y were created by adding small integersto the data
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in x. This example uses the default tally method, | MSLS_DATA_BOUNDS, which
may be appropriate when the range of the datais unknown.

#i ncl ude <insls. h>

mai n()
t
i nt nx = 5;
i nt ny = 6;
i nt n_observati ons=30;
fl oat *t abl e;
f1 oat x[] ={0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, O0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};
f1 oat y[] ={1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};
table = imsl s_f_table_twoway (n_observations, x, y, nx, ny, 0);
imsls_f_wite_matrix("counts", nx, ny, table,
| MSLS_ROW NUMBER_ZERO, | MSLS_COL_NUMBER_ZERO, 0);
}
Output
counts
0 1 2 3 4 5
0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1
Example 2

In thisexample, x| o, xhi , yl o, and yhi are chosen so that the intervalswill be 0
tol,1to2,andsoonfor x,and1to2,2to 3, and soonfor y.

#i ncl ude <insls. h>

mai n()
t
i nt nx = 5;
i nt ny = 6;
i nt n_observati ons=30;

fl oat *t abl e;

fl oat xlo = 1.0;

fl oat xhi = 4.0;

fl oat ylo = 2.0;

fl oat yhi = 6.0;

float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};

f1 oat y[] ={21.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};

table = insls_f_table_twoway (n_observations, x, y, nx, ny,

| MSLS KNOWN_BOUNDS, xl o, xhi, ylo, yhi, 0);
inmsls f wite_matrix("counts", nx, ny, table,
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| MBLS_ROW NUVBER ZERO, | MSLS_COL_NUVBER ZERO, 0);

Output
counts

AWNELO
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RPONOOM
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Example 3

In this example, the class boundaries are input in cx and cy. The sameintervals
are chosen as in Example 2, where the first element of cx and cy specify the first
cutpoint between classes.

#i ncl ude <insls. h>

mai n()
t
i nt nx = 5;
i nt ny = 6;
i nt n_observati ons=30;

fl oat *t abl e;

fl oat cnx[] ={0.5, 1.5, 2.5, 3.5, 4.5};
fl oat cny[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};
f1 oat y[] ={21.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};
table = insls_f_table_twoway (n_observations, x, y, nx, ny,
| MSLS CLASS MARKS, cnx, cny, 0);
inmsls f wite_matrix("counts", nx, ny, table,
| MSLS_ROW NUMBER ZERO, | MSLS COL_NUMBER ZERO, 0);
}
Output
counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0
Example 4

This example, usesthe | MSLS_CUTPO NTS tally option with cutpoints such that
the intervals are specified as in the previous examples.
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#i ncl ude <insls. h>

mai n()
-
i nt nx =5
i nt ny = 6
i nt n_observati ons=30
fl oat *t abl e;
f1 oat cpx[] = {1, 2, 3, 4};
fl oat cpy[] ={2, 3, 4, 5, 6};
float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.90, 2.05};
fl oat y[] ={21.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
2.89, 2.90, 5.05};
table = insls_f_table_twoway (n_observations, x, y, nx, ny,
| MSLS _CUTPQO NTS, cpx, cpy, 0);
insls f wite_matrix("counts", nx, ny, table,
| MSLS_ROW NUMBER ZERO, | MSLS COL_NUMBER ZERO, 0);
}
Output
counts
0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0
sort_data
Sorts observations by specified keys, with option to tally casesinto amulti-way
frequency table.
Synopsis

#include <i nsls. h>

void i nsl s_f_sort_data (int n_observations, int n_vari abl es, float

x[], int n_

keys,

Required Arguments

ey 0)

The type double functionisi msl s_d_sort _dat a.

int n_observations (Input)
Number of observations (rows) in x.

int n_vari abl es (Input)
Number of variables (columns) in x.
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float x[] (Input/Output)
Ann_observati ons x n_vari abl es matrix containing the
observations to be sorted. The sorted matrix isreturned in x (exception:
see optional argument | MSLS_PASSI VE).

int n_keys (Input)
Number of columns of x on which to sort. The first n_keys columns of
x are used as the sorting keys (exception: see optional argument
| MSLS_| NDI CES_KEYS).

Synopsis with Optional Arguments
#include <insls. h>

void i nsl s_f_sort_data (int n_observations, int n_vari abl es, float
x[], int n_keys,
IMSLS X _ COL_DIM int x_col _dim
I MSLS | NDI CES_KEYS, int i ndi ces_keys[],
| MSLS_FREQUENCI ES, float frequencies[],
| MBLS_ASCENDI NG, or
| MSLS_DESCENDI NG,
| MBLS_ACTI VE, or
| MSLS_PASSI VE,
| MSLS PERMUTATI ON, int **pernut ati on,
| MSLS_PERMUTATI ON_USER, int permutation[],
I MSLS TABLE, int **n_val ues, float **val ues, float **t abl e,
| MSLS TABLE_USER, int n_val ues[], float val ues[],
float table[],

I MSLS LI ST_CELLS, int *n_cel | s, float **Iist_cells,
float **t abl e_unbal anced,

I MSLS LI ST_CELLS USER, int *n_cel I's, float 1ist_cells[],
float t abl e_unbal anced[],

IMSLS N, int *n_cells, int **n,

I MSLS N USER, int *n_cells, int n[],

0)

Optional Arguments

IMSLS X COL_DIM int x_col _di m (Input)
Column dimension of x.
Default: x_col _dim = n_vari abl es

I MSLS | NDI CES KEYS, int i ndi ces_keys[] (Input)
Array of lengthn_keys giving the column numbers of x which are to be
used in the sort.
Default: i ndi ces_keys[]=0,1,...,n_keys -1
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| MBLS_FREQUENCI ES, float frequencies[] (Input)
Array of lengthn_obser vat i ons containing the frequency for each
observation in x.
Default: frequencies []1=1

I M5LS_ASCENDI NG, or

| MBLS_DESCENDI NG
By default, or if | MSLS_ASCENDI NGis specified, the sort isin ascending
order. If | MSLS_DESCENDI NGis specified, the sort isin descending
order.

| M5LS_ACTI VE, or

| MSLS_PASSI VE
By default, or if | MSLS_ACTI VE is specified, the sorted matrix is
returned in x. If | MBLS_PASSI VE is specified, x is unchanged by
imsl s_f_sort_data (i.e, x becomesinput only).

| MBLS_PERMUTATI ON, int **pernutati on (Output)
Address of a pointer to an internally allocated array of length
n_obser vat i ons specifying the rearrangement (permutation) of the
observations (rows).

| MSLS_PERMUTATI ON_USER, int permutation[] (Output)
Storage for array per nut at i on is provided by the user.
See | MSLS_PERMUTATI ON.

| MSLS_TABLE, int **n_val ues, float **val ues, float **t abl e (Output)
Argument n_val ues isthe address of a pointer to an internally
alocated array of length n_keys containing initsi-th element
(i=0,1,...,n_keys — 1), the number of levels or categories of thei-th
classification variable (column).

Argument val ues isthe address of a pointer to an internally allocated
array of length

n_val ues [0] + n_val ues [1] + ... + n_val ues [n_keys — 1]
containing the values of the classification variables. The first

n_val ues [0] elements of val ues contain the values for the first
classification variable. The next n_val ues [1] contain the values for the
second variable. Thelast n_val ues [n_keys — 1] positions contain the
values for the last classification variable.

Argument t abl e isthe address of a pointer to an internally allocated array
of length n_val ues [0] X n_val ues [1] x ... X n_val ues [n_keys — 1]
containing the frequenciesin the cells of the table to be fit.
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Empty cellsareincluded int abl e, and each element of t abl e is
nonnegative. The cells of t abl e are sequenced so that the first variable
cyclesthrough itsn_val ues [0] categories one time, the second
variable cyclesthrough itsn_val ues [1] categories n_val ues [0]
times, the third variable cyclesthrough itsn_val ues [2] categories
n_val ues [0] x n_val ues [1] times, etc., up to the n_keys-th
variable, which cyclesthrough itsn_val ues [n_keys — 1] categories
n_val ues [0] x n_val ues [1] X ... X n_val ues [n_keys — 2] times.

| MSBLS_TABLE_USER, int n_val ues[], float val ues[], float tabl e[]

(Output)

Storage for arraysn_val ues, val ues, andt abl e is provided by the
user. If the length of t abl e isnhot known in advance, the upper bound
for this length can be taken to be the product of the number of distinct
values taken by all of the classification variables (sincet abl e includes
the empty cells).

I MSLS LI ST_CELLS, int *n_cel | s, float **list_cells,

float **t abl e_unbal anced (Output)

Number of nonempty cellsisreturned by n_cel | s. Argument
list_cellsisaninternally allocated array of size

n_cel | s x n_keys containing, for each row, alist of the levels of
n_keys corresponding classification variables that describe a cell.

Argument t abl e_unbal anced isthe address of apointer to an array of
lengthn_cel | s containing the frequency for each cell.

I MSLS LI ST_CELLS USER, int *n_cel I's, float 1ist_cells[],

float t abl e_unbal anced[] (Output)
Storage for arrays| i st _cel | s andt abl e_unbal anced is provided
by the user. Seel MSLS_LI ST_CELLS.

I MBLS_N, int *n_cells, int **n (Output)

Theinteger n_cel | s returns the number of groups of different
observations. A group contains observations (rows) in x that are equal
with respect to the method of comparison.

Argument n is the address of the pointer to an internally allocated array
of length n_cel | s containing the number of observations (rows) in each

group.

Thefirst n [0] rows of the sorted x are group number 1. The next
n [1]rows of the sorted x are group number 2, etc. The last
n[n_cel | s — 1] rows of the sorted x are group number n_cel | s.

I MBLS_N_USER, int *n_cells, int n[] (Output)

Storage for array n_cel | s is provided by the user. If the value of
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n_cel | s isnot known, n_obser vat i ons can be used as an upper
bound for the length of n. See | MSLS_N.

Description

Functioni nmsl s_f _sort _dat a can perform both a key sort and/or tabulation of
frequencies into a multi-way frequency table.

Sorting

Functioni nmsl s_f _sort _dat a sortsthe rows of real matrix x using a particular
row inx asthe keys. The sort is algebraic with the first key as the most
significant, the second key as the next most significant, etc. Whenx is sorted in
ascending order, the resulting sorted array is such that the following is true:

. Fori=0,1,...,n_observations — 2,
x [i] [i ndi ces_keys [O]] € x [i + 1] [i ndi ces_keys [0]]

. Fork=1,...,n_keys —1,if
x [i] [i ndi ces_keys [j]] =x [i + 1] [i ndi ces_keys [j]] for
j=0,1, ..., k=1, then
x [i] [i ndi ces_keys [K]] =x [i + 1] [i ndi ces_keys [K]]

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the
specified columns are considered as an additional group. These rows are moved
to the end of the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969)
with modifications by Griffen and Redish (1970) and Petro (1970).

Frequency Tabulation

Functioni msl s_f _sort _dat a determines the distinct valuesin multivariate data
and computes frequencies for the data. This function accepts the datain the matrix
X, but performs computations only for the variables (columns) in thefirst n_keys
columns of x (Exception: see optional argument | MSLS | NDI CES_KEYS). In
general, the variables for which frequencies should be computed are discrete; they
should take on arelatively small number of different values. Variablesthat are
continuous can be grouped first. Thei nsl s_f _t abl e_oneway function can be
used to group variables and determine the frequencies of groups.

When | MBLS_TABLE is specified, i nsl s_f _sort_dat a fillsthe vector val ues
with the unique values of the variables and tallies the number of unique values of
each variable in the vector t abl e. Each combination of one value from each
variable forms acell in a multi-way table. The frequencies of these cellsare
entered int abl e so that the first variable cycles through its values exactly once,
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and the last variable cycles through its values most rapidly. Some cells cannot
correspond to any observations in the data; in other words, “missing cells” are
included int abl e and have a value of 0.

Whenl MSLS_LI ST_CELLS is specified, the frequency of each cell is entered in

t abl e_unbal anced so that the first variable cycles through its values exactly
once and the last variable cycles through its values most rapidly. All cells have a
frequency of at least 1, i.e., there is no “missing cell.” The a&iray_cel | s can

be considered “parallel” toabl e_unbal anced because rowofl i st_cel | s

is the set of_keys values that describes the cell for which ricef

t abl e_unbal anced contains the corresponding frequency.

Examples

Example 1

The rows of a 1& 3 matrixx are sorted in ascending order using Columns 0 and
1 as the keys. There are two missing values (NaNs) in the keys. The observations
containing these values are moved to the end of the sorted array.

#i ncl ude <insls. h>
#def i ne N_OBSERVATI ONS 10
#def i ne N_VARI ABLES 3

mai n()

i nt n_keys=2;

fl oat X[ N_OBSERVATI ONS] [ N_VARI ABLES] = {1.0, 1.0, 1.0,
2.0, 1.0, 2.0,
1.0, 1.0, 3.0,
1.0, 1.0, 4.0,
2.0, 2.0, 5.0,
1.0, 2.0, 6.0,
1.0, 2.0, 7.0,
1.0, 1.0, 8.0,
2.0, 2.0, 9.0,
1.0, 1.0, 9.0};

x[ 4] [ 1] =i nsl s_f _nmachi ne(6);

x[ 6] [ 0] =i msl s_f _machi ne(6);

imsl s_f_sort_data (N_OBSERVATI ONS, N_VARI ABLES, x, n_keys, 0);

imsls_f_wite_matrix("sorted x", N_OBSERVATI ONS, N_VARI ABLES,
(float *)x, 0);

Output
sorted x

O~NOUTRWNE
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Example 2

This exampl e uses the same data as the previous example. The permutation of the

rowsisoutput inthe array per mut at i on.

#i ncl ude <insls. h>
#defi ne N_OBSERVATI ONS 10
#defi ne N_VARI ABLES 3

MAI N()
{
i nt n_keys=2
i nt n_cells;
i nt *n;
i nt *pernutation
float  x[ N _OBSERVATI ONS] [ N VARI ABLES] ={1.0, 1.0,
2.0, 1.0,
1.0, 1.0,
1.0, 1.0,
2.0, 2.0,
1.0, 2.0,
1.0, 2.0,
1.0, 1.0,
2.0. 2.0,
1.0, 1.0,
x[4][ 1] =i sl s_f _machi ne(6)
x[6] [ 0] =i msl s_f _machi ne(6)
insls_f_sort_data (N_OBSERVATI ONS, N_VARI ABLES

(float *)x, n_keys

| MSLS_PASSI VE,

| MSLS_PERMUTATI ON, &pernutation
IMSLS N, & _cells, &n,

CoORNOUTRLNE

ooo0o0000000

— -

inmsls f wite_matrix("unchanged x ", N _OBSERVATI ONS, N_VARI ABLES

(float *)x, 0);

imsls_i _wite_matrix("pernutation”, 1, N _OBSERVATIONS, pernutation

0);
inmsls i _wite matrix("n", 1, n_cells, n, 0);
}
Output
unchanged x
1 2 3
1 1 1 1
2 2 1 2
3 1 1 3
4 1 1 4
5 2 5
6 1 2 6
7 2 7
8 1 1 8
9 2 2 9
10 1 1 9
pernutation
1 2 3 4 5 6 7 8 9 10
o 9 2 3 7 5 1 8 6
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Example 3

The table of frequencies for adata matrix of size 30 x 2 is output in the array
tabl e.

#i ncl ude <insls. h>

mai n()
i nt n_observati ons=30;
i nt n_vari abl es=2;
i nt n_keys=2;
i nt *n_val ues;
i nt n_rows, n_col ums;

fl oat *val ues;
fl oat *t abl e;
fl oat x[] = {O.

OINNWROUTAWNIINRPWONORNOROWOWRABNOWE

oo oooooaaaaaaaoa
(4]
-

NORONMNARERERRERNOOORPONEPWNNWRORREROR

imsls_f _sort_data (n_observations, n_variables, x, n_keys,

| MSLS_PASSI VE,
| MSLS TABLE, &n_val ues, &val ues, &table,
0);
inmsls_f_wite_matrix("unchanged x", n_observations, n_variables,
X, 0);

n_rows = n_val ues[0];
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n_colums = n_val ues[1];

imsls_ f wite_matrix("row values", 1, n_rows, values, 0);

imsls f wite_matrix("colum values", 1, n_colums, &val ues[n_rows],
0);

imsls f wite _matrix("table", n_rows, n_colums, table, 0);

}

Output
unchanged x
1 2
1 0.5 1.5
2 1.5 3.5
3 0.5 3.5
4 1.5 2.5
5 1.5 3.5
6 1.5 4.5
7 0.5 1.5
8 1.5 3.5
9 3.5 6.5
10 2.5 3.5
11 2.5 4.5
12 3.5 6.5
13 1.5 2.5
14 2.5 4.5
15 0.5 3.5
16 1.5 2.5
17 1.5 3.5
18 0.5 3.5
19 0.5 1.5
20 0.5 2.5
21 2.5 5.5
22 1.5 2.5
23 1.5 3.5
24 1.5 4.5
25 4.5 5.5
26 2.5 4.5
27 0.5 3.5
28 1.5 2.5
29 0.5 2.5
30 2.5 5.5
row val ues
1 2 3 4 5
0.5 1.5 2.5 3.5 4.5
col um val ues
1 2 3 4 5 6
1.5 2.5 3.5 4.5 5.5 6.5
tabl e

1 2 3 4 5 6

1 3 2 4 0 0 0

2 0 5 5 2 0 0

3 0 0 1 3 2 0

4 0 0 0 0 0 2

5 0 0 0 0 1 0
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ranks

Computes the ranks, normal scores, or exponential scores for avector of
observations.

Synopsis
#include <i nsl's. h>
float *insl s_f_ranks (int n_observati ons, float x[], ..., 0)

The type double function isi sl s_d_r anks.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of lengthn_obser vat i ons containing the observations to be
ranked.

Return Value

A pointer to avector of length n_obser vat i ons containing the rank (or
optionally, atransformation of the rank) of each observation.

Synopsis with Optional Arguments
#include <i nsl . h>

float* i nsl s_f_ranks (int n_observati ons, float x[],
| MBLS_AVERAGE_TI E, or
| MSLS_HI GHEST, or
| MSLS_LOWEST, or
| MSLS_RANDOM SPLI T,
| MSLS FUzZ, float fuzz_val ue,
| MSLS_RANKS, or
| MSLS_BLOM SCORES, or
| MBLS_TUKEY_SCORES, or
| MBLS_ VAN DER WAERDEN SCORES, or
| MBLS_EXPECTED_NORMAL_SCORES, or
| MSLS_SAVAGE_SCORES,
| MLS_RETURN_USER, float ranks[],
0)

Optional Arguments
| MBLS_AVERAGE TI E, or
| MSLS_HI GHEST, or
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| M5LS_LOWEST, or

| MBLS_RANDOM SPLI T
Exactly one of these optional arguments can be used to change the
method used to assign a score to tied observations.

Argument Method

| MSBLS_AVERAGE Tl E | average of the scores of thetied
observations (default)

| MSLS_HI GHEST highest score in the group of ties
| MSLS_LOWEST lowest score in the group of ties

| MSLS_RANDOM SPLI T | tied observations are randomly split
using arandom number generator

I MSLS FUZZ, float fuzz_val ue (Input)

Value used to determine when two items aretied. If abs(x [i ] = x [ ]) is
lessthan or equal tof uzz_val ue, thenx[i] andx[j] aresaidto be
tied.

Default: fuzz_val ue =0.0

| MBLS_RANKS, or

| MBLS_BLOM SCORES, or

| MBLS_TUKEY_SCORES, or

| MSLS_VAN_DER WAERDEN SCORES, Or
| MBLS_EXPECTED NORMAL_SCORES, Or

| MBLS SAVAGE SCORES
Exactly one of these optional arguments can be used to specify the type
of values returned.

Argument Result

| MSLS_RANKS ranks (default)

| MSLS BLOM SCORES Blom version of normal scores

| MSLS _TUKEY_SCORES Tukey version of normal scores

I MSLS VAN DER WAERDEN SCORES | Van der Waerden version of normal
scores

| MSBLS_EXPECTED NORMAL_SCORES | expected value of normal order
statistics (for tied observations, the
average of the expected normal
scores)

| MBLS_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)
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| MBLS_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array r anks.

Description
Ties

In data without ties, the output values are the ordinary ranks (or a transformation
of theranks) of the datain x. If x[ i ] hasthe smallest value among the valuesin
x and thereis no other element in x with thisvalue, thenr anks [i ] = 1. If both
x[i ] and x[j ] have the same smallest value, the output value depends on the

option used to break ties.

Argument Result

| MSLS_AVERAGE Tl E ranks[i] =ranks[j]=15

| MSLS_HI GHEST ranks[i] =ranks[j]=2.0

| M5LS_LOWEST ranks[i] =ranks[j]=1.0

| MBLS_RANDOM SPLI T ranks[i]=21.0andranks[j]=2.0
or, randomly,
ranks[i]=2.0andranks[j]=1.0

When the ties are resolved randomly, functioni nsl s_f random uni f orm

(Chapter 12) is used to generate random numbers. Different results may occur

from different executions of the program unless the “seed” of the random number
generator is set explicitly by use of the functiom! s f random seed_set

(Chapter 12)

Scores

As an option, normal and other functions of the ranks can be returned. Normal
scores can be defined as the expected values, or approximations to the expected
values, of order statistics from a normal distribution. The simplest approximations
are obtained by evaluating the inverse cumulative normal distribution function,
functioni nsl s_f _normal _i nverse_cdf (Chapter 11)at the ranks scaled into

the open interval (0, 1). In the Blom version (see Blom 1958), the scaling
transformation for the rank (1 < r; < n, wheren is the sample size,

n_observati ons)is (r; — 3/8)/(n + 1/4). The Blom normal score corresponding

to the observation with rarnkis
qJ_l I’i - 3/8
n+1/4

where®(-) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if
x [i 1 equalsx [j ] (within f uzz_val ue) and their value is thieth smallest in the
data set, the Blom normal scores are determined for rarkanafk + 1. Then,
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these normal scores are averaged or selected in the manner specified. (Whether
the transformations are made first or ties are resolved first makes no difference
except when | MSLS_AVERAGE_TI E is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank r;
is(r; — 1/3)/(n + 1/3). The Tukey normal score corresponding to the observation

with rank r; is asfollows:
qJ_l I’i _1/3
n+1/3

Tiesare handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling
transformation for the rank r; isr;/(n + 1). The Van der Waerden normal score
corresponding to the observation with rank r; is as follows:

ol "
n+1
Ties are handled in the same way as for the Blom normal scores.

When option | MSLS_EXPECTED_NORMAL_SCORES is used, the output values are
the expected values of the normal order statistics from a sample of size
n_observations. If thevalueinx[i] isthe k-th smallest, the value output in
ranks [i ] isE(z), where E(-) is the expectation operator ards thek-th order
statistic in a sample of size obser vat i ons from a standard normal
distribution. Ties are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a
sample of siz@_obser vat i ons. These values are called Savage scores because
of their use in a test discussed by Savage 1956 (see also Lehmann 1975). If the
value inx[i] is thek-th smallest, the value outputrianks [i ] is E(y,), where
Yy is thek-th order statistic in a sample of sizeobser vat i ons from a standard
exponential distribution. The expected value ofkttle order statistic from an
exponential sample of size(n_obser vat i ons) is as follows:

1 1 1

—+ +...+

n n-1 n-k+1

Ties are handled in the same way as for the Blom normal scores.
Examples

Example 1

The data for this example, from Hinkley (1977), contains 30 observations. Note
that the fourth and sixth observations are tied and that the third and twentieth
observations are tied.
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#i ncl ude <insls. h>

#def i ne N_OBSERVATI ONS 30
mai n()
fl oat *ranks;
f1 oat x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
ranks = imsls_f_ranks(N_OBSERVATI ONS, x, 0)
insls f wite matrix("Ranks", 1, N _OBSERVATIONS, ranks, 0)
}
Output
Ranks
1 2 3 4 5 6
5.0 18.0 6.5 11.5 21.0 11.5
7 8 9 10 11 12
2.0 15.0 29.0 24.0 27.0 28.0
13 14 15 16 17 18
16.0 23.0 3.0 17.0 13.0 1.0
19 20 21 22 23 24
4.0 6.5 26.0 19.0 10.0 14.0
25 26 27 28 29 30
30.0 25.0 9.0 20.0 8.0 22.0
Example 2

This example uses al the score options with the same data set, which contains
someties. Ties are handled in several different waysin this example.

#i ncl ude <insls. h>
#def i ne N_OBSERVATI ONS 30

voi d main()

fl oat fuzz_val ue=0.0, score[4][ N OBSERVATI ONS], *ranks

f1 oat x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

char *row_| abel s[] = {"Blont', "Tukey", "Van der Waerden"

"Expected Val ue"};
/* Blom scores using |argest ranks */
/* for ties */

i mel s_f _ranks(N_OBSERVATI ONS, x,
| MBLS_HI GHEST,
| MSLS_BLOM SCORES,
| MSLS_RETURN USER,
0);

&score[0][ 0],

/* Tukey normal scores using smallest */
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/* ranks for ties */

i mel s_f _ranks(N_OBSERVATI ONS, x,
| MSLS_LOWEST,
| MSBLS_TUKEY_SCORES,
I MSLS_RETURN USER,

0);

&score[1][0],

/* Van der Waerden scores using */

/* randomy resolved ties */
i nsl s_random seed_set (123457) ;

i mel s_f _ranks(N_OBSERVATI ONS, x,
| MBLS_RANDOM SPLI T,
| MSLS_VAN DER WAERDEN SCORES,

I MSLS _RETURN USER, &score[2][0],

0);

I MSLS _RETURN USER, &score[3][0],

0);

/* Expected val ue of nornal

/* break ties */
i mel s_f _ranks(N_OBSERVATI ONS, x,
| MBLS_EXPECTED NORMAL_SCORES,

inmsls f wite_matrix("Nornal

(fl oat

*)score,
| MSLS_ROW LABELS,

I MBLS_WRI TE_FORVAT,

0);

/* Savage scores using averaging */
/* to break ties */

ranks = imsls_f_ranks(N_OBSERVATI ONS, x,
| MBLS_SAVAGE_SCORES,

0):

Order Statistics",

row_| abel s,
"o, 3f ",

order */
/* statistics using averaging to */

4, N_OBSERVATI ONS,

inmsls f_wi te_mﬁtri x("Expected val ues of exponential order "
"statistics", 1,
N_OBSERVATI ONS, ranks,
0);
}
Output
Normal Order Statistics
1 2 3 4 5
Bl om -1.024 0. 209 -0.776 -0.294 0. 473
Tukey -1.020 0. 208 -0.890 -0.381 0.471
Van der Waerden -0.989 0. 204 -0.753 -0. 287 0. 460
Expect ed Val ue -1.026 0. 209 -0.836 -0. 338 0. 473
6 7 8 9 10
Bl om -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0. 753
Expected Val ue -0.338 -1.616 -0.041 1.616 0.777
11 12 13 14 15
Bl om 1.176 1.361 0.041 0. 668 -1.361
Tukey 1.171 1.354 0.041 0. 666 -1.354
Van der Waerden 1.131 1. 300 0. 040 0. 649 -1.300
Expected Val ue 1.179 1. 365 0. 041 0. 669 -1.365
16 17 18 19 20
Bl om 0.125 -0.209 -2.040 -1.176 -0.776
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Tukey 0.124 -0.208 2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 1. 849 -1.131 -0. 865
Expected Val ue 0.125 -0. 209 2.043 -1.179 -0.836
21 22 23 24 25
Bl om 1.024 0.294 -0.473 -0. 125 2. 040
Tukey 1. 020 0. 293 -0.471 -0.124 2.015
Van der Waerden 0. 989 0. 287 -0. 460 -0.122 1. 849
Expected Val ue 1.026 0.294 -0.473 -0.125 2.043
26 27 28 29 30
Bl om 0. 893 -0.568 0. 382 -0.668 0. 568
Tukey 0. 890 -0. 566 0. 381 -0. 666 0. 566
Van der \Waerden 0. 865 -0.552 0.372 -0. 649 0. 552
Expect ed Val ue 0. 894 -0.568 0. 382 -0. 669 0. 568
Expected val ues of exponential order statistics

1 2 3 4 5 6
0.179 0. 892 0. 240 0.474 1.166 0.474
7 8 9 10 11 12
0. 068 0. 677 2.995 1. 545 2.162 2.495
13 14 15 16 17 18
0.743 1.402 0.104 0. 815 0. 555 0. 033
19 20 21 22 23 24
0.141 0. 240 1.912 0. 975 0. 397 0.614
25 26 27 28 29 30
3.995 1.712 0. 350 1. 066 0. 304 1.277
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Chapter 2: Regression

Routines

21 Multivariate Linear Regression—Model Fitting
Generate regressors for a general

linear Model........cccueiiiiieiii regressors_for_glm 56

Fit a multivariate linear regression model .......................

2.2 Multivariate Linear Regression—Statistical
Inference and Diagnostics
Produce summary statistics for

regression 64

aregression model............oeeeeeeeiiieiie e, regression_summary 77

Compute predicted values,

confidence intervals, and diagnostics............ regression_prediction 85

Construction of a completely

testable hypothesis...............cccccc,

Sums of cross products for a

multivariate hypothesiS............uvvvvvvviiiiiiiiiiiiiinininnn,
Tests for the multivariate linear hypothesis.............

2.3 Variable Selection

hypothesis_partial 96

hypothesis_scph 101
hypothesis_test 106

All best regressionS.........veveveveeeeiiiiiiiiieeeeeeenn regression_selection 112
Stepwise regreSSioN .........eeeveeeeeiiiiciviiieeeeeeenn regression_stepwise 123
2.4 Polynomial and Nonlinear Regression

Fit a polynomial regression model.............cccccennnn.
Compute predicted values, confidence intervals,
and diagnOStICS ...oooeeeee e

poly_regression 132

poly_prediction 140

Fit a nonlinear regression model..................... nonlinear_regression 149

Fit a nonlinear regression model using

Powell’'s algorithm...........cccoceeeiiiiiiiiiiiieieeeen, nonlinear_optimization 158

25 Alternatives to Least Squares Regression
LAV, Lpnorm, and LMYV criteria regression ........

Lnorm_regression 167
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Usage Notes

The regression models in this chapter include the simple and multiple linear
regression models, the multivariate general linear model, the polynomial model,
and the nonlinear regression model. Functions for fitting regression models,
computing summary statistics from afitted regression, computing diagnostics,
and computing confidence intervals for individual cases are provided. This
chapter also provides methods for building amodel from a set of candidate
variables.

Simple and Multiple Linear Regression
The simple linear regression model is
Vi= Bt Bixt+egi=12..,n

where the observed values of they,'s constitute the responses or values of the
dependent variable, thes are the settings of the independent (explanatory)
variable,B, and, are the intercept and slope parameters (respectively) and the
g;/'s are independently distributed normal errors, each with mean 0 and variance

The multiple linear regression model is
Vi =By + BiXy *+BoXp + .t BpXi T € i=1,2,..n

where the observed values of §ie constitute the responses or values of the
dependent variable; thg'’s, X,'s, ...,X;’s are the settings of theindependent
(explanatory) variableg,, B3, ..., B are the regression coefficients; andg

are independently distributed normal errors, each with mean 0 and varfance

Functioni nsl s_f _regressi on (page 64fits both the simple and multiple
linear regression models using a fast Given’s transformation and includes an
option for excluding the interce. The responses are input in arggyand the
independent variables are input in arxayhere the individual cases correspond
to the rows and the variables correspond to the columns.

After the model has been fitted usings| s_f _r egr essi on, function

i msl s_f _regressi on_sunmary computes summary statistics and

i msl s_f _regressi on_predicti on computes predicted values, confidence
intervals, and case statistics for the fitted model. The information about the fit is
communicated fromnsl s_f _regressiontoinsls_f_regressi on_summary

andi nsl s_f _regressi on_predi cti on by passing an argument of structure type
Imds f regression.
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No Intercept Model

Severa functions provide the option for excluding the intercept from amodel. In
most practical applications, the intercept should be included in the model. For
functions that use the sums of squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sums of squares and crossproducts
matrix as input in place of the corrected sums of squares and crossproducts. The
raw sums of sguares and crossproducts matrix can be computed as (X, Xy, «..y X

y)T (Xl 1 Xy ey Xpy y)

Variable Selection

Variable selection can be perfformed by i nsl s_f _regressi on_sel ecti on
(page 112), which computes all best-subset regressions, or by

i msl s_f_regression_stepwi se (page 123), which computes stepwise
regression. The method used by i nsl s_f _regressi on_sel ectionis
generaly preferred over that used by i msl s_f _regr essi on_st epwi se
becausei msl s_f _regressi on_sel ecti on implicitly examines all possible
modelsin the search for amodel that optimizes some criterion while stepwise
does not examine all possible models. However, the computer time and memory
requirementsfori nsl s_f _regressi on_sel ecti on can be much greater than
that fori msl s_f _regressi on_st epwi se when the number of candidate
variablesislarge.

Polynomial Model

The polynomial model is
Yi = B+ Bix + B¢+ + Bix + i=12,..,n

where the observed values of they;’'s constitute the responses or values of the
dependent variable; thes are the settings of the independent (explanatory)
variable;B,, B, ..., B, are the regression coefficients; andgfeare
independently distributed normal errors each with mean 0 and vagance

Functioni nsl s_f _pol y_r egressi on (page 132Jits a polynomial regression
model with the option of determining the degree of the model and also produces
summary information. Functionrsl s_f _pol y_predi ct i on computes

predicted values, confidence intervals, and case statistics for the model fit by

i msl s_f _poly_regression.

The information about the fit is communicated fromsl s_f pol y_regressi on
toi nsl s_f _pol y_predi cti on by passing an argument of structure type
Imsls_f_poly regression.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variables,
whereas analysis of variance models use classification variables. Although the
notation used to specify analysis of variance models and multiple regression
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models may look quite different, the models are essentially the same. The term
“general linear model” emphasizes that a common notational scheme is used for
specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect
is referred to in this text as a single variable or a product of variables. (The term
“effect” is often used in a narrower sense, referring only to a single regression
coefficient.) In particular, an “effect” is composed of one of the following:

1. a single continuous variable

2 a single classification variable

3 several different classification variables

4. several continuous variables, some of which may be the same

5 continuous variables, some of which may be the same, and classification

variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effects in analysis of variance models. Effects of the
third type appear as interactions in analysis of variance models. Effects of the
fourth type appear in polynomial models and response surface models as powers
and crossproducts of some basic variables. Effects of the fifth type appear in one-
way analysis of covariance models as regression coefficients that indicate lack of
parallelism of a regression function across the groups.

The analysis of a general linear model occurs in two stages. The first stage calls
functioni nsl s_f _regressors_f or _gl mto specify all regressors except the
intercept. The second stage calisl s_f _r egr essi on, at which point the

model will be specified as either having (default) or not having an intercept.

For this discussion, define a variableTCEP as follows:

Option | NTCEP Action
I MBLS_NO_I NTERCEPT 0 An intercept is not in the model.
| MBLS_I NTERCEPT (default) 1 An intercept is in the model.

The remaining variables (cont i nuous, n_cl ass, x_cl ass_col umms,
n_effects,n_var_effects, andi ndi ces_ef f ect s) are defined for function
imsls_f _regressors_for_gl m All these variables have defaults except for
n_conti nuous andn_cl ass, both of which must be specifie(Eee the
documentation fornsl s_f _regressors_for_gl mon page 56 for a discussion
of the defaults.Jhe meaning of each of these arguments is as follows:

n_continuous (Input)
Number of continuous variables.

n_class (Input)
Number of classification variables.
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x_cl ass_col ums (Input)
Index vector of length n_cl ass containing the column numbers of x
that are the classification variables.

n_effects (Input)
Number of effects (sources of variation) in the model, excluding error.

n_var_effects (Input)
Vector of length n_ef f ect s containing the number of variables
associated with each effect in the model.

i ndi ces_effects (Input)
Index vector of length n_var _ef f ect s(0) + n_var _effects(1) +
..+n_var_effects (n_effects —1). The firsh_var _ef f ect s(0)
elements give the column numbers dbr each variable in the first
effect; the nexb_var _ef f ect s(1) elements give the column numbers
for each variable in the second effect; and finally, the last
n_var_effects (n_effects — 1) elements give the column numbers
for each variable in the last effect.

Suppose the data matrix has as its first four columns two continuous variables in
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data
might appear as follows:

Column 0 | Column 1 | Column 2 | Column 3
11.23 1.23 1.0 5.0
12.12 2.34 1.0 4.0
12.34 1.23 1.0 4.0
4.34 2.21 1.0 5.0
5.67 4.31 2.0 4.0
4.12 5.34 2.0 1.0
4.89 9.31 2.0 1.0
9.12 3.71 2.0 1.0

Each distinct value of a classification variable determines a level. The
classification variable in Column 2 has two levels. The classification variable in
Column 3 has three levels. (Integer values are recommended, but not required, for
values of the classification variables. The values of the classification variables
corresponding to the same level must be identical.) Some examples of regression
functions and their specifications are as follows:
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| NTCEP n_cl ass x_cl ass_col umms

Bo +Bix 1 0
Bo + By + Boxs 1 0
M+ 0, 1 1 2
M+, + B+ 1 2 2,3
My 0 2 2,3
Bo + Bix + Baxy + Baxi X 1 0
M+ o+ B + B, 1 1 2

n_effects |n_var_effects | indices_effects
Bo + Bix 1 1 0
Bo * Bixa + BoXs 2 1,2 00,0
M+ 1 1 2
H+o;+ B+ 3 1,12 2,3,2,3
i 1 2 2,3
Bo+Bix +Bx + B 3 1,12 0,101
3% %
M+ a; +Bx;+BX; 3 1,1,2 2,0,0,2

Functions for Fitting the Model

Functioni nsl s_f regressi on (page 64) fitsamultivariate general linear
model, where regressors for the general linear model have been generated using
functioni nsl s_f regressors_for_glm

Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter are
designed to handle linear dependence of the regressors; i.e., the
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n x p matrix X (the matrix of regressors) in the general linear model can have
rank less than p. Often, the models are referred to as non-full rank models.

Asdiscussed in Searle (1971, Chapter 5), be careful to correctly use the results of

the fitted non-full rank regression model for estimation and hypothesis testing. In

the non-full rank case, not all linear combinations of the regression coefficients

can be estimated. Those linear combinations that can be estimated are called

“estimable functions.” If the functions are used to attempt to estimate linear
combinations that cannot be estimated, error messages are issued. A good general
discussion of estimable functions is given by Searle (1971, pp. 180-188).

The check used by functions in this chapter for linear dependence is sequential.
Thej-th regressor is declared linearly dependent on the precgedihgegressors
if
2
1- Rj(1,2 ..... i-1)

is less than or equal t@! er ance. Here,

is the multiple correlation coefficient of ti¢h regressor with the firgt- 1
regressors. When a function declaresjttteregressor to be linearly dependent
on the firs§ — 1, thej-th regression coefficient is set to 0. Essentially, this
removes thg-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the
preferred variables to remain in the model first. Also, the sequential check is
based on many of the computations already performed as this does not degrade
the overall efficiency of the functions. There is no perfect test for linear
dependence when finite precision arithmetic is used. The optional argument

| MSLS_TOLERANCE allows the user some control over the check for linear
dependence. If a model is full rank, inpot er ance = 0.0. However,

t ol er ance should be input as approximately 100 times the machine epsilon. The
machine epsilon isnsl s_f _nachi ne(4) in single precision and

i msl s_d_machi ne(4) in double precisionSee functionsnsl s_f machi ne

andi nsl s_d_nachi ne in Chapter 14.)

Functions performing least squares are basggRdecomposition oK or on a
Cholesky factorizatioR” R of X'X. Maindonald (1984, Chapters-3) discusses
these methods extensively. TRenatrix used by the regression function is a

p X p upper-triangular matrix, i.e., all elements below the diagonal are 0. The
signs of the diagonal elementshére used as indicators of linearly dependent
regressors and as indicators of parameter restrictions imposed by fitting a
restricted model. The rows Bfcan be partitioned into three classes by the sign
of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.
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2. A negative diagonal element means the row correspondsto alinearly
independent restriction imposed on the regression parametersby AB = Z
in arestricted model.

3. A zero diagonal element means alinear dependence of the regressors
was declared. The regression coefficientsin the corresponding row of B
are set to 0. Thisrepresents an arbitrary restriction that isimposed to
obtain a solution for the regression coefficients. The elements of the
corresponding row of Ralso are set to 0.

Nonlinear Regression Model
The nonlinear regression model is
y,=f(x;0) +¢, 1=1,2 ...,n

where the observed values of they,'s constitute the responses or values of the
dependent variable, thes are the known vectors of values of the independent
(explanatory) variable$,is a known function of an unknown regression
parameter vectd, and thee;'s are independently distributed normal errors each
with mean 0 and variancsg.

Functioni nsl s_f _nonl i near _regressi on (page 149performs the least-
squares fit to the data for this model.

Weighted Least Squares

Functions throughout the chapter generally allow weights to be assigned to the
observations. The vectaei ght s is used throughout to specify the weighting for
each row oiX.

Computations that relate to statistical inference—etgstsF tests, and

confidence intervals—are based on the multiple regression model except that the
variance of;is assumed to equaf times the reciprocal of the corresponding
weight.

If a single row of the data matrix corresponds,tobservations, the vector
frequenci es can be used to specify the frequency for each rofv Biegrees of
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics

Functioni nsl s_f _regressi on_sumary can be used to compute and print
statistics related to a regression for each ofjtdependent variables fitted by

i msl s_f _regression (page 64)The summary statistics include the model
analysis of variance table, sequential sums of squards-stadistics, coefficient
estimates, estimated standard errbstatistics, variance inflation factors, and
estimated variance-covariance matrix of the estimated regression coefficients.
Functioni nsl s_f _pol y_r egr essi on includes most of the same functionality
for polynomial regressions.
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The summary statistics are computed under the model y = X3 + €, wherey isthe
n x 1 vector of responses, X isthe n x p matrix of regressors with rank (X) =r,

B isthe p x 1 vector of regression coefficients, and € isthen x 1 vector of errors
whose elements are independently normally distributed with mean 0 and variance

a’lw;.

Given the results of aweighted least-squares fit of this model (with thew;'s as the
weights), most of the computed summary statistics are output in the following
variables:

anova_t abl e
One-dimensional array usually of length 15. In
i msl s_f _regressi on_st epwi se, anova_t abl e is of length 13
because the last two elements of the array cannot be computed from the
input. The array contains statistics related to the analysis of variance.
The sources of variation examined are the regression, error, and total.
The first 10 elements @fhova_t abl e and the notation frequently used
for these is described in the following table (he®y replaces
anova_t abl e):

Model Analysis of Variance Table

Source of Degrees of Sum of

Variation Freedom Squares Mean Square F p-value
Regression DFR AOV[0] |SSR =A0V[3] |MSR =A0V[6] | AOV[8] AOV[9]
Error DFE =AOV[1] |SSE =AOV[4] |S =AOV[7]
Total DFT =AOV[2] | SST =A0V[5]

If the model has an intercept (default), the total sum of squares is the
sum of squares of the deviationsypfrom its (weighted) meaf —the
so-calledcorrected total sum of squares, denoted by the following:
n
—\2
SST =" wi(yi -)
If the model does not have an intercagv8LS_NO | NTERCEPT), the
total sum of squares is the sum of squares-ethe so-called
uncorrected total sum of squares, denoted by the following:
n
SST=3% w yi2

The error sum of squares is given as follows:

SSE:iWi(Yi ‘)7i)2

1=1
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The error degrees of freedom is defined by DFE = n —r.

The estimate of” is given bys2 = SSEDFE, which is the error mean
square.

The computedr statistic for the null hypothesis,

Ho:Bi =B, = ... =B, = 0, versus the alternative that at least one
coefficient is nonzero is given fy= MSR'S’. Thep-value associated
with the test is the probability of &nlarger than that computed under
the assumption of the model and the null hypothesis. A gavalue
(less than 0.05) is customarily used to indicate there is sufficient
evidence from the data to reject the null hypothesis.

The remaining five elementsémova_t abl e frequently are displayed
together with the actual analysis of variance table. The quarities
squared IRZ =anova_t abl e[10]) and adjustedR-squared

R: =(anova_t abl €[11])
are expressed as a percentage and are defined as follows:

R = 100(SSRSST) = 100(1 — SIBST)

2
R? =100max{0,1-—>
SST/ DFT

The square root cﬂz(s: anova_t abl e[12]) is frequently referred to as
the estimated standard deviation of the model error.

The overall mean of the responggess output inanova_t abl e[13].

The coefficient of variation (CV anova_t abl e[14]) is expressed as a
percentage and defined by CV = s0p.

coef _t _tests
Two-dimensional matrix containing the regression coefficient vegtor
as one column and associated statistics (estimated standard error,
statistic ang-value) in the remaining columns.

coef _covari ances
Estimated variance-covariance matrix of the estimated regression
coefficients.

Tests for Lack-of-Fit

Tests for lack-of-fit are computed for the polynomial regression by the function
i msl s_f_poly_regression (page 132)The output arragsq_| of contains

the lack-of-fitF tests for each degree polynomial 1, 2k,.that is fit to the data.
These tests are used to indicate the degree of the polynomial required to fit the
data well.
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Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functionsin
the regression chapter: i msl s_f _regressi on_prediction for linear and
nonlinear regressionsandi sl s_f _pol y_predi cti on for polynomial
regressions.

Statistics computed include predicted values, confidence intervals, and
diagnostics for detecting outliers and cases that greatly influence the fitted
regression.

The diagnostics are computed under the model y = Xp + €, whereyisthen x 1
vector of responses, X isthe n x p matrix of regressors with rank (X) =r, B isthe
p x 1 vector of regression coefficients, and € isthe n x 1 vector of errors whose
elements are independently normally distributed with mean 0 and variance ozlw,-.

Given the results of aweighted least-squares fit of this model (with thew;’s as the
weights), the following five diagnostics are computed:

1 leverage

2 standardized residual
3. jackknife residual

4 Cook’s distance

5 DFFITS

The definition of these terms is given in the discussion that follows:

Letx; be a column vector containing the elements of-therow of X. A case can
be unusual either becausexpbr because of the respongeTheleverage h; is a
measure of uniqueness of theThe leverage is defined by

h =[x (XTWX) X 1w,

whereW = diag{v , ws, ..., w,) and (xT\NX)‘ denotes a generalized inverse of
XWX, The average value of tihgs isr/n. Regression functions declage
unusual ith; > 2r/n. Hoaglin and Welsch (1978) call a data point highly
influential (i.e., a leverage point) when this occurs.

Let e, denote the residual
Yi =i
for thei-th case. The estimated varianceeds (1 —h,-)SZ/W,-, wheres’ is the

residual mean square from the fitted regression.i-thetandardized residual
(also called the internally studentized residual) is by definition

W

T En)

andr; follows an approximate standard normal distribution in large samples.
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The i-th jackknife residual or deleted residual involves the difference betweenyy;
and its predicted value, based on the data set in which the i-th case is deleted.
This difference equals e/(1 — h;). The jackknife residual is obtained by
standardizing this difference. The residual mean square for the regressionin
which thei-th caseis deleted is as follows:

S2:(ﬂ—r)sz—vviff/(l—h)

n-r-1
Thejackknife residual is defined as
t. —q L
C S (A-h)

and t; follows at distribution with n —r — 1 degrees of freedom.

Cook’s distance for thieth case is a measure of how much an individual case
affects the estimated regression coefficients. It is given as follows:
_ whe’
1
r(1-h)°
Weisberg (1985) states thatdf exceeds the 50-th percentile of #@, n—r)

distribution, it should be considered large. (This value is about 1. This statistic
does not have ar distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. Foithhease,
DFFITS is computed by the formula below.

DFFITS =¢ | N

2
§(1-h)
Hoaglin and Welsch (1978) suggest that DFFITS greater than
2Jr/n

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to
satisfy the regression model. The inclusion of squares and crossproducts of the
variables

2 2
(Xi X2 %1 ,xz,xl,xz)

is often needed. Logarithms of the independent variables are used also. (See
Draper and Smith 1981, pp. 2482; Box and Tidwell 1962; Atkinson 1985,
pp. 177#180; Cook and Weisberg 1982, pp—88.)

When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation often can be selected so that the
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transformed model is linear in the regression parameters. For example, by taking
natural logarithms on both sides of the egquation, the exponential model

y= eﬁ0+ﬁlxlg

can be transformed to a model that satisfies the linear regression model provided
theg,;'s have a log-normal distribution (Draper and Smith, pp-223).

When the responses are nonnormal and their distribution is known, a
transformation of the responses can often be selected so that the transformed
responses closely satisfy the regression model, assumptions. The square-root
transformation for counts with a Poisson distribution and the arc-sine
transformation for binomial proportions are common examples

(Snedecor and Cochran 1967, pp. -3230; Draper and Smith, pp. 23739).

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likelihood
estimates of the regression parameters. However, when errors are not normally
distributed, least squares may yield poor estimators. Function

i msl s_f _| norm regr essi on offers three alternatives to least squares
methodology, Least Absolute Valukep Norm , and Least Maximum Value.

The least absolute value (LAY1) criterion yields the maximum likelihood
estimate when the errors follow a Laplace distribution. Option

I MBLS METHOD_ LAV (page 169)is often used when the errors have a heavy
tailed distribution or when a fit is needed that is resistant to outliers.

A more general approach, minimizing thenorm ¢ < 1), is given by option

I MBLS METHOD_LLP (page 169)Although the routine requires about 30 times
theCPU time for the casp = 1 than would the use bfSLS METHOD LAV, the
generality off MSBLS METHOD_LLP allows the user to try several choicesgar 1

by simply changing the input valuein the calling program. ThePU time
decreases gsgets larger. Generally, choicespfetween 1 and 2 are of interest.
However, thd_p norm solution for values qf larger than 2 can also be
computed.

The minimax (LMV,L,,, Chebyshev) criterion is used bySLS VETHOD LW
(page 169)Its estimates are very sensitive to outliers, however, the minimax
estimators are quite efficient if the errors are uniformly distributed.

Missing Values

NaN (Not a Number) is the missing value code used by the regression functions.
Use function nsl s_f _machi ne(6), Chapter 14 (or function

i msl s_d_machi ne(6) with double-precision regression functions) to retrieve
NaN. Any element of the data matrix that is missing must be set to

i msl s_f _machi ne(6) (ori nsl s_d_nachi ne(6) for double precision). In

fitting regression models, any observation containing NaN for the independent,
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dependent, weight, or frequency variablesis omitted from the computation of the

regression parameters.

regressors_for_glm

Generates regressors for ageneral linear model.

Synopsis
#include <i nsl's. h>

int i msl s_f_regressors_for_gl m(int n_observations, float x[],
intn_cl ass, int n_conti nuous, ..., 0)

The type double functionisi nsl s_d_regressors_for_gl m

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)

Ann_observations x (n_cl ass +n_conti nuous) array containing

the data. The columns must be ordered such that the first n_cl ass
columns contain the class variables and the next n_cont i nuous
columns contain the continuous variables. (Exception: see optional
argument | MSBLS X CLASS COLUMWNS.)

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

Return Value

Aninteger (n_r egr essor s) indicating the number of regressors generated.

Synopsis with Optional Arguments
#include <i nsls. h>

int imsl s_f_regressors_for_gl m(int n_observations, float x[],
intn_cl ass, intn_conti nuous,
IMSLS X _ COL_DIM int x_col _dim
I MSLS X CLASS COLUWNS, int x_cl ass_col ums[],
| MSLS_MODEL_ORDER, int model _or der,
| MSLS | NDI CES_EFFECTS, int n_effects,
intn_var_effects[], intindi ces_effects[],
I MSLS _DUMWY, Imsls dummy _method dunmy_met hod,
| MSLS_REGRESSORS, float **regressors,
| MSLS REGRESSORS USER, float regressors[],
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| MSBLS_REGRESSORS_COL_DI M int regressors_col _dim
0)

Optional Arguments

IMSLS X _COL_DI'M intx_col _di m (Input)
Column dimension of x.
Default: x_col _di m=n_cl ass + n_cont i nuous

I MBLS_X_CLASS _COLUMNS, int x_cl ass_col ums[] (Input)
Index array of length n_cl ass containing the column numbers of x that
are the classification variables. The remaining variables are assumed to
be continuous.
Default: x_class_colums =0,1,...,n_class -1

| MSLS_MODEL_ORDER, int nodel _order (Input)
Order of the model. Model order can be specified as 1 or 2. Use optional
argument | MSLS_| NDI CES_EFFECTS to specify more complicated
models.
Default: nodel _order =1
or

| MSLS_ | NDI CES_EFFECTS, int n_effects, int n_var_effects[],
inti ndi ces_effects[] (Input)
Variable n_ef f ect s isthe number of effects (sources of variation) in
themodel. Variablen_var _ef f ect s isan array of lengthn_effects
containing the number of variables associated with each effect in the
model. Argumenti ndi ces_ef f ect s isan index array of length
n_var_effects[0] +n_var_effects[1] +... +n_var_effects
(n_ef f ect s —1). Thefirst n_var _ef f ect s[0] elements give the
column numbers of x for each variablein the first effect. The next
n_var _ef f ect s[1] elements give the column numbers for each
variable in the second effect. ... Thelast n_var _effects [n_effects
— 1] elements give the column numbers for each variable in the last
effect.

I MSLS_DUMWY, Imsls dummy _method dummy_met hod  (Input)
Dummy variable option. Indicator variables are defined for each class
variable as described in the “Description” section.

Dummy variables are then generated frommtireicator variables in
one of the following three ways:

dunmy_net hod Method

I'MBLS_ALL Then indicator variables are the dummy
variables (default).

I MBLS_LEAVE_OUT_LAST The dummies are the firat- 1 indicator
variables.
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dunmy_net hod Method

I MBLS_SUM TO_ZERO The n — 1 dummies are defined in terms of the
indicator variables so that for balanced data,
the usual summation restrictions are imposed
on the regression coefficients.

| MSBLS_REGRESSORS, float **regressors (Output)
Address of a pointer to the internally allocated array of size
n_observations x n_r egressor s containing the regressor variables
generated from x.

| MBLS_REGRESSORS_USER, float regressors[] (Output)
Storage for array r egr essor s is provided by the user.
See| M5LS_REGRESSCRS.

I MSBLS_REGRESSORS_COL_DI M int regressors_col _di m (Input)
Column dimension of r egr essors.
Default: regressors_col _di m=n_regressors

Description

Functioni nsl s_f regressors_for_gl mgenerates regressors for a general
linear model from a data matrix. The data matrix can contain classification
variables as well as continuous variables. Regressors for effects composed solely
of continuous variables are generated as powers and crossproducts. Consider a
data matrix containing continuous variables as Columns 3 and 4. The effect
indices (3, 3) generate aregressor whose i-th value is the square of thei-th value
in Column 3. The effect indices (3, 4) generates aregressor whose i-th value is
the product of the i-th value in Column 3 with thei-th value in Column 4.

Regressors for an effect (source of variation) composed of asingle classification
variable are generated using indicator variables. Let the classification variable A
takeonvauesa,, &, ..., a,. From this classification variable,

imsls_f regressors_for_gl mcreates nindicator variables. For

k=12, .., n wehave

_ 1 |f A= ak
K710 otherwise
For each classification variable, another set of variablesis created from the

indicator variables. These new variables are called dummy variables. Dummy
variables are generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables.
2. The dummies arethefirst n — 1 indicator variables.
3. The n— 1 dummies are defined in terms of the indicator variables so that

for balanced data, the usual summation restrictions are imposed on the
regression coefficients.
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In particular, for dunmy_net hod =1 MSLS_ALL, the dummy variables are

A =1k=1,2, ..,n). For dummy_net hod = | MSLS_LEAVE_OUT_LAST, the
dummy variablesare A, = I(k=1, 2, ..., n—1). For

dumy_met hod =1 MBLS_SUM TO_ZERO, the dummy variables are

A=l —-1,k=1,2, .., n-1). Theregressors generated for an effect composed
of asingle-classification variable are the associated dummy variables.

Let m; be the number of dummies generated for thej-th classification variable.
Suppose there are two classification variables A and B with dummies

AL Ay Ay
and
B, By,..., By,

The regressors generated for an effect composed of two classification variables A
and B are

AOB=(A,A,...,A,)O(B,B,,.... By )

=(AB,AB,,..., ABy,  ABLAB,, .,

ABris An Bl ALBS - Ay By)

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the
Kronecker products of variables, where the order of the variablesis specified in

i ndi ces_ef f ect s. Consider a data matrix containing classification variablesin
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four
columns A, B, X;, and X,. The regressors generated by the effect indices (0, 1, 2,
2,3)ae A B O XX X,.

Remarks

Let the data matrix x = (A, B, X|), where A and B are classification variables and
X, isacontinuous variable. The model containing the effects A, B, AB, X,

AX;, BX;, and ABX; is specified as follows (use optional keyword

| MSLS_| NDI CES_EFFECTS):

n_class =2
n_continuous =1
n_effects =7
n_var_effects=(1,1,2122,3)
indices effects=(0,1,0,1,20,2,1,20,1,2)

For this model, suppose that variable A hastwo levels, A, and A,, and that
variable B hasthree levels, B, B,, and B;. For each dummy_net hod option, the
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regressorsin their order of appearancein r egr essor s are given below.

dunmy_net hod regressors

! NBLS—ALL Al ’ A21 Bl ’ BZ! BS! Al Bl ’ Al BZ! Al B31 AZBl ’ A2821
A2831 Xl ’ Al Xl ’ A2X1 ’ Bl Xl ’ BZX1 ’ BSX1 ’ Al Bl Xl ’
ABXp, AB X, ABi X, ABy X, AByX

| MSLS_LEAVE_OUT_LAST AL B, By, AB,, AB,, X, A X, B X, BX,
ABI X, AByX

|VBLS_SUMLTO.ZERO 1 A -~ Ay, By ~ By, B, ~ B;, (A ~A) (B - By),
(A -A) (B, - B3), X (A=A X,

(Bi = By)Xi, (B = By)Xi, (A - A) (B —By)X,
(A -A) (B - B3)X1

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, next most rapidly for the next to last classification variable, etc.

By default,i nsl s_f _regressors_for_gl minternally generates values for
n_effects,n_var_effects,andi ndi ces_ef f ects, which correspond to a
first order model with NEF =n_cont i nuous + n_cl ass. The variablesthen are
used to create the regressor variables. The effects are ordered such that the first
effect corresponds to the first column of x, the second effect corresponds to the
second column of x, etc. A second order model corresponding to the columns
(variables) of x isgenerated if | MSLS MODEL_ORDERwith nodel _order =2is
specified.

There are
NVAR
NEF = n_class + 2[h_conti nuous + 2

effects, where NVAR =n_conti nuous +n_cl ass. Thefirst NVAR effects
correspond to the columns of x, such that the first effect corresponds to the first
column of x, the second effect corresponds to the second column of x, ..., the
NV AR-th effect corresponds to the NVAR-th column of x (i.e. x[NVAR - 1]).
Thenext n_cont i nuous effects correspond to squares of the continuous
variables. The last

()

effects correspond to the two-variable interactions.

. Let the data matrix x = (A, B, X;), where A and B are classification
variables and X, is a continuous variable. The effects generated and
order of appearanceis
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AB,X;,XZ,AB, AX,,BX,;

. Let the data matrix x = (A, X;, X,), where A is aclassification variable
and X; and X, are continuous variables. The effects generated and order
of appearanceis

A X1, X5, X2 X2 AXy, AX 5, X1 X,

. Let the data matrix x = (X;, A, X,) (see| MBLS_CLASS_COLUWNS),
where A isaclassification variable and X; and X, are continuous
variables. The effects generated and order of appearanceis

X1, A X5, X2, X2 X, A X Xy, AX,

Higher-order and more complicated models can be specified using
| MSLS_| NDI CES_EFFECTS.

Examples

Example 1

In the following example, there are two classification variables, A and B, with two
and three values, respectively. Regressors for a one-way model (the default model
order) are generated using the I MSLS_ALL dummy method (the default dummy
method). The five regressors generated are A, A, B;, B,, and B;.

#i ncl ude <insls. h>
void main() {
int n_observations = 6;
int n_class = 2;
int n_cont = 0;
int n_regressors;
float x[12] = {

10.0, 5.0,
20.0, 15.0,
20.0, 10.0,
10.0, 10.0,
10.0, 15.0,
20.0, 5.0};
n_regressors = insls_f _regressors_for_gl m(n_observations, x,

n_class, n_cont, 0);

printf("Nunber of regressors = 9%3d\n", n_regressors);

Output
Nunmber of regressors = 5
Example 2

In this example, atwo-way analysis of covariance model containing all the
interaction termsisfit. First,i msl s_f _regressors_for_gl miscaledto
produce a matrix of regressors, r egr essor s, from the datax. Then,
regressors isused astheinput matrix intoi nsl s_f _regr essi on to produce
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#i ncl ude <i sl s.
void main() {

the final fit. The regressors, generated using
dunmmy_net hod =1 MBLS_LEAVE_QUT_LAST, are the model whose mean
functionis

W+ By + Y + O+ (g + M + 8%

iXii i=1,2j=123
whered, =B =Yy =Y =Y53=0,=N3=65 =0, =65 =0.

h>

#def i ne N_OBSERVATI ONS 18

int n_class

= 2;

int n_cont
float anova[ 15],

1;

*reg;

int n_regressors;

float x[5

NN ERERRREREE e
— 0000000000000 000

4] =

QUOWNNNREROWONNNE R
NOOOOO0O00O0000000000
onvpwnvronronRreNPEoNE

)

0
S,
0
0

W W N

t
1.
3.
2

int cla

SEEN
Co ol
Noo

o 010

—— -

int

int n_var_effects[7]
i ndi ces_effects[12]

int
fl oat
char

char

n

"Delta",

ss_cC I [
_effects

n=

={1, 1, 2,1, 2, 2, 3}
= 1 1

o1 1
{0, 1, 0, 1, 2, 0, 2,

*reg_| abel s[] {
", "Al phal", "Betal", "Beta2",
"Zetal", "Etal", "Eta2",
*| abel s[]

1, 2, 0, 1, 2}

*coef ;

"Gamall",
"Thetall",

"Ganmal2",
"Thet al2"};

"degrees of freedom for the nodel",
"degrees of freedomfor error",

"total

(corrected) degrees of freedont,

"sum of squares for the nodel",
"sum of squares for error”,

"total
"nodel
"F-statistic",

(corrected) sum of squares"”,
nean square", “error nmean square",
"p-val ue",

"R-squared (in percent)","adjusted R-squared (in percent)",

"est.
"overal |

standard devi ati on of the nodel
mean of y",

error",
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"coefficient of variation (in percent)"};

n_regressors = insls_f _regressors_for_gl m(N_OBSERVATI ONS, x
n_class, n_cont,
I MSLS X CLASS COLUWNS, class_col
| MSLS_DUMWY, | MSLS LEAVE OUT LAST,
I MSLS | NDI CES_EFFECTS, n_effects, n_var_effects, indices_effects,
| MSLS_REGRESSORS, &regressors,
0);

printf("Nunber of regressors = %3d", n_regressors);

imsls f wite _matrix ("regressors”, N OBSERVATIONS, n_regressors
regressors,

| MSLS_COL_LABELS, reg_| abels,

0);
coef = insls_f_regression (N_OBSERVATIONS, n_regressors, regressors

| MBLS_ANOVA TABLE USER, anova,

0);
imsls f wite _matrix ("* * * Analysis of Variance * * *\n", 15, 1
anova,
| MSLS_ROW LABELS, | abel s,
| MSLS WRI TE_FORVMAT, "9%d1.4f",
0);
}
Output
Nunmber of regressors = 11
regressors
Al phal Bet al Bet a2 Gamuall Gammal2 Delta
1 1.00 1.00 0.00 1.00 0.00 1.11
2 1.00 1.00 0.00 1.00 0.00 2.22
3 1.00 1.00 0.00 1.00 0.00 3.33
4 1.00 0.00 1.00 0.00 1.00 1.11
5 1.00 0.00 1.00 0.00 1.00 2.22
6 1.00 0.00 1.00 0.00 1.00 3.33
7 1.00 0.00 0.00 0.00 0.00 1.11
8 1.00 0.00 0.00 0.00 0.00 2.22
9 1.00 0.00 0.00 0.00 0.00 3.33
10 0.00 1.00 0.00 0.00 0.00 1.11
11 0.00 1.00 0.00 0.00 0.00 2.22
12 0.00 1.00 0.00 0.00 0.00 3.33
13 0.00 0.00 1.00 0.00 0.00 1.11
14 0.00 0.00 1.00 0.00 0.00 2.22
15 0.00 0.00 1.00 0.00 0.00 3.33
16 0.00 0.00 0.00 0.00 0.00 1.11
17 0.00 0.00 0.00 0.00 0.00 2.22
18 0.00 0.00 0.00 0.00 0.00 3.33
Zetal Et al Et a2 Thet all Thet al2
1 1.11 1.11 0.00 1.11 0. 00
2 2.22 2.22 0.00 2.22 0.00
3 3.33 3.33 0.00 3.33 0.00
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4 1.11 0. 00 1.11 0. 00 1.11
5 2.22 0. 00 2.22 0. 00 2.22
6 3.33 0. 00 3.33 0. 00 3.33
7 1.11 0. 00 0. 00 0. 00 0. 00
8 2.22 0. 00 0. 00 0. 00 0. 00
9 3.33 0. 00 0. 00 0. 00 0. 00
10 0. 00 1.11 0. 00 0. 00 0. 00
11 0. 00 2.22 0. 00 0. 00 0. 00
12 0. 00 3.33 0. 00 0. 00 0. 00
13 0. 00 0. 00 1.11 0. 00 0. 00
14 0. 00 0. 00 2.22 0. 00 0. 00
15 0. 00 0. 00 3.33 0. 00 0. 00
16 0. 00 0. 00 0. 00 0. 00 0. 00
17 0. 00 0. 00 0. 00 0. 00 0. 00
18 0. 00 0. 00 0. 00 0. 00 0. 00
* * * Analysis of Variance * * *

degrees of freedom for the nodel 11. 0000

degrees of freedomfor error 6. 0000

total (corrected) degrees of freedom 17. 0000

sum of squares for the nodel 43. 9028

sum of squares for error 0. 8333

total (corrected) sum of squares 44,7361

nodel nean square 3.9912

error nean square 0.1389
F-statistic 28. 7364

p- val ue 0. 0003
R-squared (in percent) 98. 1372

adj usted R-squared (in percent) 94,7221

est. standard deviation of the nodel error 0. 3727

overall nmean of y 3.9722

coefficient of variation (in percent) 9. 3821

regression

Fits amultivariate linear regression model using least squares.

Synopsis
#include <i nsl's. h>

float *i nsl s_f _regression (int n_rows, int n_i ndependent, float x[],
float y[], ..., 0)

The type double function isi nsl s_d_r egr essi on.

Required Arguments

int n_rows (Input)
Number of rowsinx.

int n_i ndependent (Input)
Number of independent (explanatory) variables.
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float x[] (Input)
Array of sizen_r ows X n_i ndependent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th
independent variable.

float y[] (Input)
Array of sizen_r ows X n_i ndependent containing the dependent
(response) variables(s). The i-th column of y contains the i-th dependent
variable.

Return Value

If the optional argument | MSLS_NO | NTERCEPT isnot used, r egr essi on
returns a pointer to an array of length n_dependent x (n_i ndependent + 1)
containing aleast-squares solution for the regression coefficients. The estimated
intercept isthe initial component of each row, where thei-th row contains the
regression coefficients for the i-th dependent variable.

Synopsis with Optional Arguments

#include <i nsls. h>

float *insls_f_regresssion (int n_rows, int n_i ndependent,

float x[], float y[],

IMSLS X COL_DIM int x_col _dim

IMSLS Y_COL_DIM int y_col _dim

| MSLS_DEPENDENT, int n_dependent,

I MSLS_X_I NDI CES, int i ndind[], int i nddep[], int ifrq,
intiw,

I MSLS_| DO, int i do,

| MSLS_ROWS_ADD, or

| MBLS ROAS_DELETE,

| MSLS_| NTERCEPT, or

| MSLS_NO_| NTERCEPT,

| MSLS TOLERANCE, float t ol er ance,

I MSLS_RANK, int *rank,

| MSLS COEF_COVARI ANCES, float **coef covari ances,

| MSLS_CCEF_COVARI ANCES_USER, float coef covariances[],

IMSLS COV_COL_DIM int cov_col _dim

I MSLS_X_MEAN, float **x_nean,

| MSLS X MEAN USER, float x_nean[],

| MSLS_RESI DUAL, float **resi dual ,

| MSLS RESI DUAL_USER, float residual[],

| MBLS_ANOVA TABLE, float **anova_t abl e,

| MSLS ANOVA TABLE USER, float anova_table[],

| MSLS_FREQUENCI ES, float frequencies[],

| MSLS WEI GHTS, float wei ghts[],

| MSLS_REGRESSI ON_| NFQ,
Imsls f regression **r egressi on_i nf o,
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| MSLS RETURN_USER, float coefficients[],
0)

Optional Arguments

IMSLS X _COL_DI'M int x_col _di m (Input)

Column dimension of x.
Default: x_col _di m=n_i ndependent

IMSLS Y_COL_DIM int y_col _di m (Input)

Column dimension of y.
Default: y_col _di m=n_dependent

| MSLS_N_DEPENDENT, int n_dependent (Input)

Number of dependent variables. Input matrix y must be declared of size
n_observati ons by n_dependent , where columni of y containsthe
i-th dependent variable.

Default: n_dependent =1

I MSLS_X_I NDI CES, int indind[], int i nddep, int ifrg, int iw (Input)

This argument allows an aternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the
data matrix x. Argument y, and keywords | MSLS_FREQUENCI ES and

| MBLS_WEI GHTS areignored.

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0...x_col _di m—1.

Parameter i ndi nd contains the indices of the independent variables..
Parameter i nddep contains the indices of the dependent variables.

Parametersi f rg and i wt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Seti f r g = —1if there
will be no column for frequencies. Seti wt = -1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Note that required input argument y is not referenced, and can be
declared a vector of length 1.

IMBL S IDQ, int i do (Input)

Processing option.

ido Action
0 Thisisthe only invocation; all the data are input at once. (Default)
1 Thisisthefirst invocation with this data; additional callswill be

made. Initialization and updating for the n_r ows observations of x
will be performed.
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ido Action

2 Thisis an intermediate invocation; updating for then_r ows
observations of x will be performed.

3 Thisisthe final invocation of thisfunction. Updating for the datain
x and wrap-up computations are performed. Workspace is released.
No further call to r egr essi on withi do greater than 1 should be
made without first callingr egr essi on withi do =1

Default: i do =0

| MBLS_ROWS_ADD, or

| MSLS_ROWS_DELETE
By default (or if | MSLS_ROWS_ADD is specified), the observationsin x
are added to the discriminant statistics. If | MBLS_ROANS_DELETE s
specified, then the observations are deleted.

If i do =0, these optional arguments are ignored (datais always added if
thereis only one invocation).

| MSLS_| NTERCEPT, or

| MBLS_NO_| NTERCEPT
I MSLS_| NTERCEPT isthe default where the fitted value for observation
iis

Bo * B+ ...+ BiXi

wherek = n_independent. If | MBLS_NO_| NTERCEPT is specified, the intercept

term
(£s)

is omitted from the model and the return value from regressionisa
pointer to an array of length n_dependent x n_i ndependent .

| MBLS_TOLERANCE, float t ol erance (Input)
Tolerance used in determining linear dependence. For r egr essi on,
tol erance =100 x i sl s_f _machi ne(4) isthe default choice. For
i msl s_d_regression,tol erance =100 X i nmsl s_d_nachi ne(4) is
the default. (Seei nsl s_f _machi ne Chapter 14.)

I MBLS_RANK, int *rank (Output)
Rank of the fitted model isreturned in *r ank.

| MSLS_COEF_COVARI ANCES, float **coef _covari ances (Output)
Address of apointer to the n_dependent x mx minternally allocated
array containing the estimated variances and covariances of the
estimated regression coefficients. Here, mis the number of regression
coefficientsin the model. If | MSLS_NO | NTERCEPT is specified,
n=n_i ndependent ; otherwise, n =n_i ndependent + 1.
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The first m x m elements contain the matrix for the first dependent
variable, the next m x m elements contain the matrix for the next
dependent variable, ... and so on.

| MBLS_CCEF_COVARI ANCES_USER, float coef _covariances[] (Output)
Storage for arrays coef _covari ances is provided by the user.
See| MSLS_COEF_COVARI ANCES.

| MSLS_COV_COL_DI' M int cov_col _di m (Input)
Column dimension of array coef _covari ances.
Default: cov_col _di m=m, where misthe number of regression
coefficients in the model

| MSLS_X_MEAN, float **x_mean (Output)
Address of a pointer to the internally allocated array containing the
estimated means of the independent variables.

| MBLS_X_MEAN_USER, float x_nean[] (Output)
Storage for array x_nean is provided by the user.
Seel MSLS_X_MEAN.

| MSLS_RESI DUAL, float **resi dual (Output)
Address of a pointer to the internally allocated array containing the
residuals. Residuals may not be requested if i do > 0.

| MBLS_RESI DUAL_USER, float residual [] (Output)
Storage for array residual is provided by the user.
See | MSLS_RESI DUAL.

| MBLS_ANOVA_TABLE, float **anova_tabl e (Output)
Address of a pointer to the internally allocated array of size
15 x n_dependent containing the analysis of variance table for each
dependent variable. The i-th column corresponds to the analysis for the
i-th dependent variable.
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The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom
3 sum of sguares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 €rror mean sguare

8 overall F-statistic

9 p-value

10 R’ (in percent)

11 adjusted R (in percent)

12 estimate of the standard deviation
13 overall mean of y

14 coefficient of variation (in percent)

The anova statistics may not be requested if i do > 0.

| MSLS_ANOVA TABLE_USER, float anova_tabl e[] (Output)
Storage for array anova_t abl e is provided by the user.
See| MSLS_ANOVA TABLE.

| MBLS_FREQUENCI ES, float frequencies[] (Input)
Array of lengthn_obser vat i ons containing the frequency for each
observation.
Default: f requenci es[] =1

| MBLS_WEI GHTS, float wei ghts[] (Input)
Array of lengthn_obser vat i ons containing the weight for each
observation.
Default: wei ght s[] =1
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| MSLS_REGRESSI ON_I NFO, Imdls f regression **regression_info
(Output)
Address of the pointer to an internally allocated structure of type
Imsls_f_regression containing information about the regression fit. This
structure is required as input for functions
imsl s_f_regression_predictionandinsls_f_regressi on_summary.

I MSBLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficientsis
stored in array coefficients provided by the user. If
| MBLS_NO_| NTERCEPT is specified, the array requires
n_dependent x n units of memory, wheren = n_i ndependent ;
otherwise, n = n_i ndependent + 1.

Description

Functioni sl s_f _regressi on fitsamultivariate multiple linear regression
model with or without an intercept. The multiple linear regression model is

Yi=Bo+BiXa +BoXp .o +BpX +E; =12 ..,n

where the observed values of they,’s are the responses or values of the dependent
variable; thex,’s, X;’s, ..., X;'s are the settings of ¢k (input in

n_i ndependent ) independent variablef, B, ..., B, are the regression
coefficients whose estimated values are to be outputidl s_f _r egr essi on;

and theg;'s are independently distributed normal errors each with mean 0 and
variances’. Here n is the sum of the frequencies for all nonmissing observations,
ie.,

wheref; is equal ® f r equenci es]i] if optional argumehl MSLS_FREQUENCI ES
is specified and equal to 1.0 otherwise. Note that by defiull included in the
model.

More generallyj msl s_f _r egr essi on fits a multivariate regression modgke
the chapter introduction for a description of the multivariate mode

Functimi nmsl s_f _r egr essi on computes estimates of the regression
coefficients by minimizing the sum of squares of the deviations of the observed
responey; from the fitted response

Y
for then observations. This minimum sum of squares (the error sum of squares) is

output as one of the analysis of variance statidtics8LS_ANOVA_TABLE (or
| MSLS_ANOVA_TABLE_USER) is specified and is computed as follows:

SSE=iWi(yi-9a)2

1=1
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Another analysis of variance statistic isthe total sum of squares. By default, the
total sum of squares isthe sum of sguares of the deviations of y; from its mean

y

the so-called corrected total sum of squares. This statistic is computed as follows:
n
~\2
SSE=) wi(y - %)
When | MSLS_NO | NTERCEPT is specified, the total sum of squaresis the sum of

sguares of y;, the so-called uncorrected total sum of squares. Thisis computed as
follows:

SST:;Wiin

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, i nsl s_f _r egr essi on performsan
orthogonal reduction of the matrix of regressors to upper-triangular form. The
reduction is based on one pass through the rows of the augmented matrix (X, y)

using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156-162;
Gentleman 1974.) This method has the advantage that the loss of accuracy
resulting from forming the crossproduct matrix used in the normal equations is
avoided.

By default, the current means of the dependent and independent variables are
used to internally center the data for improved accuracyk; lbet a column

vector containing thith row of data for the independent variables..et

represent the mean vector for the independent variables given the data for rows 1,

2, ...,1. The current mean vector is defined as follows:
i
w; fix;
- _ J=1
X =7
w; f

1=1

where thew;’s and thef;’'s are the weights and frequencies. Tie row of data
has

X

subtracted from it and is multiplied by

Wifii
&
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where

i
a :lejfj
]:

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formulafor the sum of squares and
crossproducts matrix:

n
S w06 %)~ %) =Y S i -%)(x - %)
1=1 1=2 &1

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column
of the estimated covariance matrix of the estimated coefficients are updated (if

| MSLS_CCEF_COVARI ANCES or | MSLS_COEF_COVARI ANCES_USERIis
specified) to reflect the statistics for the original (uncentered) data. This means
that the estimate of the intercept is for the uncentered data.

As part of the final computations, i nsl s_f _r egr essi on checksfor linearly
dependent regressors. In particular, linear dependence of the regressorsis
declared if any of the following three conditions are satisfied:

. A regressor equals 0.
. Two or more regressors are constant.

\/1_ RZEL,Z ..... i-1

islessthan or equal to t ol er ance. Here,
RD,Z ,,,,, i-1

isthe multiple correlation coefficient of the i-th independent variable

with thefirsti — 1 independent variables. If no intercept is in the model,
the multiple correlation coefficient is computed without adjusting for the
mean.

On completion of the final computations, if thén regressor is declared to be
linearly dependent upon the previdus1 regressors, theth coefficient estimate
and all elements in thieth row and-th column of the estimated variance-
covariance matrix of the estimated coefficient$ KELS_COEF_COVARI ANCES
or | MBLS_CCEF_COVARI ANCES_USER is specified) are set to 0. Finally, if a
linear dependence is declared, an informational (error) message, code

I MSLS_RANK_DEFI CI ENT, is issued indicating the model is not full rank.

Examples

Example 1

A regression model
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Vi =Bo *+ BiXi + BoX + BaXiz + & i=1,2..9
is fitted to data taken from Maindonald (1984, pp. 203-204).

#i ncl ude <insls. h>

#def i ne | NTERCEPT 1
#def i ne N_I NDEPENDENT 3
#defi ne N_COEFFI CI ENTS (
#defi ne N_OBSERVATIONS 9

| NTERCEPT + N_| NDEPENDENT)

mai n()
fl oat *coefficients;
f1 oat x[ ][ N_I NDEPENDENT] = {7.0, 5.0, 6.0,
2.0,-1.0, 6.0,
7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0};
fl oat y[]l] ={7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

coefficients = insls_f_regressi on(N_OBSERVATI ONS, N_| NDEPENDENT,
(float *)x, y, 0);
insls f wite _matrix("Least-Squares Coefficients", 1, N _COEFFI ClI ENTS,
coefficients,
| MBLS_COL_NUMBER ZERO,

0);
}
Output
Least - Squares Coefficients
0 1 2 3
7.733 -0. 200 2.333 -1.667
Example 2

A weighted least-squares fit is computed using the model
Yi=Bo+Bixy +BxptEi=1,2,..,4
and weights /I” discussed by Maindonald (1984, pp—68).

In the examplel, MSLS_WEI GHTS is specified. The minimum sum of squares for
error in terms of the original untransformed regressors and responses for this
weighted regression is
4
SE= ZWi(Yi ‘)7i)2
1=1

wherew; = 147, represented in the C code as amay
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#i ncl ude <insls. h>
#i ncl ude <math. h>

#def i ne N_I NDEPENDENT 2

#defi ne N_COEFFI CI ENTS N_| NDEPENDENT + 1
#define N _OBSERVATIONS 4

mai n()

i nt i

fl oat *coefficients, w N OBSERVATI ONS], anova_tabl e[ 15],

power ;
fl oat X[TIN_I

NDEPENDENT] = {

oo

0,
: 0};
f1 oat y[] ={-3.0, 1.0, 2.0, 6.0};
char *anova_row | abel s[] = {

~NN RN
cooo
wuaNno

"degrees of freedomfor regression”,

"degrees of freedomfor error"”,

"total (uncorrected) degrees of freedont,

"sum of squares for regression",
"sum of squares for error",

"total (uncorrected) sum of squares",

"regression mean square",

"error nean square", "F-statistic",
"p-value", "R-squared (in percent)",

"adj usted R-squared (in percent)",
"est. standard devi ati on of nodel
"overall nean of y",

"coefficient of variation (in percent)"};

/* Cal cul ate weights */

power = 0.0;

for (i =0; i < N.OBSERVATIONS; i++) {
power += 1.0;
wi] = 1.0 / (power*power);

/*Perform anal ysis */
coefficients = insls_f_regressi on( N OBSERVATI ONS,
(float *) x, vy,
| MSLS VEI GHTS, w,
| MSLS _ANOVA TABLE USER, anova_t abl e,
0);

/* Print results */

imsls_f_wite_matrix("Least Squares Coefficients",

N_COEFFI CI ENTS, coefficients, 0);

inmsls f wite matrix("* * * Analysis of Variance * * *\n",

anova_t abl e,

| MSLS ROW LABELS, anova_row | abel s,
| MSLS WRI TE_FORMAT, "9%40.2f",

0);

N_I NDEPENDENT,

15, 1,
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Output

Least Squares Coefficients
1 2 3
-1.431 0. 658 0. 748

* * * Anal ysis of Variance * * *

degrees of freedom for regression
degrees of freedomfor error

total (uncorrected) degrees of freedom
sum of squares for regression

sum of squares for error

total (uncorrected) sum of squares
regressi on nean square

error mean square

F-statistic

p- val ue

R-squared (in percent)

adj usted R-squared (in percent)

est. standard devi ation of nodel error
overall mean of y

coefficient of variation (in percent)

.
o' o®
ORPPOOOWREWORENWEN
\l
©

Example 3

A multivariate regression is performed for a data set with two dependent
variables. Also, usage of the keyword | MSLS_X_| NDI CES is demonstrated. Note
that the required input variable y is not referenced and is declared as a pointer to
afloat.

#i ncl ude <insls. h>

#defi ne | NTERCEPT 1
#define N_| NDEPENDENT 3
#defi ne N_DEPENDENT 2
#defi ne N_COEFFI Cl ENTS (I NTERCEPT + N_| NDEPENDENT)
#define N_OBSERVATIONS 9

mai n()

float coefficients[ N DEPENDENT* N_COEFFI Cl ENTS] ;
float *dummy;

float scpe[ N DEPENDENT* N_DEPENDENT] ;

float anova_tabl e[ 15* N_DEPENDENT] ;

static float x[] = { 7.0, 5.0, 6.0, 7.0, 1.0,
2.0,-1.0, 6.0, -5.0, 4.0,
7.0, 3.0, 5.0, 6.0, 10.0,
-3.0, 1.0, 4.0, 5.0, 5.0,
2.0,-1.0, 0.0, 5.0, -2.0,
2.0, 1.0, 7.0, -2.0, 4.0,
-3.0,-1.0, 3.0, 0.0, -6.0,
2.0, 1.0, 1.0, 8.0, 2.0,
2.0, 1.0, 4.0, 3.0, 0.0};
i nt ifrg =-1, iw=-1;
static int indind N_I NDEPENDENT] = {0, 1, 2};
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static int inddep[ N.DEPENDENT] = {3, 4};
char *frt = "940. 4f";
char *anova_row | abel s[] = {

"d.f. regression",

"d.f. error",

"d.f. total (uncorrected)",

"ssr",

"sse",

"sst (uncorrected)",

“msr",

"mse", "F-statistic",

"p-value", "R-squared (in percent)",

"adj. R-squared (in percent)",

"est. s.t.d. of nodel error",

"overall nean of y",

"coefficient of variation (in percent)"};

imsl s_f_regressi on(N_OBSERVATI ONS, N_| NDEPENDENT,

(float *) x, dummy,

| MSLS X _COL_DIM N_I NDEPENDENT+N_DEPENDENT,
| MVSLS_N_DEPENDENT, N_DEPENDENT,

I MSLS X I NDI CES, indind, inddep, ifrq, iw,
| MSLS_SCPE_USER, scpe,

| MSLS _ANOVA TABLE USER, anova_t abl e,

| MSLS RETURN USER, coefficients,

0);

insls f wite matrix("Least Squares Coefficients", N _DEPENDENT,
N_COEFFI CI ENTS, coefficients,
| MSLS_COL_NUMBER ZERO, 0);

inmsls f wite _matrix("SCPE', N DEPENDENT, N _DEPENDENT, scpe,
| MSLS_WRI TE_FORMAT, "94.0.4f", 0);

inmsls f wite matrix("* * * Analysis of Variance * * *\n",
15, N_DEPENDENT,
anova_t abl e,
| MSLS ROW LABELS, anova_row | abel s,
| MSLS WRI TE_FORMAT, "9%40.2f",

0);
}
Output
Least Squares Coefficients
0 1 2 3
1 7.733 -0. 200 2.333 -1.667
2 -1.633 0. 400 0. 167 0. 667
SCPE
1 2
1 4. 0000 20. 0000
2 20. 0000 110. 0000
* * * Analysis of Variance * * *
1 2
d.f. regression 3.00 3.00
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d.f. error

d.f. total (uncorre
cted)

ssr

sse

sst (uncorrected)

nsr

nse

F-statistic

p- val ue

R-squared (in
percent)

adj. R-squared
(in percent)

est. s.t.d. of
nodel error

overall nmean of y

coefficient of
variation (in
percent)

152.

Warning Errors

| MSLS_RANK_DEFI Cl ENT

Fatal Errors

| MSLS_BAD | DO 6

| MSLS_BAD | DO 7

234.

The model is not full rank. Thereis not a
unique least-squares solution.

“ido” = #. Initial allocations must be
performed by making a call to function
regression with “ido” = 1.

“ido” = #. A new analysis may not begin
until the previous analysis is terminated by
a call to function regression with “ido” = 3.

regression_summary

Produces summary statistics for a regression model given the information from

the fit.

Synopsis

#include <i nsls. h>

void i nsl s_f_regressi on_sunmmary
(Imsls f regression *r egressi on_i nfo, ..., 0)

The type double function isrsl s_d_r egr essi on_sunmary.
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Required Argument

Imds f regression *regression_i nfo (Input)

Pointer to a structure of type Imdls f regression containing information
about the regression fit. Seei nsl s_f _regression.

Synopsis with Optional Arguments

#include <i sl s. h>

void i msls_f _regressi on_summary

(Imdls f regression *r egr essi on_i nf o,

| MBLS_| NDEX_REGRESSI ON, int i dep,

| MSLS CCEF_T_TESTS, float **coef t tests

| MSLS COEF T TESTS USER, float coef t tests[],

| MBLS_COEF_COL_DI' M int coef col _di m

| MBLS_COEF_VIF, float **coef vif,

| MBLS_COEF_VI F_USER, float coef vif[],

| MSLS COEF_COVARI ANCES, float **coef covari ances,
| MSLS_CCEF_COVARI ANCES_USER, float coef covariances[],
I MSLS COEF _COV_COL_DI'M int coef _cov_col _dim

| MBLS_ANOVA TABLE, float **anova_t abl e,

| MSLS ANOVA TABLE USER, float anova_table[],

0)

Optional Arguments
| MSLS_| NDEX_REGRESSI ON, int i dep (Input)

Given amultivariate regression fit, this option allows the user to specify
for which regression summary statistics will be computed.
Default:i dep =0

I MBLS CCEF T_TESTS, float **coef t_tests (Output)

Address of a pointer to the npar x 4 array containing statistics relating
to the regression coefficients, where npar is equal to the number of
parameters in the model.

Each row (for each dependent variable) corresponds to a coefficient in

the model, where npar is the number of parametersin the model. Row

i + intcep corresponds to the i-th independent variable, whereintcep is
equal to 1if anintercept isin the model and O otherwise, fori =0, 1, 2,
..., npar — 1.
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The statistics in the columns are as follows:

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient estimate
2 t-statistic for the test that the coefficient isO

3 p-value for the two-sided t test

| MSLS_COEF_T_TESTS_USER, float coef t_tests[] (Output)
Storage for array coef _t _t est s isprovided by the user.
See | MBLS_COEF_T_TESTS.

| MBLS_CCEF_COL_DI M int coef _col _di m (Input)
Column dimension of coef _t _tests.
Default: coef _col _di m=4

| MBLS_CCEF_VIF, float **coef _vif (Output)
Address of a pointer to an internally alocated array of length npar
containing the variance inflation factor, where npar is the number of
parameters. Thei + intcep-th column corresponds to the i-th independent
variable, wherei =0, 1, 2, ..., npar — 1, andntcep is equal to 1 if an
intercept is in the model and O otherwise.

The square of the multiple correlation coefficient forittie regressor
after all others can be obtained frewmef _vi f by

3 10
coef _vi f[i]

If there is no intercept, or there is an interceptjand®, the multiple
correlation coefficient is not adjusted for the mean.

| MBLS_COEF_VI F_USER, float coef vif[] (Output)
Storage for arragoef _t _tests is provided by the user.
Seel MSLS_COEF VI F.

| MSBLS_COEF_COVARI ANCES, float **coef covari ances (Output)
An npar by npar (wherenpar is equal to the number of parameters in the
model) array that is the estimated variance-covariance matrix of the
estimated regression coefficients wiieis nonsingular and is from an
unrestricted regression flbee “Remarks” on page &@r an explanation
of coef _covari ances whenR s singular and is from a restricted
regression fit.

| MSBLS_COEF_COVARI ANCES_USER, float coef covariances[] (Output)
Storage for coef_covariances is provided by the user.
Seel MSLS_COEF_COVARI ANCES.

Chapter 2: Regression regression_summary ¢ 79



| MSLS_COEF_COV_COL_DI' M int coef _cov_col _di m (Input)

| MBLS_ANOVA_TABLE_USER, float anova_t abl e[]

Column dimension of coef _covari ances.

Default: coef _cov_col _di m=the number of parametersin the model

| MSLS_ANOVA_TABLE, float **anova_t abl e (Output)
Address of a pointer to the array of size 15 containing the analysis of

variance table.

Row Analysis of Variance Statistic
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of sguares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 €rror mean sguare
8 overall F-statistic
9 p-value
10 R’(in percent)
n adjusted R’ (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

If the model has an intercept, the regression and total are corrected for
the mean; otherwise, the regression and total are not corrected for the
mean, and anova_t abl e[13] and anova_t abl e[14] are set to NaN.

(Output)

Storage for array anova_t abl e is provided by the user.

See| MSLS_ANOVA _TABLE.
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Description

Functioni nmsl s_f _regressi on_summary computes summary statistics from a
fitted general linear model. The model isy = X3 + €, wherey isthe n x 1 vector
of responses, X isthe n x p matrix of regressors, 3 isthe p x 1 vector of
regression coefficients, and € isthe n x 1 vector of errors whose elements are
each independently distributed with mean 0 and variance o”. Function

r egr essi on can be used to compute the fit of the model. Next,

imsl s_f_regression_sumary usesthe results of thisfit to compute
summary statistics, including analysis of variance, sequential sum of squares, t
tests, and an estimated variance-covariance matrix of the estimated regression
coefficients.

Some generalizations of the general linear model are allowed. If the i-th element
of € has variance of

and the weightsw; are used in the fit of the model,

i msl s_f _regressi on_summary produces summary statistics from the
weighted |east-squares fit. More generally, if the variance-covariance matrix of €
iso”V,insl s_f_regressi on_sunmmary can be used to produce summary
statistics from the generalized |east-squares fit. Function r egr essi on can be
used to perform a generalized |east-squares fit, by regressingy” on X where

y =)y, X =(T") Xand T satisfies T'T= V.

The sequential sum of squares for the i-th regression parameter is given by

A2
(Re)
I
The regression sum of squares is given by the sum of the sequential sums of
squares. If anintercept isin the model, the regression sum of squaresis adjusted
for the mean, i.e.,

(R4

0
is not included in the sum.

The estimate of o” is s’ (stored in anova_t abl e[7]) that is computed as
SSE/DFE.

If Ris nonsingular, the estimated variance-covariance matrix of

~

B
(stored in coef _covari ances) is computed by SR (R™) T

If Rissingular, corresponding to rank(X) < p, ageneralized inverseis used. For a
matrix Gtobeag; (i =1, 2, 3, or 4) inverse of amatrix A, G must satisfy
conditionsj (for j < i) for the Moore-Penrose inverse but generally must fail
conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse
of Aareasfollows:
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1. AGA=A
2. GAG=G
3. AG is symmetric
4, GA is symmetric

In the case where Ris singular, the method for obtaining coef _covari ances
follows the discussion of Maindonald (1984, pp. 101-103). EZdde the diagonal
matrix with diagonal elements defined by the following:

lifr; #0

4i TVqifr =

Oifr; =0
Let G be the solution t&®G = Z obtained by settin(z:; theth ({i : r; = 0}) row of G
to 0. Argumentoef covari ances is set tos’GG . (Gis ag; inverse ofR,
represented by,

R93
the result

RY% R93T
is a symmetrig, inverse oR’R=XX. See Sallas and Lionti 1988.)

Note that argumentoef covari ances can be used only to get variances and
covariances of estimable functions of the regression coefficients, i.e.,
nonestimable functions (linear combinations of the regression coefficients not in
the space spanned by the nonzero rowR) ofiust not be used. See, for example,
Maindonald (1984, pp. 166-168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in
Column 1 ofcoef _t _t ests) are computed as square roots of the corresponding
diagonal entries inoef _covari ances.

For the case where an intercept is in the modelRpegqual to the matriR with

the first row and column deleted. Generally, the variance inflation factor (VIF)
for thei-th regression coefficient is computed as the product afttineliagonal
element oR" R and tha-th diagonal element of its computed inverse. If an
intercept is in the model, the VIF for those coefficients not corresponding to the
intercept uses the diagonal elementROR (see Maindonald 1984, p. 40).

Remarks

WhenRis nonsingular and comes from an unrestricted regression fit,

coef covari ances is the estimated variance-covariance matrix of the
estimated regression coefficients, an@f covari ances = (SSE/DFE) IRTR).
Otherwise, variances and covariances of estimable functions of the regression
coefficients can be obtained usingef covari ances, and

coef covari ances = (SSE/DFE) GDGT). Here,D is the diagonal matrix with
diagonal elements equal to O if the corresponding rovfsawé restrictions and
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with diagonal elements equal to 1 otherwise. Also, G isa particular generalized
inverse of R.
Example

#i ncl ude <insls. h>
mai n()

#defi ne | NTERCEPT 1

#def i ne N_I NDEPENDENT 4

#defi ne N_OBSERVATI ONS 13

#defi ne N_COEFFI Cl ENTS (I NTERCEPT + N_| NDEPENDENT)

#def i ne N_DEPENDENT 1
Imsls_f _regression *regression_info;
fl oat *anova_table, *coef t _tests, *coef vif,
*coefficients, *coef_covariances;
f1 oat x[1[ N_I NDEPENDENT] = {
7.0, 26.0, 6.0, 60.0,
1.0, 29.0, 15.0, 52.0,
11.0, 56.0, 8.0, 20.0,
11.0, 31.0, 8.0, 47.0,
7.0, 52.0, 6.0, 33.0,
11.0, 55.0, 9.0, 22.0,
3.0, 71.0, 17.0, 6.0,
1.0, 31.0, 22.0, 44.0,
2.0, 54.0, 18.0, 22.0,
21.0, 47.0, 4.0, 26.0,
1.0, 40.0, 23.0, 34.0,
11.0, 66.0, 9.0, 12.0,
10.0, 68.0, 8.0, 12.0};
f1 oat y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2
102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
char *anova_row | abel s[] = {

"degrees of freedomfor regression”,
"degrees of freedomfor error"”,

"total (uncorrected) degrees of freedont,
"sum of squares for regression”,

"sum of squares for error",

"total (uncorrected) sum of squares”
“regressi on nean square",

"error mean square", "F-statistic"
"p-value", "R-squared (in percent)",

"adj usted R-squared (in percent)",

"est. standard deviation of nodel error",
"overall nean of y",

"coefficient of variation (in percent)"};

/* Fit the regression nodel */
coefficients = insls_f_regressi on( N _OBSERVATI ONS, N_| NDEPENDENT,
(float *)x, vy,
| MSBLS_REGRESSI ON_I NFO, &r egression_i nfo,
0);

/* Generate sunmary statistics */
i msl s_f_regression_sumary (regression_info,
| MSLS _ANOVA TABLE, &anova_t abl e,
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| MSLS COEF_T_TESTS, &coef t tests,

| MSLS COEF_VI F, &coef vif,

| MSLS_COEF_COVARI ANCES, &coef covari ances
0);

/* Print results */
inmsls f wite matrix("* * * Analysis of Variance * * *\n", 15, 1
anova_t abl e,
| MSLS ROW LABELS, anova_row | abels
| MSBLS_WRI TE_FORMAT, "94.0.2f", 0);

insls f wite matrix("* * * Inference on Coefficients * * *\n",
N_COEFFI CI ENTS, 4, coef _t _tests,
| MSBLS WRI TE_FORMAT, "94.0.2f", 0);

inmsls f wite matrix("* * * Variance Inflation Factors * * *\n",
N_COEFFI CI ENTS, 1, coef _vif,
| MSBLS WRI TE_FORMAT, "94.0.2f", 0);

inmsls f wite matrix("* * * Variance-Covariance Matrix * * *\n",
N_COEFFI CI ENTS, N_COEFFI Cl ENTS,
coef _covari ances,
| MSBLS_WRI TE_FORMAT, "94.0.2f", 0);

}
Output
* * * Analysis of Variance * * *
degrees of freedom for regression 4.00
degrees of freedomfor error 8. 00
total (uncorrected) degrees of freedom 12. 00
sum of squares for regression 2667. 90
sum of squares for error 47. 86
total (uncorrected) sum of squares 2715.76
regressi on nmean square 666. 97
error nean square 5.98
F-statistic 111. 48
p- val ue 0. 00
R-squared (in percent) 98. 24
adj usted R-squared (in percent) 97. 36
est. standard devi ation of nodel error 2.45
overall nmean of y 95. 42
coefficient of variation (in percent) 2.56
* * * |Inference on Coefficients * * *

1 2 3 4
1 62.41 70. 07 0. 89 0. 40
2 1.55 0.74 2.08 0. 07
3 0.51 0.72 0.70 0.50
4 0.10 0.75 0.14 0.90
5 -0.14 0.71 -0.20 0.84

* * * Variance Inflation Factors * * *

1 10668. 53
2 38. 50
3 254. 42
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5

* * %

GO WNBE
'
a1
o
o]
o

46. 87
282.51

Vari ance- Covari ance Matrix * * *

2 3 4 5
-50.51 -50. 60 -51. 66 -49. 60
0.55 0.51 0.55 0.51
0.51 0.52 0. 53 0.51
0.55 0. 53 0.57 0.52
0.51 0.51 0.52 0.50

regression_prediction

Computes predicted values, confidence intervals, and diagnostics after fitting a
regression model.

Synopsis

#include <insls. h>

float *i nsl s_f _regressi on_prediction
(Imdls f regression*regressi on_i nfo, intn_predict, floatx[],
vy 0)

The type double function isi nsl s_d_r egr essi on_pr edi cti on.

Required Argument

Imds f regression *regression_i nfo (Input)
Pointer to a structure of type Imdls f regression containing information
about the regression fit. Seei nsl s_f _regression.
int n_predict (Input)
Number of rowsin x.
float x[] (Input)
Array of sizen_pr edi ct by the number of independent variables

containing the combinations of independent variables in each row for
which calculations are to be performed.

Return Value

Pointer to an internally allocated array of length n_pr edi ct containing the
predicted values.

Synopsis with Optional Arguments

#include <insls. h>

float *i msl s_f _regression_prediction
(Imdls f regression*regressi on_i nfo, int n_predict, floatx[],
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IMSLS X _ COL_DIM int x_col _dim

IMSLS Y _COL_DIM int y_col _dim

| MSLS_| NDEX_REGRESSI QN, int i dep,

I MSLS_X_I NDI CES, int i ndind[], int i nddep[], int ifrq,
intiw,

| MBLS_WEI GHTS, float wei ghts[],

| MSLS_CONFI DENCE, float confi dence,

| MBLS_SCHEFFE_CI, float **| ower |imit,
float **upper _linmit,

| MBLS_SCHEFFE_Cl _USER, float | ower limit[],
float upper _limt[],

| MBLS_PO NTW SE_Cl _POP_MEAN, float **| ower limit,
float **upper _linmit,

| MBLS_PO NTW SE_Cl _POP_MEAN_USER, float | ower limit[],
float upper _limt[],

| MSLS PO NTW SE_Cl _NEW SAMPLE, float **l ower limt,
float **upper _linmit,

| MSLS_PO NTW SE_CI _NEW SAWPLE_USER,
floatl ower _limit[], floatupper_limit[],

| MSLS_LEVERAGE, float **1 ever age,

| MSLS_LEVERAGE_USER, float | everage[],

| MBLS_RETURN_USER, float y_hat[],

I MSLS_Y, float y[],

| MSLS_RESI DUAL, float **resi dual ,

| MBLS_RESI DUAL_USER, float residual[],

| MSLS_STANDARDI ZED_RESI DUAL,
float ** st andar di zed_r esi dual ,

| MSLS_STANDARDI ZED_RESI DUAL_USER,
float st andar di zed_r esi dual [],

| MSLS_DELETED RESI DUAL, float **del et ed_r esi dual ,

| MSLS_DELETED RESI DUAL_USER, float del et ed_resi dual [],

| MSLS_COOKSD, float **cooksd,

| MSLS_COOKSD USER, float cooksd[],

| MSLS DFFI TS, float **dffits,

| MBLS_DFFI TS_USER, float dffits[],

0)

Optional Arguments

IMSLS X COL_DIM int x_col _di m (Input)
Number of columnsin x.
Default: x_col _di misequa to the number of independent variables,
which isinput from the structurer egr essi on_i nfo

IMSLS Y COL_DIM int y_col _dim (Input)
Number of columnsiny.
Default:y_col _dim=1
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| MBLS_| NDEX_REGRESSI ON, int i dep (Input)

Given amultivariate regression fit, this option allows the user to specify
for which regression statistics will be computed.
Default:i dep =0

I MSLS_X_I NDI CES, int indind[], int i nddep, int ifrg, int iw (Input)

This argument allows an aternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the
data matrix x. Argument y, and keywords | MSLS_FREQUENCI ES and

| MBLS_WEI GHTS areignored.

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0, ...,x_col _dim-1

Parameter i ndi nd contains the indices of the independent variables.

Parameter i nddep contains the indices of the dependent variables. If
thereis to be no dependent variable, this must be indicated by setting the
first element of the vector to —1.

Parametersi f rg and i wt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Seti fr g = —1if there
will be no column for frequencies. Seti wt = —1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Note that required input argument y is not referenced, and can be
declared a vector of length 1.

Note &l so, that frequencies are not referenced by function
regressi on_pr edi cti on, and isincluded here only for the sake of
keyword consistency.

Finally, notethat | MSLS_X_| NDI CES and | MSLS_Y are mutually
exclusive keywords, and may not be specified in the same call to
regressi on_prediction.

| MSLS_VEI GHTS, float wei ghts[] (Input)

Array of length n_pr edi ct containing the weight for each row of x.
The computed prediction interval uses SSE/(DFE* wei ght s[i]) for the
estimated variance of a future response.

Default: wei ght s[] =1

| MSLS_CONFI DENCE, float confidence (Input)

Confidence level for both two-sided interval estimates on the mean and
for two-sided prediction intervals, in percent. Argument conf i dence
must be in the range [0.0, 100.0). For one-sided intervals with
confidence level onecl , where 50.0 < onecl < 100.0, set

confi dence =100.0 — 2.0 (100.0 — onecl).

Default: conf i dence =95.0
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| MSBLS_SCHEFFE _CI, float **| ower _limit, float **upper _limit
(Output)
Array | ower _| i mi t isthe address of a pointer to an internally allocated
array of lengthn_pr edi ct containing the lower confidence limits of
Scheffé confidence intervals corresponding to the rows Afray
upper _Il i mi t is the address of a pointer to an internally allocated array
of lengthn_pr edi ct containing the upper confidence limits of Scheffé
confidence intervals corresponding to the rows.of

| MSBLS_SCHEFFE_Cl _USER, float I ower _linmit[], float upper _limt[]
(Output)
Storage for arraylsower _| i mi t andupper _|i nit is provided by the
user. Seé MSLS_SCHEFFE_Cl .

| MBLS_POI NTW SE_CI _POP_MEAN, float **l ower limit,
float **upper _linmt (Output)
Array |l ower _| i mi t is the address of a pointer to an internally allocated
array of lengtm_pr edi ct containing the lower-confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Arragper _| i mi t is the address of a
pointer to an internally allocated array of lengthpr edi ct containing
the upper-confidence limits of the confidence intervals for two-sided
interval estimates of the means, corresponding to the rows of

| MSLS_POI NTW SE_CI _POP_MEAN _USER, float | ower linit[],
float upper _linmit[] (Output)
Storage for arrayisower _| i mi t andupper _| i nit is provided by the
user. Seé MSLS_ PO NTW SE_CI _POP_MEAN.

| MSLS PO NTW SE_Cl _NEW SAMPLE, float **l ower limt,
float **upper _linmt (Output)
Array |l ower _| i mi t is the address of a pointer to an internally allocated
array of lengtin_pr edi ct containing the lower-confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to
the rows ofk. Arrayupper _| i mi t is the address of a pointer to an
internally allocated array of length pr edi ct containing the upper-
confidence limits of the confidence intervals for two-sided prediction
intervals, corresponding to the rowsxof

| MBLS_POI NTW SE_CI _NEW SAMPLE_USER, float lower limit[],
float upper _linmt[] (Output)
Storage for arraylsower _| i mi t andupper _|i nit is provided by the
user. Seé MSLS_PO NTW SE_Cl _NEW SANMPLE.

| MSLS_LEVERAGE, float **| everage (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the leverages.

| MSLS_LEVERAGE_USER, float | everage[] (Output)
Storage for array leverage is provided by the user.
Seel MSLS_LEVERAGE.
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| MBLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_pr edi ct
array contains the predicted values.

I MBLS_Y, float y[] (Input)
Array of lengthn_pr edi ¢t containing the observed responses.

Note: | MBLS_Y (or | MBLS_X_I NDI CES) must be specified if any of the
following optiona arguments are specified.

| MSLS_RESI DUAL, float **resi dual (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the residuals.

| MBLS_RESI DUAL_USER, float residual [] (Output)
Storage for array residual is provided by the user.
See | MSLS_RESI DUAL.

| MSLS_STANDARDI ZED RESI DUAL, float **st andar di zed_r esi dual
(Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the standardized residuals.

| MSLS_STANDARDI ZED RESI DUAL_USER, float st andar di zed_r esi dual []
(Output)
Storage for array st andar di zed_r esi dual isprovided by the user.
See | MSLS_STANDARDI ZED RESI DUAL.

| MSLS_DELETED RESI DUAL, float **del et ed_resi dual (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the deleted residuals.

| MSLS_DELETED_RESI DUAL_USER, float del et ed_residual [] (Output)
Storage for array del et ed_r esi dual is provided by the user.
See| MSLS_DELETED RESI DUAL.

| MSBLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the Cook’® statistics.

| MSBLS_COOKSD_USER, float cooksd[] (Qutput)
Storage for array cooksd is provided by the user.| $8eS_COOKSD.

| MBLS_DFFI TS, float **dffits (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the DFFITS statistics.

| MSLS_DFFI TS_USER, float dffits[] (Output)
Storage for arragf fi t s is provided by the user. SeSSLS_DFFI TS.
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Description
The general linear model used by functioni nsl s_f _regressi on_predictionis
y=Xp+e

wherey isthe n x 1 vector of responses, X isthen x p matrix of regressors, 3 is
the p x 1 vector of regression coefficients, and € isthe n x 1 vector of errors
whose elements are independently normally distributed with mean 0 and the
variance below.

From ageneral linear model fit using thew;’s as the weights, function

i msl s_f _regression_prediction computes confidence intervals and
statistics for the individual cases that constitute the data set. heeta column
vector containing elements of théh row ofX. LetW = diag (v, W,, ..., W,,).
The leverage is defined as

h=[ﬁTXTWMfJ&W

PutD = diag @, d,, ..., d,) with d; = 1 if thej-th diagonal element ®Ris
positive and 0 otherwise. The Ieverage is computdd aga Da) w; wherea is a
solution toR”a = x;. The estimated variance of

§=x'B
is given by the following:
hs”
W,
where
> _ SSE
s =——
DFE

The computation of the remainder of the case statistics follow easily from their
definitions.See case diagnostics (page 53).

Informational errors can occur if the input mattiis not consistent with the
information from the fit (contained iregr essi on_i nf o), or if excess rounding
has occurred. The warning ertdvSLS_NONESTI MABLE arises whem contains a
row not in the space spanned by the rowR.@&n examination of the model that
was fitted and the for which diagnostics are to be computed is required in order
to ensure that only linear combinations of the regression coefficients that can be
estimated from the fitted model are specified.ifror further details, see the
discussion of estimable functions given in Maindonald (1984, pp-168) and
Searle (1971, pp. 18088).

Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
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This can be accomplished by defining a new data matrix. Since the information
about the model fitisinputinr egr essi on_i nf o, it isnot necessary to send in
the data set used for the original calculation of thefit, i.e., only variable
combinations for which predictions are desired need be entered in x.

Examples

Example 1
#i ncl ude <insls.h>
mai n()

{

#defi ne | NTERCEPT 1

#define N_| NDEPENDENT 4

#defi ne N_OBSERVATI ONS 13

#defi ne N_COEFFI Cl ENTS (I NTERCEPT + N_| NDEPENDENT)

#defi ne N_DEPENDENT 1
fl oat *y hat, *coefficients;
I nsl s_f_regression *regression_info;
fl oat x[ ][ N_I NDEPENDENT] = {
7.0, 26.0, 6.0, 60.0,
1.0, 29.0, 15.0, 52.0,
11.0, 56.0, 8.0, 20.0,
11.0, 31.0, 8.0, 47.0,
7.0, 52.0, 6.0, 33.0,
11.0, 55.0, 9.0, 22.0,
3.0, 71.0, 17.0, 6.0,
1.0, 31.0, 22.0, 44.0,
2.0, 54.0, 18.0, 22.0,
21.0, 47.0, 4.0, 26.0,
1.0, 40.0, 23.0, 34.0,
11.0, 66.0, 9.0, 12.0,
10.0, 68.0, 8.0, 12.0};
fl oat y[l = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

/* Fit the regression nodel */
coefficients = inmsls_f_regressi on(N_OBSERVATI ONS, N_| NDEPENDENT,
(float *)x, v,
| MSLS_REGRESSI ON_I NFO, &r egression_i nf o,
0);

/* Generate case statistics */
y_hat = insls_f_regression_prediction(regression_info,
N_OBSERVATI ONS, (float*)x, 0);

[* Print results */
imsls_f wite_matrix("Predicted Responses”, 1, N_OBSERVATI ONS,
y_hat, 0);
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Output

Predi ct ed Responses

1 2 3 4
78.5 72.8 106.0 89.3
7 8 9 10
104.1 75.7 91.7 115.6
13
111.7
Example 2

#i ncl ude <insls. h>
mai n()
#defi ne | NTERCEPT 1

#defi ne N_| NDEPENDENT 4
#def i ne N_OBSERVATIONS 13

#defi ne N_COEFFI Cl ENTS (1 NTERCEPT + N_| NDEPENDENT)

#def i ne N_DEPENDENT 1

fl oat *y hat, *leverage, *residual,

*del eted_residual, *dffits, *cooksd,

5 6
95.6 105. 3
11 12
81.8 112.3

*st andar di zed_resi dual ,
*mean_lower _limt,

*nmean_upper _limt, *new sanple_ lower limt,
*new_sanpl e_upper _limt, *scheffe lower limt,

*scheffe_upper_limt, *coefficients;

Imsl s_f _regression *regression_info;

f1 oat x[ ][ N_I NDEPENDENT] = {
7.0, 26.0, 6.0, 60.0,
1.0, 29.0, 15.0, 52.0,
11.0, 56.0, 8.0, 20.0,
11.0, 31.0, 8.0, 47.0,
7.0, 52.0, 6.0, 33.0,
11.0, 55.0, 9.0, 22.0,
3.0, 71.0, 17.0, 6.0,
1.0, 31.0, 22.0, 44.0,
2.0, 54.0, 18.0, 22.0,
21.0, 47.0, 4.0, 26.0,
1.0, 40.0, 23.0, 34.0,
11.0, 66.0, 9.0, 12.0,
10.0, 68.0, 8.0, 12.0};
f1 oat y[] = {78.5, 74.3, 104.3, 87.6, 95.9,
102.7, 72.5, 93.1, 115.9, 83.8, 113.3, ;

109. 2,

/* Fit the regression nodel */
coefficients = insls_f_regressi on( N _OBSERVATI ONS, N_| NDEPENDENT,

(float *)x, vy,

| MSLS REGRESSI ON_| NFO, &regression_info,

0)
/* Generate the case statistics */

y_hat = insls_f_regression_prediction(regression_info,

N_OBSERVATI ONS, (fl oat*)x,

| MBL SY Yy,

| MSL S LEVERAGE &l ever age,

| I\/SLS RESI DUAL, &r esi dual ,

| MSLS_STANDARDI ZED RESI DUAL, &st andar di zed_r esi dual ,

| MSLS DELETED_RESI DUAL, &del et ed_r esi dual ,

| MSLS_COOKSD, &cooksd,
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| MSLS _DFFI TS, &dffits,

| MSLS PO NTW SE_CI _POP_MEAN, &rean_lower _limt,
&mrean_upper _limt,

| MSLS PO NTW SE_CI _NEW SAMPLE, &new sanple_ | ower i
&new_sanpl e_upper i

| MSLS_SCHEFFE _ClI, &scheffe lower limt,
&scheffe_upper _limt,

limt,
limt,

0);

/* Print results */

nels f wite matrix("Predicted Responses”, 1, N_OBSERVATI ONS,
y_hat, 0);

nels f wite matrix("Residuals", 1, N OBSERVATIONS, residual, 0);

nels f _wite matrix("Standardi zed Residual s", 1, N_OBSERVATI ONS,
st andar di zed_resi dual, 0);

nsls f wite matrix("Leverages", 1, N OBSERVATIONS, |everage, 0);

nels f wite matrix("Del eted Residuals", 1, N _OBSERVATI ONS,
del eted_residual, 0);

nels f wite matrix("Cooks D', 1, N _OBSERVATIONS, cooksd, 0);

nels f wite matrix("DFFITS", 1, N OBSERVATIONS, dffits, 0);

nels f wite matrix("Scheffe Lower Limt", 1, N_OBSERVATI ONS,
scheffe lower _limt, 0);

nels f wite matrix("Scheffe Upper Limt", 1, N_OBSERVATI ONS,
scheffe_upper _limt, 0);

nsls f_ wite matrix("Popul ation Mean Lower Limt", 1,
N_OBSERVATI ONS, nean_lower _limt, 0);

nsls f _wite matrix("Popul ation Mean Upper Limt", 1,
N_OBSERVATI ONS, nean_upper _limt, 0);

nels f_ wite matrix("New Sanple Lower Limt", 1, N_OBSERVATI ONS,
new sanple_lower_limt, 0);

mels_f_wite_matrix("New Sanple Upper Limt", 1, N_OBSERVATI ONS,
new_sanpl e_upper _limt, 0);

}
Output
Predi ct ed Responses

1 2 3 4 5 6

78.5 72.8 106.0 89.3 95.6 105. 3

7 8 9 10 11 12

104.1 75.7 91.7 115.6 81.8 112. 3
13
111.7

Resi dual s

1 2 3 4 5 6

0. 005 1.511 -1.671 -1.727 0. 251 3.925

7 8 9 10 11 12

-1. 449 -3.175 1.378 0. 282 1.991 0.973
13
-2.294

St andar di zed Resi dual s
1 2 3 4 5 6
0.003 0. 757 -1.050 -0.841 0.128 1.715
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-0.744 -1.688 0.671 0. 210
13
-1.124
Lever ages
1 2 3 4
0. 5503 0. 3332 0.5769 0. 2952
7 8 9 10
0.3671 0. 4085 0. 2943 0. 7004
13
0. 3037
Del et ed Resi dual s
1 2 3 4
0. 003 0.735 -1.058 -0.824
7 8 9 10
-0.722 -1.967 0. 646 0. 197
13
-1.146
Cooks D
1 2 3 4
0. 0000 0. 0572 0. 3009 0. 0593
7 8 9 10
0. 0643 0. 3935 0. 0375 0. 0207
13
0. 1102
DFFI TS
1 2 3 4
0. 003 0.519 -1.236 -0.533
7 8 9 10
-0.550 -1.635 0.417 0. 302
13
-0. 757
Scheffe Lower Limt
1 2 3 4
70.7 66.7 98.0 83.6
7 8 9 10
97.8 69.0 86.0 106. 8
13
105.9
Scheffe Upper Limt
1 2 3 4
86. 3 78.9 113.9 95.0

11
1.074

5
0. 3576

11
0. 4255

5
0.120

11
1.086

0.0018

11
0.1708

5
0. 089

11
0. 935

89.4

11
75.0

101.9

12
0. 463

0.1242

12
0. 2630

2.017

12
0. 439

0.0834

12
0.0153

0. 759

12
0. 262

101.6

12
106. 9

109.0
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110.5 82. 4 97. 4 124. 4
13
117.5
Popul ati on Mean Lower Limt
1 2 3 4
74.3 69.5 101.7 86. 3
7 8 9 10
100. 7 72.1 88.7 110.9
13
108. 6
Popul ati on Mean Upper Limt
1 2 3 4
82.7 76.0 110.3 92.4
7 8 9 10
107.6 79.3 94.8 120.3
13
114.8
New Sanple Lower Limt
1 2 3 4
71.5 66. 3 98.9 82.9
7 8 9 10
97.6 69.0 85.3 108. 3
13
105. 3
New Sanpl e Upper Limt
1 2 3 4
85.5 79. 3 113.1 95.7
7 8 9 10
110.7 82.4 98.1 123.0
13
118.1

Warning Errors
| MSLS_NONESTI MABLE

| MBLS_LEVERAGE GT 1

11
88.7

5
92.3

11
78.1

5
99.0

11
85.5

89.1

11
75.1

5
102. 2

11
88.5

12
117.7

103.3

12
109. 4

107. 3

12
115.2

99.3

12
106.0

111.3

12
118.7

Within the preset tolerance, the
linear combination of regression
coefficientsis nonestimable.

A leverag

e (= #) much greater than

1.0iscomputed. Itisset to 1.0.
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I MSLS DEL_MSE LT_O A deleted residual mean square
(=#) muchlessthanOis
computed. It isset to 0.

Fatal Errors

| MSLS NONNEG WEI GHT _REQUEST 2 The weight for row # was #.
Weights must be nonnegative.

hypothesis_partial

Constructs an equivalent completely testable multivariate genera linear
hypothesisHBU = G from a partially testable hypothesisH,BU = G,,.

Synopsis

#include <i nsls. h>

int i msl s_f_hypot hesi s_parti al
(Imsls f regression *r egr essi on_i nf o, int nhp, float hp[], ..,
0)

The type double function isi nsl s_d_hypot hesi s_parti al .

Required Argument

Imds f regression *regression_i nfo (Input)
Pointer to a structure of type Imdls f regression containing information
about the regression fit. See functioni nsl s_f _regressi on.

int nhp (Input)
Number of rowsin the hypothesis matrix, hp.

float hp[] (Input)
The H,, array of size nhp by n_coefficients with each row corresponding
to arow in the hypothesis and containing the constants that specify a
linear combination of the regression coefficients. Here, n_coefficientsis
the number of coefficientsin the fitted regression model.

Return Value

Number of rows in the completely testable hypothesis, nh. Thisvalueisalso the
degrees of freedom for the hypothesis. The value nh classifies the hypothesis
H,BU = G, as nontestable (nh = 0), partialy testable (0 <nh <rank_hp) or
completely testable (0 < nh =r ank_hp), wherer ank_hp istherank of H,, (see
keyword | MSLS_RANK_HP).

Synopsis with Optional Arguments

#include <i nsls. h>
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int i msl s_f_hypot hesi s_parti al
(Imsls f regression *r egr essi on_i nf o, int nhp, float hp[],
I MSLS_GP, float gp[],
I MSLS U, int nu, float u[],
I MSBLS_RANK_HP, int rank_hp
| MSLS_H MATRI X, float **h,
| MBLS_H MATRI X_USER, float h[],
I MSLS G, float **g,
| MSLS_G USER, float g[],
0)

Optional Arguments

I MSLS_GP, float gp[] (Input)
Array of sizenhp by nu containing the G, matrix, the null hypothesis
values. By default, each value of G, isequal to .

I MBLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent.

Argument u contains the n_dependent by nu U matrix for the test
H,BU = G,,. Thisargument is not referenced by

i msl s_f _hypot hesi s_partial andisincluded only for consistency
with functionsi nsl s_f _hypot hesi s_scph and

i msl s_f _hypot hesi s_t est. A dummy array of length 1 may be
substituted for this argument.

Default: nu = n_dependent and u is the identity matrix.

I MSBLS_RANK_HP, int rank_hp (Output)
Rank of H,,.

| MBLS_H MATRI X, float **h (Output)
Address of a pointer to the internally alocated array of size nh by
n_parameters containing the H matrix. Each row of h correspondsto a
row in the completely testable hypothesis and contains the constants that
specify an estimable linear combination of the regression coefficients.

| MBLS_H MATRI X_USER, float h[] (Output)
Storage for array h is provided by the user. See | MBLS_H.

I MSLS_G float **g (Output)
Address of a pointer to the internally allocated array of length nu
containing the G matrix. The elements of g contain the null hypothesis
values for the completely testable hypothesis.

Description

Once ageneral linear model y = X + € isfitted, particular hypothesis tests are
frequently of interest. If the matrix of regressors X is not full rank (as evidenced
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by the fact that some diagona elements of the R matrix output from the fit are
equal to zero), methods that use the results of the fitted model to compute the
hypothesis sum of squares (see functioni nsl s_f _hypot hesi s_scph,

page 101) require specification in the hypothesis of only linear combinations of
the regression parameters that are estimable. A linear combination of regression
parameters CTB is estimable if there exists some vector asuchthat ¢’ = a’X i.e,,
cisinthe space spanned by the rows of X. For afurther discussion of estimable
functions, see Maindonald (1984, pp. 166—168) and Searle (1971, pp. 180-188).
Functioni nmsl s_f _hypot hesi s_parti al isonly useful in the case of non-full
rank regression models, i.e., when the problem of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesisin the
context of agenera linear hypothesistest HP = g isoverly restrictive. He
extended the notion of atestable hypothesis (a hypothesis composed of estimable
functions of the regression parameters) to include partially testable and
completely testable hypothesis. A hypothesisH[3 = g is partially testable if the
intersection of the row space H (denoted by 0 (H)) and the row space of X (O (X))
isnot essentially empty and is a proper subset of [I(H), i.e.,

{0y OOH) n OCX) O O(H). A hypothesisHf3 = g iscompletely testable if

{0} O O(H) n O(H) O O(X). Peixoto also demonstrated a method for converting
apartially testable hypothesis to one that is completely testable so that the usual
method for obtaining sums of squares for the hypothesis from the results of the
fitted mode! can be used. The method replaces H,, in the partialy testable
hypothesisH,,3 = g, by a matrix H whose rows are abasis for the intersection of
the row space of H,, and the row space of X. A corresponding conversion of the
null hypothesis values from g, to g is also made. A sum of squares for the
completely testable hypothesis can then be computed (see function

i msl s_f _hypot hesi s_scph, page 101). The sum of squares that is computed
for the hypothesis HP3 = g equals the difference in the error sums of squares from
two fitted models—the restricted model with the partially testable hypothesis
H,B =g, and the unrestricted model.

For the general case of the multivariate mogelXp + € with possible linear equality
restrictions on the regression parametens] s_f _hypot hesi s_parti al converts

the partially testable hypothesisf = g, to a completely testable hypothesis

HBU = G. For the case of the linear model with linear equality restrictions, the
definitions of the estimable functions, nontestable hypothesis, partially testable
hypothesis, and completely testable hypothesis are similar to those previously given
for the unrestricted model with the exception tHéX) is replaced byl (R) whereR is

the upper triangular matrix based on the linear equality restrictions. The nonzero rows
of R form a basis for the rowspace of the mat)()%,(AT) T The rows oH form an
orthonormal basis for the intersection of two subspaces—the subspace spanned by the
rows ofH, and the subspace spanned by the row& @he algorithm used for

computing the intersection of these two subspaces is based on an algorithm for
computing angles between linear subspaces due to Bjork and Golub (1973). (See also
Golub and Van Loan 1983, pp. 42480). The method is closely related to a

canonical correlation analysis discussed by Kennedy and Gentle (1980, pp6561

The algorithm is as follows:
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Compute a QR factorization of
-
Hp
with column permutations so that
HE = QRA

Here, P, isthe associated permutation matrix that is also an orthogonal
matrix. Determine the rank of H,, as the number of nonzero diagonal
elements of R, for example n;. Partition Q, = (Q,;, Q,,) sothat Q,; is
thefirst n; column of Q. Setrank_hp =n.

Compute a QR factorization of the transpose of the R matrix (input
through r egr essi on_i nf o) with column permuations so that

RT=QR,P

Determine the rank of R from the number of nonzero diagonal elements
of R, for example n,. Partition Q, = (Q,;, Q,,) sothat Q,, isthefirst n,
columns of Q,.

Form

A= QirlQZl
Compute the singular values of A

0120,2..205,

and the left singular vectors W of the singular value decomposition of A
so that

WTAV = diag(al!"' Jm‘n(nl,nz))

If 0, <1, then the dimension of the intersection of the two subspacesis
s= 0. Otherwise, assume the dimension of the intersection to be sif
0,=1>0,.Setnh=s.

Let W, bethefirst s columns of W. Set H = (QIWI)T.

AssumeR;; to beanhp by nhp matrix related to R, asfollows: If

nhp < n_parameters, R, equalsthefirst nhp rows of R,. Otherwise, R,
contains R, initsfirst n_parameters rows and zeros in the remaining
rows. Compute a solution Z to the linear system

RiZ=PR'G,

If thislinear system is delcared inconsistent, an error message with error
code equal to 2 isissued.
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i ncl ude
#defi ne
#def i ne
#defi ne
#defi ne
#defi ne

main() {

7. Partition
2" =(2].,2])
so that Z; isthefirst n, rows of Z. Set
G=W'Z,

The degrees of freedom (nh) classify the hypothesisH,BU =G, as
nontestable (nh = 0), partialy testable (0 < nh <r ank_hp), or
completely testable (0 < nh =rank_hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to
data. The model is

Yii = H + a; + &i (|1 ]) = (11 1) (2! 1) (21 2)

The model isfitted using functioni nsl s_f regressi on (page 64). The
partially testable hypothesis

is converted to a completely testable hypothesis.

<inmsls.h>
N_RONS 3

N_| NDEPENDENT 1
N_DEPENDENT 1
N_PARAMETERS 3
NHP 2

Imsls_f_regression *info;

i nt
i nt
i nt

n_class = 1;
n_continuous = 0;
nh, nreg, rank_hp;

float *coefficients, *x, *g, *h;

static float z[ N ROANB*N_| NDEPENDENT] = { 1, 2, 2 };
static float y[1l = {17.3, 24.1, 26.3};

static float gp[]l = {5, 3};

static float hp[ NHP*N_PARAMETERS] = {0, 1, O,
0, 0, 1}

nreg

)

= insls_f _regressors_for_gl nm{N ROA5 z,
n_class, n_continuous,
| MSLS_REGRESSCRS, &x, 0);

coefficients = insls_f _regressi on(N_ROA5, nreg, X, VY,

nh

| MBLS_N_DEPENDENT, N_DEPENDENT,
| MBLS_REGRESSI ON_| NFO, & nfo,
0);

inmsls_f_hypothesis partial (info, NHP, hp,
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| MSLS_GP, ,

| MSLS_H MATRI X, &h,

I MBLS G &g,

| MSLS RANK _HP, &rank_hp, 0);

if (nh ==0) {

printf("Nontestabl e Hypothesis\n");
} else if (nh < rank_hp) {

printf("Partially Testabl e Hypothesis\n");
} else {

printf("Conpletely Testabl e Hypothesis\n");
}

inmsls f wite matrix("H Matrix", nh, N _PARAMETERS, h, 0);
inmsls f wite_matrix("G', nh, N _DEPENDENT, g, 0);
free(coefficients);

free(info);

free(x);

free(h);
free(g);

Output
Partially Testabl e Hypothesis

H Matrix
1 2 3
0. 0000 0.7071 -0.7071
G
1.414

Warning Errors

| MSLS HYP_NOT_CONSI STENT The hypothesisisinconsistent within the
computed tolerance.

hypothesis_scph
Computes the matrix of sums of squares and crossproducts for the multivariate
genera linear hypothesisHBU = G given the regression fit.
Synopsis
#include <i nsl's. h>

float *i msl s_f _hypot hesis_scph
(Imsls f regression *r egr essi on_i nf o, int nh, float h[],
float *df h, ..., 0)

The type double function isi nsl s_d_hypot hesi s_scph.
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Required Argument

Imds f regression *regression_i nfo (Input)
Pointer to a structure of type Imdls f regression containing information
about the regression fit. See functioni nsl s_f _regressi on.

int nh(Input)
Number of rowsin the hypothesis matrix, h.

float h[] (Input)
The H array of size nh by n_coefficients with each row corresponding to
arow in the hypothesis and containing the constants that specify alinear
combination of the regression coefficients. Here, n_coefficientsis the
number of coefficientsin the fitted regression model.

float *df h (Output)
Degrees of freedom for the sums of squares and crossproducts matrix.
Thisisequal to the rank of input matrix h.

Return Value

Array of size nu by nu containing the sums of squares and crossproducts
attributable to the hypothesis.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _regressi on_scph
(Imsls f regression *r egressi on_i nfo, int nh, float h[],
float * df h,
I MSLS G, float g[],
I MSLS U, int nu, floatu[],
| MBLS_RETURN_USER, scph[],
0)

Optional Arguments

I MSLS G, float g[] (Input)
Array of sizenh by nu containing the G matrix, the null hypothesis
values. By default, each value of G isequal to 0.

I MSLS U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent.

Argument u contains the n_dependent by nu U matrix for the test
H,BU =G,.

Default: nu = n_dependent and u is the identity matrix
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| MSLS_RETURN_USER, float scph[] (Output)
If specified, the sums of squares and crossproducts matrix is stored in
array scph provided by the user, where scph is of size nu by nu.

Description

Functioni nsl s_f _hypot hesi s_scph computes the matrix of sums of squares
and crossproducts for the general linear hypothesis HBU = G for the multivariate
genera linear model Y = X3 + €.

Therows of H must be linear combinations of the rows of R, i.e., HB = G must be
completely testable. If the hypothesisis not completely testable, function

imsl s_f _hypothesis_partial (page 96) can be used to construct an
equivalent completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980,
p. 317) that is extended by Sallas and Lionti (1988) for mulitvariate non-full rank
models with possible linear equality restrictions. The algorithm is as follows:

1. FormW = HAU -G .

2. Find C asthe solution of R“C = H”. If the equations are declared
inconsistent within a computed tolerance, awarning error message is
issued that the hypothesisis not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative
diagonal elements from arestricted least-squares fit, zero out the
corresponding rows of C, i.e., from DC.

4, Decompose DC using Householder transformations and column pivoting
toyield asquare, upper triangular matrix T with diagonal elements of
nonincreasing magnitude and permutation matrix P such that

DCP=Q T
Mo
where Q is an orthogonal matrix.

5. Determinetherank of T, say r. If t;; =0, thenr = 0. Otherwise, the rank
of Tisrif

|trr|>|tll |82|tr+l,r+l|

wheree =10.0 x i nsl s_f _machi ne(4)
(10.0 x i nsl s_d_machi ne(4) for the double-precision version).

Then, zero out all rows of T below r. Set the degrees of freedom for the
hypothesis, df h, tor.

6. Find V asasolutionto T'V = PTW. If the equations are inconsistent, a
warning error message is issued that the hypothesisisinconsistent within
acomputed tolerance, i.e., the linear system

HBU = G
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AB=2Z
does not have a solution for 3.

Form VTV, which is the required matrix of sum of squares and
crossproducts, scph.

In general, the two warning errors described above are serious user
errors that require the user to correct the hypothesis before any
meaningful sums of squares from this function can be computed.
However, in some cases, the user may know the hypothesisis consistent
and compl etely testable, but the checksin

i msl s_f _hypot hesi s_scph aretoo tight. For this reason,

i msl s_f _hypot hesi s_scph continues with the calculations.

Functioni sl s_f _hypot hesi s_scph givesamatrix of sums of
sguares and crossproducts that could also be obtained from separate
fittings of the two models:

Y =X +¢ @)
AR =Z"
HR" =G
and
Y =XB"+¢ %)
AB* =7

where Y* = YU, B* = BU, £ = €U, and Z* = ZU. The error sum of
sguares and crossproducts matrix for (1) minus that for (2) is the matrix
sum of squares and crossproducts output in scph. Note that this
approach avoids the question of testability.

Example

The data for this example are from Maindonald (1984, pp. 203-204). A
multivariate regression model containing two dependent variables and three
independent variablesisfit using functioni nsl s_f _regr essi on and the results
stored in the structure i nf 0. The sum of squares and crossproducts matrix, scph,
isthen computed by callingi nsl s_f _hypot hesi s_t est for the test that the
third independent variable isin the model (determined by the specification of h).
The degrees of freedom for scph also is computed.

i ncl ude <insls.h>

mai n()

{
Imsls_f_regression *info;
fl oat *coefficients, *scph;
fl oat df h;

fl oat X[ ] ={ 7.0, 5.0, 6.0,
2.0,-1.0, 6.0,
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7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0 };
fl oat vl ={ 7.0, 1.0,
-5.0, 4.0,
6.0, 10.0,
5.0, 5.0,
5.0, -2.0,
-2.0, 4.0,
0.0, -6.0,
8.0, 2.0,
3.0, 0.0 };
i nt n_observations = 9;
i nt n_i ndependent = 3;
i nt n_dependent = 2;
i nt nh = 1;
float h[] ={o0 0, 0, 1};
coefficients = insls_f_regression(n_observations, n_independent,
X, Y,

MSLS N DEPENDENT, n_dependent,
| MBLS_REGRESSI ON_| NFO, & nfo,
0);

scph = insls_f_hypothesis_scph(info,

printf("Degrees of Freedom Hypothesis

nh, h, &dfh, 0);

%. 0f\n", dfh);

inmsls f wite_matrix("Sum of Squares and Crossproducts”,

n_dependent, n_dependent, scph,

I MBLS_NO COL_LABELS, | MSLS NO ROW LABELS,

0);
}
Output
Degrees of Freedom Hypot hesis = 1
Sum of Squares and Crossproducts
100 -40
-40 16

Warning Errors
| MSBLS_HYP_NOT_TESTABLE

| MBLS_HYP_NOT_CONSI STENT

The hypothesisis not completely testable
within the computed tolerance. Each row of
“h” must be a linear combination of the
rows of “r”.

The hypothesis is inconsistent within the
computed tolerance.
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hypothesis_test

Performs tests for amultivariate general linear hypothesis HBU = G given the
hypothesis sums of squares and crossproducts matrix Sy.

Synopsis
#include <i nsls. h>

float i msl s_f _hypot hesis_test (Imds f regression *regressi on_info,
float df h, float *scph, ..., 0)

The type double function isi nsl s_d_hypot hesi s_t est .

Required Argument

Imds f regression *regression_info (Input)
Pointer to a structure of type Imdls f regression containing information
about the regression fit. See functioni nsl s_f _regressi on.

float df h (Input)
Degrees of freedom for the sums of squares and crossproducts matrix.

float *scph (Input)
Array of sizenu by nu containing Sy, the sums of squares and
crossproducts attributable to the hypothesis.

Return Value

The p-value corresponding to Wilks’ lambda test.

Synopsis with Optional Arguments
#include <i nsls. h>

float i msl s_f _regression_test (Imds f regression*regression_info,
float df h, float *scph,
I MSLS_U, int nu, float u[],
| MSLS W LK _LAMBDA, float *val ue, float *p_val ue,
| MSLS_ROY_MAX_ROOT, float *val ue, float *p_val ue,
| MSLS HOTELLI NG TRACE, float *val ue, float *p_val ue,
| MSLS_PI LLAI _TRACE, float *val ue, float *p_val ue,
0)

Optional Arguments

I MBLS_U, int nu, float u[] (Input)
Argumentnu is the number of linear combinations of the dependent
variables to be considered. The valuemust be greater than 0 and less
than or equal to_dependent. Argumentu contains then_dependent by
nu U matrix for the tesH, BU = G,,.
Default:nu = n_dependent andu is the identity matrix
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| MSLS W LK_LAVMBDA, float *val ue, float *p_val ue (Output)
Wilk’s lamda andp-value.

| MBLS_ROY_MAX_ROOT, float *val ue, float *p_val ue (Output)
Roy’s maximum root criterion armivalue.

| MSLS_HOTELLI NG _TRACE, float *val ue, float *p_val ue (Output)
Hotelling’s trace ang-value.

| MBLS_PI LLAI _TRACE, float *val ue, float *p_val ue (Output)
Pillai’s trace ang-value.
Description

Functioni nsl s_f _hypot hesi s_t est computes test statistics apdalues for
the general linear hypothe$iU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix irgayihns
A T - A
Sy :(HﬂJ -G) (c"pe) (H,BU —G)

where C is a solution t8’C = H and wherd is a diagonal matrix with diagonal
elements

L ifr >0
710  otherwise

See the section “Linear Dependence andRMatrix” in the introduction
(page 4%
The error sum of squares and crossproducts matrix for the Modép + € is

(-8 (v~

which is input irr egr essi on_i nf 0. The error sum of squares and
crossproducts matrix for the hypotheldiBU = G computed by
imsl s_f_hypot hesis_test is

AN T ~
Se =UT(Y-XB) (Y-XB
Let p equal the order of the matricBsandSy, i.e.,

_(NU if NU >0
P=INDEP otherwise

Let q (stored indf h) be the degrees of freedom for the hypothesisv [(ietput in
regr essi on_i nf 0) be the degrees of freedom for error. Function

i msl s_f _hypot hesi s_t est computed three test statistics based on
eigenvalued, (i=1, 2,..., p) of the generalized eigenvalue probl&gx = ASgx.
These test statistics are as follows:
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Wilk's lambda

Ao de(Se) A1
det(S, +Se) rJ 1+,
The associated p-valueis based on an approximation discussed by Rao (1973,
p. 556). The statistic

_ms-pg/2+11-AVS
pq /\]JS

has an approximate F distribution with pg and ms— pq/ 2 + 1 numerator and
denominator degrees of freedom, respectively, where

=

1 ifp=1orq=1
s=4 [ n2q2 -
Eq—24 otherwise
p=+q° -5
and
m=y_(P*a-1
2

The F test isexact if min (p, q) < 2 (Kshirsagar, 1972, Theorem 4, p. 299-300).
Roy’s maximum root
C=max A, over ali
where cisoutput asval ue. The p-valueis based on the approximation
U+g-s

=

where s=max (p, q) has an approximate F distribution withsandv +gq-s
numerator and denominator degrees of freedom, respectively. The F test is exact
if s=1; the p-valueis aso exact. In genera, the value output in p_val ue is
lower bound on the actual p-value.

Hotelling’s trace
(HE)=
U=tr(HE™ )= A
U isoutput asval ue. The p-value is based on the approximation of McKeon

(1974) that supersedes the approximation of Hughes and Saw (1972). McKeon’s
approximation is also discussed by Seber (1984, p. 39). For

4 pg+2
P Ura- p-D(u-1)
(v-p-3)(v-p)
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the p-valueis based on the result that
b(v-p-1)
(b-2)pq
has an approximate F distribution with pg and b degrees of freedom. The test is

exact if min (p, g) = 1. For v < p + 1, the approximation is not valid, and
p_val ue isset to NaN.

F =

These three test statistics are valid when S is positive definite. A necessary
condition for S to be positive definiteisv = p. If S; is not positive definite, a
warning error message isissued, and both val ue and p_val ue are set to NaN.

Because the requirement v = p can be a serious drawback,

i msl s_f _hypot hesi s_t est computes afourth test statistic based on
eigenvalues®; (i=1, 2, ..., p) of the generalized eigenvalue problem

Syw = 0(Sy + Sp) w. This test statistic requires a less restrictive assumption—
Sy + Sg is positive definite. A necessary condition 8r+ S; to be positive

definite isu + g = p. If Sg is positive definitej nsl s_f _hypot hesi s_t est

avoids the computation of the generalized eigenvalue problem from scratch. In
this case, the eigenvalu@sare obtained from, by

A

i 1+ A,

The fourth test statistic is as follows:

Pillai’s trace
p

v :tr[SH(SH +SE)_1]: 6
1=1
Visoutput at val ue. The p-value is based on an approximation discussed by
Pillai (1985). The statistic

2n+s+1 V

© 2m+ s+1s-V

has an approximate F distribution with s(2m + s+ 1) and s(2n + s+ 1) numerator
and denominator degrees of freedom, respectively, where

s=min (p, Q)
m=Y2(p-q|-1)
n=%L-p-1)

TheF test is exact if ming g) = 1.
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#i ncl ude <insl s.

mai n()

{
Insl s_f_regr
fl oat *coe
fl oat df h,
fl oat x[1]

fl oat yl]

i nt n_ob
i nt n_in
i nt n_de
i nt nh =
float h[]

coefficients
X

Examples

Example 1

The data for this example are from Maindonald (1984, p. 203-204). A
multivariate regression model containing two dependent variables and three
independent variablesisfit using functioni nsl s_f _r egr essi on and the results
stored in the structure i nf 0. The sum of squares and crossproducts matrix, scph,
isthen computed with acall toi nsl s_f _hypot hesi s_t est for thetest that the
third independent variable isin the model (determined by specification of h).
Finaly, functioni nsl s_f _hypot hesi s_t est iscalled to compute the p-value
for the test statistic (Wilk's lambda).

h>

ession *info;
fficients, *scph;
p_val ue;
={ 7.

PRWONOROOO
co0o0o00000O

o-
o

N -
o

.
7S WEONTNOINNNWNNWNN

0000000000000 00000
OCON' MN!' UIRRMRRRRPRRRRPWRU
-

servations
dependen
pendent

1

= 3’
2;

={ 0 0, 0, 13},

= imsl s_f_regressi on(n_observations, n_independent,

Y
| MSLS_N_DEPENDENT, n_dependent,

| MSLS_RECGRESSI ON_I NFO, &i nf o,

0);

scph = insls

_f_hypot hesi s_scph(info, nh, h, &Ifh, 0);

p_value = imsls_f_hypothesis_test(info, dfh, scph, 0);

printf("P-value = %0.6f\n", p_val ue);
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Output
P-val ue = 0. 000010

Example 2

This example is the same as the first example, but more statistics are computed.
Also, the U matrix, u, is explicitly specified as the identity matrix (which isthe

same default configuration of U).

#i ncl ude <insls. h>

mai n()

{
Imsls_f_regression *info;
fl oat *coefficients, *scph;
fl oat df h, p_val ue;

fl oat X[ 1] ={ 7.0, 5.0, 6.0,
2.0,-1.0, 6.0,
7.0, 3.0, 5.0,
-3.0, 1.0, 4.0,
2.0,-1.0, 0.0,
2.0, 1.0, 7.0,
-3.0,-1.0, 3.0,
2.0, 1.0, 1.0,
2.0, 1.0, 4.0 };
fl oat vl ={ 7.0, 1.0,
-5.0, 4.0,
6.0, 10.0,
5.0, 5.0,
5.0, -2.0,
-2.0, 4.0,
0.0, -6.0,
8.0, 2.0,
3.0, 0.0 };
i nt n_observations = 9;
i nt n_i ndependent = 3;
i nt n_dependent = 2;
i nt nh = 1;
fl oat h[ ] ={o0 0, 0, 1};
i nt nu = 2;

fl oat u[4]1={1, 0, 0, 1};
fl oat vl, v2, v3, v4, pl, p2, p3, p4;

coefficients = inmsls_f_regressi on(n_observations, n_independent,

X, Y,

MSLS_N_DEPENDENT, n_dependent,
| MBLS_REGRESSI ON_| NFO, & nfo,
0);

scph = inmsls_f_hypot hesis_scph(info, nh, h, &Jfh, 0);

p_value = inmsls_f_hypothesis_test(info, dfh, scph,
I MSLS U, nu, u,
| MSLS W LK_LAMBDA, &v1, &pl,
| M5LS_ROY_MAX_ROOT, &v2, &p2,
| MSLS _HOTELLI NG TRACE, &v3, &p3,
| MSLS_PI LLAI _TRACE, &v4, &p4,
0);
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printf("WIk

printf("Roy

printf("Hotelling val ue
printf("Pillai

}

W k val ue
Roy val ue
Hotel I i ng val ue
Pillai val ue

val ue
val ue

val ue

Output

0. 003149
316. 600861
316. 600861

0. 996851

Warning Errors
| MSLS_SI NGULAR 1

Fatal Errors
| MBLS_NO STAT 1

| MBLS_NO STAT 2

| VSBLS_NO_STAT 3

I MBLS_SI NGULAR_2

| MBLS_SI NGULAR TRl _MATRI X

9%4.0. 6f
%4.0. 6f
%4.0. 6f
9%4.0. 6f

p- val ue
p- val ue
p- val ue
p- val ue

p-value = 9%0.6f\n", vi1, pl);
p-value = 9%0.6f\n", v2, p2);
p-val ue = 9%0.6f\n", v3, p3);
p-val ue = %0. 6f\n", v4, p4);
= 0.000010
= 0.000010
= 0.000010
= 0.000010

“u”*“scpe™ “u” is singular. Only Pillai’s
trace can be computed. Other statistics are
set to NaN.

“scpe” + “scph” is singular. No tests can be
computed.

No statistics can be computed. Iterations for
eigenvalues for the generalized eigenvalue
problem “scph*x =

(lambdaj (“scph”+“scpe”) x failed to
converge.

No statistics can be computed. Iterations for
eigenvalues for the generalized eigenvalue
problem “scph*x =

(lambdaj (“scph”+“u”* “scpe™ “u”) * x

failed to converge.

“u”*“scpe™“u” + “scph” is singular. No
tests can be computed.

The input triangular matrix is singular. The
index of the first zero diagonal element is
equal to #.

regression_selection

Selects the best multiple linear regression models.

Synopsis

#include <i nsls. h>
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void i nsl s_f _regression_sel ection (int n_rows, int n_candi date,
floatx[], float y[], ..., Q)

The type double function isi sl s_d_r egr essi on_sel ecti on.

Required Arguments

int n_rows (Input)
Number of observationsor rowsinx andy.

int n_candi date (Input)
Number of candidate variables (independent variables) or columnsin x.

float x[] (Input)
Array of sizen_r ows X n_candi dat e containing the data for the
candidate variables.

float y[] (Input)
Array of lengthn_r ows containing the responses for the dependent
variable.

Synopsis with Optional Arguments
#include <insls. h>

void i nsls_f _regression_selection (int n_rows, int n_candi date,

float x[], floaty[],

IMSLS X COL_DIM int x_col _dim

| MSLS_PRI NT, or

| MSLS_NO PRI NT,

| MBLS_VEI GHTS, float wei ghts[],

| MSLS FREQUENCI ES, float frequencies[],

I MSLS R SQUARED, int max_subset _si ze, or

| MSLS_ADJ_R_SQUARED, or

| MSLS_MALLOWS_CP,

| MSLS MAX N BEST, int max_n_best,

I MSLS_MAX_N_GOOD_SAVED, int max_n_good_saved,

I MSLS CRI TERI ONS, int **i ndex_criterions,
float**criterions,

I MSLS CRI TERI ONS_USER, int i ndex_criterions[],
floatcriterions[],

| MSLS_ | NDEPENDENT _VARI ABLES, int **i ndex_vari abl es,
int **i ndependent _vari abl es,

| MSLS_| NDEPENDENT _VARI ABLES USER,
inti ndex_vari abl es[],
inti ndependent _vari abl es[],

| MSLS_CCEF_STATI STICS, int **i ndex_coefficients,
float **coef fi ci ent s,

| MSLS_COEF_STATI STI CS_USER, int i ndex_coefficients[],
float coefficients[],
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I MSLS_ | NPUT_COV, int n_observations, float cov[],
0)

Optional Arguments

IMSLS X _COL_DI'M int x_col _di m (Input)
The column dimension of x.
Default: x_col _di m = n_candi dat e

| MSLS_PRI NT
Printing is performed. Thisis the defaullt.
or

I MSLS_NO_PRI NT
Printing is not performed.

| MSLS_VEI GHTS, float wei ghts[] (Input)
Array of length n_r ows containing the weight for each row of x.
Default: wei ght s[] =1

| MSLS_FREQUENCI ES, float frequencies[] (Input)
Array of length n_r ows containing the frequency for each row of x.
Default: f requenci es[] =1

I MBLS_R SQUARED, int max_subset _si ze (Input)
The R criterion is used, where subset sizes
1,2, ..., max_subset _si ze are examined.
This option isthe default with max_subset _si ze =n_candi dat e.
or

| MBLS_ADJ_R SQUARED
The adjusted R criterion is used, where subset sizes
1, 2, ..., n_candi dat e are examined.
or

| MBLS_MALLOWS_CP
Mallows (O criterion is used, where subset sizes
1, 2, ..., n_candi dat e are examined.

I MSBLS_MAX_N_BEST, int max_n_best (Input)
Number of best regressions to be found. If the R criterions are selected,
the max_n_best best regressions for each subset size examined are
found. If the adjusted R* or Mallows C, criterion is selected, the
max_n_best overal regressions are found.
Default: max_n_best =1

I MSLS_MAX_N_GOOD_SAVED, int max_n_good_saved (Input)
Maximum number of good regressions of each subset size to be saved in
finding the best regressions. Argument max_n_good_saved must be
greater than or equal to max_n_best . Normally, max_n_good_saved
should be less than or egqual to 10. It doesn’t ever need to be larger than
the maximum number of subsets for any subset size. Computing time
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required isinversely related to max_n_good_saved.
Default: max_n_good_saved =10

I MSBLS_CRI TERI ONS, int **i ndex_criterions, float **criterions
(Output)
Argumenti ndex_cri t eri ons isthe address of apointer to the
internally allocated array of length nsize + 1(where nsizeis equal to
max_subset _si ze if optional argument | MSLS_R _SQUARED s
specified; otherwise, nsizeis equa to n_candi dat e) containing the
locationsincrit eri ons of the first element for each subset size. For
I =0,1, .., nsize -1, element numbersi ndex_cri terions]l],
index_criterions[I]+1,..index_criterions[l +1]—1of
criterions correspond to the (I + 1)-st subset size. Argument
criterions isthe address of apointer to the internally allocated array
of length max (i ndex_cri terions [nsize]l — 1, n_candi dat e)
containing initsfirsti ndex_cri teri ons [nsize] — 1 elements the
criterion values for each subset considered, in increasing subset size
order.

I MSLS_CRI TERI ONS_USER, int i ndex_criterions[],
floatcriterions[] (Output)
Storage for arraysi ndex_criterions andcriterions isprovided
by the user. An upper bound on the length of cri t eri ons is
max(max_n_good_saved x nsize, n_candi dat e).
See | MSLS_CRI TERI ONS.

| MSLS_| NDEPENDENT_VARI ABLES, int **i ndex_vari abl es,
int **i ndependent _vari abl es (Output)
Argumenti ndex_vari abl es isthe address of a pointer to the
internally allocated array of length nsize + 1 (where nsizeis equal to
max_subset _si ze if optional argument | MSLS_R _SQUARED s
specified; otherwise, nsizeis equa to n_candi dat e) containing the
locationsini ndependent _vari abl es of the first element for each
subset size. For | =0, 1, ..., nsize — 1, element numbers
i ndex_vari abl es[I ], i ndex_vari abl es[I] +1, ...,
i ndex_vari abl es[l +1] —1of i ndependent _vari abl es
correspond to the (1 +1)-st subset size. Argument
i ndependent _vari abl es isthe address of a pointer to the internally
allocated array of length i ndex_vari abl es [nsize] — 1 containing the
variable numbers for each subset considered and in the same order asin
criterions.

| MSLS_| NDEPENDENT_VARI ABLES USER, int i ndex_vari abl es[],
inti ndependent _vari abl es[] (Output)
Storage for arraysi ndex_vari abl es andi ndependent _vari abl es
is provided by the user. An upper bound for the length of
i ndependent _vari abl es isasfollows:

Chapter 2: Regression regression_selection « 115



max_n_good_saved X nsizex (nsize+1)
2

wherensizeis equal to max_subset _si ze.
See | MSLS_| NDEPENDENT _VARI ABLES.

| MSLS_CCEF_STATI STICS, int **i ndex_coefficients,

float **coef fici ents (Output)

Argumenti ndex_coef fi ci ent s isthe address of a pointer to the
internally allocated array of length ntbest + 1 containing the locationsin
coef fici ents orthefirst row for each of the best regressions. Here,

ntbest is the total number of best regression found and is equal to
max_subset _si ze x max_n_best if | MBLS_R SQUARED s specified,
equal to max_n_best if either | MSLS_MALLOWS_CP or

I MSLS_ADJ_R SQUARED s specified, and equal to max_n_best X
n_candi dat e, otherwise. For | =0, 1, ..., ntbest — 1, rows

i ndex_coefficients[l],index_coefficients[I]+1,..,

i ndex_coefficients[l +1] —1 ofcoeffici ents correspond to the
(I + 1)-st regression. Argumenbef fi ci ent s is the address of a
pointer to the internally allocated array of sizadex_coef fi cients
[ntbest] — 1) x 5 containing statistics relating to the regression
coefficients of the best models. Each row corresponds to a coefficient
for a particular regression. The regressions are in order of increasing
subset size. Within each subset size, the regressions are ordered so that
the better regressions appear first. The statistic in the columns are as
follows (inferences are conditional on the selected model):

Column Description
0 variable number
1 coefficient estimate
2 estimated standard error of the estimate
3 t-statistic for the test that the coefficient is|0
4 p-value for the two-sidetitest

| MSLS COEF_STATI STI CS_USER, int i ndex_coefficients[],

float coef ficients[] (Output)
Storage for arrayisndex_coef fi ci ents andcoefficients is
provided by the user. Se&BLS COEF_STATI STI CS.

I MSLS | NPUT_COQV, int n_observati ons, float cov[] (Input)

Argumentn_obser vat i ons is the number of observations associated
with arraycov. Argumentcov is an (_candi dat e + 1) by

(n_candi dat e + 1) array containing a variance-covariance or sum of
squares and crossproducts matrix, in which the last column must
correspond to the dependent variable. Axay can be computed using
i msl s_f _covari ances. Argumentx andy, and optional arguments

116 « regression_selection

IMSL C/Stat/Library



frequenci es and wei ght s are not accessed when this option is
specified. Normally, i nsl s_f _r egr essi on_sel ect i on computes
cov from theinput data matricesx and y. However, there may be cases
when the user will wish to calculate the covariance matrix and
manipulate it beforecallingi nsl s_f _regressi on_sel ecti on. See
the description section below for a discussion of such cases.

Description

Functioni nsl s_f _regressi on_sel ecti on finds the best subset regressions
for aregression problem with n_candi dat e independent variables. Typically,
the intercept is forced into all models and is not a candidate variable. In this case,
asum of squares and crossproducts matrix for the independent and dependent
variables corrected for the mean is computed internally. There may be cases when
it is convenient for the user to calculate the matrix; see the description of optional
argument | MSLS_| NPUT_COV.

“Best” is defined, on option, by one of the following three criteria:

. R’ (in percent)
SSE
R? =100(1-—2)
SST
. R? (adjusted® in percent)
-1 SSE
2 =100 1- (2 P
R (n— p) SST

Note that maximizing the criterion is equivalent to minimizing the
residual mean square:

$EIE’
(n-p)

. Mallows’ Cp statistic

SS S
Co=g — —*2pn
Sw_candi date

Here,n is equal to the sum of the frequenciesn(arows if

I MBLS_FREQUENCI ES is not specified) and SST is the total sum of squares, SSE
is the error sum of squares in a model contaipinggression parameters
including, (or p — 1 of then_candi dat e candidate variables). Variable

2
%_candi date

is the error mean square from the model witlm atlandi dat e variables in the
model. Hocking (1972) and Draper and Smith (1981, pp—298) discuss these
criteria.
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Functioni nmsl s_f _regressi on_sel ecti on isbased on the algorithm of
Furnival and Wilson (1974). This algorithm finds nrax_n_good_saved candidate
regressions for each possible subset size. These regressions are used to identify a
set of best regressions. In large problems, many regressions are not computed.
They may be rejected without computation based on results for other subsets; this
yields an efficient technique for considering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix
rather than allow the functioni nsl s_f _regressi on_sel ecti on to calculate
it. This can be accomplished using optional argument | MSLS_I NPUT_COV. Three
situations in which the user may want to do this are as follows:

1 Theintercept is not in the model. A raw (uncorrected) sum of squares
and crossproducts matrix for the independent and dependent variablesis
required. Argument n_obser vat i ons must be set to 1 greater than the
number of observations, Form A7A, where A = [A, Y], to compute the
raw sum of squares and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares
and crossproducts matrix for the constant regressor (= 1.0), independent,
and dependent variablesisrequired for cov. In this case, cov contains
one additional row and column corresponding to the constant regressor.
This row/column contains the sum of sguares and crossproducts of the
constant regressor with the independent and dependent variables. The
remaining elementsin cov are the same as in the previous case.
Argument n_obser vat i ons must be set to 1 greater than the number of
observations.

3. There are mvariables to be forced into the models. A sum of squares
and crossproducts matrix adjusted for the mvariablesis required
(calculated by regressing the candidate variables on the variables to be
forced into the model). Argument n_obser vat i ons must be set tom
less than the number of observations.

Programming Notes

Functioni msl s_f _regressi on_sel ecti on can save considerable CPU time
over explicitly computing all possible regressions. However, the function has
some limitations that can cause unexpected results for users who are unaware of
the limitations of the software.

1 For n_candi dat e + 1> -log, (€), whereg isi nmsl s_f _nmachi ne(4)
(i msl s_d_machi ne(4) for double precision; see Chapter 14 ), some
results can be incorrect. This limitation arises because the possible
models indicated (the model numbers 1, 2, ..., 2n_candi dat €) gre stored
as floating-point values; for sufficiently largen_candi dat e, the model
numbers cannot be stored exactly. On many computers, this means
imsl s_f _regression_sel ection (for n_candi dat e > 24) and
i msl s_d_regression_sel ection (for n_candi dat e >49) can
produce incorrect results.
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Functioni nmsl s_f _regressi on_sel ecti on eliminates some subsets
of candidate variables by obtaining lower bounds on the error sum of
squares from fitting larger models. First, the full model containing all
n_candi dat e isfit sequentially using aforward stepwise procedurein
which one variable enters the model at atime, and criterion values and
model numbersfor all the candidate variables that can enter at each step
are stored. If linearly dependent variables are removed from the full
model, error | MSLS_VARI ABLES DELETED isissued. If thiserror is
issued, some submodels that contain variables removed from the full
model because of linear dependency can be overlooked if they have not
already been identified during theinitial forward stepwise procedure. If
error | MSLS_VARI ABLES_DELETEDIisissued and you want the
variables that were removed from the full model to be considered in
smaller models, you can rerun the program with a set of linearly
independent variables.

Examples

Example 1

This example uses a data set from Draper and Smith (1981, pp. 629-630).
Functioni sl s_f _regressi on_sel ecti on isinvoked to find the best
regression for each subset size using the R criterion. By default, the function
prints the results.

#i ncl ude <insls. h>
#def i ne N_OBSERVATI ONS 13
#def i ne N_CANDI DATE

mai n()

11.
10.

fl oat

x[ N_OB

68

109. 2,

4

SERVATI ONS] [ N_CANDI DATE] =

17.
22.
18.
4.
23.
9.

8

6.

12.}

y[ N_OBSERVATI ONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
102. 7,

72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

i msl s_f_regression_sel ecti on(N_OBSERVATI ONS, N_CANDI DATE, x, y, 0);

Chapter 2: Regression

regression_selection « 119



Output

Regressions with

Criterion
67.5
66. 6
53.4
28.6

Regressions with

Criterion
97.9

97.2

93.5

68

54.8

Regressions with

Criterion
98. 2
98. 2
98.1
97.3

Regressions with
Criterion

98. 2

Best Regression
Variable Coefficient
4 -0.7382

Best Regression
Variable Coefficient
1 1.468

2 0. 662

Best Regression
Variable Coefficient
1 1.452

2 0. 416

4 -0. 237

Best Regression
Variable Coefficient

wi th

with

1 variable(s) (R-squared)

Vari abl es

WEFEN D

2 variabl e(s) (R-squared)

3 variabl e(s) (R-squared)

bl es

NP R R
WWNN Y
ArPhwWprAOD

4 variabl e(s) (R-squared)

Vari abl es
1 2 3 4

Standard Error t-stat
0. 1546 -

Standard Error t-stat

1 variabl e(s) (R-squared)

istic
4,775

p- val ue
0. 0006

with 2 variabl e(s) (R-squared)
Standard Error t-statistic p-value
0.1213 12.10 0. 0000
0. 0459 14.44  0.0000

with 3 variabl e(s) (R-squared)
Standard Error t-statistic p-value
0.1170 12.41 0. 0000
0. 1856 2.24  0.0517
0.1733 -1.36  0.2054

4 variabl e(s) (R-squared)

istic p-value
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1 1.551 0.7448 2.083 0. 0708

2 0.510 0.7238 0. 705 0. 5009

3 0. 102 0. 7547 0. 135 0. 8959

4 -0. 144 0.7091 -0. 203 0. 8441
Example 2

This example uses the same data set as the first example, but Maljow’s
statistic is used as the criterion rather tRAnNote that when Mallow’ €,
statistic (or adjusteaz) is specified, the variableax_n_best indicates the:otal
number of “best” regressions (rather than indicating the number of best
regressionper subset size, as in the case of tie criterion). In this example, the
three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).

#i ncl ude <insls. h>

#def i ne N_OBSERVATI ONS 13

#define N_CANDI DATE 4
mai n()

float x[ N OBSERVATI ONS] [ N_CANDI DATE] =
{7., 26., 6., 60.

1., 29., 15., 52.,
11., 56., 8., 20.,
11., 31., 8., 47.,
7., 52., 6., 33.,
11., 55., 9., 22.,
3., 71., 17., 6.,
1., 31., 22., 44.,
2., 54., 18., 22.,
21., 47., 4., 26.,
1., 40., 23., 34.,
11., 66., 9., 12.,
10., 68., 8., 12.};

float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
i nt max_n_best = 3;

i msl s_f _regression_sel ecti on( N_OBSERVATI ONS, N_CANDI DATE,
(float *) x, vy,
| MSLS_MALLOWS_CP,
| MBLS_MAX_N_BEST, max_n_best,

0);
}
Output
1
Regressions wth 1 variable(s) (Mallows CP)
Criterion Vari abl es
139 4
142 2
203 1
315 3

Regressions wth 2 variable(s) (Mallows CP)
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Criterion Vari abl es
2.68 1 2
5.5 1 4
22. 4 3 4
138 2 4
198 1 3
Regressions with 3 variable(s) (Mallows CP)
Criterion Vari abl es
3.02 1 2 4
3.04 1 2 3
3.5 1 3 4
7.34 2 3 4
Regressions with 4 variable(s) (Mallows CP)
Criterion Vari abl es
5 1 2 3 4
1
Best Regression with 2 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
1 1. 468 0.1213 12.10 0. 0000
2 0. 662 0. 0459 14.44  0.0000
Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
1 1. 452 0.1170 12.41 0. 0000
2 0. 416 0. 1856 2.24  0.0517
4 -0. 237 0.1733 -1.36  0.2054
2nd Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
1 1.696 0. 2046 8.29  0.0000
2 0. 657 0. 0442 14.85 0.0000
3 0. 250 0. 1847 1.35 0.2089

Warning Errors
| MSLS_VARI ABLES_DELETED

Fatal Errors
| MSLS_NO_VARI ABLES

At least one variable is deleted from the full
mode! because the variance-covariance
matrix “cov” is singular.

No variables can enter any model.
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regression_stepwise

Builds multiple linear regression models using forward selection, backward
selection, or stepwise selection.

Synopsis
#include <insls. h>

void i nsls_f _regression_stepw se (int n_rows, int n_candi dat e,
float x[], float y[], ..., 0)

The type double functionisi nsl s_d_r egressi on_st epwi se.

Required Arguments

int n_rows (Input)
Number of rowsin x and the number of elementsiny.

int n_candi date (Input)
Number of candidate variables (independent variables) or columnsin x.

float x[] (Input)
Array of sizen_r ows X n_candi dat e containing the data for the
candidate variables.

float y[] (Input)
Array of length n_r ows containing the responses for the dependent
variable.

Synopsis with Optional Arguments
#include <insls. h>

void i nsl s_f_regression_sel ection (int n_rows, int n_candi date,
float x[], float y[],
IMSLS X _ COL_DIM int x_col _dim
| MSLS WEI GHTS, float wei ghts[],
| MSLS_FREQUENCI ES, float frequencies[],
| MSLS_FI RST_STEP, or
| MSLS_| NTERMEDI ATE_STEP, or
| MBLS_LAST_STEP, or
| MSLS_ALL_STEPS,
I MSLS N STEPS, int n_st eps,
| MSLS_FORWARD, or
| M5SLS_BACKWARD, or
| MSLS_STEPW SE,
I MSLS P_VALUE I N, float p_val ue_in,
| MSLS P_VALUE _QUT, float p_val ue_out,
| MSLS TOLERANCE, float t ol erance,
| MBLS_ANOVA TABLE, float **anova_t abl e,
| MSLS ANOVA TABLE USER, float anova_table[],
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| MSLS_CCEF_T_TESTS, float **coef t_tests,

| MSLS COEF T TESTS USER, float coef t tests[],
| MBLS_COEF_VI F, float **coef vif,

| MSBLS_COEF_VI F_USER, float coef vif[],

| MBLS_LEVEL, int | evel[],

| MSLS FORCE, int n_force,

I MSLS_| END, int *i end,

| MBLS_SWEPT_USER, int swept[],

| MBLS_HI STORY_USER, float history[],

| MBLS_COV_SWEPT USER, float *covs

I MSLS_| NPUT_COV, int n_observati ons, float *cov,
0)

Optional Arguments

IMSLS X _COL_DI'M int x_col _di m (Input)

Column dimension of x.
Default: x_col _di m=n_candi dat e

| MSLS_WEI GHTS, float wei ghts[] (Input)

Array of length n_r ows containing the weight for each row of x.
Default: wei ght s[] =1

| MSLS_FREQUENCI ES, float frequencies[] (Input)

Array of length n_r ows containing the frequency for each row of x.
Default: f requenci es[] =1

| MBLS_FI RST_STEP, or
| MBLS_| NTERVEDI ATE_STEP, or
| MSLS_LAST_STEP, or

| MSLS_ALL_STEPS

One or none of these options can be specified. If none of theseis
specified, the action defaultsto | MSLS_ALL_STEPS.

Argument Action

| MBLS_FI RST_STEP Thisisthefirst invocation; additional
callswill be made. Initialization and
stepping is performed.

I MSLS_I NTERMEDI ATE_STEP | Thisis an intermediate invocation.
Stepping is performed.

I MBLS_LAST_STEP Thisisthefinal invocation. Stepping
and wrap-up computations are
performed.

| MSLS_ALL_STEPS Thisisthe only invocation.

Initialization, stepping, and wrap-up
computations are performed.
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I MSBLS_N_STEPS, int n_steps (Input)
For nonnegative n_st eps, n_st eps steps are taken. If n_st eps = -1,
stepping continues until completion.

| MSLS_FORWARD, or

| MSLS_BACKWARD, or

| MSLS_STEPW SE
One or none of these options can be specified. If none is specified, the
action defaultsto | MSLS_BACKWARD.

Keyword Action

I MBLS_FORWARD | An attempt is made to add a variable to the model. A
variableis added if its p-valueislessthan

p_val ue_i n. During initialization, only the forced
variables enter the model.

I MBLS_BACKWARD | An attempt is made to remove a variable from the
model. A variableisremoved if its p-value exceeds
p_val ue_out . During initiadlization, all candidate
independent variables enter the model.

I MBLS_STEPW SE | A backward step is attempted. If avariableis not
removed, aforward step is attempted. Thisisa
stepwise step. Only the forced variables enter the
model during initialization.

I MSBLS P_VALUE I N, float p_val ue_in (Input)
Largest p-value for variables entering the model. Variables with p-values
lessthan p_val ue_i n may enter the model.
Default: p_val ue_i n =0.05

I MSBLS P_VALUE OUT, float p_val ue_out (Input)
Smallest p-value for removing variables. Variableswithp_val ues
greater than p_val ue_out may leave the model. Argument
p_val ue_out must be greater than or equal top_val ue_i n. A
common choicefor p_val ue_out is2*p_val ue_i n.
Default: p_val ue_out =0.10

I MSBLS TOLERANCE, float t ol erance (Input)
Tolerance used in determining linear dependence.
Default: t ol er ance = 100* eps, whereeps=i nsl s_f _nmachi ne(4) for
single precisionand eps =i nsl s_d_machi ne(4) for double precision
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| MSLS_ANOVA_TABLE, float **anova_t abl e (Output)
Address of a pointer to the internally allocated array containing the
analysis of variance table. The analysis of variance statistics are as

follows:

Element | Analysis of Variance Statistic
0 degrees of freedom for regression
1 degrees of freedom for error
2 total degrees of freedom
3 sum of squares for regression
4 sum of squares for error
5 total sum of squares
6 regression mean square
7 error mean sguare
8 F-statistic
9 p-value
10 R’ (in percent)
1 adjusted R® (in percent)
12 estimate of the standard deviation

I MBLS ANOVA TABLE USER, float anova_tabl e[] (Output)
Storage for anova_t abl e isprovided by the user.
See | MSLS_ANOVA TABLE.

I MSBLS CCOEF T_TESTS, float **coef t_tests (Output)
Addressto a pointer to the internally allocated array containing statistics
relating to the regression coefficient for the final model in this
invocationing. The rows correspond to the n_candi dat e independent
variables. The rows are in the same order as the variablesin x (or, if
I MSLS | NPUT_COV is specified, the rows are in the same order asthe
variablesin cov). Each row corresponding to a variable not in the model
contains statistics for amodel which includes the variables of the final
model and the variable corresponding to the row in question.

Column | Description

0 coefficient estimate
1 estimated standard error of the coefficient
estimate
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Column | Description

2 t-statistic for the test that the coefficient isO

3 p-value for the two-sided t test

| MBLS CCEF _T_TESTS USER, float coef t tests[] (Output)
Storage for array coef _t _t ests isprovided by the user.
See| MBLS_COEF_T_TESTS.

| MBLS_COEF_VI F, float **coef vif (Output)
Addressto a pointer to the internally allocated array containing variance
inflation factors for the final model in this invocation. The elements
correspond to the n_candi dat e dependent variables. The elements are
in the same order asthe variablesin x (or, if | MSLS_| NPUT_COV is
specified, the elements are in the same order asthe variablesin cov).
Each element corresponding to avariable not in the model contains
statistics for amodel which includes the variables of the final model and
the variables corresponding to the element in question.

The square of the multiple correlation coefficient for the I-th regressor
after al others can be obtained from coef _vi f [I ] by the following
formula

_10
VIF

| MBLS_COEF_VI F_USER, float coef vif[] (Output)
Storage for array coef _vi f isprovided by the user.
See | MSLS_COEF VI F.

I MSBLS LEVEL, int level [] (Input)
Array of lengthn_candi dat e + 1 containing levels of priority for
variables entering and leaving the regression. Each variableis assigned a
positive value which indicatesits level of entry into the model. A
variable can enter the model only after al variables with smaller nonzero
levels of entry have entered. Similarly, avariable can only leave the
model after all variableswith higher levels of entry have left. Variables
with the same level of entry compete for entry (deletion) at each step.
Argument | evel [I ] = 0 meansthel -th variableis never to enter the
model. Argument | evel [I ] = -1 meansthel -th variable isthe
dependent variable. Argument | evel [n_candi dat e] must correspond
to the dependent variable, except when | MBLS_| NPUT_COV is specified.
Default: 1, 1, ..., 1, —1 where —1 correspondsto | evel [n_candi dat €]

I MBLS FORCE, int n_force (Input)
Variablewithlevels1, 2, ..., n_f or ce areforced into the model as
independent variables. See | MSLS_LEVEL.

I MSLS_ | END, int *i end (Output)
Variable which indicates whether additional steps are possible.

10
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iend | Meaning

0 Additional steps may be possible.

1 No additional steps are possible.

| MSLS_SWEPT_USER, int swept[] (Output)
A user-allocated array of length n_candi dat e + 1 with information to
indicate the independent variables in the model. Argument
swept [n_candi dat e] usually corresponds to the dependent variable.
See | MSLS_LEVEL.

swept [i] | Status of i-th Variable

-1 Variablei isnot in model.

1 Variablei isin model.

| MBLS_HI STORY_USER, float hi story[] (Output)
User-allocated array of length n_candi dat e + 1 containing the recent
history of the independent variables. Element hi st or y[n_candi dat €]
usually corresponds to the dependent variable. See | MSLS_LEVEL.

hi story[i] |Status of /-th Variable

0.0 Variable has never been added to model.
0.5 Variable was added into the model during
initialization.

k>0.0 Variable was added to the model during the k-th
step.

k<0.0 Variable was deleted from model during the k-th
step.

| MBLS_COV_SWEPT_USER, float *covs (Output)
User-allocated array of length
(n_candi dat e + 1) x (n_candi dat e + 1) that results after cov has
been swept on the columns corresponding to the variables in the model.
The estimated variance-covariance matrix of the estimated regression
coefficients in the final model can be obtained by extracting the rows
and columns of covs corresponding to the independent variablesin the
final model and multiplying the elements of this matrix by
anova_tabl e[ 7].

I MSLS | NPUT_COV, int n_observations float *cov (Input)
An (n_candi dat e + 1) by (n_candi dat e + 1) array containing a
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variance-covariance or sum of squares and crossproducts matrix, in
which the last column must correspond to the dependent variable.
Argument n_obser vat i ons isan integer specifying the number of
observations associated with cov. Argument cov can be computed using
i msl s_f _covari ances. Argumentsx, y, wei ght s, and

frequenci es are not accessed when this option is specified.

By default, i nsl s_r egr essi on_st epwi se computescov from the
input datamatricesx andy.

Description

Functioni nsl s_f _regressi on_st epwi se buildsamultiple linear regression
model using forward selection, backward selection, or forward stepwise (with a
backward glance) selection. Functioni nsl s_f _regressi on_stepw se is
designed so the user can monitor, and perhaps change, the variables added
(deleted) to (from) the model after each step. In this case, multiple callsto

imsl s_f_regression_stepw se (using optional arguments

| MSLS_FI RST_STEP, | MSLS_| NTERVEDI ATE_STEP, ..., | MSLS_LAST_STEP)
are made. Alternatively, i msl s_f _regressi on_st epwi se can beinvoked
once (default, or specify optional argument | MSLS_ALL_STEPS) in order to
perform the stepping until afinal model is selected.

Levels of priority can be assigned to the candidate independent variables (use
optional argument | MSLS_LEVEL). All variables with a priority level of 1 must
enter the model before variables with a priority level of 2. Similarly, variables
with alevel of 2 must enter before variables with alevel of 3, etc. Variables also
can be forced into the model (see optional argument | MSLS_FORCE). Note that
specifying optional argument I MSLS _FORCE without also specifying optional
argument | MSLS_LEVEL will result in all variables being forced into the model.

Typically, theintercept is forced into all models and is not a candidate variable.
In this case, a sum-of-squares and crossproducts matrix for the independent and
dependent variables corrected for the mean is required. Other possibilities are as
follows:

1 Theintercept isnot in the model. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the independent and dependent variablesis
required asinput in cov (see optional argument | MSLS | NPUT_COV).
Argument n_obser vat i ons must be set to one greater than the number
of observations.

2. An intercept is acandidate variable. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the constant regressor (=1), independent
and dependent variables are required for cov. In this case, cov contains
one additional row and column corresponding to the constant regressor.
This row/column contains the sum-of-squares and crossproducts of the
constant regressor with the independent and dependent variables. The
remaining elementsincov are the same asin the previous case.
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Argument n_obser vat i ons must be set to one greater than the number
of observations.

The stepwise regression algorithm is due to Efroymson (1960). Function

i mel s_f _regressi on_st epwi se uses sweeps of the covariance matrix (input
incov, if optional argument | MSLS_| NPUT_COV is specified, or generated
internally by default) to move variablesin and out of the model (Hemmerle 1967,
Chapter 3). The SWEEP operator discussed in Goodnight (1979) isused. A
description of the stepwise algorithm is aso given by Kennedy and Gentle (1980,
pp. 335-340). The advantage of stepwise model building over al possible
regression (see functioni nsl s_f _regressi on_sel ecti on, page 112) isthat
it isless demanding computationally when the number of candidate independent
variablesis very large. However, there is no guarantee that the model selected
will be the best model (highest Rz) for any subset size of independent variables.

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630).
Backwards stepping is performed by default.

#i ncl ude <insls. h>

#def i ne N_OBSERVATI ONS 13

#def i ne N_CANDI DATE
mai n()

4

char *| abel s[] = {
"degrees of freedom for regression”,
"degrees of freedomfor error",
"total degrees of freedont,
"sum of squares for regression”,
"sum of squares for error",
"total sum of squares",
"regressi on nean square",
"error mean square",
"F-statistic",
"p-val ue",
"R-squared (in percent)",
"adj usted R-squared (in percent)",
"est. standard deviation of within error”
b
char *c_labels[] = {
"vari abl e",
"estimte",
"s.e.",
e
"prob > t"
s
float *aov, *tt;
float x[ N_OBSERVATI ONS] [ N_CANDI DATE] =
{7., 26., 6., 60.,
1., 29., 15., 52.,
11., 56., 8., 20.,
11., 31., 8., 47.,
7., 52., 6., 33.,
11., 55., 9., 22.,
3., 71., 17., 6.,
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1., 31., 22., 44.,
2., 54., 18., 22.,
21., 47., 4., 26.,
1., 40., 23., 34.,
11., 66., 9., 12.,
10., 68., 8., 12.}

float y[N OBSERVATI ONS| = {78.5, 74.3, 104.3, 87.6, 95.09,

109.2, 102.7, 72.5, 93.1, 115.9, 83.8,

113. 3,

109. 4};

inmsls_f_regression_stepw se( N OBSERVATI ONS, N _CANDI DATE, x, y

| MBLS_ANOVA TABLE, &aov,
| MBLS_COEF_T_TESTS, &tt,
0);

inmsls f wite matrix("* * * Analysis of Variance * * *\n",

13, 1, aov,

| MSLS ROW LABELS, | abels

| MSLS VWRI TE_FORNMAT, "9%0. 2f"
0);

inmsls f wite matrix("* * * Inference on Coefficients * * *\n",

4, 4, tt,
| MSLS COL_LABELS, c_|abels
| MSLS VWRI TE_FORNMAT, "9%0. 2f",

0);
return;
}
Output
* * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedomfor error 10. 00
total degrees of freedom 12. 00
sum of squares for regression 2657. 86
sum of squares for error 57. 90
total sum of squares 2715.76
regressi on nmean square 1328.93
error mean square 5.79
F-statistic 229.50
p- val ue 0. 00
R-squared (in percent) 97. 87
adj usted R-squared (in percent) 97. 44
est. standard deviation of within error 2.41

* * * |Inference on Coefficients * * *
variabl e estimte S. €. t prob >t

1 1.47 0.12 12.10 0. 00

2 0. 66 0.05 14. 44 0. 00

3 0.25 0.18 1.35 0.21

4 -0.24 0.17 -1.36 0.21
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Warning Errors

I MSLS LI NEAR DEPENDENCE 1  Based on “tolerance” = #, there are linear
dependencies among the variables to be
forced.

Fatal Errors

I MSLS_NO VARI ABLES ENTERED No variables entered the model. All
elements of “anova_table” are set to NaN.

poly regression

Performs a polynomial least-squares regression.

Synopsis
#include <i nsl's. h>

float *i nsl s_f_poly_regression (int n_observations, float x[],
float y[], int degree, ..., 0)

The typedouble function isi nsl s_d_pol y_r egr essi on.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of lengthn_obser vat i ons containing the independent variable.

float y[] (Input)
Array of lengthn_obser vat i ons containing the dependent variable.

int degree (Input)
Degree of the polynomial.

Return Value

A pointer to the array of siziegr ee + 1 containing the coefficients of the fitted
polynomial. If a fit cannot be computed, NULL is returned.

Synopsis with Optional Arguments
#include <insls. h>

float *i nsl s_f _poly_regression (int n_observations, float x[],
float y[], int degree,
| MBLS_VEI GHTS, float wei ghts[],
I MSBLS _SSQ POLY, float **ssq_poly,
| MBLS_SSQ POLY_USER, float ssq_pol y[],
I MSBLS SSQ POLY COL_DI' M int ssq_poly_col _dim
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| MBLS_SSQ LOF, float **ssq_l of ,
| MSLS SSQ LOF USER, float ssq_lof[],
I MBLS_SSQ LOF_COL_DI M int ssq_l of _col _dim
I MSLS X MEAN, float *x_nean,
| MSBLS_X_VARI ANCE, float *x_vari ance,
| MSLS ANOVA TABLE, float **anova_t abl e,
| MSLS_ANOVA TABLE USER, float anova_table[],
| MSLS DF_PURE_ERROR, int *df pure_error,
I MSLS_SSQ PURE_ERRCR, float *ssq_pure_error,
| MSLS RESI DUAL, float **resi dual ,
| MBLS_RESI DUAL_USER, float residual [],
| MBLS_POLY_REGRESSI ON_| NFO,
Imds f poly regression **pol y_i nf o,
| MSLS RETURN USER, float coefficients[],
0)

Optional Arguments

I MSLS VEI GHTS, float wei ghts[] (Input)
Array withn_obser vat i ons components containing the array of
weights for the observation.
Default: wei ghts[] =1

I MSLS SSQ PQLY, float **ssq_poly (Output)
Address of a pointer to the internally allocated array containing the
sequential sums of squares and other statistics. Row i corresponds to x’,
i=0, ..., degree — 1, and the columns are described as follows:

Column | Description

0 degrees of freedom

1 sums of squares
2 F-statistic
3 p-value

I MSLS_SSQ POLY_USER, float ssq_pol y[] (Output)
Storage for array ssq_pol y isprovided by the user.
See| MBLS_SSQ POLY.

I MSLS_SSQ POLY_COL_DIM int ssq_pol y_col _di m (Input)
Column dimension of ssq_pol y.
Default: ssg_pol y_col _di m=4

| MBLS_SSQ LOF, float **ssq_l of (Output)
Address of a pointer to the internally allocated array containing the lack-
of-fit statistics. Row i correspondsto x',i =0, ..., degr ee — 1, and the
columns are described in the following table:
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Column | Description

0 degrees of freedom
1 lack-of-fit sums of squares

2 F-statistic for testing lack-of-fit for a
polynomia model of degreei

3 p-value for the test

I MBLS SSQ LOF USER, float ssq | of [] (Output)
Storage for array ssq_| of isprovided by the user.
See| MBLS_SSQ LCF.

I MSLS SSQ LOF COL_DIM int ssq_l of _col _di m (Input)
Column dimension of ssq_| of .
Default: ssq_| of _col _dim=4

I MBLS X MEAN, float *x_mean (Output)
Mean of x.

I MSBLS X VARI ANCE, float *x_vari ance (Output)
Variance of x.

| MSBLS _ANOVA TABLE, float **anova_t abl e (Output)
Address of a pointer to the array containing the analysis of variance
table.

Column | Description

0 degrees of freedom for the model
1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of sguares for error

5 total (corrected) sum of squares
6 model mean square

7 error mean square

8 overall F-statistic
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Column | Description

9 p-value

10 R (in percent)

1 adjusted R® (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

I MSLS ANOVA TABLE USER, float anova_tabl e[] (Output)
Storage for anova_t abl e isprovided by the user.
See | MSLS_ANOVA TABLE.

I MSBLS DF_PURE ERROR, int *df _pure_error (Output)
If specified, the degrees of freedom for pure error are returned in
df _pure_error.

I MBLS SSQ PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in
Ssq_pure_error.

I MSLS _RESI DUAL, float **resi dual (Output)
Address of a pointer to the array containing the residuals.

I MSLS RESI DUAL_USER, float residual [] (Output)
Storage for array r esi dual isprovided by the user.
See| MBLS_RESI DUAL.

I MBLS POLY_REGRESSI ON | NFO, Imdls f poly regression **poly_info
(Output)
Address of a pointer to an internally allocated structure containing the
information about the polynomial fit required as input for IMSL function
inmsls_f _poly_ prediction.

I MBLS RETURN USER, float coefficients[] (Output)
If specified, the |least-squares solution for the regression coefficientsis
stored in array coef fi ci ent s of sizedegr ee + 1 provided by the user.

Description

Functioni msl s_f _pol y_r egr essi on computes estimates of the regression
coefficientsin a polynomial (curvilinear) regression model. In addition to the
computation of thefit, i nsl s_f _pol y_r egr essi on computes some summary
statistics. Sequential sums of squares attributable to each power of the
independent variable (stored in ssq_pol y) are computed. These are useful in
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#i ncl ude <i sl s.

#defi ne DEGREE
#defi ne NOBS

mai n()

fl oat
fl oat

fl oat

coefficients

assessing the importance of the higher order powersin thefit. Draper and Smith
(1981, pp. 101-102) and Neter and Wasserman (1974, pp. 278—-287) discuss the
interpretation of the sequential sums of squares. The statistic R isthe percentage
of the sum of squares of y about its mean explained by the polynomial curve.

Specifically,
~ —\2
W | —
R = 2.0 3_/)2 100%
> w(vi-y)
where

Y
isthefitted y value at x; and y isthe mean of y. This statistic isuseful in

assessing the overal fit of the curve to the data. R® must be between 0 and 100
percent, inclusive. R’ =100 percent indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed
using orthogonal polynomials as the regressor variables. This reparameterization
of the polynomial model in terms of orthogonal polynomials has the advantage
that the loss of accuracy resulting from forming powers of thex-valuesis avoided.
All results are returned to the user for the original model (power form).

Functioni nmsl s_f _pol y_regr essi on isbased on the algorithm of Forsythe

(1957). A modification to Forsythe’s algorithm suggested by Shampine (1975) is
used for computing the polynomial coefficients. A discussion of Forsythe’s
algorithm and Shampine’s modification appears in Kennedy and Gentle (1980,
pp. 342-347).

Examples
Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pp. 279-285). The data set contains the response vanatieasuring coffee

sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for 14 similar cafeterias are in the data set. A graph of the results is
also given.

h>

*coefficients

x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};

y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

= insls_f_poly regression (NOBS, x, y, DECGREE, 0);
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inmsls f wit

e _matri x("Least-Squares Pol ynom al Coefficients",
DEGREE + 1, 1, coefficients,
| MSLS_ROW NUMBER ZERO,
0);

Output

Least - Squar es Pol ynom al Coefficients

0
1
2

#i ncl ude <stdi o.
#i ncl ude <i sl s.

#defi ne DEGREE
#defi ne NOBS

voi d main()

503. 3
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Figure 2-1 A Polynomial Fit

Example 2

This exampleis a continuation of the initial example. Here, many optional
arguments are used.

h>
h>

iset = 1, dfpe;
*coefficients, *anova_ table, sspe, *ssqgpoly, *ssqlof;
x[] =4{0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
*coef _rlab[2];

*coef _clab[] ={" ", "intercept", "linear",
"quadratic"};
*stat_clab[] = {" ", "Degrees of\nFreedont,

" Sum of \ nSquar es",
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"\nF-Statistic", "\np-value"};

char *anova_rlab[] = {

"degrees of freedomfor regression”,

"degrees of freedomfor error"”,

"total (corrected) degrees of freedont,

"sum of squares for regression",

"sum of squares for error",

"total (corrected) sum of squares"”,

“regressi on nean square",

"error nean square", "F-statistic",

"p-value", "R-squared (in percent)",

"adj usted R-squared (in percent)",

"est. standard deviation of nodel error"”,

"overall nean of y",

"coefficient of variation (in percent)"};

coefficients = insls_f_poly_regressi on(NOBS, x, y, DEGREE,
I MSLS_SSQ PALY, &ssqgpoly,
I MSLS SSQ LOF, &ssql of,
| MSLS_ANOVA TABLE, &anova_t abl e,
| MSLS_DF_PURE_ERROR, &df pe,
| MSBLS_SSQ PURE_ERROR, &sspe,
0);
insls_ wite options(-1, & set);
insls f wite matrix("Least Squares Pol ynom al Coefficients",
1, DEGREE + 1,
coefficients,
| MSLS COL_LABELS, coef_cl ab,
0);
coef _rl ab[ 0] coef _cl ab[ 2];
coef _rlab[1] coef _cl ab[ 3];
imsls_f_wite_matrix("Sequential Statistics", DEGREE, 4, ssqgpoly,
| MSLS COL_LABELS, stat_cl ab,
| MSLS ROW LABELS, coef rl ab,
| MSLS VWRI TE_FORNMAT, "93. 1f 98. 1f 96. 1f 96. 4f ",
0);
imsls_f_wite_matrix("Lack-of-Fit Statistics", DEGREE, 4, ssqlof,
| MSLS COL_LABELS, stat_cl ab,
| MSLS ROW LABELS, coef _rl ab,
| MSLS VWRI TE_FORVAT, "98. 1f98. 1f %6. 1f 9. 4f ",
0);
inmsls f wite matrix("* * * Analysis of Variance * * *\n", 15, 1,
anova_t abl e,

| MSLS ROW LABELS, anova_rl ab,
| M5SLS WRI TE_FORMAT, "9@. 2f ",

0);
}
Output
Least Squares Pol ynom al Coefficients
i ntercept l'i near quadratic
503. 3 78.9 -4.0
Sequential Statistics
Degrees of Sum of
Freedom Squares F-Statistic p-value
I'i near 1.0 220644.2 3415.8  0.0000
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quadratic 1.0 4387. 7 67.9 0. 0000

Lack-of -Fit Statistics

Degrees of Sum of
Freedom Squares F-Statistic p-value
l'i near 5.0 4793.7 22.0 0. 0004
quadratic 4.0 405.9 2.3 0. 1548

* * * Anal ysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 11. 00
total (corrected) degrees of freedom 13. 00
sum of squares for regression 225031. 94
sum of squares for error 710. 55
total (corrected) sum of squares 225742. 48
regressi on nean square 112515. 97
error mean square 64. 60
F-statistic 1741. 86
p- val ue 0. 00
R-squared (in percent) 99. 69
adj usted R-squared (in percent) 99. 63
est. standard deviation of nodel error 8.04
overall mean of y 710. 99
coefficient of variation (in percent) 1.13

Warning Errors

| MSLS_CONSTANT_YVALUES They values are constant. A zero-
order polynomia isfit. High order
coefficients are set to zero.

| MSLS_FEW DI STI NCT_XVALUES There are too few distinct x values
to fit the desired degree
polynomial. High order
coefficients are set to zero.

| MSLS_PERFECT _FIT A perfect fit was obtained with a
polynomial of degree less than
degr ee. High order coefficients
are set to zero.

Fatal Errors

| MSLS NONNEG WEI GHT _REQUEST 2 All weights must be nonnegative.

| MSBLS ALL_OBSERVATI ONS_M SSI NG Each (x, y) point contains NaN.
There are no valid data.

| MSLS CONSTANT _XVALUES The x values are constant.
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poly prediction

Computes predicted values, confidence intervals, and diagnostics after fitting a
polynomial regression model.

Synopsis
#include <insls. h>

float *insls_f_poly_prediction (Imsls f poly regression *pol y_i nfo,
int n_predict, float x[], .., 0)

The type double functionisi nsl s_d_pol y_predi cti on.

Required Arguments

Imsls f_poly regression *pol y_i nfo (Input)
Pointer to a structure of type Imsls f poly regression. See function
i msl s_f_pol y_regression (page 132).

int n_predict (Input)
Length of array x.

float x[] (Input)
Array of length n_pr edi ct containing the values of the independent
variable for which calculations are to be performed.

Return Value

A pointer to an internally allocated array of lengthn_pr edi ct containing the
predicted values.

Synopsis with Optional Arguments
#include <insls. h>

float *insls_f_poly_prediction (Imsls f poly regression *pol y_i nfo,

intn_predict, float x[],

| MSLS CONFI DENCE, float confi dence,

| MSLS WEI GHTS, float wei ghts[],

| MBLS_SCHEFFE_CI, float **| ower |imit,
float **upper _linit,

| MBLS_SCHEFFE_Cl _USER, float | ower linmit[],
float upper _limt[],

| MBLS_PO NTW SE_CI _POP_MEAN, float **l ower linit,
float **upper _linit,

| MBLS_PO NTW SE_CI _POP_MEAN_USER, float |ower limit[],
float upper _limt[],

| MBLS POl NTW SE_Cl _NEW SAVPLE, float **1 ower linit,
float **upper _linit,

| MBLS_POI NTW SE_Cl _NEW SAVPLE_USER,
float | ower limt[],
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float upper _limt[],
| MSLS LEVERAGE, float **I| ever age,
| MSLS_LEVERAGE_USER, float | everage[],
| MBLS_RETURN_USER, float y_hat[],
I MSLSY, float y[],
| MSLS_RESI DUAL, float **resi dual ,
| MBLS_RESI DUAL_USER, float residual[],
| MSLS_STANDARDI ZED RESI DUAL,
float **st andar di zed_r esi dual ,
| MSLS_STANDARDI ZED RESI DUAL_USER,
float st andar di zed_r esi dual [],
| MSLS DELETED RESI DUAL, float **del et ed_resi dual ,
| MSLS_DELETED RESI DUAL_USER, float del et ed_residual [],
| MSLS COCKSD, float **cooksd,
| MSLS_COOKSD USER, float cooksd[],
| MSLS DFFI TS, float **dffits,
| MBLS_DFFI TS_USER, float dffits[],
0)

Optional Arguments

| MSLS_CONFI DENCE, float confi dence (Input)
Confidence level for both two-sided interval estimates on the mean and
for two-sided prediction intervalsin percent. Argument conf i dence
must be in the range [0.0, 100.0). For one-sided intervals with
confidence level onecl , where 50.0 < onecl < 100.0, set
confi dence =100.0 — 2.0* (100.0- onecl ).
Default:confi dence = 95.0

| MSLS_VEI GHTS, float wei ghts[] (Input)
Array of lengthn_pr edi ct containing the weight for each rowxaf
The computed prediction interval uses SSE/(Bi ght s[i ]) for the
estimated variance of a future response.
Default:wei ght s[] =1

| MSBLS_SCHEFFE _CI, float **| ower _limit, float **upper _|imit
(Output)
Array | ower _| i mi t is the address of a pointer to an internally allocated
array of lengtm_pr edi ct containing the lower confidence limits of
Scheffé confidence intervals corresponding to the rows Afray
upper _Il i mi t is the address of a pointer to an internally allocated array
of lengthn_pr edi ct containing the upper confidence limits of Scheffé
confidence intervals corresponding to the rows.of

| MSBLS_SCHEFFE_Cl _USER, float | ower _linmit[], float upper _limt[]
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
Seel MSLS_SCHEFFE_ClI .
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| MSLS_POI NTW SE_CI _POP_MEAN, float **1 ower |init,
float **upper _limt (Output)
Array | ower _| i m t isthe address of a pointer to an internally allocated
array of lengthn_pr edi ct containing the lower confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Array upper _I| i mit isthe address of
apointer to an internally allocated array of length n_pr edi ct
containing the upper confidence limits of the confidence intervals for
two-sided interval estimates of the means, corresponding to the rows of
X.

| MSLS_POI NTW SE_CI _POP_MEAN USER, float | ower linit[],
float upper _limt[] (Output)
Storage for arrays| ower _li mi t and upper _li mi t isprovided by the
user. See| MSLS_PQO NTW SE_Cl _POP_NEAN.

| MSLS PO NTW SE_Cl _NEW SAMPLE, float **l ower limt,
float **upper _limt (Output)
Array | ower _| i m t isthe address of apointer to an internally allocated
array of lengthn_pr edi ct containing the lower confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to
therowsof x. Array upper _| i mi t isthe address of a pointer to an
internally allocated array of length n_pr edi ct containing the upper
confidence limits of the confidence intervals for two-sided prediction
intervals, corresponding to the rows of x.

| MBLS_POI NTW SE_CI _NEW SAMPLE_USER, float lower limit[],
float upper _linmit[] (Output)
Storage for arrays| ower _l i mi t and upper _li mi t isprovided by the
user. See| MSLS_PQO NTW SE_Cl _NEW SAMPLE.

| MBLS_LEVERAGE, float **| everage (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the leverages.

| MBLS_LEVERAGE _USER, float | everage[] (Output)
Storage for array | ever age is provided by the user.
See| MBLS LEVERAGE.

| MBLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_pr edi ct
array contains the predicted values.

IMSLS_ Y float y[] (Input)
Array of lengthn_pr edi ¢t containing the observed responses.

Note: | MBLS_Y must be specified if any of the following optional arguments are
specified.

| MSLS_RESI DUAL, float **resi dual (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the residuals.
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| MBLS_RESI DUAL_USER, float residual [] (Output)
Storage for array r esi dual isprovided by the user.
See | MSLS_RESI DUAL.

| MSLS_STANDARDI ZED RESI DUAL, float **st andar di zed_r esi dual
(Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the standardized residuals.

| MSLS_STANDARDI ZED RESI DUAL_USER, float st andar di zed_r esi dual []
(Output)
Storage for array st andar di zed_r esi dual isprovided by the user.
See | MSLS_STANDARDI ZED RESI DUAL.

| MSLS _DELETED RESI DUAL, float **del et ed_resi dual (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the deleted residuals.

| MSLS_DELETED_RESI DUAL_USER, float del et ed_residual [] (Output)
Storage for array del et ed_r esi dual is provided by the user.
See| MSLS_DELETED RESI DUAL.

| MSBLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the Cook’® statistics.

| MBLS_COOKSD_USER, float cooksd[] (Qutput)
Storage for arragooksd is provided by the user. SeSBLS_COOKSD.

| MBLS_DFFI TS, float **dffits (Output)
Address of a pointer to an internally allocated array of length
n_predi ct containing the DFFITS statistics.

| MSLS_DFFI TS_USER, float dffits[] (Output)
Storage for arragf fi t s is provided by the user. SeSSLS_DFFI TS.
Description

Functioni nsl s_f _pol y_predi cti on assumes a polynomial model
_ k C_
Vi =Bot 8% t..., BiX TE i=12,...,n

where the observed values of ilig constitute the response, this are the

settings of the independent variable, fiie are the regression coefficients and
theg;'s are the errors that are independently distributed normal with mean 0 and
the following variance:

Given the results of a polynomial regression, fitted using orthogonal polynomials
and weightsv;, functioni nsl s_f _pol y_predi ct i on produces predicted
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values, residuals, confidence intervals, prediction intervals, and diagnostics for
outliersand in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. Thisis
accomplished by simply using a different x matrix when calling

i msl s_f_pol y_prediction thanwasused for thefit (function

i msl s_f _pol y_regressi on). See Example 1 on page 144.

Results from functioni nsl s_f _pol y_r egr essi on, which produces the fit
using orthogonal polynomials, are used for input by the structurepol y_i nf o.
The fitted model fromi nsl s_f _pol y_regressionis

S =aopo(z)+a.py(z)+... +ayp(z)

wherethe z's are settings of the independent variabsealed to the interval

[-2, 2] and thep; (2)'s are the orthogonal polynomials. TKEX matrix for this
model is a diagonal matrix with elemedtsThe case statistics are easily
computed from this model and are equal to those from the original polynomial
model withB;'s as the regression coefficients.

The leverage is computed as follows:
h=w ) di*pj(z)

The estimated variance of

is given by the following:

hs®

Wi

The computation of the remainder of the case statistics follows easily from the
definitions.See “Diagnostics for Individual Cases” (page fe)the definition of
the case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by defining a new data matrix. Since the information
about the model fit is input imol y_i nf o, it is not necessary to send in the data
set used for the original calculation of the fit, i.e., only variable combinations for
which predictions are desired need be entered in

Examples

Example 1

A polynomial model is fit to the data discussed by Neter and Wasserman (1974,
pp. 279-285). The data set contains the response vayiaigasuring coffee
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sales (in hundred gallons) and the number of self-service dispensers. Responses

for 14 similar cafeterias are in the data set.

#i ncl ude <insls. h>
mai n()

Imsl s_f_poly_regression *poly_info;

fl oat *y hat, *coefficients;
i nt n_observations = 14;
i nt degree = 2;
i nt n_pr edi ct = 8;
f1 oat x[] ={0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
f1 oat y[] = {508.1, 498.4, 568.2, 577.3, 651.7
7 8 9, 787.6, 792.1, 841.4, 83l.8,
fl oat x2[] = {0 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
/* Cenerate the polynonial regression fit*/
coefficients = inmsls_f_poly_regression (n_observations,

degr ee,

/* Conpute predicted val ues */

y_hat = imsls_f_poly_prediction(poly_info, n_predict,
[* Print predicted values */
imsls_f_wite_matrix("Predicted Values", 1, n_predict,

free(coefficients);
free(y_hat);

return;
}
Output
Predi ct ed Val ues
1 2 3 4 5
503. 3 578.3 645. 4 704. 4 755.6
7 8
834.1 861. 4
Example 2

| MBLS_POLY_REGRESSI ON_I NFO, &poly_info, 0);

755. 3,
871. 4};

x2, 0);

y_hat, 0);

798. 8

Predicted values, confidence intervals, and diagnostics are computed for the data

set described in the first example.

#i ncl ude <insls. h>
mai n()

#define N_PREDI CT 14
Imsl s_f_poly_regression *poly_info;
fl oat *coefficients, y_hat[ N _PRED CT],
| ower _ci [ N_PREDI CT], upper_ci[N_PREDI CT],
| ower _pi [ N_PREDI CT], upper_pi[N_PREDI CT],
s_resi dual [ N_PREDI CT],
| everage[ N_PREDI CT], cooksd[ N_PREDI CT],

d_residual [ N_PREDI CT],

Chapter 2: Regression

poly_prediction « 145



dffits[ N_PREDI CT],

| ower _scheffe[ N_PREDI CT],

upper _schef f e[ N_PREDI CT] ;

i nt n_observations = N_PREDI CT;
i nt degree = 2;
f1 oat x[] ={0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
f1 oat y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,

758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

/* Generate the pol ynoni al
imsls_f _poly regression (n_observations,
| MBLS_POLY REGRESSI ON | NFO, &poly info,

coefficients
degr ee,

regression fit*/
X,
0);

/* Conpute predicted values and case statistics */

insls_f _poly_ prediction(poly_info,

| MBLS_RETURN_USER
| MSLS_POl NTW SE_Cl
| MSLS_POl NTW SE_Cl
I MBLS_Y,

N_PREDI CT, x,
y_hat,

_POP_MEAN _USER, | ower_ci, upper_ci,
_NEW SAVPLE_USER,

| ower _pi, upper_pi,

| MSLS_STANDARDI ZED_RESI DUAL_USER, s_resi dual ,

| MSLS_DELETED_RESI

| MSLS_LEVERAGE USER,

| MSLS_COOKSD_USER,
| MSLS_DFFI TS_USER,

| MBLS_SCHEFFE_Cl _USER,

0);

{* Print results */

| ower _scheffe, 0);

upper _scheffe,
nels f wite matri
nels f _wite matri
nels f _wite matri
nels f wite matri
nels f wite matri

s_residual, 0);
nels f wite matri

d_residual, 0);
nels f _wite matri
nels f wite matri
nels f wite matri

0);

x(

free(coefficients);

return;
}
Output
1 2
503. 3 503. 3
7 8
755. 6 755. 6

nels f wite matrix("
nels f wite matrix("

nels f wite matrix("

x("

x("
x("

DUAL_USER, d_residual,
| ever age,

cooksd,

dffits,

| ower _scheffe, upper_scheffe,

Y,

Predi cted Values", 1, N PREDICT, y hat, 0);
Lower Scheffe CI", 1, N_PREDICT,
Upper Scheffe CI", 1, N_PREDICT,
"Lower CI", 1, N _PREDICT, |ower_ci, 0);
"Upper CI", 1, N_PREDI CT, upper_ci, 0);
"Lower PI", 1, N_PREDI CT, |ower_pi, 0);
"Upper PI", 1, N_PREDI CT, upper_pi, 0);
" St andardi zed Residual”, 1, N _PREDI CT,
Del eted Residual", 1, N_PREDICT,
Leverage", 1, N _PREDICT, |everage, 0);
Cooks Distance", 1, N _PREDICT, cooksd, 0);
"DFFITS', 1, N _PREDICT, dffits, 0);
Pr edi ct ed Val ues
3 4 5 6
578. 3 578. 3 645. 4 645. 4
9 10 11 12
798.8 798. 8 834.1 834.1
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13
861. 4

489. 8

745.7

13
847.7

516.9

765.5

13
875.1

1
492. 8

7
747.9
13
850. 7
1
513.9

7
763. 3

13
872.1

482. 8

736.3
13
840. 8
1
523.9

7
774.9

14
861. 4

489. 8

745.7

14
847.7

516.9

765.5

14
875.1

492. 8

747.9

14

850. 7

513.9

763. 3

14
872.1

482. 8

736.3

14
840. 8

523.9

774.9

Lower Scheffe C

3
569.5

9
790. 2

Upper Scheffe
3

587.1

9
807. 4

Lower

571.5

792.1
Upper

3

585. 2

805.5

Lower

559. 3

779.9

Upper
3
597.3

817.7

a

a

Pl

PI

4
569.5

10
790. 2

a
587.1

10
807.4

571.5

10
792.1

4
585. 2

10
805.5

559. 3

10
779.9

597.3

10
817.7

636. 5

11
825.5

654. 2

11
842.7

638. 4

11
827.4

5
652. 3

11
840. 8

626. 4

11
815. 2

664. 3

11
853.0

636.5

12
825.5

654. 2

12
842.7

638. 4

12
827.4

652. 3

12
840. 8

626. 4

12
815. 2

6
664. 3

12
853.0
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13 14

882.1 882.1
St andar di zed Resi dua
1 2 3 4 5 6
0.737 -0.766 -1.366 -0.137 0. 859 1.575
7 8 9 10 11 12
-0.041 0. 456 -1.507 -0.902 0.982 -0. 308
13 14
-1.051 1.557
Del et ed Resi dua
1 2 3 4 5 6
0.720 -0.751 -1.429 -0.131 0. 848 1.707
7 8 9 10 11 12
-0.039 0. 439 -1.613 -0.894 0. 980 -0.295
13 14
-1.056 1.681
Lever age
1 2 3 4 5 6
0. 3554 0. 3554 0. 1507 0. 1507 0. 1535 0. 1535
7 8 9 10 11 12
0. 1897 0. 1897 0. 1429 0. 1429 0. 1429 0. 1429
13 14
0. 3650 0. 3650
Cooks Di stance
1 2 3 4 5 6
0. 0997 0. 1080 0.1104 0. 0011 0. 0446 0. 1500
7 8 9 10 11 12
0. 0001 0. 0162 0. 1262 0. 0452 0. 0536 0. 0053
13 14
0.2116 0. 4644
DFFI TS
1 2 3 4 5 6
0.535 -0.558 -0.602 -0.055 0. 361 0.727
7 8 9 10 11 12
-0.019 0.212 -0.659 -0. 365 0. 400 -0.120
13 14
-0.801 1.274

Warning Errors

I MSBLS LEVERAGE GT 1 A leverage (= #) much greater than oneis
computed. It isset to 1.0.
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| MSLS DEL_MSE LT_O A deleted residual mean square (= #) much
less than zero is computed. It is set to zero.

Fatal Errors

| MSLS _NEG V\EI GHT “weights[#]" = #. Weights must be
nonnegative.

nonlinear _regression

Fits a nonlinear regression model.

Synopsis
#include <insls. h>

float *i nsl s_f _nonlinear_regression (float fcn(),
intn_paraneters, intn_observations, int n_i ndependent,
float x[], float y[], ..., 0)

The typedouble function isi msl s_d_nonl i near _r egr essi on.

Required Arguments

float fcn (int n_i ndependent, float xi[], int n_paraneters,
floatt heta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem where is an array of length_i ndependent at
which point the function is evaluated arttet a is an array of length
n_par anet er s containing the current values of the regression
coefficients. Functiohcn returns a predicted value at the point In
the following,f(x;;0), or justf;, denotes the value of this function at the
pointx;, for a given value 0. (Bothx; and®6 are arrays.)

int n_paraneters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_i ndependent (Input)
Number of independent variables.

float x[] (Input)
Array of sizen_obser vat i ons byn_i ndependent containing the
matrix of independent (explanatory) variables.

float y[] (Input)
Array of lengthn_obser vat i ons containing the dependent (response)
variable.
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Return Value

A pointer to an array of length n_par anet er s containing a solution, 6 for the
nonlinear regression coefficients. To release this space, use f r ee. If no solution
can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _nonlinear_regression (float fcn(),
intn_paraneters, intn_observations, int n_i ndependent,
float x[ ], float y[],
| MSLS THETA GUESS, float t het a_guess[],
| MSLS_JACOBI AN, void j acobi an(),
| MSLS THETA SCALE, float t heta_scal e[],
| MSLS GRADI ENT_EPS, float gr adi ent _eps,
| MSLS _STEP_EPS, float step_eps,
| MSLS SSE REL_EPS, float sse rel _eps,
| MSLS SSE_ABS EPS, float sse_abs_eps,
| MSLS MAX_STEP, float max_st ep,
I MSLS | NI TIAL_TRUST _REGQ ON, float trust _region,
IMSLS GOOD DIG T, int ndigit,
| MBLS_MAX_| TERATI ONS, int max_itn,
| MSLS MAX_SSE EVALUATI ONS, int max_sse_eval ,
| MSLS MAX_JACOBI AN_EVALUATI ONS, int max_j acobi an,
| MSLS TOLERANCE, float t ol er ance,
| MSLS PREDI CTED, float **predi ct ed,
| MSLS PREDI CTED USER, float predicted[],
| MSLS RESI DUAL, float **resi dual ,
| MSLS RESI DUAL_USER, float residual [],
I MSLS R, float **r,
| MSBLS R USER, float r[],
IMSLS R COL_DIM int r_col _dim
I MSLS R RANK, int *rank,
IMSLS X COL_DIM int x_col _dim
| MSLS_DF, int *df,
| MSLS_SSE, float *sse,

| MBLS_RETURN_USER, float theta_hat[],
0)

Optional Arguments

I MSBLS THETA GUESS, float t het a_guess[] (Input)
Array withn_par anet er s components containing an initial guess.
Default: t het a_guess[] =0

I MSBLS_JACOBI AN, void j acobi an (int n_i ndependent, float xi[],
intn_paraneters, floattheta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where
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then_i ndependent datavalues corresponding to the i-th row are input
inxi . Argument t het a isan array of length n_par anet er s containing
the regression coefficients for which the Jacobian is evaluated, f j ac is
the computed n_par anet er s row of the Jacobian for observation i at

t het a. Note that each derivative 0f(x;)/06; should be returned in f j ac(j
-1 forj=1,2,.., n_paraneters.

| MSLS_THETA_SCALE, float theta_scal e[] (Input)
Array withn_par anet er s components containing the scaling array for
0. Array t het a_scal e isused mainly in scaling the gradient and the
distance between two points. See keywords | MSLS_GRADI ENT_EPS and
| MBLS_STEP_EPS for more detail.
Default: t heta_scal e[] =1

| MBLS_GRADI ENT_EPS, float gradi ent _eps (Input)
Scaled gradient tolerance. The j-th component of the scaled gradient at 6
iscalculated as

|;|Tmax(|6;], 1/ ;)
“IFel;
whereg=0F(B),t =t heta_scal e, and

[F@ =" (v~ 105:8)

The value F(0) isthe sum of the squared residuals, SSE, at the point 6.
Default:

grad_tol = \/E
(%/E in double, where € is the machine precision)

| MSLS_STEP_EPS, float step_eps (Input)
Scaled step tolerance. The j-th component of the scaled step from points
0 and 6’ is computed as

6, -6
mex(|6],1/t; )

wheret =t het a_scal e

Default: st ep_eps = €2 wheree is the machine precision

I MSBLS SSE REL_EPS, float sse rel _eps (Input)
Relative SSE function tolerance.
Default: sse_rel _eps = max(1
where € is the machine precision

I MSBLS SSE ABS EPS, float sse_abs_eps (Input)
Absolute SSE function tolerance.

077, %), max(10°, €**) in double,
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Default: sse_abs_eps = max(10™2",e%), max(10™*, €?) in double,
where € isthe machine precision

| MSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_st ep = 1000 max (g, €,), where g, = (t76,)' 2, €, = |ltlL,
t=theta_scal e,and 6, =t het a_guess

| MBLS_I NI TI AL_TRUST_REQ ON, float trust_regi on (Input)
Size of initia trust region radius. The default is based on the initial
scaled Cauchy step.

I MBLS_GOOD DIG T, int ndigit (Input)
Number of good digitsin the function.
Default: machine dependent

| MBLS_NMAX_| TERATI ONS, int max_i tn (Input)
Maximum number of iterations.
Default: max_i t n = 100

| MSBLS_MAX_SSE EVALUATI ONS, int max_sse_eval (Input)
Maximum number of SSE function evaluations.
Default: max_sse_eval =400

| MBLS_MAX_JACOBI AN_EVALUATI ONS, int max_j acobi an (Input)
Maximum number of Jacobian evaluations.
Default: max_j acobi an =400

| MBLS_TOLERANCE, float t ol erance (Input)
False convergence tolerance.
Default: t ol er ance = 100* eps, whereeps =i nsl s_f _machi ne(4) if
single precision and eps =i nsl s_d_machi ne(4) if double precision

| MBLS_PREDI CTED, float **predicted (Output)
Address of apointer to areal internally alocated array of length
n_obser vat i ons containing the predicted values at the approximate
solution.

| MBLS_PREDI CTED_USER, float predicted[] (Output)
Storage for array pr edi ct ed is provided by the user.
See| MSLS_PREDI CTED.

| MSLS_RESI DUAL, float **resi dual (Output)
Address of apointer to areal internally alocated array of length
n_obser vat i ons containing the residuals at the approximate solution.

| MBLS_RESI DUAL_USER, float residual [] (Output)
Storage for array r esi dual isprovided by the user.
See | MSLS_RESI DUAL.

I MBLS_R, float **r (Output)
Address of a pointer to an internally allocated array of size
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n_par anet ers X n_par amet er s containing the R matrix from aQR
decomposition of the Jacobian.

I MSBLS R USER, float r[] (Output)
Storage for array r isprovided by the user. See | MBLS_R.

IMSLS R COL_DI'M int r_col _di m (Input)
Column dimension of array'r .
Default: r _col _di m=n_par aneters

I MBLS_R RANK, int *rank (Output)
Rank of r . Argument r ank lessthan n_par armet er s may indicate the
model is overparameterized.

I MBLS_X COL_DI'M int x_col _di m (Input)
Column dimension of x.
Default: x_col _di m=n_i ndependent
| MBLS_DF, int *df (Output)
Degrees of freedom.

I MSLS_SSE, float *sse (Output)
Residual sum of squares.

| MBLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_par amet er s containing the estimated
regression coefficients.

Description

Functioni nmsl s_f _nonl i near _r egr essi on fitsanonlinear regression model
using least squares. The nonlinear regression model is

y; = f(x; 0) + ¢ i=12,..,n
where the observed values of they;’s constitute the responses or values of the
dependent variable, the knows are the vectors of the values of the
independent (explanatory) variabl@ds the vector op regression parameters,
and theg;'s are independently distributed normal errors with mean 0 and variance

o”. For this model, a least-squares estimagisfalso a maximum likelihood
estimate oB.

The residuals for the model are as follows:
e(8) =y, —f(x; ©) i=1,2,..n

A value off that minimizes

S .e 0]

is a least-squares estimateBofunctioni nsl s_f _nonl i near _regressionis
designed so that the values of the funcf{gn ) are computed one at a time by a
user-supplied function.
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Functioni nmsl s_f _nonl i near _r egr essi on isbased on MINPACK routines

LMDIF and LMDER by Moré et al. (1980) that use a modified Levenberg-
Marquardt method to generate a sequence of approximations to a minimum point.
Let

A

b
be the current estimate @f A new estimate is given by
B +s,
wheres, is a solution to the following:
(3(8)T 3B )+ pah )s, = I(B.) (B,)

Here

A

J(6;)

is the Jacobian evaluated at

b
The algorithm uses a “trust region” approach with a step boudd Afsolution
of the equations is first obtained for

M. =0. If§Ib <3,

this update is accepted; otherwiggjs set to a positive value and another
solution is obtained. The method is discussed by Levenberg (1944), Marquardt
(1963), and Dennis and Schnabel (1983, pp-129, 218-338).

If a user-supplied function is specifiedliNSLS_JACOBI AN, the Jacobian is
computed analytically; otherwise, forward finite differences are used to estimate
the Jacobian numerically. In the latter case, especially ifflggeis used, the
estimate of the Jacobian may be so poor that the algorithm terminates at a
noncritical point. In such instances, the user should either supply a Jacobian
function, use typeéouble, or do both.

Programming Notes

Nonlinear regression allows substantial flexibility over linear regression because
the user can specify the functional form of the model. This added flexibility can
cause unexpected convergence problems for users that are unaware of the
limitations of the software. Also, in many cases, there are possible remedies that
may not be immediately obvious. The following is a list of possible convergence
problems and some remedies. There is not a one-to-one correspondence between
the problems and the remedies. Remedies for some problems also may be relevant
for the other problems.

1. A local minimum is found. Try a different starting value. Good starting
values often can be obtained by fitting simpler models. For example, for
a nonlinear function
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f(x; 8) = 6,e%"

good starting values can be obtained from the estimated linear regression
coefficients

~

Bo

and

By
from asimple linear regression of Iny on In x. The starting values for the
nonlinear regression in this case would be

6=’ and 6, = j,

If an approximate linear model is not clear, then simplify the model by
reducing the number of nonlinear regression parameters. For example,
some nonlinear parameters for which good starting values are known
could be set to these valuesin order to simplify the model for computing
starting values for the remaining parameters.

2. The estimate of 8 isincorrectly returned as the same or very close to the
initial estimate. This occurs often because of poor scaling of the
problem, which might result in the residual sum of sgquares being either
very large or very small relative to the precision of the computer. The
optional arguments allow control of the scaling.

3. The model is discontinuous as a function of 6. (The function f(x;8) can
be a discontinuous function of x.)

4, Overflow occurs during the computations. Make sure the user-supplied
functions do not overflow at some value of 6.

5. The estimate of 8 isgoing to infinity. A parameterization of the problem
in terms of reciprocals may help.

6. Some components of 8 are outside known bounds. This can sometimes
be handled by making a function that produces artificially large residuals
outside of the bounds (even though this introduces a discontinuity in the
model function).

Examples

Example 1
In this example (Draper and Smith 1981, p. 518), the following nonlinear model
isfit:

Y =a+(049- a)e_ﬂ(x_s) +e

#i ncl ude <math. h>
#i ncl ude <insls. h>
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float fcn(int, float[], int, float[]);
void main ()

#define N_OBSERVATI ONS 4

i nt i;

i nt n_i ndependent = 1;

i nt n_paraneters = 2;

fl oat *t heta_hat;

f1 oat X[ N_OBSERVATI ONS] [ 1] = {10.0, 20.0, 30.0, 40.0};
f1 oat y[ N_OBSERVATI ONS] = {0.48, 0.42, 0.40, 0.39};

/* Nonlinear regression */
theta_hat = insls_f_nonlinear_regression(fcn, n_paraneters,
N_OBSERVATI ONS, n_i ndependent, (float *)x, y, 0);
/* Print estimates */
inmsls f wite matrix("estinmted coefficients", 1, n_paraneters,
theta_hat, 0);
} /* End of main */
float fcn(int n_independent, float x[], int n_paraneters, float theta[])

return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8)));

} /* End of fcn */
Output
estimated coefficients
1 2
0. 3807 -0.0794
Example 2

Consider the nonlinear regression model and data set discussed by Neter et al.
(1983, pp. 475-478):

y, = 0,6%% +¢

There are two parameters and one independent variable. The data set considered
consists of 15 observations.

#i ncl ude <mat h. h>
#i ncl ude <insls. h>

float fcn(int, float[], int, float[]);
voi d jacobian(int, float[], int, float[], float[]);

voi d main()

{
#def i ne N_OBSERVATI ONS 15

i nt n_i ndependent =1;

i nt n_par aneters= 2;

fl oat *theta_hat, *r, *y_hat;

fl oat grad_eps = 1.0e-3;

fl oat theta_guess[2] = {60.0, -0.03};
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f1 oat y[ N_OBSERVATI ONS] = {
54.0, 50.0, 45.0, 37.0, 35.0,
25.0, 20.0, 16.0, 18.0, 13.0,
8.0, 11.0, 8.0, 4.0, 6.0 };
f1 oat x[ N_OBSERVATI ONS] = {
2.0, 5.0, 7.0, 10.0, 14.0,
19.0, 26.0, 31.0, 34.0, 38.0,
45.0, 52.0, 53.0, 60.0, 65.0 };
char *fmt="9%2. 5e";

/* Nonlinear regression */

theta_hat = insls_f_nonlinear_regression(fcn, n_paraneters,

N_OBSERVATI ONS, n_i ndependent, x, v,

| MSLS THETA GUESS, theta_guess,

| MSLS _CRADI ENT_EPS, grad_eps,

| MBLS R, &r,

| MBLS_PREDI CTED, &y_hat,

| MSLS_JACOBI AN, j acobi an,

0);

/* Print results */
inmsls f wite matrix("Estinmated coefficients", 1, n_paraneters,
theta_hat, 0);

insls f wite matrix("Predicted values", 1, N _OBSERVATI ONS,
y_hat, 0);

inmsls f wite matrix("R matrix", n_paraneters, n_paraneters,
r, ITMBLS VRl TE_FORMAT, "940.2f", 0);

} /* End of main */

float fcn(int n_independent, float x[], int n_paraneters, float theta[])

{
return (theta[ 0] *exp(x[0]*theta[1]));
} /* End of fcn */

voi d jacobian(int n_independent, float x[], int n_paraneters,
float theta[], float fjac[])

{
fjac[0] = -exp(theta[1]*x[0]);
fjac[1] = -theta[0]*x[ 0] *exp(theta[1]*x[0]);
}
/* End of jacobian */
Output
Esti mated coefficients
1 2
58. 61 -0.04
Predi cted val ues
1 2 3 4 5 6
54. 15 48. 08 44. 42 39. 45 33. 67 27.62
7 8 9 10 11 12
20. 94 17.18 15. 26 13.02 9. 87 7.48
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13 14 15

7.19 5.45 4. 47
R matrix
1 2
1 1.87 1139. 93
2 0. 00 1139. 80

Informational Errors

| MSLS STEP_TOLERANCE Scaled step tolerance satisfied.
The current point may be an
approximate local solution, but it
is also possible that the algorithm
ismaking very slow progress and
is not near a solution or that
“step_eps” is too big.

Warning Errors

I MSLS LI TTLE_FCN_CHANGE Both the actual and predicted
relative reductions in the function
are less than or equal to the
relative function tolerance.

| MSLS TOO MANY_I TN Maximum number of iterations
exceeded.

| MSLS_TOO MANY_FCN_EVAL Maximum number of function
evaluations exceeded.

I MSLS_TOO MANY_JACOBI AN_EVAL Maximum number of Jacobian
evaluations exceeded.

| MSLS_UNBOUNDED Five consecutive steps have been
taken with the maximum step
length.

| MSLS_FALSE_CONVERGENCE The iterates appear to be

converging to a noncritical point.

nonlinear_optimization

Fits data to a nonlinear model (possibly with linear constraints) using the
successive quadratic programming algorithm (applied to the sum of squared
errors,sse = 2(y; — f(x;; 9))2) and either a finite difference gradient or a user-
supplied gradient.

Synopsis

#include <i nsls. h>
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float *i nsl s_f _nonlinear_optini zation (float fcn(),
intn_paraneters, intn_observations, int n_i ndependent,
float x[], float y[], ..., 0)

The type double functionisi nsl s_d_nonl i near _opti ni zati on.
Required Arguments

float fcn (int n_i ndependent, float xi[], int n_paraneters,
floatt heta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem wherexi isan array of length n_i ndependent at
which point the function is evaluated and t het a is an array of length
n_par anet er s containing the current values of the regression
coefficients. Function f cn returns a predicted value at the point xi . In
the following, f(x;; ), or just f;, denotes the value of this function at the
point x;, for agiven value of 6. (Both x; and 6 are arrays.)

int n_paraneters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_i ndependent (Input)
Number of independent variables.

float *x (Input)
Array of sizen_obser vat i ons by n_i ndependent containing the
matrix of independent (explanatory) variables.

float y[] (Input)
Array of lengthn_obser vat i ons containing the dependent (response)
variable.

Return Value

A pointer to an array of length n_par anet er s containing a solution, 6 for the
nonlinear regression coefficients. To release this space, use f r ee. If no solution
can be computed, then NULL is returned.

Synopsis with Optional Arguments
#i ncl ude <i nsls. h>

float *insls_f_nonlinear_optimzation (fl/oat fcn(),
int n_paraneters, int n_observations, int
n_i ndependent, float x[], float y[],
| MSLS THETA GUESS, f/oat theta_guess|[],
| MSLS _JACOBI AN, void jacobian(),
| MSLS_SI MPLE_LOAER BOUNDS, f/oat theta_ | b[],
| MSLS_SI MPLE_UPPER BOUNDS, f/oat theta_ub[],
| MSLS LI NEAR _CONSTRAI NTS, int n_constraints,

int n_equality, float a[], float b[],

| MSLS FREQUENCI ES, f/oat frequencies,
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| MSLS VEI GHTS, f/oat weights,

| MSLS _ACC, f/oat acc,

| MSLS MAX _SSE EVALUATIONS, int *max_sse_eval,

| MSLS PRI NT_LEVEL, int print_|evel,

| MSLS STOP_INFQ, int *stop_info,

| MBLS_ACTI VE_CONSTRAI NTS I NFO, int *n_acti ve,
int **indices_active, float **multiplier,

| MSLS_ACTI VE_CONSTRAI NTS | NFO USER, int *n_acti ve,
int indices_active[], float multiplier[],

| MSLS _PREDI CTED, f/oat **predicted,

| MSLS PREDI CTED USER, f/oat predicted[],

| MSLS RESI DUAL, float **residual,

| MSLS RESI DUAL_USER, f/oat residual[],

| MSLS _SSE, f/oat *sse,

| MSLS RETURN USER, f/oat theta_hat[],

0)

Optional Arguments

I MSBLS THETA GUESS, float t het a_guess[] (Input)
Array withn_par anet er s components containing an initial guess.
Default: t het a_guess[] =0

I MSBLS_JACOBI AN, void j acobi an (int n_i ndependent, float xi[],
intn_paraneters, floattheta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where
then_i ndependent datavalues corresponding to the i-th row are input
inxi . Argumentt het a isan array of length n_par anet er s containing
the regression coefficients for which the Jacobian is evaluated, f j ac is
the computed n_par anet er s row of the Jacobian for observation i at
t het a. Note that each derivative f(x;)/6 should be returned in f j acj - 1]
fori=1,2,..,n_paraneters. Further note that in order to maintain
consistency with the other nonlinear solver, nonl i near _r egr essi on,
the Jacobian values must be specified as the negative of the calculated
derivatives.

I MSLS_SI MPLE_LOWER BOUNDS, float theta_ | b[] (Input)
Vector of length n_par anet er s containing the lower bounds on the
parameters; choose a very large negative value if a component should be
unbounded below or sett heta_| b[i] =theta_ub[i] tofreezethe
i-th variable.
Default: All parameters are bounded below by 10°°.

| MSLS_SI MPLE_UPPER_BOUNDS, float theta_ub[] (Input)
Vector of length n_par anet er s containing the upper bounds on the
parameters; choose a very large value if acomponent should be
unbounded aboveor settheta | b[i] =theta_ub[i] tofreezethe
i-th variable.
Default: All parameters are bounded above by 10°.

I MSLS LI NEAR _CONSTRAI NTS, int n_constraints, int n_equality,
float a[],float b[] (Input)
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Argument n_const rai nt s isthe total number of linear constraints
(excluding ssimple bounds). Argument n_equal i t y isthe number of
these constraints which are equality constraints; the remaining
n_constraints —n_equal i ty constraints are inequality constraints.
Argumenta isan_const rai nts by n_par anet er s array containing
the equality constraint gradientsin the first n_equal i t y rows, followed
by the inequality constraint gradients. Argument b is a vector of length
n_const r ai nt s containing the right-hand sides of the linear
constraints.

Specifically, the constraints on 6 are:
3 6 +..+a;6,=b; fori=1n_equalityandj=1,

n_par anet er, and

3 0 +..+a,;0,<b, fork=n_equality+1,n_constraintsand
j=1,n_paraneter.

Default: There are no default linear constraints.

I MSBLS FREQUENCI ES, float frequencies[] (Input)
Array of lengthn_obser vat i ons containing the frequency for each
observation.
Default: frequencies[] =1

I MSLS VEI GHTS, float wei ghts[] (Input)
Array of lengthn_obser vat i ons containing the weight for each
observation.
Default: wei ghts[] =1

I MBLS _ACC, float acc (Input)
The nonnegative tolerance on the first order conditions at the cal cul ated
solution.

| MBLS MAX_SSE EVALUATI ONS, int *max_sse_eval (Input/Output)
Oninput max_sse_eval isthe maximum number of sse evaluations
allowed. On output, max_sse_eval containsthe actual number of sse
evaluations needed.
Default: max_sse_eval =400

I MSLS PRI NT_LEVEL, int print_level (Input)
Argument pri nt _| evel specifiesthe frequency of printing during
execution. If print _| evel =0, thereisno printing. Otherwise, after
ensuring feasibility, information is printed every pri nt _| evel
iterations and whenever an internal tolerance (called tol) is reduced. The
printing provides the values of t het a and the sse and gradient at the
valueof t het a. If print _| evel isnegative, thisinformationis
augmented by the current values of i ndi ces_acti ve, mul tiplier,
and reskt, where reskt is the Kuhn-Tucker residua vector at t het a.

I MBLS STOP_I NFQ, int *stop_i nfo (Output)
Argument st op_i nf o will have one of the following integer valuesto
indicate the reason for leaving the routine;

Chapter 2: Regression nonlinear_optimization « 161



stop_info | Reason for leaving routine

1 0 isfeasible, and the condition that depends on acc is
satisfied.

2 0 isfeasible, and rounding errors are preventing further
progress.

3 0 isfeasible, but sse failsto decrease although a

decrease is predicted by the current gradient vector.

4 The calculation cannot begin because a contains fewer
thann_const r ai nt s constraints or because the lower
bound on avariableis greater than the upper bound.

5 The equality constraints are inconsistent. These

constraints include any components of 0 that are frozen
by settingt het a_| b[i ] equal tot het a_ubJi ].

6 The equality constraints and the bound on the variables
are found to be inconsistent.

7 Thereisno possible 0 that satisfies all of the constraints.

8 Maximum number of sse evaluations (max_sse_eval )
is exceeded.

9 0 is determined by the equality constraints.

| MBLS_ACTI VE_CONSTRAI NTS | NFO, int *n_acti ve,
int**indi ces_active, float **nul tiplier (Output)
Argument n_act i ve returnsthe final number of active constraints.
Argumenti ndi ces_act i ve isthe address of a pointer to an internally
allocated integer array of lengthn_act i ve containing the indices of the
final active constraints. Argument multiplier is the address of a pointer
to an internally allocated real array of lengthn_acti ve containing the
Lagrange multiplier estimates of the final active constraints.

| MSLS_ACTI VE_CONSTRAI NTS | NFO USER, int *n_acti ve,
intindi ces_active[], float multiplier[] (Output)
Storage for arraysi ndi ces_active andnul ti plier areprovided by
the user. The maximum length needed for these arraysis
n_constraints.Seel M5SLS_ACTI VE_CONSTRAI NTS_| NFO.

I MSLS _PREDI CTED, float **predicted (Output)
Address of apointer to areal internally allocated array of length
n_obser vat i ons containing the predicted values at the approximate
solution.
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| MBLS_PREDI CTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user.
See | MSLS_PREDI CTED.

| MSLS_RESI DUAL, float **resi dual (Output)
Address of apointer to areal internally alocated array of length
n_obser vat i ons containing the residuals at the approximate solution.

| MBLS_RESI DUAL_USER, float residual [] (Output)
Storage for array residual is provided by the user.
See | MSLS_RESI DUAL.

I MSLS_SSE, float *sse (Output)
Residual sum of squares.

| MSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_par amet er s containing the estimated
regression coefficients.

Description

Functioni msl s_f _nonlinear _optim zati onis based on M.J.D. Powell's
TOLMIN, which solves linearly constrained optimiation problems, i.e., problems
of the form mnf(6), 6 O O, subject to

AB=b
AB<b
6;<6<86,
given the vectorby, b,, 6;, ard 6, and the matrice8; andA,.

The algorithm starts by checking the equality constaints for inconsistency and
redundancy. If the equality constraints are consistent, the method witt 8evis
the initial guess provideldy the user, to satisfy

AB=Db

Next, 8 is adjusted to satisfy the simple bounds and inequality constraints. This
is done by solving a sequence of quadratic programming subproblems to
minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasa'mk, letJ, be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. lté, be the set of indices of octive constraints. The
following quadratic programming problem

minf(ek)+dTDf (0")+1dTBkd
2
subject to
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ad<0 jO,

issolved to get (dk VA k) where a; isarow vector representing either a constraint in
A or A, or abound constraint on 6. In the latter case, the a; = e; for the bound
constraint ©; < (6,); and a; = —e; for the constraint 6; < (e,), Here, € isavector
withal asthe| th component and zeroes elsewhere A are the Lagrange

mult| pllers andB'isa positive definite approximation to the second derivative
0” (8 )

After the search direction d¥ i |s obtau ned a li | ne search is performed to locate a
better point. The new point 0! = 0¥ + a*d* hasto satisfy the conditions

f (0 + a*d") <7 (8% + 0.10* (@M T F (8%
and
@0t "+ ad" 2 0.7 (@01 (0%

Themainideain formi ng the set J, isthat, if any of theinequality constraints
restricts the step-length ok , thenitsindex isnot in J;. Therefore, small steps are
likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS
formula, if the condition

@Tof@e*+afdy -0t @5 >0
holds. Let 6° — 8, and start another iteration.
The iteration repeats until the stopping criterion

0 f (8% - ARAKL < 1

is satisfied; here, T is a user-supplied tolerance. For more details, see Powell
(1988, 1989).

Since afinite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be easily
provided, the gradient should be passed to nonl i near _est i mat i on using the
optional argument | MSLS_JACOBI AN.

Examples

Example 1
In this example, a data set isfitted to the nonlinear model function
Y, =sin(6o%) + &

#i ncl ude <insls. h>
#i ncl ude <math. h>
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float fcn(int n_independent, float x[], int n_paraneters, float theta[]);

mai n()

i nt n_paraneters = 1;

i nt n_observations = 11;

i nt n_i ndependent = 1;

fl oat *t heta_hat;

f1 oat x[11] ={0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0};

f1 oat y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94,
1.00, 0.73, 0.44, 0.36, 0.02};

theta_hat =
inmsls_f_nonlinear_optimzation(fcn, n_paraneters,
n_observations, n_independent, x, v,
0);

inmsls f wite matrix("Theta Hat", 1, n_paranmeters, theta_hat, 0);

free(theta_hat);
}

float fcn(int n_independent, float x[], int n_paraneters, float theta[])

{
}

return sin(theta[0]*x[0]);

Output

Thet a Hat
3.161

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey.[H.
Smith and S. D. Dubey (1964), "Some reliability problemsin the chemical
industry", Industrial Quality Control, 21 (2), 1964, pp. 64—70] A certain product
must have 50% available chlorine at the time of manufacture. When it reaches the
customer 8 weeks later, the level of available chlorine has dropped to 49%. It was
known that the level should stabilize at about 30%. To predict how long the
chemical would last at the customer site, samples were analyzed at different
times. It was postulated that the following nonlinear model should fit the data.

yi = 90 + (049 - Q)E_H(X‘ _8) + Ei

Since the chlorine level will stabilize at about 30%, theinitial guessfor thetal is
0.30. Using the last data point (x = 42, y = 0.39) and 6, = 0.30 and the above
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nonlinear equation, an estimate for 6, of 0.02 is obtained.

The constaints that 6, = = 0 and 6, = = 0 are dso imposed. These are equivalent
to requiring that the level of available chlorine aways be positive and never
increase with time.

The Jacobian of the nonlinear model equation is aso used.

#i ncl ude <insls. h>
#i ncl ude <mat h. h>

float fcn(int n_independent, float x[], int n_paraneters, float theta[]);
voi d jacobian(int n_independent, float x[], int n_paraneters,

float theta[],
float fjac[]);

mai n()

-
i nt n_paraneters = 2;
i nt n_observations = 44;
i nt n_i ndependent = 1;

fl oat *t heta_hat;

fl oat x[44] = {
8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0,
12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0,
20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0
26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0,
36.0, 38.0, 38.0, 40.0, 42.0};

fl oat y[44] = {
.49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45,
.43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41,
L4, .42, .4, 4, 41, .4, .41, .41, .4, .4, .4, .38, .41,
.4, .4, .41, .38, .4, .4, .39, .39};

fl oat guess[2] = {0.30, 0.02};

f1 oat xIb[2] = {0.0, 0.0};

fl oat sse;

theta_hat =
i msl s_f_nonlinear_optimzation(fcn, n_paraneters, n_observations,

n_i ndependent, x, vy,
I MSLS THETA GUESS, guess,
| MSLS_SI MPLE_LOAER BOUNDS, x| b,
I MSLS_JACOBI AN, j acobi an,
| MSLS_SSE, é&sse,
0);

insls f wite matrix("Theta Hat", 1, 2, theta_hat, 0);

free(theta hat);

}

float fcn(int n_independent, float x[], int n_parameters, float theta[])

return theta[0] + (0.49-theta[0])*exp(-theta[1l]*(x[0]-8.0));
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voi d jacobian(int n_independent, float x[], int n_paraneters,
float theta[],

float fjac[])

{

fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0));
} fiac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0));
Output
Thet a Hat
1 2
0. 3901 0.1016

Fatal Errors

| MSLS BAD CONSTRAI NTS 1 The equality constraints are
inconsistent.
| MSLS BAD CONSTRAI NTS 2 The equality constraints and the

bounds on the variables are found
to be inconsistent.

| MSLS BAD CONSTRAI NTS 3 No vector “theta” satisfies all of
the constraints. Specifically, the
current active constraints prevent
any change in “theta” that reduces
the sum of constraint violations.

| MSLS BAD CONSTRAI NTS 4 The variables are determined by
the equality costraints.

| MSLS TOO MANY_ | TERATI ONS 1 Number of function evaluations
exceeded “maxfcn” = #.

Lnorm_regression

Fits a multiple linear regression model using criteria other than least squares.
Namely, i msl s_f_Lnor m regressi on allows the user to choose Least Absolute Value
(Ly), Least L, norm (), or Least Maximum Vale (Minimax orL,, ) method of

multiple linear regression.

Synopsis
#include <insls. h>

float *insls_f_Lnormregression (int n_rows, int n_i ndependent,
float x[], float y[], ..., 0)
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The type double functionisi sl s_d_Lnor m r egr essi on.

Required Arguments

int n_rows (Input)
Number of rowsinx.
int n_i ndependent (Input)
Number of independent (explanatory) variables.
float x[] (Input)
Array of sizen_r ows X n_i ndependent containing the independent

(explanatory) variables(s). The i-th column of x contains the i-th
independent variable.

float y[] (Input)
Array of sizen_r ows containing the dependent (response) variable.

Return Value

Lnor m r egr essi on returns apointer to an array of length n_i ndependent +1
containing aleast absolute value solution for the regression coefficients. The

estimated intercept isthe initial component of the array, where thei-th component
contains the regression coefficients for thei-th dependent variable. If the optional
argument | MSLS_NO_| NTERCEPT is used then the (i-1)-st component contains

the regression coefficients for the i-th dependent variable. i msl s_f _Lnor m r egr essi on
returns the Lp norm or least maximum value solution for the regression

coefficients when appropriately specified in the optional argument list.

Synopsis with Optional Arguments
#include <i msl s. h>
float *i nsl s_f _Lnorm regression(int n_rows, int n_i ndependent,
float x[], float y[],
| MBLS_METHOD LAV,
| MBLS_METHOD LLP, float p,
| MSBLS_METHOD LMV,
IMSLS X COL_DIM int x_col _dim
| MSLS_| NTERCEPT,
| MSLS_NO_| NTERCEPT,
I MBLS RANK, int *rank,
| MSLS | TERATIONS, int iterations,
I MSLS N ROAS M SSI NG, int *n_rows_mi ssing,
| MSLS TOLERANCE, float t ol erence,
| MSLS SEA, float sum av_error,
| MSLS MAX RESI DUAL, float max_resi dual ,
I MSLS R, float **R matri x,
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| MSLS_R _USER, floatR matrix[],

| MSLS_DEGREES OF_FREEDOM int df _error,
| MSLS_RESI DUALS, float **resi dual ,

| MSLS_RESI DUALS_USER, float residual [],

| MSBLS_SCALE, float square_of _scal e,

| MSLS_RESI DUALS_LP_NORM float *Lp_nor m resi dual ,
| MSLS_EPS, float epsil on,

| MSLS_VEI GHTS, float wei ghts[],

| MSBLS_FREQUENCI ES, float frequencies[],
| MSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
| MSBLS_METHOD LAV, or
| MSLS METHOD_LLP, float p, (Input) or

| MSLS_METHOD LMV,
By default (or if | MSLS_METHOD LAV is specified) the function fits a
multiple linear regression model using the least absolute values criterion.

I MSBLS_METHOD_LLP requiresthe argument p, for p > 1, and fitsamultiple linear
regression model using the Lp norm criterion.

I MSBLS_METHOD_ LM fitsamultiple linear regression model using the minimax
criterion.

I MSLS VEI GHTS, float wei ght s[], (Input)
Array of size n_rows containing the weights for the independent
(explanatory) variable.

I MSBLS_FREQUENCI ES, float f r equenci es[], (Input)
Array of sizen_r ows containing the frequencies for the independent
(explanatory) variable.

IMSLS X COL_DIM int x_col _di m (Input)
Leading dimension of x exactly as specified in the dimension statement
in the calling program.

| MSLS_| NTERCEPT, or

| MBLS_NO | NTERCEPT,
I MSLS | NTERCEPT isthe default where the fitted value for
observationi is

Bo +ByXy * ... +BiX¢

wherek =n_i ndependent . If | MSBLS_NO | NTERCEPT is specified, the
intercept term
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(Bo)
is omitted from the model and the return value from regression is a pointer to an
array of length (number of independent variables) x n_i ndependent .

I MSBLS _RANK, int *r ank, (Output)
Rank of the fitted model isreturned in* r ank.

I MSLS | TERATI ONS, int it er ati ons, (Output)
Number of iterations performed.

I MSBLS N ROAS_M SSI NG, int *n_rows_ni ssi ng, (Output)
Number of rows of data containing NaN (not a number) for the
dependent or independent variables. If arow of data contains NaN for
any of these variables, that row is excluded from the computations.

I MBLS RETURN _USER, float coef fi ci ent s[] (Output)
Storage for array coef fi ci ents isprovided by the user.
See Return Value.

If I MSLS METHOD LAV is specified:
I MSBLS SEA, float sum | av_error, (Output)
Sum of the absolute value of the errors.

If I MSLS METHOD LM is specified:
I MSLS MAX RESI DUAL, float max_resi dual , (Output)
Magnitude of the largest residual.

If I MSBLS METHOD LLPis specified:

I MSBLS TOLERANCE, float t ol erence, (Input)
Tolerance used in determining linear dependence.
tolerence = 100 * insls_f_machi ne(4) isthe default.
See documentation for | MsL function i sl s_f _machi ne.

IMSLS R, float**R matrix, (Output)
Upper triangular matrix of dimension (number of coefficients by number
of coeffecients) containing the R matrix from a QR decomposition of the
matrix of regressors.

I MBLS R USER, floatR matrix[], (Output)
Storage for array R_mat ri x isprovided by the user. See | MSLS_R.

| MSBLS DEGREES OF FREEDOM int df _error, (Output)
Sum of the frequencies minus*r ank. Inleast squaresfit (p=2)
df _error iscalled the degrees of freedom of error.

I MSLS_RESI DUALS, float * *r esi dual , (Output)
Address of a pointer to an array (of length equal to the number of
observations) containing the residuals.

| MSLS_RESI DUALS USER, float residual [], (Output)
Storage for array residual is provided by the user.
See| MBLS RESI DUALS.*
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| MBLS_SCALE, float squar e_of _scal e, (Output)
Square of the scale constant used in an Lp analysis. An estimated
asymptotic variance-covariance matrix of the regression coefficientsis
square of scale* (R'R)™

| MSLS_RESI DUALS LP_NORM float *Lp_nor m resi dual , (Output)
Lpnorm of the residuals.

| MSLS_EPS, float epsil on, (Input)
Convergence criterion. If the maximum relative difference in residuas
fromthek-t h to (k+1) -st iterations is less than epsilon, convergence is
declared. epsi | on = 100 * machi ne(4) isthe default.

Description

Least Absolute Value Criterion

Function i nsl s_f _Lnor m r egr essi on computes estimates of the regression
coefficients in amultiple linear regression model. For optional argument

I MSLS_LAV (default), the criterion satisfied is the minimization of the sum of the
absolute values of the deviations of the observed response y; from the fitted
response

Y
for a set on n observations. Under this criterion, known astheL; or LAV (least
absolute value) criterion, the regression coefficient estimates minimize

n
Z|Yi ‘yi|
1=1

The estimation problem can be posed as alinear programming problem. The
special nature of the problem, however, allows for considerable gainsin
efficiency by the modification of the usual simplex algorithm for linear
programming. These modifications are described in detail by Barrodale and
Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares
solution prior to the invocation of | MSLS_LAV. Thisis particularly useful when a
|east-squares solution has already been computed. The procedureis as follows:

1 Fit the model using least squares and compute the residuals from
thisfit.
2. Fit the residuals from Step 1 on the regressor variables in the model

usingl MSLS_LAV.

3 Add the two estimated regression coefficient vectors from Steps 1
and 2. Theresultisan L; solution.

When multiple solutions exist for a given problem, option | MSLS_LAV may yield
different estimates of the regression coefficients on different computers, however,
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the sum of the absolute values of the residuals should be the same (within
rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding the
error may fail to result even when the problem does have multiple solutions.

L, Norm Criterion

Optional argument | MSLS_LLP computes estimates of the regression coefficients
in amultiple linear regression model y = X3 + € under the criterion of minimizing
the L, norm of the deviationsfori =1, ..., n of the observed response y; from the
fitted response

A

Yi

for aset on n observationsand for p = 1. For the case | Wr =0 and | FRQ= 0 the
estimated regression coefficient vector,

(output in B) minimizes theL,, norm

The choice p = 1 yields the maximum likelihood estimate for 3 when the errors
have a Laplace distribution. The choice p = 2 is best for errors that are normally
distributed. Sposito (1989, pages 36—40) discusses other reasonable aternatives
for p based on the sample kurtosis of the errors.

Weights are useful if the errorsin the model have known unegual variances
ot
In this case, the weights should be taken as
w =1/ o?

Frequencies are useful if there are repetitions of some observations in the data set.
If asingle row of data corresponds to n; observations, set the frequency f; = n;.
Ingeneral, | MBLS_LLP minimizesthel, norm

[i f, ‘\/Wi(yi -9 )‘pJ

The asymptotic variance-covariance matrix of the estimated regression
coefficientsis given by

asy.var(B) = N(R'R)™
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where R is from the QR decomposition of the matrix of regressors (output in R)
and where an estimate of A% is output in squar e_of _scal e.

In the discussion that follows, we will first present the algorithm with frequencies
and weights all taken to be one. Later, we will present the modifications to handle
frequencies and weights different from one.

Optioncall | MBLS_LLP uses Newton’'s method with a line searchpfe 1.25

and, fo p< 1.25, uses a modification dueEkblom (1973, 1987) in which a

series of perturbed problems are solved in order to guarantee convergence and
increase the convergence rate. The cutoff value of 1.25 as well as some of the
other implementation details given in the remaining discussion were investigated
by Sallas (1990) for their effecha@PU times.

In each case, for the first iteration a least-squares solution for the regression
coefficients is computed using rowinns| s_f _r egr essi on (page64). If

p = 2, the computations are finished. Otherwise, the residuals fedkthh
iteration,

k) — ok
q()_yi_ (K)

are used to compute the gradiend &tessian for the Newton step for the
(k + 1)st iteration for minimizing tap-th power of the, norm. (The exponent

1/p in theL, norm can be omitted during the iterations.)

For subsequent iterations, we first discugpth 1.25 case. kg > 1.25, the
gradient and Hessian at tHe+( 1)-st iteration depend upon

20 =g sign(e")

and

V(KD = Hk)“"z

Inthe case 1.25 p< 2 and

o) = 0, v+

and the Hessian are undefined; and we follow the recommendation of Merle and
Spath (1974). Specifically, we modify the definition of

Vi( k+1)

to the following:

-2

P ifp<2and‘q(k)‘<r

Vi( k+1) — -
‘e,(k)‘ otherwise

wheret equals 10* i sl s_f _machi ne(4) (or 1000 * i nsl s_d_machi ne(4)
for the double precision version) times the square root of the residual mean
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square from the least-squares fit. (Seeroutinesi nsl s_f _nmachi ne and
i msl s_i _machi ne.)

Let V¥ be a diagonal matrix with diagonal entries

Vi( k+1)

and let2*") be a vector with elements

Zi( k+1)

In order to compute the step on (ket 1)-st iteration, thdR from the QR
decomposition of

[V(k+1 )]I/ZX

is computed using fast Givens transformations. Let

R(k+1)

denote the upper triangular matrix frone @R decomposition. The linear
system

[R(k+1)] TR(k+l)d(k+l): XT Z(k+l)

is solved for

d(k+1)

where R¥" is from tre QR decomposition ot/ )] 2% The step taken on the
(k + 1)st iteration is

3(k+D) = g(K) g (k+) 1 4(k+1)
B B a p_1d

The first attempted step on tfle+ 1)-st iteration is wib a¥ = 1. If all of the

k
Q( )
are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980,
pages 52-529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the
predicted decrease ingtp-th power of the, norm of the residuals, a

backtracking linesearch procedure is used. The backtracking procedure uses a
one-dimensional quadratic model to estimate the backtrack copstre value

of p is constrained to be no less that 0.1. An approximate upper baupisfo

0.5. If after 10 successive backtrack attemp(t@ =p,p,...p;o does not produce a
step with a sufficient decrease, ithersl s_f _Lnor m r egr essi on issues a
message with error code 5. For further details on the backtrack line-search
procedure, see DennischBchnabel (1983, pages@t227).
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Convergence is declared when the maximum relative change in the residuals from
one iteration to the next is less than or equal to epsi | on. The relative change

5i(k+1)
in thei-th residual from iteration k to iteration k + 1 is computed as follows:
Sk+D) :{0 if <V =¢=0
i ‘q(k+1) _q(k)‘/ max(‘a(k)‘,‘q(kﬂ) ,s) otherwise

where sisthe sguare root of the residual mean square from the least-squares fit on
thefirst iteration.

For the case 1 < p < 1.25, we describe the modifications to the previous

procedure that incorporate Ekblom’s (1973) results. A sequence of perturbed
problems are solved with a successively smaller perturbation coastzmthe

first iteration, the least-squares problem is solved. This corresponds to an infinite
c. For the second problemjs taken equal te, the square root of the residual

mean square from the least-squares fit. Then, foij thd \-st problem, the value

of cis computed from the previous valuecaiccording to

Cjuy =C; /10°P7*
Each problem is stated as

n
Minimize§ (e +c?)P'2

For each problem, the gradient and Hessian orkttiel}-st iteration depend

upon
Zi(k+l) — q(k)ri(k)
and
WD) = 1+(p‘2)(q(k))2 (k)
| (e)?+c® |
where

(p-2)/2
=[]

The linear systenR “D] TR D= x 45 s solved ford ') whereR**
is from theQR decomposition of\f “]'2X. The step taken on thi € 1)-st
iteration is

f}(k+1) — é(k) + (KD g(k+1)

where the first attempted step is wattf) = 1. 1f necessary, the backtracking
line-search procedure discussed earlier is used.
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Convergence for each problem is relaxed somewhat by using a convergence
epsilon equal to max(epsi | on, 10') wherej =1, 2, 3, ... indexes the problems
(j = O corresponds to the least-squares problem).

After the convergence of a problem for a particular ¢, Ekblom’s (1987)
extrapolation technigue is used to compute the initial estimfddarfthe new
problem. LetR®,

k) (k
YORU)
andc be from the last iteration of the last problem. Let

_ (p-2¥

and lett be the vector with elemert{s The initial estimate dB for the new
problem with perturbation constant Ocd%

B = 3() + Acd
whereAc = (0.0l — ¢) =-0.9%, and wheral is the solution of the linear system
[RO"RPd = xTt.

Convergence of the sequence of problems is declared when the maximum relative
difference in residuals from the solution of successive problems is less than
epsilon.

The preceding discussion was limited to the case for wieichht s[i] =1 and
frequencies[i] =1,i.e., the weights and frequencies are all taken equal to
one. The necessary modifications to the preceding algorithm to handle weights
and frequencies not all equal to one are as follows:

1. Replace
e by e

in the definitions of
A1) () (i)
andt;.
2. Replace
Zi(k+1) by fi \/Wia(kﬂ) vVi(k+1) by fiV\’iVi(k+1) ,and ti(k+1) byfi \/Witi(kﬂ)
These replacements have the same effect as multiplyiigitliew of X andy by

o

and repeating the rofytimes except for the fact that the residuals returned by
i msl s_f_Lnorm regression are in terms of the originglandX.
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Finaly, R and an estimate of A are computed. Actualy, R isrecomputed because
on output it corresponds to the R from the initial QR decomposition for least
squares. The formula for the estimate of A> depends on p.

For p = 1, the estimator for A” is given by (McKean and Schrader 1987)

2= [\' DFE(é(DFE—k+1) _é(k) )T

22975

with

_ DFE+k _ DFE

k > Zyg75 2

where 7, 475 isthe 97.5 percentile of the standard normal distribution, and where
E(m)(m: 12,...,DFE)

are the ordered residuals where r ank zero residuals are excluded. Note that
n .
DFE = zi:l f. —irank
For p = 2, the estimator of M isthe customary least-squares estimator given by

2 SSE _ Zin:l fow (y; =9 )2

s
DFE z ir, f; —irank

For 1< p<2andfor p> 2, the estimator for Ais given by (Gonin and Money

1989)

A Mpp-2

Wy =gy
[(p-D)m,_,]

with

_ zin:l fi|\/Wi(yi -Y )|r
S

Least Minimum Value Criterion (minimax)

Optional call I MSLS_LMV computes estimates of the regression coefficientsin a
multiple linear regression model. The criterion satisfied is the minimization of the
maximum deviation of the observed responsey; from the fitted response y; for a
set on n observations. Under this criterion, known as the minimax or LMV (least
maximum value) criterion, the regression coefficient estimates minimize

max |y, — ¥

max |y, = 9|
The estimation problem can be posed as alinear programming problem. A dual
simplex algorithm is appropriate, however, the special nature of the problem
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allowsfor considerable gainsin efficiency by modification of the dual simplex
iterations so as to move more rapidly toward the optimal solution. The
modifications are described in detail by Barrodale and Phillips (1975).

When multiple solutions exist for agiven problem, | MSLS_LM may yield
different estimates of the regression coefficients on different computers, however,
the largest residual in absolute value should have the same absolute value (within
rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding, the
error may fail to result even when the problem does have multiple solutions.

Example 1
A straight line fit to adata set is computed under the LAV criterion.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d nain()

{
float xx[] ={1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
float yy[] ={1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
float sea;
int irank, iter, nrmss;
float *coefficients = NULL;
coefficients = insls_f_Lnormregression(8, 1, Xxx, Vyy,
| MSLS_SEA, &sea,
| MSLS_RANK, &irank,
| MSLS | TERATI ONS, &iter,
| MSLS_N_ROAMS_M SSI NG &nrmiss, 0);
printf("B = %6. 2f\t%. 2f\n\n", coefficients[0], coefficients[1]);
printf("Rank of Regressors Matrix = 98d\n", irank);
printf("Sum Absol ute Value of Error = 9. 4f\n", sea);
printf("Nunber of Iterations = 98d\n", iter);
printf("Nunber of Rows M ssing = 98d\n", nrmss);
}
Output
B = 0.50 0. 50

Rank of Regressors Matrix
Sum Absol ute Val ue of Error

Nurber of
Nurber of

. 00000
Iterations
Rows M ssi ng

ONON
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Figure 2-2 Least Squares and Least Absolute V

Example 2

Different straight line fits to a data set are computed under
minimizing theL,, norm by using p equal to 1, 1.5, 2.0 and

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d nain()

{
float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
float p, tolerance, convergence_eps, square_of scale;
float df _error, Lp_normresidual;
float R matrix[4], residuals[8];
i nt i, irank, iter, nrmss;
i nt n_row=2;
i nt n_col =2;
float *coefficients = NULL;
tol erance = 100*%i nsl s_f _machi ne(4);
convergence_eps = 0.001;
p = 1.0;
for(i=0; i<4; i++)
coefficients = insls_f_Lnormregression(8, 1, Xxx, Vyy,

| MSLS METHOD LLP, p,
| MSLS_EPS, convergence_eps,

8.0

alue Fitted Lines

the criterion of
2.5.
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printf("Coefficients =
printf("Residuals

| MSLS_RANK, &irank,
| MSLS | TERATI ONS, &iter,
| MSLS N ROA5 M SSI NG, &nrmi ss,
| MSLS R USER, R matri x,
| MSLS DEGREES OF FREEDOM &df error,
| MSLS RESI DUALS USER, residuals,
| MSLS SCALE, &square_of scale,
| MSLS RESI DUALS LP_NORM &Lp_norm resi dual,
0);
9%6. 2f\t19%6. 2f\n\n", coefficients[0], coefficients[1]);
= 96. 2f\t 9. 2f\ 1 96. 2f\ t 96. 2f\ t 96. 2f\ t 96. 2f\ t 96. 2f \ t ¥6. 2f \ n\ n",
residual s[1], residual s[2], residuals[3],

resi dual s[ 0],
residual s[5], residual s[6], residuals[7]);

resi dual s[ 4],

printf("P = 9. 3f\n", p);

printf("Lp normof the residuals = 9. 3f\n", Lp_normresidual);
printf("Rank of Regressors Matrix = 98d\n", irank);
printf("Degrees of Freedom Error = 9. 3f\n", df_error);
printf("Nunber of Iterations = 98d\n", iter);
printf("Nunber of M ssing Val ues = 98d\n", nrmss);
printf("Square of Scal e Constant = 9%. 3f\n", square_of scale);

insls f wite matrix("R Matrix\n", n_row, n_col, R matrix, 0);
Printf(Memmmmmmm s \n\n");
p += 0.5;
}
Output
Coefficients 0.50 0.50
Resi dual s 0. 00 2.50 -1.50 0.50 -0.50 0.50 -0.50 0.00
p 1. 000
Lp norm of the residuals 6. 002
Rank of the matrix of regressors 2
Degrees of freedomerror 6. 000
Nunmber of iterations 8
Nunmber of m ssing val ues 0
Square of the scal e constant 6.248
R matrix
1 2
1 2.828 8.485
2 0.000 3.464
Coefficients 0. 39 0.55
Resi dual s 0. 06 2.39 -1.50 0.50 -0.55 0.45 -0.61 -0.16
p 1.500
Lp norm of the residuals 3.712
Rank of the matrix of regressors 2
Degrees of freedomerror 6. 000
Nunmber of iterations 6
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Nunmber of m ssing val ues 0
Square of the scal e constant 1. 059

R matrix
1 2
1 2.828 8. 485
2 0. 000 3. 464

Coefficients -0.13 0.75
Resi dual s 0.38 2.13 -1.38 0.62 -0.63 0.38 -0.88 -0.63

p 2. 000
Lp norm of the residuals 2.937
Rank of the matrix of regressors 2
Degrees of freedomerror 6. 000
Nunmber of iterations 1
Nunmber of m ssing val ues 0
Square of the scal e constant 1.438
R matrix
1 2

1 2.828  8.485
2 0.000 3.464

Coefficients -0.44 0. 87
Resi dual s 0.57 1.96 -1.30 0.70 -0.67 0.33 -1.04 -0.91

p 2.500
Lp norm of the residuals 2.540
Rank of the matrix of regressors 2
Degrees of freedomerror 6. 000
Nunmber of iterations 4
Nunmber of m ssing val ues 0
Square of the scal e constant 0.789
R matrix
1 2

1 2.828  8.485
2 0.000 3.464
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Figure 2-3 Various L, Fitted Lines
Example 3

A straight line fit to a data set is computed under the LMV criterion.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d main()

float xx[] ={0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0};
float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0};
float max_residual;

int irank, iter, nrmss;

float *coefficients = NULL;

coefficients = insls_f_Lnormregression(8, 1, xx, Vyy,

| MSLS_METHOD LMV,
| MSLS _MAX _RESI DUAL, &max_resi dual ,
| MSLS_RANK, &irank,
| MSLS | TERATI ONS, &iter,
| MSLS N ROA5 M SSI NG, &nrmi ss,
0);
printf("B = %6. 2f\t%. 2f\n\n", coefficients[0], coefficients[1]);
printf("Rank of Regressors Matrix 98d\ n", irank);
printf("Magnitude of Largest Residual 98. 4f\n", max_residual);
printf("Nunber of Iterations 98d\n", iter);
printf("Nunber of Rows M ssing 9%8d\ n", nrmss);
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Output
B = 1.00 1.00
Rank of Regressors Matrix = 2
Magni t ude of Largest Residual = 1.0000
Number of Iterations = 3
Number of Rows M ssing = 0

10.0 - -
| Least Squares Fit —
_ L Fit —
8.0 — /
6.0 + /
> - 7+
] P
204 7
0.0 e e 5 s By B
0.0 2.0 4.0 6.0 8.0

Figure 2-4 Least Squares and Least Maximum Value Fitted Lines
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Chapter 3: Correlation and
Covariance

Routines
Variances, Covariances, and Correlations
Variance-covariance or correlation matrix.................... covariances 185
Partial correlations and covariances ................. partial_covariances 193
Pooled covariance MatriX..........ccceccvvemnnnninnnn pooled_covariances 198
Robust estimate of covariance matrix.............. robust_covariances 204

Usage Notes

This chapter is concerned with measures of correlation for bivariate data as
follows:

*  Theusua multivariate measures of correlation and covariance for continuous
random variables are produced by routinei nsl s_f _covari ances.

»  For data grouped by some auxillary variable, routinei msl s_f _pool ed_covari ances
can be used to compute the pooled covariance matrix along with the means for each
group.

» Partia correlations or covariances are computed by i nsl s_f _partial correl ati ons.

e Function i nsl s_f _robust_covari ances computes robust M-estimates of
the mean and covarianve matrix from a matrix of observations.

covariances

Computes the sample variance-covariance or correlation matrix.

Synopsis
#include <i msls. h>

float *insl s_f_covariances (int n_rows, int n_vari abl es, float x[],
)]
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The type double functionisi nsl s_d_covari ances.

Required Arguments

int n_rows (Input)
Number of rowsin x.

int n_vari abl es (Input)
Number of variables.

float x[] (Input)
Array of sizen_rows X n_vari abl es containing the data.

Return Value

If no optional arguments are used, i sl s_f _covari ances returns a pointer to
ann_vari abl es X n_vari abl es array containing the sample variance-
covariance matrix of the observations. The rows and columns of this array
correspond to the columns of x.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _covariances (int n_rows, int n_vari abl es, float x[],
IMSLS X COL_DIM int x_col _dim
I MSLS_M SSI NG VALUE_METHOD, int mi ssi ng_val ue_net hod,
I MSLS | NCI DENCE_MATRI X, int **i nci dence_matri x,
I MSLS_| NCI DENCE_MATRI X_USER, int i nci dence_matri x[],
| MSLS N _OBSERVATI ONS, int *n_observati ons,
| MSLS_VARI ANCE_COVARI ANCE_MNATRI X, or
| MBLS_CORRECTED SSCP_MATRI X, or
| MSLS_CORRELATI ON_MATRI X, or
| MBLS_STDEV_CORRELATI ON_MATRI X,
| MSLS_MEANS, float **neans,
| MSLS MEANS USER, float neans[],
| MSLS_COVARI ANCE_COL_DI M int covari ance_col _di m
| MSLS FREQUENCI ES, float frequencies[],
| MBLS_WEI GHTS, float wei ghts[],
| MBLS_SUM WEI GHTS, float *sumat ,
| MBLS N_ROAS_M SSI NG, int *nrmiss,
| MSLS RETURN USER, float covari ance[],
0)

Optional Arguments

IMSLS X COL_DIM int x_col _di m (Input)
Column dimension of array x.
Default: x_col _di m=n_vari abl es

186 « covariances IMSL C/Stat/Library



I MSLS_M SSI NG VALUE_METHOD, int mi ssi ng_val ue_met hod (Input)
Method used to exclude missing valuesin x from the computations,
where NaN isinterpreted as the missing value code. See function
i msl s_f _machi neli msl s_d_nmachi ne (Chapter 14). The methods are
asfollows:

missing_value_method Action

0 The exclusionislistwise. (The entire row of x is
excluded if any of the values of the row is equal
to the missing value code.)

1 Raw crossproducts are computed from all valid
pairs and means, and variances are computed
from all valid data on the individual variables.
Corrected crossproducts, covariances, and
correlations are computed using these quantities.

2 Raw crossproducts, means, and variances are
computed as in the case of

m ssi ng_val ue_net hod = 1. However, cor-
rected crossproducts and covariances are
computed only from the valid pairs of data.
Correlations are computed using these
covariances and the variances from all valid
data

3 Raw crossproducts, means, variances, and
covariances are computed asin the case of

mi ssi ng_val ue_net hod = 2. Correlations are
computed using these covariances, but the vari-
ances used are computed from the valid pairs of
data

I MSLS | NCI DENCE_MATRI X, int **i nci dence_matrix (Output)
Address of a pointer to an internally allocated array containing the
incidence matrix. If m ssi ng_val ue_met hod isO0,
i nci dence_mat ri x is1 x 1 and contains the number of valid
observations; otherwise, i nci dence_matri x is
n_vari abl es x n_vari abl es and contains the number of pairs of
valid observations used in cal culating the crossproducts for covariance.

I MSLS | NCI DENCE_MATRI X_USER, int i nci dence_matri x[] (Output)
Storage for array i nci dence_mat ri x isprovided by the user.
See | MSLS_| NCI DENCE_MATRI X.

I MSBLS N _OBSERVATI ONS, int *n_observations (Output)
Sum of the frequencies. If ni ssi ng_val ue_net hod is 0, observations
with missing values are not included inn_obser vat i ons; otherwise,
all observations are included except for observations with missing values
for the weight or the frequency.
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| MSLS_VARI ANCE_COVARI ANCE_MATRI X, Of
| MSLS_CORRECTED SSCP_MATRI X, Of

| MSLS_CORRELATI ON_MATRI X, or

| MSLS_STDEV_CORRELATI ON_MATRI X

Exactly one of these options can be used to specify the type of matrix to
be computed.

Keyword Type of Matrix

I MSLS_VARI ANCE_COVARI ANCE_NMATRI X variance-covariance matrix (default)

| MSLS CORRECTED SSCP_MATRI X corrected sums of sguares and crossproducts matrix
| MSLS CORRELATI ON_NMATRI X correlation matrix

| MSLS_STDEV_CORRELATI ON_MATRI X correlation matrix except for the diagonal elements

which are the standard deviations

| MSLS_MEANS, float **nmeans (Output)

Address of a pointer to the internally allocated array containing the
means of the variablesin x. The components of the array correspond to
the columns of x.

| MSLS_MEANS_USER, float neans[] (Output)

Storage for array means is provided by the user. See | MSLS_MEANS.

I MSLS_COVARI ANCE_COL_DI M int covari ance_col _di m (Input)

Column dimension of array covariance if | MSLS_RETURN_USERIs
specified; otherwise, the column dimension of the return value.
Default: covari ance_col _di m=n_vari abl es

| MSBLS_FREQUENCI ES, float frequencies[] (Input)

Array of lengthn_obser vat i ons containing the frequency for each
observation.
Default: frequencies []1=1

| MSLS_VEI GHTS, float wei ghts[] (Input)

Array of lengthn_obser vat i ons containing the weight for each
observation.
Default: wei ghts [] =1

| MSLS_SUM WEI GHTS, float *sum wt (Output)

Sum of the weights of all observations. If mi ssi ng_val ue_net hod is
equal to 0, observations with missing values are not included insum wt .
Otherwise, all observations are included except for observations with
mssing values for the weight or the frequency.

| MBLS_N_ROAS_M SSI NG, int *nrmiss (Output)

Total number of observations that contain any missing values (NaN).

I MSBLS_RETURN_USER, float covariance[] (Output)

If specified, the output is stored in the array covariance of size
n_vari abl es x n_vari abl es provided by the user.
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Description

Functioni nsl s_f _covari ances computes estimates of correlations,
covariances, or sums of squares and crossproducts for a data matrix x. Weights
and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts
are computed using the method of provisional means. Let x;; denote the mean
based on i observations for the k-th variable, f; denote the frequency of thei-th
observation, w; denote the weight of thei-th observations, and c;;; denote the sum
of crossproducts (or sum of squaresif | = k) based on i observations. Then the
method of provisional means finds new means and sums of crossproducts as
shown in the exampl e below.

The means and crossproducts are initialized as follows:
X =00 fork=1, ...,p
Ciro=00forj, k=1,...,p

where p denotes the number of variables. Letting x; ;,, denote the k-th variable of
observation i + 1, each new observation leads to the following updates for x;; and

Cjy; using the update constant ., :

— fi +1Wi+1

i+1 7 T4

Z fiw
=1

Xg i1 = Xig +(Xk,i+1 — Xy )ri+l
Cik,i+1 = Cjq + fi+1Wi+1(Xj,i+1 = X;i )(Xk,i+1 ~ X )(1‘ Fiv1)

The default value for weights and frequenciesis 1. Means and variances are
computed based on the valid data for each variable or, if required, based on all
the valid data for each pair of variables.

Usage Notes

Functioni nsl s_f _covari ances defines a sample mean by

n

Zfiwixki

- _f=

X _'n—
fiw,

1=1

where n is the number of observations.
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The following formula defines the sample covariance, s, between variablesj and

The sample correlation between variablesj and k, 1y, is defined as follows:

Examples

Example 1

Thisexampleillustratestheuse of i msl s_f _covari ances for the first 50

observations in the Fisher iris data (Fisher 1936). Note that the first variableis

constant over the first 50 observations.

#i ncl ude <insls. h>

5

#def i ne N_VARI ABLES
#def i ne N_OBSERVATI ONS 50

mai n()
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GO WNE

1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
/* Performanalysis */
covariances = inmsls_f_covariances (N_OBSERVATI ONS
N_VARI ABLES, x, 0);

/* Print results */

insls f wite _matrix ("The default case: variances/covari ances",

N VAR ABLES, N _VARI ABLES, covari ances
| MSLS_PRI NT_UPPER, 0);

Output
The default case: variances/covari ances
1 2 3 4 5
0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
0.1242 0. 0992 0.0164 0. 0103
0. 1437 0.0117 0. 0093
0. 0302 0. 0061
0.0111
Example 2

This example, which uses the first 50 observations in the Fisher iris data,

illustrates the use of optional arguments.

#i ncl ude <insls. h>

#def i ne N_VARI ABLES 5
#def i ne N_OBSERVATI ONS 50

mai n()

char *title
fl oat *means, *correl ations
fl oat X[ 1] {

UOURFRFPARMDNORADOOONORADNU
RPRRRRRRRRRRRRPRRPRRRRRRRR

ol ol ol ol ol el el
0000000000000 00000000
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PhRPRPRRREPRRERRERRRRRRRRRRR
0000000000000 000000
INNOENIGEOGROENE SR RO RO RO RS RO NSNS N NN
URPOOUTANNORRPRPPNWOOORDO©
N0Wow0wwonwonwwwhwonwwwwow
WARONNANUOWNOUIAORARAORO
o el o ol o ol ol el
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/* Performanalysis */
correlations = insls_f_covari ances (N_OBSERVATI ONS,
N_VARI ABLES- 1, x+1,
| MSLS_STDEV_CORRELATI ON_MATRI X,
I MBLS X COL_DIM N _VARI ABLES,
| MSLS_MEANS, &neans,
0);

/* Print results */
inmsls f wite matrix ("Means\n", 1, N _VARI ABLES-1, neans, 0);
title = "Correlations with Standard Devi ati ons on the Di agonal\n";
imsls f wite matrix (title, N VAR ABLES-1, N _VARI ABLES-1,
correlations, | MSLS PRI NT_UPPER, 0);

}
Output
Means
1 2 3 4
5. 006 3.428 1. 462 0. 246

Correlations with Standard Devi ati ons on the Di agonal

1 2 3 4
1 0. 3525 0.7425 0. 2672 0.2781
2 0.3791 0.1777 0. 2328
3 0.1737 0. 3316
4 0.1054

Warning Errors

| MSLS CONSTANT_VARI ABLE Correlations are requested, but the
observations on one or more
variables are constant. The
corresponding correlations are set
to NaN.

| MSLS | NSUFFI Cl ENT_DATA Variances and covariances are
requested, but fewer than two valid
observations are present for a
variable. The pertinent statistics
are set to NaN.

| MSLS ZERO SUM OF WAEI GHTS 2 The sum of the weightsis zero.
The means, variances, and
covariances are set to NaN.
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| MSLS_ZERO SUM OF_WEI GHTS_3 The sum of the weightsis zero.
The means and correlations are set
to NaN.

| MSLS_TOO FEW VALI D_OBS_CORREL Correlations are requested, but
fewer than two valid observations
are present for avariable. The
pertinent correlation coefficients
are set to NaN.

partial_covariances

Computes partial covariances or partia correlations from the covariance or
correlation matrix.

Synopsis
#include <insls. h>

float *insl s_f_partial _covariances (int n_i ndependent,
int n_dependent, float x, ..., 0)

The type double functionisi nsl s_d_partial _covari ances.

Required Argument

int n_i ndependent (Input)
Number of “independent” variables to be used in the partial
covariances/correlations. The partial covariances/correlations are the
covariances/correlations between the dependent variables after removing
the linear effect of the independent variables.

int n_dependent (Input)
Number of variables for which partial covariances/correlations are
desired (the number of “dependent” variables).

float x (Input)
Then x n covariance or correlation matrix, where
N =n_i ndependent +n_dependent . The rows/columns must be
ordered such that the finsti ndependent rows/columns contain the
independent variables, and the lastiependent row/columns contain
the dependent variables. Matkxmust always be square symmetric.

Return Value

Matrix of sizen_dependent containing the partial covariances (the default) or
partial correlations (use keyword/SLS PARTI AL_CORR).

Synopsis with Optional Arguments

#include <i nsls. h>
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float *i nsl s_f _partial _covariances (int n_i ndependent,

int n_dependent, float x[],

IMSLS X _ COL_DIM int x_col _dim

I MSLS X I NDI CES, int i ndices[],

| MSLS_PARTI AL_COV, or

| MSLS_PARTI AL_CORR,

| MSLS_TEST, int df, int *df _out, float **p_val ues,

| MSLS TEST USER, int df, int *df out, float p_val ues[],
| MBLS_RETURN_USER, float c[],

0)

Optional Arguments

IMSLS X _COL_DI'M int x_col _di m (Input)

Row/Column dimension of x.
Default: x_col _di m=n_i ndependent +n_dependent .

I MSLS_X_I NDI CES, int indices[] (Input)

An array of length x_col _di mcontaining values indicating the status of
the variable as in the following table:

indicesJi] Variable is...

-1 not used in analysis
dependent variable

1 independent variable

By default, thefirst n_i ndependent elementsof i ndi ces are equal to
1, and thelast n_dependent elementsare equal to 0.

| MSLS_PARTI AL_COV, or
| MBLS_PARTI AL_CORR,

By default, and if | MSLS_PARTI AL_COV is specified, partial
covariances are calculated. Partial correlations are calculated if
| MSLS_PARTI AL_CORRis specified.

| MSLS TEST, int df, int *df _out, float **p_val ues

(Input, Output, Output)

Argument df isan input integer indicating the number of degrees of
freedom associated with input matrix x. If the number of degrees of
freedom in x varies from element to element, then a conservative choice
for df isthe minimum degrees of freedom for all elementsinx.

Argument df _out contains the number of degrees of freedom in the test
that the partial covariances/correlations are zero. This value will usually
bedf - n_i ndependent , but will be greater than thisvalueif the
independent variables are computationally linearly related.

Argument p_val ues isthe address of apointer to an internally
allocated array of sizen_dependent by n_dependent containing the
p-values for testing the null hypothesis that the associated partial

194 « partial_covariances

IMSL C/Stat/Library



covariance/correlation is zero. It is assumed that the observations from
which x was computed flows a multivariate normal distribution and that
each element in x hasdf degrees of freedom.

| MSLS TEST_USER, int df,int *df out, float p_val ues[]
(Input, Output, Output)
Storage for array p_val ues isprovided by the user. See | MSLS_TEST
above.

| MSLS_RETURN_USER, float c[] (Output)
If specified, ¢ returnsthe partial covariances/correlations. Storage for
array c isprovided by the user.

Description

Functioni nsl s_f _partial _covari ances computed partial covariances or

partial correlations from an input covariance or correlation matrix. If the

“independent” variables (the linear “effect” of the independent variables is
removed in computeing the partial covariances/correlations) are linearly related to
one anothen,nsl s_f _partial _covari ances detects the linearity and

eliminates one or more of the independent variables from the list of independent
variables. The number of variables eliminated, if any, can be determined from
argumentif _out .

Given a covariance or correlation matEpartitioned as

(le Zle

z21 z22

functioni msl s_f _parti al _covari ances computed the partial covariances
(of the standardized variablesifis a correlation matrix) as

Zoon =2y~ zzlzﬁlzlz

If partial correlations are desired, these are computed as

) -1/2 ' -1/2
P = [dlag(zzz/l)] zZZ/l[dlag(ZZZ/l)]

wherediag denotes the matrix containing the diagonal of its argument along its
diagonal with zeros off the diagonal 3f; is singular, then as many variables as
required are deleted fro®), (andZ;,) in order to eliminate the linear
dependencies. The computations then proceed as above.

Thep-value for a partial covariance tests the null hypothegis; = 0, where

o is the {, j) element in matri%,y, . Thep-value for a partial correlation tests
the null hypothesibly: p;; = 0, wherepy;, is the {, j) element in matri®,y,. The
p-values are returned m val ues. If the degrees of freedom ferdf , is not
known, the resulting-values may be useful for comparison, but they should not
by used as an approximation to the actual probabiltities.
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Examples

Example 1

The following example computes partial covariances, scaled from a nine-variable
correlation matrix originally given by Emmett (1949). The first three rows and
columns contain the independent variables and the final six rows and columns
contain the dependent variables.

#i ncl ude <insls. h>
#i ncl ude <mat h. h>

mai n()
float *pcov;
float x[9][9] = {
6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363
3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077
1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673
3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910
1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687,
2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754,
2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309,
1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458
4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400};
pcov = inmsls_f_partial _covariances(3, 6, x, 0);
imsls_f_wite_matrix("Partial Covariances", 6, 6, pcov, 0);
free(pcov);
return;
}
Output
Partial Covariances
1 2 3 4 5 6
1 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
2 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
4 0. 000 0. 000 0. 000 5. 495 1.895 3.084
5 0. 000 0. 000 0. 000 1.895 1.841 1. 476
6 0. 000 0. 000 0. 000 3.084 1.476 3.403
Example 2

The following example computes partial correlations from a9 variable
correlation matrix originally given by Emmett (1949). The partial correlations
between the remaining variables, after adjusting for variables 1, 3and 9, are
computed. Note in the output that the row and column labels are numbers, not
variable numbers. The corresponding variable numbers would be 2, 4, 5, 6, 7 and
8, respectively.

#i ncl ude <insls. h>
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mai n()

float *pcorr, *pval
i nt df ;
float x[9][9] = {

1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505
0. 346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
0. 426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
0. 434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

int indices[9] = {1, 0, 1, O, 0, O, 0, 0, 1};

pcorr = imsls_f _partial_covariances(3, 6, &[0][0],

| MBLS_PARTI AL_CORR,

I MSLS X I NDI CES, indices,

| MBLS_TEST, 30, &df, &pval,
0);

printf ("The degrees of freedomare %\ n\n", df)

insls f wite matrix("Partial Correlations", 6, 6, pcorr, 0)
inmsls f wite_matrix("P-Values", 6, 6, pval, 0);
free(pcorr);

free(pval)
return;

Output
The degrees of freedomare 27

Partial Correl ations

1 2 3 4 5 6
1 1. 000 0.224 0. 194 0.211 0. 125 -0.061
2 0.224 1. 000 0. 605 0.720 0. 092 0. 025
3 0. 194 0. 605 1. 000 0. 598 0.123 -0.077
4 0.211 0.720 0. 598 1. 000 0. 035 0. 086
5 0. 125 0. 092 0.123 0. 035 1. 000 0. 062
6 -0.061 0. 025 -0.077 0. 086 0. 062 1. 000

P- Val ues

1 2 3 4 5 6
1 0. 0000 0. 2525 0.3232 0. 2801 0.5249 0. 7576
2 0. 2525 0. 0000 0. 0006 0. 0000 0. 6417 0. 9000
3 0.3232 0. 0006 0. 0000 0. 0007 0.5328 0. 6982
4 0. 2801 0. 0000 0. 0007 0. 0000 0. 8602 0. 6650
5 0.5249 0. 6417 0.5328 0. 8602 0. 0000 0. 7532
6 0. 7576 0. 9000 0. 6982 0. 6650 0. 7532 0. 0000
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Warning Errors

| MSLS _NO HYP_TESTS The input matrix “X” has # degrees of freedom,
and the rank of the dependent variables is #.
There are not enough degrees of freedom for
hypothesis testing. The elements of “p_values”
are set to NaN (not a number).

Fatal Errors

I MBLS_I NVALI D_MATRI X_1 The input matrix “x” is incorrectly specified. A
computed correlation is greater than 1 for
variables # and #.

| MBLS_I NVALI D_PARTI AL A computed partial correlation for variables #
and # is greater than 1. The input matrix “x” is
not positive semi-definite.

pooled covariances

Compute a pooled variance-covariance from the observations.

Synopsis
#include <insls. h>

float *i nsl s_f _pool ed_covari ances (int n_rows, int n_vari abl es,
float *x, int n_groups, ..., 0)

The typedouble function isi nsl s_d_pool ed_covari ances.

Required Argument

int n_rows (Input)

Number of rows observations) in the input matrix
int n_vari abl es (Input)

Number of variables to be used in computing the covariance matrix.
float *x (Input)

A n_rows X n_vari abl es + 1 matrix containing the data. The first

n_vari abl es columns correspond to the variables, and the last column
(columnn_vari abl es must contain the group numbers).

int n_groups (Input)
Number of groups in the data.
Return Value

Matrix of sizen_vari abl es byn_vari abl es containing the matrix of
covariances.
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Synopsis with Optional Arguments
#include <insls. h>

float *i nsl s_f_pool ed_covariances (int n_rows, int n_vari abl es,
float x[], int n_groups,
IMSLS X COL_DIM int x_col _dim
IMSLS X INDICES, int igrp, int ind[], int ifrqg, int iw,
I MSLS_| DO, int i do,
| MSLS_ROAS_ADD,
| MSBLS_ROWS_DELETE,
| MSLS GROUP_COUNTS, int **gcount s,
| MSLS GROUP_COUNTS USER, int gcounts[],
| MSLS SUM VEI GHTS, float **sum wei ght s,
| MSLS SUM VEI GHTS USER, float sum wei ghts[],
| MSLS MEANS USER, float neans[],
I MSLS U, float **u,
| MSBLS U USER, float u[],
I MSLS N ROAS M SSI NG, int *nrmi ss,
| MBLS_RETURN USER, float c[],
0)

Optional Arguments

I MBLS_X COL_DI'M int x_col _di m (Input)
Default: x_col _di m=n_vari ables +1

I MSLS_X_INDI CES, int igrp, int ind[], int ifrg, int iw (Input)
Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0..x_col _dim-1.

Parameter i gr p contains the index for the column of x in which the
group numbers are stored.

Parameter i nd contains the indices of the variables to be used in the
analysis.

Parametersi f rg and i wt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Seti fr g = -1 if there
will be no column for frequencies. Seti wt = -1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Defaults: i gr p =n_vari abl es,
ind[]=0,1,...,n_variables—1,ifrg=-1,andiwt =-1

I MBLS_I DO, int i do (Input)
Processing option.
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ido | Action

0 | Thisistheonly invocation; all the data are input at once.
(Default)

1 | Thisisthefirst invocation with this data; additional calls
will be made. Initialization and updating for the n_r ows
observations of x will be performed.

2 | Thisisan intermediate invocation; updating for the n_r ows
observations of x will be performed.

3 | All statistics are updated for the n_r ows observations. The
covariance matrix computed.

Default:i do =0

| MBLS_ROWS_ADD, or

| MBLS_ROWS_DELETE
By default (or if | MSLS_ROWS_ADD is specified), the observationsin x
are added into the analysis. If | MBLS_ROWNS DELETE is specified, the
observations are deleted from the analysis. If i do = 0, these optional
arguments are ignored (datais always added if thereisonly one
invocation).

I MSBLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_gr oups containing
the number of observationsin each group. Array gcount s is updated
wheni do isequal to 0, 1, or 2.

| MSBLS GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcount s is provided by the user.
See | MSLS_GROUP_COUNTS.

I MBLS _SUM VEI GHTS, float **sum wei ghts (Output)
Address of a pointer to an array of length n_gr oups containing the sum
of the weights times the frequencies in the groups.

I MSBLS SUM VEI GHTS _USER, float sum wei ghts[] (Output)
Storage for array sum wei ght s is provided by the user.
See | MSLS_SUM WEI GHTS.

I MSBLS_MEANS, float **nmeans (Output)
Address of apointer to an array of Sizen_groups x n_vari abl es. The
i-th row of means containsthe group i variable means.

| MBLS MEANS USER, float neans[] (Output)
Storage for array means is provided by the user. See | MSLS_MEANS.

I MBLS U, float **u (Output)
Address of apointer to an array of sizen_vari abl es x
n_vari abl es containing the lower matrix U, the lower triangular for
the pooled sample cross-products matrix. U is computed from the
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pooledT sample covariance matrix, S (See the description section), as
S=U"U.

I MSLS U USER, float u[] (Output)
Storage for array u is provided by the user. See | MBLS_U.

| MSLS_N_ROWS_M SSI NG, int *nrniss (Output)
Number of rows of data encountered in callsto
i msl s_f _pool ed_covari ances containing missing values (NaN) for
any of the variables used.

| MSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is
provided by the user.

Description

Functioni nsl s_f _pool ed_covari ances computes the pooled variance-
covariance matrix from amatrix of observations. The within-groups means are
also computed. Listwise deletion of missing valuesis assumed so that all
observations used are complete; in any row of x, if any element of the observation
ismissing, the row is not used. Functioni msl s_f pool ed_covari ances
should be used whenever the user suspects that the data has been sampled from
populations with different means but identical variance-covariance matrices. If
these assumptions cannot be made, a different variance-covariance matrix should
be estimated within each group.

By default, all observations are processed in one call to

i msl s_f_pool ed_covari ances. The computations are the same as if

i msl s_f_pool ed_covari ances were consecutively called withi do equal to
1, 2, and 3. For brevity, the following discusses the computations withi do > 0.

Wheni do = 1 variables are initialized, workspace is alocated and input variables
are checked for errrors.

If n_rows ... O (for any vaue of i do), the group observation totals, T,, for i =1,
..., 0, where g is the number of groups, are updated for the n_r ows observations
in x. The group totals are computed as:

T = Z w; i X;
]

where w; is the observation weight, x;; is the j-th observation in the i-th group,
and f;; is the observation frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of
the pooled sums of squares and crossproducts matrix. (Golub and Van Loan
1983).

The group means and the pooled sample covariance matrix Sare computed from
the intermediate results when i do = 3. These quantities are defined by
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Examples

Example 1

The following example computes a pooled variance-covariance matrix. The last
column of the data set is the group indicator.

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <insls. h>

mai n() {
i nt nobs ;
int nvar 2;
int n_groups = 2;
float *cov;

static float x[6][3] = {
2.2, 5.6, 1,
3.4, 2.3, 1,
1.2, 7.8, 1,
3.2, 2.1, 2,
4.1, 1.6, 2,
3.7, 2.2, 2};
cov = inmsls_f_pool ed_covari ances(nobs, nvar, &[0][0], n_groups, 0);
imsls_f_wite_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
free(cov);
}
Output
Pool ed Covari ance Matri x
1 2
1 0.708 -1.575
2 -1.575 3. 883
Example 2

The following example computes a pooled variance-covariance matrix for the
Fisher irisdata. To illustrate the use of the i do argument, multiple calls to
imsl s_f_pool ed_covari ances are made.

Thefirst column of datais the group indicator, requiring either a permuation of
the matrix or the use of the | MSLS_X_| NDI CES optional keyword. This exampe
chooses the keyword method.
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#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <insls. h>

main() {
int nobs = 150;
int nvar = 4;
int n_groups = 3;
int igrp = 0;
static int ind[4] = {1, 2, 3, 4};
int ifrqg =-1;
int iw = -1;

float *x, cov[16];
fl oat *neans;
int i;

/* Retrieve the Fisher iris data set */
x = insls_f_data_sets(3, 0);

/* Initialize */

i nsl s_f_pool ed_covariances(0, nvar, X, n_groups,
| MSLS I DO, 1,
| MBLS_RETURN USER, cov,
I MSLS X INDICES, igrp, ind, ifrq, iw, 0);

/* Add 10 rows at a tine */

for (i=0;i<15;i++) {

i sl s_f_pool ed_covari ances(10, nvar, (x+i *50), n_groups,
| MSLS_I DO, 2,
| MBLS_RETURN USER, cov,
I MSLS X INDICES, igrp, ind, ifrq, iw, 0);

}

/* Calculate cov and free internal workspace */
insl s_f_pool ed_covariances(0, nvar, X, n_groups,
I MSLS_IDO, 3
| MBLS_RETURN USER, cov,
I MSLS X INDICES, igrp, ind, ifrq, iw,
| MSLS_MEANS, &neans, 0);

insls f wite _matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
inmsls f wite_matrix("Means", n_groups, nvar, neans, 0);

free(neans);

free(x);
}
Output

Pool ed Covari ance Matri x

1 2 3 4
1 0. 2650 0. 0927 0. 1675 0. 0384
2 0. 0927 0. 1154 0. 0552 0. 0327
3 0. 1675 0. 0552 0. 1852 0. 0427
4 0. 0384 0. 0327 0. 0427 0. 0419
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1
5. 006
5.936
6.588

Means

2 3 4
3.428 1.462 0. 246
2.770 4.260 1.326
2.974 5. 552 2.026

Warning Errors

| MSBLS_OBSERVATI ON_| GNORED  In call #, row # of the matrix “x” has group
number = #. The group number must be
between 1 and #, the number of groups.
This observation will be ignored.

Fatal Errors

I MSLS BAD | DO 4 “ido” = #. Initial allocations must be
performed by making a call to
pool ed_covari ances with “ido” = 1.

I MSLS_BAD_| DO 5 “ido” = #. A new analysis may not begin
until the previous analysis is terminated by
a call toi nsl s_f _pool ed_covari ances
with “ido” equal to 3.

robust_covariances

Computes a robust estimate of a covariance matrix and mean vector.

Synopsis
#include <insls. h>

float *i nsl s_f_robust _covariances (int n_rows, int n_vari abl es,
float *x, int n_groups, ..., 0)

The typedouble function isi nsl s_d_r obust _covari ances.

Required Argument

int n_rows (Input)
Number of rows observations) in the input magrix

int n_variabl es (Input)

Number of variables to be used in computing the covariance matrix.
float *x (Input)

A n_rows byn_vari abl es + 1 matrix containing the data. The first

n_vari abl es columns correspond to the variables, and the last column

(columnn_vari abl es) must contain the group numbers.
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int n_groups (Input)
Number of groupsin the data.

Return Value

Matrix of sizen_vari abl es by n_vari abl es containing the matrix of
covariances.

Synopsis with Optional Arguments
#include <i nsl's. h>

float *i nsl s_f _robust _covariances (int n_rows, int n_vari abl es,
float x[], int n_groups,
IMSLS X _ COL_DIM int x_col _dim
I MSLS X_INDI CES, int igrp, int ind[], intifrqg, int iw,
I MSLS_ | NI TI AL_EST_MEAN,
I MSLS_| NI TI AL_EST_MEDI AN
I MSLS_ | NI TI AL_EST I NPUT, float i nput _means[],
float i nput _cov[],
| MSLS_ESTI MATI ON_METHOD, int met hod,
| MSLS_PERCENTAGE, float percent age,
| MBLS_MAX_| TERATI ONS, int maxit,
| MSLS_TOLERANCE, float t ol er ance,
| MSLS_M NI MAX_VEI GHTS, float *a, float *b, float *c,
| MSLS_GROUP_COUNTS, int **gcount s,
| MSLS_GROUP_COUNTS_USER, int gcounts[],
| MSLS_SUM WEI GHTS, float **sum wei ght's,
| MBLS_SUM WEI GHTS_USER, float sum wei ghts[],
| MSLS_MEANS, float **nmeans,
| MSLS_MEANS USER, float neans][],
I MSLS U, float **u,
| MBLS_U_USER, float u[],
| MSLS_BETA, float *bet a,
| MBLS_N_ROAS_M SSI NG, int *nrmiss,
| MBLS_RETURN_USER, float c[],
0)

Optional Arguments

IMSLS X COL_DI'M int x_col _di m (Input)
Row/Column dimension of x.
Default: x_col _dim=n_variables +1

IMSLS X INDICES, int igrp, int ind[], intifrqg, int iw (Input)
Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0...x_col _dim-1
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Parameter i gr p contains the index for the column of x in which the
group numbers are stored.

Parameter i nd contains the indices of the variables to be used in the
analysis.

Parametersi f rg and i wt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Seti f r g = —1if there
will be no column for frequencies. Seti wt = —1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Defaults: i gr p =n_vari abl es,
ind[]=0,1,...,n_variables -1 ifrg=-1,andiwt =-1

| MBLS_I NI TI AL_EST_MEAN, or

| MBLS_I NI TI AL_EST_NEDI AN, or

I MSLS_ | NI TI AL_EST_I NPUT, float *i nput _mean, float *i nput _cov
(Input)
If I MBLS | NI TI AL_EST_MEAN s specified, initial estimates are
obtained as the usual estimate of a mean vector and of a covariance
matrix.

If I MBLS | NI TI AL_EST_MEDI ANis specified, initial estimates are
based upon the median and interquartile range are used.

If 1 MBLS_I NI TI AL_EST_I NPUT is specified, the initial estimates are
specified in arraysi nput _mean and i nput _cov. Argument

i nput _nean isan array of sizen_gr oups by n_vari abl es, and

i nput _cov isanarray of sizen_vari abl es by n_vari abl es.

Default: | MSLS_| NI TI AL_EST_NMEAN

| MBLS_ESTI MATI ON_METHOD, int met hod (Input)
Option parameter giving the algorithm to be used in computing the
estimates.

method Method Used

0 Huber’s conjugate-gradient algorithm is used.

1 Stahel’s algorithm is used.

| MSBLS PERCENTAGE, float percentage (Input)
Percentage of gross errors expected in the data. Argyraenént age
must be in the range 0.0 to 100.0 and contains the percentage of outliers
expected in the data. If the percentage of gross errors expected in the
data is not known, a reasonable strategy is to choose a value of
per cent age that is such that larger values do not result in significant
changes in the estimates.
Default:per cent age = 5.0

206 « robust_covariances IMSL C/Stat/Library



| MBLS_NMAX_| TERATI ONS, int maxit (Input)
Maximum number of iterations.
Default: maxit =30

| MSLS_TOLERANCE, float t ol erance (Input)
Convergence criterion. When the maximum absolute changein a
location or covariance estimate islessthant ol er ance, convergenceis
assumed.
Default: t ol erance =107

| MSLS_M NI MAX_VEI GHTS, float *a, float *b, float *c (Output)
Argumentsa, b, and c contain the values for the parameters of the
weighting function. See the “Description” section.

| MBLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of lengtlir oups containing
the number of observations in each group. Ageyunt s is updated
wheni do is equal to 0, 1, or 2.

| MBLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer arrgycount s is provided by the user.
Seel MSLS_GROUP_COUNTS.

| MBLS_SUM VEI GHTS, float **sum wei ghts (Output)
Address of a pointer to an array of lengthyr oups containing the sum
of the weights times the frequencies in the groups.

| MSLS_SUM VEI GHTS_USER, float sum wei ght s[ ] (Output)
Storage for arragum wei ght s is provided by the user.
Seel MSLS_SUM WEI GHTS.

| MSLS_MEANS, float **nmeans (Output)
Address of a pointer to an array of sizegr oups byn_vari abl es.
Thei-th row ofmeans contains the groupvariable means.

| MSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the userl B8leS_MEANS.

I MSLS U, float **u (Output)
Address of a pointer to an array of sizevari abl es byn_vari abl es
containing the lower matritd, the lower triangular for the robust sample
cross-products matrixJ is computed from the robust sample covariance
matrix, S (See the “Description” section), &8s U Tu.

I MSLS U USER, float u[] (Output)
Storage for array is provided by the user. SesBLS_U.

| MBLS_BETA, float *beta (Output)
Argumentbet a contains the the constant used to ensure that the
estimated covariance matrix has unbiased expectation (for a given mean
vector) for a multivariate normal density.
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I MSLS_N_ROAS_M SSI NG, int *nrmiss (Output)
Number of rows of data encountered in callsto r obust _covari ances
containing missing values (NaN) for any of the variables used.

| MSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is
provided by the user.

Description

Functioni nmsl s_f _robust_covari ances computes robust M-estimates of the
mean and covariance matrix from amatrix of observations. A pooled estimate of
the covariance matrix is computed when multiple groups are present in the input
data. M-estimate weights are obtained using the “minimax” weights of Huber
(1981, pp. 231-235), wither cent age expected gross errors. Huber’'s (1981)
weighting equations are given by:

a2

2
u(r)=41
bZ
2

w(r) = min(l%)

User specified observation weights and frequencies may be given for each row in
x. Listwise deletion of missing values is assumed so that all observations used are
“complete”.

Letf (x;u;, ) denote the density of an observatpuectorx in population
(group)i with mean vectop,, fori = 1,..., 1. Let the covariance matrx be such
thats =R'R If

y=R" (x-4)
then
U
ay) == ’ f(RTyﬂli WM ,Z)
It is assumed thay(y) is a spherically symmetric densityprdimensions.

Ininsl s_f_robust_covari ances, Z andy; are estimated as the solutions
(£

of the estimation equations

%Z figWijW(rij )Yij =0
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and

e o T o le
=2 D fiwg [ulry vy —B1,]=0
1=1 J=1
wherei indexes the T groups, n;, is the number of observationsin group i, f;; isthe
frequency for thej-th observation in group i, w;; is the observation weight

specified in columni wt of x, 1, isap x p identity matrix,

fij =+ yiJTYij

w(r) and u(r) are the weighting functions, and where 3 is a constant computed by
the program to make the expected weighted M ahalanobis distance (yTy) equal the
expected Mahalanobis distance from a multivariate normal distribution (see
Marazzi 1985). The constant 3 is described more fully below.

Functioni nsl s_f _robust_covari ances usesone of two algorithms for
solving the estimation equations. The first algorithm is discussed in detail in
Huber (1981) and is avariant of the conjugate gradient method. The second
algorithm is due to Stahel (1981) and is discussed in detail by Marazzi (1985). In
both agorithms, correction vectors T, for the group i means and correction
matrix Wy = 1,, + Uy for the Cholesky factorization of > are found such that the
updated mean vectors are given by

Biger = Hig + T
and the updated matrix Ris given as
F}k+1 = \M<F}k
wherek is the iteration number and
ik =R(R

When al elements of U, and T; are lessthan € =t ol er ance, convergenceis
assumed.

Three methods for obtaining estimates are alowed. In the first method, the
sample weighted estimate of % is computed. In the second method, estimates
based upon the median and the interquartile range are used. Finaly, in the last
method, the user inputsinitial estimates.

Functioni nsl s_f _robust_covari ances computes estimates based on the
“minimax” weights discussed above. The consfaistchosen such that E

(u(r)r,) = pPB where the expectation is with respect to a stanolamatiate
multivariate normal distribution. This yields estimates with the correct
expectation for the multivariate normal distribution (for given mean vector). The
expectation is computed via integration of estimated spline function. 200 knots
are used on an equally apaced grid from 0.0 to the 99.999 percentile of
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Xp
distribution. An error estimate is computed based upon 100 of these knots. If the
estimated relative error is greater than 0.0001, awarning message isissued. If 3 is
not computed accurately (i.e., if the warning message is issued), the computed

esimates are still optimal, but the scale of the estimated covariance matrix may
need to be multiplied by a constant in order for

A

>

to have the correct multivariate normal covariance expectation.
Examples

Example 1

The following example computes a robust variance-covariance matrix. The last
column of the data set is the group indicator.

#i ncl ude <insls. h>

mai n()

.
int nobs = 6;
int nvar = 2;

i nt n_groups‘ = 2;
float *cov;
float x[18] = {

)

NENNAN
NENNNO
NO R ®Wo

... ..

1
1
1
2
2
2

wWhwrELwhn

)

cov = insls_f_robust_covariances(nobs, nvar, x, n_groups, 0);

inmsls f wite _matrix("Robust Covariance Matrix", nvar, nvar, cov,
| MSLS_COL_NUMBER ZERO,
| MSBLS_ROW NUMBER ZERO, 0);

free(cov);
}
Output
Robust Covariance Matri x
0 1
0 0.522 -1.160
1 -1.160 2.862

210 « robust_covariances IMSL C/Stat/Library



Example 2

The following example computes estimates of the pooled covariance matrix for

the Fisher's iris data. For comparison, the estimates are first computed via
functioni nsl s_f _pool ed_covari ances. Function

imsl s_f _robust_covari ances with percent age = 2.0 is then used to
compute the robust estimates. As can be seen from the output, the resulting
estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are
computed using functionists| s_f pool ed_covari ances and

i msl s_f _robust_covari ances. When outliers are present, the estimates of
i msl s_f_pool ed_covari ances are adversely affected, while the estimates
produced by nsl s_f _robust _covari ances are close the the estimates
produced when no outliers are present.

i nclude <insls.h>
mai n()

i nt nobs = 150;

i nt nvar = 4;

i nt n_groups = 3;

fl oat percentage = 2.0;

i nt igrp = 0;

i nt ifrqg = -1;

i nt iw = -1;

i nt ind[4] = {1, 2, 3, 4};

fl oat *x, cov[16], rbcov[16];
x = insls_f_data_sets(3, 0);

i nsl s_f_pool ed_covari ances(nobs, nvar, X, n_groups,
| MSLS_RETURN USER, cov,
I MSLS X INDICES, igrp, ind, ifrq, iw, 0);

insls f wite_matrix("Pooled Covariance with No Qutliers", nvar, nvar,
cov,
| MBLS_COL_NUMBER ZERO,
| MBLS_ROW NUMBER ZERO,
| MSBLS_PRI NT_UPPER, 0);

i nsl s_f _robust_covari ances(nobs, nvar, X, n_groups,
| MSLS _RETURN USER, rbcov,
| MSLS_PERCENTAGE, percent age,
I MSLS X INDICES, igrp, ind, ifrq, iw, 0);

insls f wite_matrix("Robust Covariance with No Qutliers", nvar, nvar,
rbcov,
| MBLS_COL_NUMBER ZERO,
| MSLS_ROW NUMBER ZERO,
| MSBLS_PRI NT_UPPER, 0);

/* Add Qutliers */
x[ 1] = 100. 0;
x[19] = 100. 0;
x[497] = -100. 0;
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i nsl s_f_pool ed_covari ances(nobs, nvar, x, n_groups,
| MSLS_RETURN USER, cov,
I MSLS X INDICES, igrp, ind, ifrq, iw, 0);

insls f wite _matrix("Pooled Covariance with Qutliers", nvar, nvar
cov,
| MBLS_COL_NUMBER ZERO,
| MSLS_ROW NUMBER ZERO,
| MSBLS_PRI NT_UPPER, 0);

i msl s_f _robust_covariances(nobs, nvar, x, n_groups,
| MSLS _RETURN USER, rbcov,
| MSLS_PERCENTAGE, percentage
IMSLS X INDICES, igrp, ind, ifrq, iw, 0);

insls f wite _matrix("Robust Covariance with Qutliers", nvar, nvar
rbcov,
| MBLS_COL_NUMBER ZERO,
| MSLS_ROW NUMBER _ZERO,
| MSBLS_PRI NT_UPPER, 0);

free(x);
}
Output

Pool ed Covariance with No Qutliers
0 1 2 3
0 0. 2650 0. 0927 0. 1675 0. 0384
1 0.1154 0. 0552 0. 0327
2 0. 1852 0. 0427
3 0. 0419

Robust Covariance with No Qutliers
0 1 2 3
0 0. 2474 0.0872 0. 1535 0. 0360
1 0. 1073 0. 0538 0. 0322
2 0.1705 0. 0412
3 0. 0401

Pool ed Covariance with Qutliers
0 1 2 3
0 60. 43 0. 30 0.13 -1.56
1 70.53 0.17 -0.17
2 0.19 0.07
3 66. 38

Robust Covariance with Qutliers
0 1 2 3
0 0. 2555 0. 0876 0. 1553 0. 0359
1 0.1127 0. 0545 0. 0322
2 0.1723 0. 0412
3 0. 0424
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Warning Errors
| MSBLS_NO CONVERGE_MAX_| TER

Fatal Errors
| MSLS_BAD_GROUP_2

Failure to converge within “maxit”
= # iterations for at least one of the
“nroot” = # roots.

The group number for observation
# is equal to #. It must be greater
than or equal to one and less than
or or equal to #, the number of
groups.
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Chapter 4: Analysis of Variance

Routines

Analyze a one-way classification model................... anova_oneway 216
Analyze a balanced factorial design

with fixed effects........cccceee anova_factorial 225
Perform Student-Newman-Keuls

multiple comparisons test.........ccceeeeeveeeieeeennn. multiple_comparisons 234
nested random mModel ...........cccvvveviiiimiiniiiiiiii, anova_nested 237
balanced fixed, random, or mixed model .............. anova_balanced 245

Usage Notes

The functions described in this chapter are for commonly-used experimental
designs. Typically, responses are stored in the input vector y in a pattern that
takes advantage of the balanced design structure. Consequently, the full set of
model subscriptsis not needed to identify each response. The functions assume
the usual pattern, which requires that the last model subscript change most
rapidly, followed by the model subscript next in line, and so forth, with the first
subscript changing at the slowest rate. This patternisreferred to as
lexicographical ordering.

Functioni nsl s_f _anova_oneway alows missing responses if confidence
interval information is not requested. NaN (Not a Number) is the missing value
code used by these functions. Use functioni msl s_f _machi ne (or function

i msl s_d_machi ne with the double-precision function

i msl s_d_anova_oneway) to retrieve NaN. Any element of y that is missing
must besettoi msl s_f _machi ne(6) ori msl s_d_machi ne(6) (for double
precision). Seei nsl s_f _machi ne in Chapter 14 for a description. Other
functions described in this chapter do not allow missing responses because the
functions generally deal with balanced designs.

Asadiagnostic tool for determination of the validity of amodel, functionsin this

chapter typically perform atest for lack of fit whenn (n > 1) responses are

available in each cell of the experimental design. Functionsin Chapter 2,
“Regression,’are used for analysis of generalizations of the models treated in this
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chapter. In particular, Chapter 2 aso provides functions for the general linear
model.

anova_oneway

Analyzes a one-way classification model.

Synopsis
#include <i nsl's. h>
float i msl s_f _anova_oneway (int n_groups, int n[], float y[], ..., 0)

The type double function isi nsl s_d_anova_oneway

Required Arguments

int n_groups (Input)
Number of groups.

int n[] (Input)
Array of lengthn_gr oups containing the number of responses for each
group.

float y[] (Input)
Array of lengthn [0] + n [1] + ... + n [n_gr oup — 1] containing the
responses for each group.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <insls. h>

float i msl s_f _anova_oneway (int n_groups, int n[], float y[],
| MSLS ANOVA TABLE, float **anova_t abl e,
| MSLS ANOVA TABLE USER, float anova_table[],
| MSLS GROUP_MEANS, float **neans,
| MSLS GROUP_MEANS USER, float neans[],
| MBLS_GROUP_STD DEVS, float **std_devs,
| MSLS_GROUP_STD DEVS_USER, float std_devs[],
| MSLS _GROUP_COUNTS, int **count s,
| MSLS GROUP_COUNTS USER, int counts[],
| MSLS_ CONFI DENCE, float confi dence,
| MSLS TUKEY, float **ci _diff_neans, or
| MSLS DUNN_SI DAK, float **ci _diff_means, or
| MSLS BONFERRONI, float **ci _diff_means, or
| MSLS SCHEFFE, float **ci _diff_means, or
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| MSLS ONE_AT A TIME, float **ci _diff_neans,

| MSLS TUKEY_USER, float ci _diff_means[], or

| MSLS DUNN S| DAK_USER, float ci _diff_neans[], or
| MSLS BONFERRONI _USER, float ci _diff_neans[], or
| MSLS SCHEFFE_USER, float ci _diff_means[], or

| MSLS ONE_AT_A TI ME_USER, float ci _diff_means[],
0)

Optional Arguments

| MSBLS _ANOVA TABLE, float **anova_t abl e (Output)
Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are as

follows:

Element | Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 €rror mean square
8 overal F-statistic
9 p-value
10 R (in percent)
1 adjusted R (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

| MSLS_ANOVA TABLE_USER, float anova_tabl e[] (Output)
Storage for array anova_t abl e is provided by the user. See
| MBLS_ANOVA TABLE.

| MBLS_GROUP_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length n_gr oups
containing the group means.

Chapter 4: Analysis of Variance anova_oneway * 217



| MBLS_GROUP_MEANS USER, float means[] (Output)
Storage for array means is provided by the user. See
| MBLS_GROUP_MEANS.

| MBLS_GROUP_STD DEVS, float **st d_devs (Output)
Address of a pointer to an internally allocated array of length n_gr oups
containing the group standard deviations.

| MSLS_GROUP_STD DEVS_USER, float st d_devs[] (Output)
Storage for array st d_devs is provided by the user. See
| MBLS_STD DEVS.

| MBLS_GROUP_COUNTS, int **counts (Output)
Address of a pointer to an internally allocated array of length n_gr oups
containing the number of nonmissing observations for the groups.

| MBLS_GROUP_COUNTS_USER, int counts[] (Output)
Storage for array count s is provided by the user. See | MSLS_COUNTS.

| MSLS_CONFI DENCE, float confidence (Input)
Confidence level for the simultaneous interval estimation.
If | MBLS_TUKEY is specified, conf i dence must bein the range
[90.0, 99.0). Otherwise, confidenceisin the range [0.0, 100.0).
Default: confi dence =95.0

| MBLS_TUKEY, float **ci _di ff_neans (Output), or

| MBLS_DUNN_SI DAK, float **ci _di ff_means (Output), or

| MBLS_BONFERRONI , float **ci _di ff_neans (Output), or

| MBLS_SCHEFFE, float **ci _di ff_nmeans (Output), or

| MBLS_ONE_AT_A TI ME, float **ci _diff_neans (Output)
Functioni nsl s_f _anova_oneway computes the confidence intervals
on al pairwise differences of means using any one of six methods:
Tukey, Tukey-Kramer, Dunn-Sidak, Bonferroni, Scheffé, or Fisher's
LSD (One-at-a-Time). If MSLS_TUKEY is specified, the Tukey
confidence intervals are calculated if the group sizes are equal,
otherwise, the Tukey-Kramer confidence intervals are calculated.

On returngci _di ff _neans contains the address of a pointer to a
(ngr otszs ) x5

internally allocated array containing the statistics relating to the
difference of means.

Column | Description
0 group number for thieth mean
1 group number for thgth mean
2 difference of means-th mean)- (j-th mean)
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Column | Description

3 lower confidence limit for the difference

4 upper confidence limit for the difference

I MSBLS TUKEY_USER, float ci _diff_means[] (Output), or

I MSLS DUNN_SI DAK_USER, float ci _di ff_means[] (Output), or

I MSBLS BONFERRONI _USER, float ci _diff_means[] (Output), or

I MBLS SCHEFFE USER, float ci _diff_neans[] (Output), or

I MSBLS ONE_AT_A TI ME_USER, float ci _diff_means[] (Output)
Storage for array ci _di ff _means is provided by the user.

Description

Functioni nsl s_f _anova_oneway performsan analysis of variance of
responses from a oneway classification design. The model is

yU:u1+£lI i:1,2,...,k;j:1,2,...,ni

where the observed value y;; constitutes the j-th response in the i-th group, ;
denotes the population mean for the i-th group, and the g;; arguments are errors
that areidentically and independently distributed normal with mean 0 and
variance o°. Function i ns| s_f __anova_oneway requiresthey;; observed
responses as input into a single vector y with responses in each group occupying
contiguous locations. The analysis of variance table is computed along with the
group sample means and standard deviations. A discussion of formulas and
interpretations for the one-way analysis of variance problem appears in most
elementary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 10).

Functioni nsl s_f _anova_oneway computes simultaneous confidence intervals
onall

k(k-1)
2

kM=

pairwise comparisons of k means y 1, ..., Y in the one-way analysis of variance
model. Any of several methods can be chosen. A good review of these methodsis
given by Stoline (1981). The methods are also discussed in many elementary
statistics texts, e.g., Kirk (1982, pp. 114-127).

Let s° be the estimated variance of asi ngle observation. Let v be the degrees of
freedom associated with s°. Let

confi dence
a=1l-——

1000
The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence
intervals for all pairwise differences of means; — 1 in balanced (n, =, = ...
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= n; = n) one-way designs. The method is exact and uses the Studentized range
distribution. The formula for the difference ; — 1; is given by

yi - yj * ql—o(;k,v\/g
n

where g _,x, isthe (1 — a) 100 percentage point of the Studentized range
distribution with parametersk and v.

Tukey-Kramer method: The Tukey-Kramer method is an approximate
extension of the Tukey method for the unbalanced case. (The method simplifies
to the Tukey method for the balanced case.) The method aways produces
confidence intervals narrower than the Dunn-Sidak and Bonferroni methods.
Hayter (1984) proved that the method is conservative, i.e., the method guarantees
a confidence coverage of at least-(d&) 100. Hayter’s proof gave further support
to earlier recommendations for its use (Stoline 1981). (Methods that are currently
better are restricted to special cases and only offer improvement in severely
unbalanced cases; see, for example, Spurrier and Isham 1985.) The formula for
the differencey, — 1, is given by the following:

Yi—yi£q $ .8

1-o;v,k [—+—
2n; 2n,

Dunn-Sidak method: The Dunn-Sidak method is a conservative method. The
method gives wider intervals than the Tukey-Kramer method. (Forvage

smalla andk, the difference is only slight.) The method is slightly better than the
Bonferroni method and is based on an improved Bonferroni (multiplicative)
inequality (Miller 1980, pp. 101, 25255). The method uses thdistribution

(see function nsl s_f _t_inverse_cdf, Chapter 11)The formula for the
differencey; — 1, is given by

wheret,.,, is the 100 percentage point of thedistribution withv degrees of
freedom.

Bonferroni method: The Bonferroni method is a conservative method based on
the Bonferroni (additive) inequality (Miller, p. 8). The method uses the
distribution. The formula for the differenge— ; is given by the following:
_a g8
2kE’ n; nj
Scheffé method:The Scheffé method is an overly conservative method for
simultaneous confidence intervals on pairwise difference of means. The method is

applicable for simultaneous confidence intervals on all contrasts, i.e., all linear
combinations
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where the following is true:

This method can be recommended here only if alarge number of confidence intervals
on contrasts in addition to the pairwise differences of means are to be constructed.
The method uses the F distribution (see functioni nsl s_f _F_i nver se_cdf,
Chapter 11). The formulafor the difference y; - ; is given by

SZ

o s

i -yt |k _1)Fl—u;k—l,v(n_i "'n_j
where Fy_,. 41, iSthe (1 — a) 100 percentage point of the F distribution with
k — 1 and v degrees of freedom.

One-at-a-Timet method (Fisher's LSD): The One-at-a-Timet method is

appropriate for constructing a single confidence interval. The confidence

percentage input is appropriate for one interval at atime. The method has been

used widely in conjunction with the overall test of the null hypothesis

M =W, = ... = Y, by the use of the F statistic. Fisher's LSD (least significant
difference) test is a two-stage test that proceeds to make pairwise comparisons of
means only if the overdl test is significant. Milliken and Johnson (1984, p. 31)
recommend LSD comparisons after a signifi¢gaohly if the number of

comparisons is small and the comparisons were planned prior to the analysis. If
many unplanned comparisons are made, they recommend Scheffé’s method. If the
F test is insignificant, a few planned comparisons for differences in means can
still be performed by using either Tukey, Tukey-Kramer, Dunn-Sidak,or

Bonferroni methods. Because tReest is insignificant, Scheffé’s method does

not yield any significant differences. The formula for the differgneey; is

given by the following:

Yi 7Y £t a [2 &2
I-—v |[—+—
27\nm n

Examples

Example 1

This example computes a one-way analysis of variance for data discussed by
Searle (1971, Table 5.1, pp. 166/9). The responses are plant weights for six
plants of three different types—three normal, two off-types, and one aberrant.
The responses are given by type of plant in the following table:
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Normal Off-Type Aberrant

101 84 32
105 88
94

#i ncl ude <insls. h>

mai n()
.
I nt
i nt
fl oat
fl oat
p_val ue

n_groups=3;

n[] ={3, 2, 1};

y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
p_val ue;

= inmsl s_f_anova_oneway (n_groups, n, y, 0);

printf ("p-value = %. 4f", p_value);

p-val ue = 0.

Output
002

Example 2

The data used in this example is the same as that used in the initial example.

Here, the anova_t abl e isprinted.

#i ncl ude <insls. h>

mai n()
.
I nt
i nt
fl oat
fl oat
fl oat
char

p_val ue

n_groups=3;

n[] ={3, 2, 1};

y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};

p_val ue;

*anova_t abl e;

*| abel s[] = {
"degrees of freedom for anong groups",
"degrees of freedomfor w thin groups”,
"total (corrected) degrees of freedont,
"sum of squares for anobng groups",
"sum of squares for within groups"”,
"total (corrected) sum of squares"”,
"anong nmean square",
"wi thin nean square", "F-statistic",
"p-value", "R-squared (in percent)",
"adj usted R-squared (in percent)",
"est. standard deviation of within error",
"overall nean of y",
"coefficient of variation (in percent)"};

/* Performanalysis */
= insl s_f_anova_oneway (n_groups, n, v,

| MSLS _ANOVA TABLE, &anova_t abl e,

0);

imsls f wite matrix("* * * Analysis of Variance * * *\n",

/* Print results */

15, 1,
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anova_t abl e,

| MBLS_ROW LABELS, | abel s,

| MBLS_WRI TE_FORVAT, "%
0);

Output

L2,

* * * Analysis of Variance * * *
degrees of freedom for anmpbng groups
degrees of freedomfor within groups
total (corrected) degrees of freedom

sum of squares for anobng groups

sum of squares for within groups
total (corrected) sum of squares

anpbng nean square
wi t hi n nean square

F-statistic

p- val ue

R-squared (in percent)

adj usted R-squared (in percent)

est. standard deviation of within error

overall nean of y

coefficient of variation (in percent)

Example 3

Simultaneous confidence intervals are generated for the following measurements
of cold-cranking power for five models of automobile batteries. Nelson (1989,

pp. 232-241) provided the data and approach.

Model 1 Model 2 Model 3 Model 4 Model 5
41 42 27 48 28
43 43 26 45 32
42 46 28 51 37
46 38 27 46 25

The Tukey method is chosen for the analysis of pairwise comparisons, with a
confidence level of 99 percent. The means and their confidence limits are output.

#i ncl ude <insls. h>

voi d main()

i nt n_groups = 5;

int nf] = {4, 4, 4, 4, 4};

int pernmute[] = {2, 3, 4, 0, 1};

float y[] = {41.0, 43.0, 42.0, 46.0, 42.0,
43.0, 46.0, 38.0, 27.0, 26.0,
28.0, 27.0, 48.0, 45.0, 51.0,
46.0, 28.0, 32.0, 37.0, 25.0};

float *anova_table, *ci_diff_neans,

tnp_di ff _neans[50] ;
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float confidence = 99.0;
char *| abel s[] = {
"degrees of freedom for anong groups",
"degrees of freedom for within groups”,
"total (corrected) degrees of freedont,
"sum of squares for anobng groups",
"sum of squares for wi thin groups",
"total (corrected) sum of squares",
“anmpbng nmean square",
"within nmean square", "F-statistic",
"p-value", "R-squared (in percent)",
"adj usted R-squared (in percent)",
"est. standard deviation of within error"”,
"overall nean of y",
"coefficient of variation (in percent)"};
char *nmean_row | abel s[] = {
"first and second",
"first and third",
"first and fourth",
"first and fifth",
"second and third",
"second and fourth",
"second and fifth",
"third and fourth",
“third and fifth",
"fourth and fifth"};
char *nmean_col _| abel s[] = {
“Means",
"Di fference of neans",
"Lower limt",
"Upper limt"};
/* Performanalysis */

i msl s_f_anova_oneway(n_groups, n, v,

| MSLS_ANOVA TABLE, &anova_t abl e,

| MSLS_CONFI DENCE, confi dence,

| MSLS TUKEY, &ci _diff_neans,

0);

/* Print anova_table */

imsls f wite_matrix("* * * Analysis of Variance * * *\n", 15,

1, anova_tabl e,

| MSBLS_ROW LABELS, | abel s,

| M5SLS VWRI TE_FORMAT, "9@. 2f ",

0);

/* Permute ci_diff_nmeans for printing */

inmsls_f_pernmute_matrix(10, 5, ci_diff_neans, pernute,

| MBLS_PERMUTE_COLUMNS,

| MSLS_RETURN USER, tnp_diff_neans,

0);

/* Print ci_diff_neans */

imsls_f_wite_matrix("* * * Differences in Means * * *\n", 10,

3, tnp_diff_neans,

IMSLS A COL_DIM 5,

| MSLS ROW LABELS, nean_row | abel s,

| MSLS COL_LABELS, nean_col _| abels,

| M5SLS VWRI TE_FORMAT, "9%@. 2f ",
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0);

}
Output
* * * Analysis of Variance * * *

degrees of freedom for anmpbng groups 4.00
degrees of freedomfor within groups 15. 00
total (corrected) degrees of freedom 19. 00

sum of squares for anobng groups 1242. 20

sum of squares for within groups 150. 75
total (corrected) sum of squares 1392. 95
anobng nean square 310. 55

wi t hi n nean square 10. 05
F-statistic 30. 90

p- val ue 0. 00
R-squared (in percent) 89. 18

adj usted R-squared (in percent) 86. 29

est. standard deviation of within error 3.17
overall nmean of y 38. 05
coefficient of variation (in percent) 8.33

* * * Differences in Means * * *
Means Difference Lower limt Upper linmt
of neans

first and second 0.75 -8.05 9.55
first and third 16. 00 7.20 24. 80
first and fourth -4.50 -13.30 4.30
first and fifth 12. 50 3.70 21.30
second and third 15. 25 6. 45 24.05
second and fourth -5.25 -14.05 3.55
second and fifth 11.75 2.95 20.55
third and fourth -20.50 -29.30 -11.70
third and fifth -3.50 -12.30 5. 30
fourth and fifth 17. 00 8. 20 25. 80

anova_factorial

Analyzes a balanced factorial design with fixed effects.

Synopsis
#include <i nsl's. h>

float i sl s_f _anova factorial (int n_subscripts, int n_| evel s,
float y[], ...,0)

The type double function isi nsl s_d_anova_f actori a
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Required Arguments

int n_subscripts (Input)
Number of subscripts. Number of factorsin the model + 1 (for the error
term).

int n_l evel s (Input)
Array of lengthn_subscri pt s containing the number of levels for each
of the factorsfor thefirst n_subscri pts —1elements.n_| evel s
[n_subscri pts — 1] isthe number of observations per cell.

float y[] (Input)
Array of lengthn_| evel s [0]*n_l evel s [1]* ... *n_l evel s
[n_subscri pt s — 1] containing the responses. Argument y must not
contain NaN for any of its elements, i.e., missing values are not allowed.

Return Value
The p-value for the overall F test.

Synopsis with Optional Arguments
#include <i nsl s. h>

float i nsl s_f _anova_factorial (int n_subscripts, int n_| evel s,
float y[1],
| MSLS_MODEL_ORDER, int nodel _or der,
| MBLS_PURE_ERROR, Of
| MSLS_POCL_| NTERACTI ONS,
| MBLS_ANOVA TABLE, float **anova_t abl e,
| MSLS_ANOVA TABLE USER, float anova_t abl e[],
| MSLS_TEST_EFFECTS, float **test effects,
| MBLS_TEST_EFFECTS_USER, float test _effects[],
| MSLS_MEANS, float **neans,
| MSLS_MEANS USER, float means|[],
0)

Optional Arguments

| MSLS_MODEL_ORDER, int nodel _order (Input)
Number of factors to be included in the highest-way interaction in the
model. Argument nodel _or der must bein the interval
[1, n_subscri pt s — 1]. For example, anodel _or der of 1indicates
that a main effect model will be analyzed, and anodel _or der of 2
indicates that two-way interactions will be included in the model.
Default: nodel _order =n_subscripts -1

| MBLS_PURE_ERROR, Of
| MBLS_POOL_I NTERACTI ONS
I MSLS_PURE_ERROR, the default option, indicates factor
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n_subscri pt s iserror. Its main effect and all its interaction effects are
pooled into the error with the other (model _or der + 1)-way and higher-
way interactions. | MSLS_POOL_| NTERACTI ONS indicates factor
n_subscri pt s isnot error. Only (model _or der + 1)-way and higher-
way interactions are included in the error.

| MBLS_ANOVA_TABLE, float **anova_tabl e (Output)
Address of a pointer to an internally alocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are
given asfollows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of sgquares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 €rror mean sguare
8 overall F-statistic
9 p-value
10 R’ (in percent)
11 adjusted R (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

I MSLS ANOVA TABLE USER, float anova_tabl e[] (Output)
Storage for array anova_t abl e is provided by the user. See
| MSLS_ANOVA TABLE.

| MSBLS TEST _EFFECTS, float **test _effects (Output)
Address of a pointer to an NEF x 4 internally allocated array containing a
matrix containing statistics relating to the sums of sgquares for the effects
in the model. Here,

NEF= (2)+(2)+ +(min(n,|rmde| iorder|))

wherenisgiven by n_subscri pts if | MSLS_POOL_I NTERACTI ONS is
specified; otherwise, n_subscri pts — 1.
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Suppose the factorsare A, B, C, and error. With nodel _or der =3,
rows O through NEF — 1 would correspond to A, B, C, AB, AC, BC, and
ABC, respectively. The columnsof t est _ef f ect s are asfollows:

Column | Description

0 degrees of freedom

1 sum of squares
2 F-statistic
3 p-value

| MSBLS TEST_EFFECTS USER, float test_effects[] (Output)
Storage for array t est _ef f ect s is provided by the user. See
| MBLS_TEST_EFFECTS.

I MSBLS_MEANS, float **nmeans (Output)
Address of a pointer to an internally allocated array of length
(n_levels[0] +1) x(n_l evel s[1] +1) x ... X
(n_I evel s[n—1] + 1) containing the subgroup means.

See argument | MSLS_TEST_EFFECTS for adefinition of n. If the factors
are A, B, C, and error, the ordering of the meansis grand mean, A
means, B means, C means, AB means, AC means, BC means, and ABC
means.

| MBLS MEANS USER, float neans[] (Output)
Storage for array means is provided by the user. See | MSLS_MEANS.

Description

Functioni nsl s_f _anova_f act ori al performsan analysisfor an n-way
classification design with balanced data. For balanced data, there must be an
equal number of responses in each cell of the n-way layout. The effects are
assumed to be fixed effects. The model is an extension of the two-way model to
include n factors. The interactions (two-way, three-way, up to n-way) can be
included in the model, or some of the higher-way interactions can be pooled into
error. The argument nodel _or der specifies the number of factors to be included
in the highest-way interaction. For example, if three-way and higher-way
interactions are to be pooled into error, set nodel _or der = 2. (By default,

nmodel _order =n_subscri pts — 1 with the last subscript being the error
subscript.) Argument | MSLS_PURE_ERRCR indicates there are repeated responses
within then-way cell; | MSLS_POOL_| NTERACTI ONS_| NTO_ERROCR indicates
otherwise.

Functioni nmsl s_f _anova_f actori al requiresthe responses asinput into a
single vector y in lexicographical order, so that the response subscript associated
with the first factor varies least rapidly, followed by the subscript associated with
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the second factor, and so forth. Hemmerle (1967, Chapter 5) discusses the
computational method.

Examples

Example 1

A two-way analysis of variance is performed with balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight
gains (in grams) of rats that were fed diets varying in the source (A) and level (B)

of protein. The model is
Yijk =H 0 +B; +yj e i=1,2)=1,2,3k=12,...,10

where

3
for j =1,2, 3 and Zyij =0
]:

2 3 2
;ai :O;IZBJ- :O;Zyij =0

fori =1, 2. Thefirst responsesin each cell in the two-way layout are given in the
following table:

Protein Source (A)

Protein Level (B)

Beef

Cereal

Pork

High

73, 102, 118, 104,
81, 107, 100, 87,

98, 74, 56, 111,
95, 88, 82, 77, 86,

94, 79, 96, 98,
102, 102, 108, 91,

117,111 92 120, 105
Low 90, 76, 90, 64, 86, | 107, 95, 97, 80, 49, 82, 73, 86, 81,
51,72,90, 95, 78 |98, 74,74, 67, 89, | 97, 106, 70, 61,
58 82

#i ncl ude <insls. h>

void main ()

i nt

i nt

fl oat

fl oat
73.0,
107.0,
90. 0,
51.0,
98. 0,
88. 0,
107. 0,
74.0,
94. 0,
102. 0,

49.0, 82.0, 73.0, 86.0,

102. 0,

76.0, 90.0,
72.0, 90.0,
74.0, 56.0,
82.0, 77.0,

74.0, 67.0, 89.0,
79.0, 96.0, 98.0,

n_subscripts= 3;
n_levels[3] = {3,2,10};
p_val ue;

y[60] = {

118.0, 104.0, 81.0,
100.0, 87.0, 117.0, 111.0,
64.0, 86.0,
95.0, 78.0,
111.0, 95.0,
86.0, 92.0,
95.0, 97.0, 80.0, 98.0,
58. 0,
102. 0,
120.0, 105.0,
81.0,

108.0, 91.0,
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97.0, 106.0, 70.0, 61.0, 82.0};
p_value = insls_f_anova factorial (n_subscripts, n_levels, y, 0);

printf("P-value = 9%0.6f", p_val ue);

Output
P-val ue = 0. 00229

Example 2

In this example, the same model and dataisfit asin theinitial example, but
optional arguments are used for a more complete analysis.

#i ncl ude <insls. h>

void main ()

i nt n_subscripts= 3;

i nt n_levels[3] = {3,2,10};

fl oat p_val ue;

fl oat *test _effects, *neans, *anova_t abl e;
fl oat y[60] = {

73.0, 102.0, 118.0, 104.0, 81.0,
107.0, 100.0, 87.0, 117.0, 111.0,
90.0, 76.0, 90.0, 64.0, 86.0,
51.0, 72.0, 90.0, 95.0, 78.0,
98.0, 74.0, 56.0, 111.0, 95.0,
88.0, 82.0, 77.0, 86.0, 92.0,
107.0, 95.0, 97.0, 80.0, 98.0,
74.0, 74.0, 67.0, 89.0, 58.0,
94.0, 79.0, 96.0, 98.0, 102.0,
102.0, 108.0, 91.0, 120.0, 105.0,
49.0, 82.0, 73.0, 86.0, 81.0,
97.0, 106.0, 70.0, 61.0, 82.0};
char *| abel s[] = {
"degrees of freedom for the nodel",
"degrees of freedomfor error",
"total (corrected) degrees of freedont,
"sum of squares for the nodel",
"sum of squares for error",
"total (corrected) sum of squares",
"nmodel mean square", "error mean square”,
"F-statistic", "p-value",
"R-squared (in percent)","Adjusted R-squared (in percent)",
"est. standard deviation of the nodel error",
"overall nean of y",
"coefficient of variation (in percent)"};

char *test_row | abels[] = {"A", "B", "A*B"};
char *test_col _labels[] ={
"Source", "DF", "Sum of\nSquares",

"Mean\ nSquare", "Prob. of\nLarger F"};

char *mean_row_| abel s[] = {
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"grand nean",

ALY, “A2", "A3",

"B1", "B2",

"Al*B1", "Al*B2", "A2*Bl", "A2*B2",

"A3*Bl1",

/* Performanal ysis */

p_value = insls_f_anova factorial (n_subscripts,

| MSLS_ANOVA TABLE, &anova_t abl e,
| MSLS TEST_EFFECTS, &test_effects,
| M5SLS_MEANS, &neans,

0);

printf("P-value = 9%0.6f", p_val ue);

/* Print results */

inmsls f wite matrix("* * * Analysis of Variance * * *\n",

anova_t abl e,

| MBLS_ROW LABELS, | abel s,
| MBLS_WRI TE_FORVAT, "9%d1.4f",
0);

inmsls f wite matrix("* * * Variation Due to the Mdel

test _effects,

| MSLS_ROW LABELS, test _row | abel s,
| MSLS COL_LABELS, test _col _| abel s,

| MBLS_WRI TE_FORVAT, "9%d1.4f"]
0);

n_| evel s,

imsls f wite matrix("* * * Subgroup Means * * *",

nmeans,

| MSLS ROW LABELS, mean_r ow_| abel s,

| MBLS_VRI TE_FORVAT, "9d1.4f")
0);

Output
P-val ue = 0. 002299

* * * Anal ysis of Variance * * *

degrees of freedom for the nodel
degrees of freedomfor error

total (corrected) degrees of freedom
sum of squares for the nodel

sum of squares for error

total (corrected) sum of squares
nmodel nean square

error mean square

F-statistic

p- val ue

R-squared (in percent)

Adj usted R-squared (in percent)

est. standard deviation of the nodel error
overall mean of y

coefficient of variation (in percent)

"A3*B2"};

Y,

15, 1,

* * *", 3‘ 4’
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* * * Variation Due to the Mdel * * *

Sour ce DF Sum of Mean Prob. of

Squar es Squar e Larger F
A 2.0000 266. 5330 0. 6211 0.5411
B 1. 0000 3168. 2678 14. 7667 0. 0003
A*B 2.0000 1178. 1337 2. 7455 0. 0732

* * * Subgroup Means * * *

grand nean 87. 8667
Al 89. 6000
A2 84.9000
A3 89. 1000
Bl 95. 1333
B2 80. 6000
Al*B1 100. 0000
Al* B2 79. 2000
A2*B1 85. 9000
A2* B2 83. 9000
A3*B1 99. 5000
A3* B2 78.7000

Example 3

This example performs athree-way analysis of variance using data discussed by
John (1971, pp. 91-92). The responses are weights (in grams) of roots of carrots
grown with varying amounts of applied nitrogen (A), potassium (B), and
phosphorus (C). Each cell of the three-way layout has one response. Note that the
ABC interactions sum of squares, which is 186, is given incorrectly by John
(1971, Table 5.2.) The three-way layout is given in the following table:

Ao A A

By B B, By B B By B B

C, |8876 9141 |97.85 |94.83 |100.49 | 99.75 |99.90 |100.23 | 104.51

C, |8745 |9827 |9585 |8457 |9720 |11230 |[9298 |107.77 | 110.94

C, |86.01 |104.20 |90.09 |81.06 |120.80 | 108.77 |94.72 | 118.39 | 102.87

#i ncl ude <insls. h>

void main ()

i nt n_subscripts= 3;

i nt n_levels[3] = {3,3, 3};

fl oat p_val ue;

fl oat *test _effects, *anova_tabl e;
fl oat y[27] = {

88. 76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95. 85,
90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75,
112. 3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118. 39,
104. 51, 110.94, 102.87};

char *label s[] = {
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"degrees of freedom for the nodel",

"degrees of freedomfor error",

"total (corrected) degrees of freedont,

"sum of squares for the nodel",

"sum of squares for error",

"total (corrected) sum of squares",

"model nean square", "error nean square",
"F-statistic", "p-value",

"R-squared (in percent)","Adjusted R-squared (in percent)",
"est. standard deviation of the nodel error",
"overall nean of y",

"coefficient of variation (in percent)"};

char *test_row | abels[] = {"A", "B", "C', "A*B", "A*C', "B*C'};
char *test _col labels[] ={
"Source", "DF", "Sum of\nSquares",

"Mean\ nSquare", "Prob. of\nLarger F"};
/* Performanalysis */
p_value = insls_f_anova factorial (n_subscripts, n_levels, vy,
| MSLS_ANOVA TABLE, &anova_t abl e,
| MSLS TEST_EFFECTS, &test_effects,
| MSLS_POOL_| NTERACTI ONS,
0);
/* Print results */
printf("P-value = 9%0.6f", p_val ue);

inmsls f wite matrix("* * * Analysis of Variance * * *\n", 15, 1,
anova_t abl e,

| MSLS_ROW LABELS, | abel s,
| MBLS_WRI TE_FORVAT, "9%d1.4f",
0);

insls f wite matrix("* * * Variation Due to the Mdel * * *" 6, 4,
test _effects,
| MSLS _ROW LABELS, test _row | abel s,
| MSLS COL_LABELS, test _col _| abels,
| MSLS WRI TE_FORMAT, "9%d1.4f",

0);
}
Output
P-value = 0.008299
* * * Analysis of Variance * * *

degrees of freedom for the nodel 18. 0000
degrees of freedomfor error 8. 0000
total (corrected) degrees of freedom 26. 0000
sum of squares for the nodel 2395. 7290
sum of squares for error 185. 7763
total (corrected) sum of squares 2581. 5054
nodel nean square 133. 0961
error nean square 23. 2220
F-statistic 5.7315
p- val ue 0. 0083
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R-squared (in percent) 92. 8036

Adj usted R-squared (in percent) 76.6116
est. standard deviation of the nodel error 4.8189
overall nmean of y 98. 9619
coefficient of variation (in percent) 4. 8695
* * * Variation Due to the Mdel * * *
Sour ce DF Sum of Mean Prob. of
Squar es Squar e Larger F
A 2.0000 488. 3678 10. 5152 0. 0058
B 2.0000 1090. 6559 23. 4832 0. 0004
C 2.0000 49. 1484 1.0582 0. 3911
A*B 4. 0000 142. 5856 1. 5350 0. 2804
A*C 4. 0000 32.3474 0. 3482 0. 8383
B*C 4. 0000 592. 6240 6. 3800 0. 0131

multiple_comparisons

Performs Student-Newman-Keuls multiple comparisonstest.

Synopsis
#include <i nsl's. h>

int *i msls_f_multiple_conparisons (int n_groups, float neans[],
int df, float std_error, ..., 0)

The type double functionisi msl s_d_mul ti pl e_conpari sons.

Required Arguments

int n_groups (Input)
Number of groups under consideration.

float means[] (Input)
Array of lengthn_gr oups containing the means.

int df (Input)
Degrees of freedom associated withst d_error.

float std_error (Input)
Effective estimated standard error of amean. In fixed effects models,
std_error equalsthe estimated standard error of amean. For example,

in aone-way model
[2
S
std_error =,[—
n

where §” isthe estimate of o> and n is the number of responsesin a
sample mean. In models with random components, use
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sedif
std_error =——

72

where sedif is the estimated standard error of the difference of two
means.

Return Value

Pointer to the array of length n_gr oups — 1 indicating the size of the groups of
means declared to be equal. Value equal _neans [I ] = J indicatesthe | -th
smallest mean and the next J — 1 larger means are declared equal. Value

equal _means [I ] = 0 indicates no group of means starts with the | -th smallest
mean.

Synopsis with Optional Arguments
#include <insls. h>

int *i nmsls_f_multiple_conparisons (int n_groups, float neans[],
int df, float std_error,
| MSLS _ALPHA, float al pha,
| MSLS RETURN_USER, int *equal _neans,
0)

Optional Arguments

I MSLS _ALPHA, float al pha (Input)
Significance level of test. Argument alpha must bein the interval
[0.01, 0.10].
Default: al pha = 0.01

I MBLS RETURN USER, int *equal _means (Output)
If specified, equal _means isan array of lengthn_gr oups — 1 specified
by the user. On return, equal _neans contains the size of the groups of
means declared to be equal. Value equal _means [I ] = J indicates the
I -th smallest mean and the next J — 1 larger means are declared equal.
Valueequal _means [I ] = 0indicates no group of means starts with the
I -th smallest mean.

Description

Functioni msl s_f _mul ti pl e_conpari sons performsamultiple comparison
analysis of means using the Student-Newman-K euls method. The null hypothesis
isequality of all possible ordered subsets of a set of means. This null hypothesis
istested using the Studentized range of each of the corresponding subsets of
sample means. The method is discussed in many elementary statistics texts, e.g.,
Kirk (1982, pp. 123-125).
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Examples

Example 1

A multiple-comparisons analysisis performed using data discussed by Kirk
(1982, pp. 123-125). The results show that there are three groups of means with
three separate sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4,
47.2,48.7).

#i ncl ude <insls. h>

void main ()

int n_groups = 5
int df = 45;
float std_error = 1.6970563;

fl oat means| 5]
i nt *equal _neans;

{36.7, 48.7, 43.4, 47.2, 40.3};

/* Performnultiple conparisons tests */
equal _nmeans = inmsls_f_multiple_conparisons(n_groups, neans, df,
std_error, 0);
/* Print results */
imsls_i_wite_matrix("Size of Goups of Means", 1, n_groups-1,
equal _neans, 0);

Output

Size of G oups of Means
1 2 3 4
3 3 3 o0

Example 2

This example uses the same data as the previous example but also uses the
optional arguments.
#i ncl ude <insls. h>

void main ()

int n_groups = 5
int df = 45;
float std_error = 1.6970563;

fl oat means| 5]
i nt equal _neans[4];

{36.7, 48.7, 43.4, 47.2, 40.3};

/* Performnultiple conparison tests */
inmsls_f_multiple_conparisons(n_groups, neans, df, std_error,
| MSLS_ALPHA, 0. 01,
| MSLS_RETURN_USER, equal _neans,
0);
/* Print results */
imsls_i_wite_matrix("Size of Goups of Means", 1, n_groups-1,
equal _neans, 0);
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Output

Size of Groups of Means
1 2 3 4
3 3 3 0

anova_nested

Analyzes a completely nested random model with possibly unequal humbersin
the subgroups.

Synopsis

#include <i nsl's. h>

float *i nsl s_f _anova_nested (int n_factors, intequal _option, int
n_level s[],float y[],..., 0)

The type double function isi nsl s_d_anova_nest ed.

Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

intequal _option (Input)
Equal numbers option.

equal _option Description
0 Unegual numbers in the subgroups
1 Equal numbersin the subgroups

int n_l evel s[] (Input)
Array with the number of levels.

If equal _option=1,n_Ilevelsisoflengthn_fact ors and contains
the number of levelsfor each of the factors. In this case, the following
additional variables are referred to in the description of anova_nest ed:

Variable Description
LNL n_levels[0] + n_levels[0] * n_levels[1l] +
+ n_levels[0] * n_levels[1] * ... *

n_| evel s[ n_factors — 2]

LNLNF n_levels[0] * n_levels[1] * ...*
n_levels[n_factors — 2]

NOB The number of observations. NOBS equalsn_levels[0] *
n_levels[1] * ... * n_levels[n_factors-1].
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If equal _option =0, n_lIevel s containsthe number of levels of each factor at
each level of the factor in which it is nested. In this case, the following additional
variables are referred to in the description of anova_nest ed:

Variable Description

LNL Length of n_I evel s.

LNLNF Length of the subvector of n_| evel s for the last factor.
NOBS Number of observations. NOBS equals the sum of the last

LNLNF elementsof n_| evel s.

For example, arandom one-way model with two groups, five responsesin the
first group and ten in the second group, would have LNL= 3, LNLNF= 2,
NOBS=15,n_l evel s[0] =2, n_levels[1] =5, and

n_l evel s[2] =10.

floaty[] (Input)
Array of length NOBS containing the responses. The elementsof Y are
ordered lexicographically, i.e., the last model subscript changes most
rapidly, the next to last model subscript changes the next most rapidly,
and so forth, with the first subscript changing the slowest.

Return Value
The p-value for the F-statistic, anova_t abl e[ 9] .

Synopsis with Optional Arguments

#include <i nsls. h>

float * inmsls_f_anova_nested (int n_factors, intequal option, int
n_level s[],float y[],

| MSLS_ANOVA_TABLE, float **anova_t abl e,

| MSLS_ANOVA TABLE USER, float anova_t abl e[ ]

| MSLS CONFI DENCE, float confi dence,

| MSLS_VARI ANCE_COVPONENTS, float **vari ance_conponent s,
| MBLS_VARI ANCE_COVPONENTS_USER, float

vari ance_conponents[],

| MSLS_EMS, float **expect _nmean_sq,

| MSLS_EMS_USER, float expect _nean_sq[],

I MSLS_Y_MEANS, float **y neans,

| MSLS_Y_MEANS USER, floaty neans[],

0)

Optional Arguments

| MSBLS_ANOVA_TABLE, float **anova_t abl e, (Output)
Address of a pointer to an internally allocated array of size 15

238 « anova_nested

IMSL C/Stat/Library



containing the analysis of variance table. The analysis of variance
statistics are as follows:

Element Analysisof Variance Statistics

© 0O N o o b~ W N P O

I S T Y
w N B O

14

Degrees of freedom for the model
Degrees of freedom for error
Total (corrected) degrees of freedom
Sum of squares for the model
Sum of squares for error

Total (corrected) sum of squares
Model mean square

Error mean square

Overall F-statistic

p-value

R’ (in percent)

Adjusted R? (in percent)

Estimate of the standard deviation
Overal mean of y

Coefficient of variation (in percent)

| MSLS_ANOVA TABLE_USER, float anova_t abl e[] (Output)

Storage for array anova_tableis provided by the user.
See | MSLS_ANOVA TABLE.

| MSLS_CONFI DENCE, float conf i dence (Input)

Confidence level for two-sided interval estimates on the variance
components, in percent. confi dence percent confidence intervals are
computed, hence, conf i dence must bein theinterval

(0.0, 100.0). confidence oftenwill be 90.0, 95.0,

or 99.0. Forone-sidedintervalswith confidence level ONECL,
ONECL intheinterval [50.0, 100.0), set

confidence = 100.0 - 2.0 * (100.0 - ONECL).

Def aul t: confidence = 95.0

I MSLS_VARI ANCE_COVPONENTS, float **vari ance_conponent s, (Output)

Addressto a pointer to an internally allocated array.

vari ance_conponents isan n_fact ors by 9 matrix containing
statistics relating to the particular variance components in the model.
Rows of vari ance_conponent s correspond tothen_f act or s
factors. Columns of var i ance_conponent s are asfollows:
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Column Description

Degrees of freedom

Sum of squares

Mean squares

F -statistic

p-valuefor F test

Variance component estimate

Percent of variance of variance explained by variance component

0 N o o b~ WN P

Lower endpoint for a confidence interval on the variance
component

9 Upper endpoint for a confidence interval on the variance
component

A test for the error variance egual to zero cannot be performed.
vari ance_conponents(n_factors, 4) and
vari ance_conponents(n_factors, 5) aresettoNaN (not anumber).

| MSLS_VARI ANCE_COVPONENTS_USER, float var i ance_conponent s ]
(Output) Storage for array variance_componentsis provided by the
user. Seel MSLS_VARI ANCE_COVPONENTS.

I MSLS_EMS, float **expect _mean_sq, (Output)
Address to a pointer to an internally allocated array of length
(n_factors + 1) * n_factors/2 with expected mean square coefficients.

I MSLS_EMS_USER, float expect _mean_sq[ ], (Output)
Storage for array expect _mean_sq is provided by the user.
See| MBLS_EMGB.

I MSLS_Y_MEANS, float **y_means (Output)
Address to a pointer to an internally allocated array containing the
subgroup means.

Equal options Length of y means

0 l1+n_levels[0] +n_levels[1] +...n_levels[(LNL-
LNLNF)-1] (See the description of argument evel s for
definitions ofLNL andLNLNF.)

1 1+n_levels[O] +n_levels[QO] *n_levels[1] +...+
n_levels[O]*n_levels[1] *...*n_levels[n_factors
-2

If the factors are labeled A, B, C, and error, the ordering of the meansis grand
mean, A means, AB means, and then ABC means.
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I MSLS_Y_MEANS USER, floaty_neans[], Storagefor array y_neans
isprovided by the user. See | MSLS_Y_MEANS

Description

Routinei nsl s_f _anova_nest ed analyzes a nested random model with equal
or unequal numbers in the subgroups. The analysisincludes an analysis of
variance table and computation of subgroup means and variance component
estimates. Anderson and Bancroft (1952, pages 325—330) discuss the
methodology. The analysis of variance method is used for estimating the variance
components. This method solves alinear system in which the mean squares are
set to the expected mean squares. A problem that Hocking (1985, pages 324—
330) discusses is that this method can yield negative variance component
estimates. Hocking suggests a diagnostic procedure for locating the cause of a
negative estimate. It may be necessary to reexamine the assumptions of the
model.

Example 1

An analysis of athree-factor nested random model with equal numbersin the
subgroups is performed using data discussed by Snedecor and Cochran (1967,
Table 10.16.1, pages 285—288). The responses are calcium concentrations (in
percent, dry basis) as measured in the leaves of turnip greens. Four plants are
taken at random, then three leaves are randomly selected from each plant.
Finally, from each selected leaf two samples are taken to determine calcium
concentration. The model is

Yk =M+ o +B+e; 1=1,234j=123 k=12

wherey;; is the calcium concentration for the k-th sample of thej-th leaf of the
i-th plant, the a,'s are the plant effects and are taken to be independently
distributed

N(0,6?)
the;’s are leaf effects each independently distributed
N(0,0%)

and theg;;’s are errors each independently distributa, 02). The effects are
all assumed to be independently distributed. The data are given in the following
table:
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Plant | Leaf Samples
1 1 3.28 3.09
2 3.52 3.48
3 2.88 2.80
2 1 2.46 244
2 1.87 1.92
3 219 219
3 1 2.77 2.66
2 3.74 344
3 2.55 255
4 1 3.78 3.87
2 4.07 4.12
3 331 331

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d main()

float pval ue, *aov, *varc, *yneans, *ens;
float y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87,
1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,
3.87, 4.07, 4.12, 3.31, 3.31};
int n_levels[] = {4, 3, 2};
char *aov_| abel s[] = {
"degrees of freedom for nodel",
"degrees of freedomfor error"”,
"total (corrected) degrees of freedont,
"sum of squares for nodel",
"sum of squares for error",
"total (corrected) sum of squares"”,
"nmodel mean square",
"error nmean square",
"F-statistic",
"p-val ue",
"R-squared (in percent)",
"adj usted R-squared (in percent)",
"est. standard deviation of within error",
"overall nean of y",
"coefficient of variation (in percent)"};
char *ems_| abel s[] = {
"Effect A and Error",
"Effect A and Effect B",
"Effect A and Effect A",
"Effect B and Error",
"Effect B and Effect B",
"Error and Error"};
char *means_| abel s[] = {
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"Grand nmean",

" A neans 1",

" A neans 2",

" A neans 3",

" A neans 4",

"AB neans 1 1",
"AB neans 1 2",
"AB neans 1 3",
"AB neans 2 1",
"AB neans 2 2",
"AB neans 2 3",
"AB neans 3 1",
"AB neans 3 2",
"AB neans 3 3",
"AB neans 4 1",
"AB neans 4 2",
"AB nmeans 4 3"};

char *conmponents_| abel s[] = {

"degrees of freedomfor A",

"sum of squares for A",

"mean square of A",

"F-statistic for A",

"p-value for A",
"Estimate of A",
"Percent Variation Explained by A",
"95% Confi dence Interval Lower Limt for A",
"95% Confidence Interval Upper Limt for A",
"degrees of freedomfor B",

"sum of squares for B",

"mean square of B",

"F-statistic for B",

"p-value for B",
"Esti mate of B",
"Percent Variation Explained by B",
"95% Confi dence Interval Lower Limt for B",
"95% Confidence Interval Upper Limt for B",
"degrees of freedomfor Error",

"sum of squares for Error",

"mean square of Error",

"F-statistic for Error",

"p-value for Error",
"Estimate of Error",
"Percent Explained by Error",
"95% Confi dence Interval Lower Limt for Error",
"95% Confidence Interval Upper Limt for Error"};

pval ue = insls_f_anova_nested(3, 1, n_levels, Yy,

printf("pvalue = %\n",
imsls_f_wite_matrix("* * * Analysis of Variance * * *" 15, 1, aov,
| MSLS ROW LABELS, aov_|I abel s,
| MSLS WRI TE_FORMAT, "9%i0.5f",

| MSLS _ANOVA TABLE, &aov,

| MSLS_Y_MEANS, &yneans,

| MSLS_VARI ANCE_COVPONENTS, &varc,
| MSLS _EMS, &erns,

0);

pval ue);
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0);
inmsls f wite matrix("* * * Expected Mean Square Coefficients * * *",
6, 1, ems,
| MSLS ROW LABELS, ens_| abel s,
| MSLS WRI TE_FORNMAT, "96. 2f ",
0);
inmsls f wite matrix("* * * Means * * *" 17, 1, yneans,
| MSLS ROW LABELS, neans_| abel s,
| MSLS WRI TE_FORNMAT, "96. 2f ",

0);
inmsls f wite matrix("* * Analysis of Variance / Variance Conponents * *",
27, 1, varc,

| MSLS ROW LABELS, conponents_| abel s,
| MSLS WRI TE_FORMAT, "9%d0.5f",
0);

Output
pval ue = 0. 00000

* * * Analysis of Variance * * *

degrees of freedom for nodel 11. 00000
degrees of freedomfor error 12. 00000
total (corrected) degrees of freedom 23. 00000
sum of squares for nodel 10. 19054
sum of squares for error 0. 07985
total (corrected) sum of squares 10. 27040
nodel nean square 0.92641
error mean square 0. 00665
F-statistic 139. 21599
p-val ue 0. 00000
R-squared (in percent) 99. 22248
adj usted R-squared (in percent) 98. 50976
est. standard deviation of within error 0. 08158
overall mean of y 3.01208
coefficient of variation (in percent) 2.70826

* * * Expected Mean Square Coefficients * * *

Effect A and Error 1.00
Effect A and Effect B 2.00
Effect A and Effect A 6. 00
Effect B and Error 1.00
Effect B and Effect B 2.00
Error and Error 1.00

* * % I\mans * * %

G and nean 3.01
A neans 1 3.17
A means 2 2.18
A neans 3 2.95
A neans 4 3.74
AB neans 1 1 3.18
AB neans 1 2 3.50
AB neans 1 3 2.84
AB neans 2 1 2. 45
AB neans 2 2 1. 89
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AB neans 2 3 2.19
AB neans 3 1 2.72
AB neans 3 2 3.59
AB neans 3 3 2.55
AB neans 4 1 3.82
AB neans 4 2 4.10
AB neans 4 3 3.31

* * Analysis of Variance / Variance Conponents * *

degrees of freedomfor A

sum of squares for A

mean square of A

F-statistic for A

p-value for A

Estimate of A

Percent Variation Expl ai ned by A
95% Confi dence Interval Lower Limt
95% Confi dence Interval Upper Limt
degrees of freedomfor B

sum of squares for B

nmean square of B

F-statistic for B

p-value for B

Estimate of B

Percent Vari ation Expl ained by B
95% Confi dence Interval Lower Limt
95% Confi dence Interval Upper Limt
degrees of freedomfor Error

sum of squares for Error

mean square of Error

F-statistic for Error

p-val ue for Error

Estimate of Error

Per cent Expl ai ned by Error

95% Confi dence Interval Lower Limt
95% Confi dence Interval Upper Limt

> >

Error
Error

. 00000
. 56034
. 52011
. 66516
. 00973
. 36522
. 53015
. 03955
. 78674
. 00000
. 63020
. 32878
. 40642
. 00000
. 16106
. 22121
. 06967
. 60042
12. 00000

0. 07985

0. 00665

kkkkkkhkkkk*k

)]

N
OO0OOO0OOWONXUIOWOONNNW

w

*kkkkkkhkkkk*k

0. 00665
1.24864
0. 00342
0.01813

anova_balanced

Analyzes a balanced complete experimental design for afixed, random, or mixed

model.

Synopsis
#include <i nsl's. h>

float *i nsl s_f _anova_bal anced (int n_factors, int n_l evel s[], float
y[],int n_randomint i ndex_random factor[],int
n_nodel _effects,int n_factors_per_effect[],int
i ndex_factor_per_effect[],..., 0)

The type double function isi nsl s_d_anova_bal anced.

Chapter 4: Analysis of Variance

anova_balanced ¢ 245



Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

int n_l evel s[] (Input)
Array of lengthn_f act or s containing the number of levels for each of
the factors.

float y[] (Input)
Array of lengthn_| evel s[0] * n_levels[1] *...*
n_level s[n_factors-1] containing the responses. y[] must not
contain NaN (not a number) for any of its elements, i.e., missing values
are not allowed.

int n_random(Input)
For positiven_random | n_r andon| isthe number of random factors.
For negativen_r andom | n_randon] isthe number of random
effects (sources of variation).

inti ndex_random factor[] (Input)
Index array of length | n_r andon{ containing either the factor numbers
to be considered random (for n_r andompositive) or containing the
effect numbers to be considered random (for n_r andomnegative). If
n_random=0, i ndex_random f act or isnot referenced.

intn_nodel _effects (Input)
Number of effects (sources of variation) due to the model excluding the
overall mean and error.

intn_factors_per_effect[] (Input)
Array of lengthn_nodel _ef f ect s containing the number of factors
associated with each effect in the model.

inti ndex_factor_per_effect[] (Input)
Index vector of length n_factors_per_efffect[0] +
n_factors_per_effect[1l] + ... +
n_factors_per_effect[n_nodel effects-1]. Thefirs
n_factors_per_effect[0] elementsgivethefactor numbersin the
first effect. Thenextn_factors_per_effect[1] elementsgivethe
factor numbersin the second effect. Thelast n_f act ors_per _ef fect
[n_nodel _effects-1] elementsgive the factor numbersin the last
effect. Main effects must appear before their interactions. In general, an
effect E cannot appear after an effect
Fif all of theindicesfor E appear alsoin F.

Return Value
The p-value for the F-statistic.
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Synopsis with Optional Arguments
#include <insls. h>

float *i nsl s_f _anova_bal anced (int n_factors, int n_l evel s[], float
y[],int n_randomint i ndex_random factor[],int
n_nodel _effects,int n_factors_per_effect[],int
i ndex_factor_per_effect[],

| MSLS _ANOVA TABLE, float **anova_t abl e,

| MSLS ANOVA TABLE USER, float anova_tabl e[]

| MSLS_MCODEL, int nodel ,

| MSLS CONFI DENCE, float confi dence,

| MSLS_VARI ANCE_COVPONENTS, float **vari ance_conponent s,
| MBLS_VARI ANCE_COMPONENTS_USER, float

vari ance_conponents[],

| MSLS EMS, f/loat **ens,
| MSLS EM5S USER, f/loat ens[],
| MSLS_Y_MEANS, f/oat**y_neans,
| MSLS Y _MEANS USER, f/oaty_neans[],
0)
Optional Arguments

I MSLS _ANOVA TABLE, float **anova_t abl e, (Output)
Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are as
follows:

Element Analysisof Variance Statistics
Degrees of freedom for the model
Degrees of freedom for error

Total (corrected) degrees of freedom
Sum of squares for the model

Sum of squares for error

Total (corrected) sum of squares
Model mean square

Error mean square

Overdll F-gtatistic

© 0 N o o~ W N, O

p-value

=
o

R (in percent)
adjusted R? (in percent)

=
=
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12 estimate of the standard deviation
13 overall mean of Y
14 coefficient of variation (in percent)

| MSLS_ANOVA TABLE_USER, float anova_t abl e[] (Output)
Storage for array anova tableis provided by the user.
See| MSLS_ANOVA TABLE.

| MBLS_MODEL, int model, (Input)

Model Option
MODEL Meaning
0 Searle model
1 Scheffe model

For the Scheffe model, effects corresponding to interactions of fixed and random
factors have their sum over the subscripts corresponding to fixed factors equal to
zero. Also, the variance of arandom interaction effect involving some fixed
factors has amultiplier for the associated variance component that involves the
number of levelsin the fixed factors. The Searle model has no summation
restrictions on the random interaction effects and has a multiplier of one for each
variance component. The default ismodel = 0.

| MSLS_CONFI DENCE, float conf i dence (Input)
Confidence level for two-sided interval estimates on the variance
components, in percent. confi dence percent confidence intervals are
computed, hence, confi dence nmust be in the interval [0.0,
100.0). confidence often will be 90.0, 95.0, or 99.0.
For one-sided intervals with confidence |evel a, a
in the interval [50.0, 100.0),
set confidence = 100.0 - 2.0 * 100.0 - q).
Def aul t: confidence = 95.0

I MSLS_VARI ANCE_COVPONENTS, float **vari ance_conponent s, (Output)
Address of apointer to an array, vari ance_conponents.
vari ance_conponents isan (n_nodel _effects +1)by9array
containing statistics relating to the particular variance components or
effectsin the modd and the error. Rows of vari ance_conponent s
correspond to the n_model_effects effects plus error.
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Element Description

Degrees of freedom

Sum of squares

Mean squares

F -statistic

p-valuefor F test

Variance component estimate

Percent of variance of y explained by random effect

Lower endpoint for a confidence interval on the variance component

© 00 N O 0o B~ W N P

Upper endpoint for a confidence interval on the variance
component

Elements 6 through 9 contain NaN (not a number) if the effect isfixed, i.e., if
thereis no variance component to be estimated. If the variance component
estimate is negative, columns 8 and 9 contain NaN.

| MSLS_VARI ANCE_COVPONENTS_USER, float var i ance_conponent s ]
(Output)
Storage for array variance_components is provided by the user.
See | MSLS_VARI ANCE_COVPONENTS.

I MSLS_EMS, float ** ens, (Output)
Address of a pointer to an internally allocated array of length
(n_nodel _effects + 1) * (n_nodel _effects + 2)/2
containing expected mean square coefficients. Suppose the effects are
A, B, and AB. The ordering of the coefficientsin ens isasfollows:

Error AB B A
ens[0] ens[1] ens[2] ens[3]
B ens[4] ens[5] ens[6]
AB ens[7] ens[8]

Error  ens[9]

| MSLS_EMS_USER, float ens[] (Output)
Storage for ens is provided by the user.
See| MBLS_EMGB.

I MSLS_Y_MEANS, float **y_means (Output)
Address of a pointer to an internally allocated array of length
(n_levels(@)+1)* (n_levels()+21)* ... * (n_levels(n-1)+1)
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containing the subgroup means. Suppose the factorsare A, B, and C. The
ordering of the meansis grand mean, A means, B means, C means, AB
means, AC means, BC means, and ABC means.

I MSLS_Y_MEANS USER, floaty_nmeans (Output)
Storage for y_means is provided by the user.
See | MBLS_Y_MEANS.

Description

Functioni nsl s_f _anova_bal anced analyzes a balanced complete
experimental design for afixed, random, or mixed model. The analysis includes
an analysis of variance table, and computation of subgroup means and variance
component estimates. A choice of two parameterizations of the variance
components for the model can be made.

Scheffé (1959, pages 27289) discusses the parameterizatiomiotel = 1.
For example, consider the following model equation with fixed faktmd
random factoB:

Yk =K +a;+h+c+tey i=1,2,..,a)=1,2,...,bk=12,..n
The fixed effects,;’s are subject to the restriction
Y0 =0
theb;’s are random effects identically and independently distributed
N(0,0%)
c; are interaction effects each distributed

a._l 2
N(0O,—o
( a AB

and are subject to the restrictions
Sic =0for j=12,..,b

and theg;;’s are errors identically and independently distributéa), a). In

general, interactions of fixed and random factors have sums over subscripts
corresponding to fixed factors equal to zero. Also in general, the variance of a
random interaction effect is the associated variance component times a product of
ratios for each fixed factor in the random interaction term. Each ratio depends on
the number of levels in the fixed factor. In the earlier example, the random
interactionAB has the ratiog —1)/a as a multiplier of

2
O'as

and
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_ 2,a-1, 2
V"ﬂ\f(yijk)—UB‘*TGAB+0

In athree-way crossed classification model, an ABC interaction effect with A
fixed, B random, and C fixed would have variance

(a-1)(c-1) »
T ae O aBC

Searle (1971, pages 400—401) discusses the parameterization for nodel = 0. This
parameterization does not have the summation restrictions on the effects
corresponding to interactions of fixed and random factors. Also, the variance of
each random interaction term is the associated variance component, i.e., without
the multiplier. This parameterization is also used with unbalanced data, which is
one reason for its popularity with balanced data. In the earlier example,

Var(yijk) =Gg+0ag +0°

Searle (1971, pages 400—404) compares these two parameterizations. Hocking
(1973) considers these different parameterizations and concludes they are
equivalent because they yield the same variance-covariance structure for the
responses. Differencesin covariances for individua terms, differencesin
expected mean sguare coefficients and differencesin F testsare just a
consequence of the definition of theindividual termsin the model and are not
caused by any fundamental differences in the models. For the earlier two-way
model, Hocking states that the relations between the two parameterizations of the
variance components are

0% =5} + 4%
0% = Og
where
03 and 045
are the variance components in the parameterization with nodel = 0.

The computations for degrees of freedom and sums of squares are the same
regardless of the option specified by nodel . i nsl s_f _anova_bal anced first
computes degrees of freedom and sum of squares for afull factorial design.
Degrees of freedom for effectsin the factorial design that are missing from the
specified model are pooled into the model effect containing the fewest subscripts
but still containing the factorial effect. If no such model effect exists, the factorial
effect is pooled into error. If more than one such effect exists, aterminal error
message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance components.
This method solves alinear system in which the mean squares are set to the
expected mean sgquares. A problem that Hocking (1985, pages 324—330)
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discusses is that this method can yield a negative variance component estimate.
Hocking suggests a diagnostic procedure for locating the cause of the negative
estimate. It may be necessary to re-examine the assumptions of the model.

The percentage of variation explained by each random effect is computed

(output invar i ance_conponent s element 7) as the variance of the associated
random effect divided by the variance of y. The two parameterizations can lead to
different values because of the different definitions of the individual termsin the
model. For example, the percentage associated with the AB interaction term in the
earlier two-way mixed model is computed for nodel = 1 using the formula

a._l 2
- !
% variation(AB|Model =1) = azil
of+ O%hg +07

while for the parameterization model = 0, the percentage is computed using the
formula

=2
% variation(AB|Model = 0) = ——A8
In each case, the variance components are replaced by their estimates (stored in
vari ance_conponents element 6).

Confidence intervals on the variance components are computed using the method
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).
Example

An analysis of a generalized randomized block design is performed using data
discussed by Kirk (1982, Table 6.10-1, pages 293—297). The model is

Yk =R+o;+b+c+e; 1=1,234j=1234k=12

wherey;;; isthe response for the k-th experimental unit in block j with treatment i;
thea,’s are the treatment effects and are subject to the restriction

Yo, =0
theb;’s are block effects identically and independently distributed
N(0,0%)
c; are interaction effects each distributed
N(0,20%g
and are subiject to the restrictions

Sitig =0for j=12,34

252 « anova_balanced

IMSL C/Stat/Library



and the g;;;’s are errors, identically and independently distriduN¢0, o). The
interaction effects are assumed to be distributed independently of the errors.

The data are given in the following table:

Block
Treatment 1 2 3 4
1 3,6 31 2,2 3,2
2 4,5 4,2 3,4 3,3
3 7,8 7,5 6,5 6,6
4 7,8 9,10 10,9 8 11

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d nain()
float pvalue = -99.;

int n_levels[] = {4, 4, 2};
int indrf[] = {2, 3};

int nfef[] = {1, 1, 2};

int indef[] = {1, 2, 1, 2};

float y[] ={3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0,
2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0,
6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0};

float *aov=NULL, *y neans, *variance_conponents, *ens;

char *aov_| abel s[] = {

"degrees of freedom for nodel"”,

"degrees of freedomfor error"”,

"total (corrected) degrees of freedont,
"sum of squares for nodel",

"sum of squares for error",

"total (corrected) sum of squares"”,
"nmodel nean square",

"error nmean square",

"F-statistic",

"p-val ue",

"R-squared (in percent)",

"adj usted R-squared (in percent)",

"est. standard deviation of within error",
"overall nean of y",

"coefficient of variation (in percent)"};

char *ens_| abel s[] = {
"Effect A and Error",
"Effect A and Effect AB",
"Effect A and Effect B",
"Effect A and Effect A",
"Effect B and Error",
"Effect B and Effect AB",
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"Effect B and Effect B",
"Effect AB and Error",
"Effect AB and Effect AB",
"Error and Error"};

char *neans_| abel s[] = {
"Grand nmean",
" A neans 1",
" A neans 2",
" A neans 3",
" A neans 4",
" B neans 1",
" B neans 2",
" B neans 3",
" B nmeans 4",
"AB neans 1 1",
"AB neans 1 2",
"AB neans 1 3",
"AB neans 1 4",
"AB neans 2 1",
"AB neans 2 2",
"AB neans 2 3",
"AB neans 2 4",
"AB neans 3 1",
"AB neans 3 2",
"AB neans 3 3",
"AB neans 3 4",
"AB neans 4 1",
"AB neans 4 2",
"AB neans 4 3",
"AB neans 4 4",};

char *conponents_| abel s[] = {

"degrees of freedomfor A",
"sum of squares for A",
"mean square of A",
"F-statistic for A",
"p-value for A",

"Esti mate of A",

"Percent Variation Explained by A",
"95% Confi dence Interval Lower Limt
"95% Confi dence Interval Upper Limt

"degrees of freedomfor B",
"sum of squares for B",
"mean square of B",
"F-statistic for B",
"p-value for B",

"Esti mate of B",

"Percent Variation Explained by B",
"95% Confidence Interval Lower Limt
"95% Confi dence Interval Upper Limt

"degrees of freedom for AB",
"sum of squares for AB",
"mean square of AB",
"F-statistic for AB",
"p-value for AB",

"Esti mate of AB",

"Percent Variation Explained by AB",
"95% Confi dence Interval Lower Limt

for B",
or

for AB",

254 « anova_balanced

IMSL C/Stat/Library



"95% Confidence Interval Upper Limt for AB",
"degrees of freedomfor Error",

"sum of squares for Error",

“mean square of Error",

"F-statistic for Error",

"p-value for Error",

"Estimate of Error",

"Percent Explained by Error",

"95% Confi dence Interval Lower Limt for Error",
"95% Confidence Interval Upper Limt for Error"};

pval ue = insls_f_anova_bal anced(3, n_levels, y, 2, indrf, 3, nfef, indef,
| MSLS MODEL, 1,
| MSLS _EMS, &ens,
| MSLS_VARI ANCE_COVPONENTS, &vari ance_conponents,
| M5SLS_Y_MEANS, &y neans,
| MSLS_ANOVA TABLE, &aov,
0);

printf("p value of F statistic = %\n", pval ue);

inmsls f wite matrix("* * * Analysis of Variance * * *" 15, 1, aov,
| MSLS ROW LABELS, aov_|I abel s,
I MSLS WRI TE_FORMAT, "9d0.5f",

0);
insls_f_wite_matrix("* * * Expected Mean Square Coefficients * * *"|
10, 1, ens,

| MSLS ROW LABELS, ens_| abels,
I MSLS WRI TE_FORMAT, "96. 2f ",
0);

inmsls f wite matrix("* * Analysis of Variance / Variance Conponents * *",
36, 1,

vari ance_conponents,

| MSLS_ROW LABELS, conponents_I abel s,
I MSLS WRI TE_FORMAT, "9d40.5f",
0);

inmsls f wite_matrix("nmeans", 25, 1, y_neans,
| MSLS ROW LABELS, neans_| abel s,
I MSLS WRI TE_FORMAT, "96. 2f ",
0);

Output
p value of F statistic = 0.000005
* * * Anal ysis of Variance * * *

degrees of freedom for nodel 15. 00000
degrees of freedom for error 16. 00000
total (corrected) degrees of freedom 31. 00000
sum of squares for nodel 216. 50000
sum of squares for error 19. 00000
total (corrected) sum of squares 235. 50000
nodel nean square 14. 43333
error mean square 1. 18750
F-statistic 12. 15439
p-val ue 0. 00000
R-squared (in percent) 91. 93206
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adj usted R-squared (in percent) 84. 36836

est. standard deviation of within error 1.08972
overall nean of y 5. 37500
coefficient of variation (in percent) 20. 27395
* * * Expected Mean Square Coefficients * * *
Ef fect A and Error 1.00
Effect A and Effect AB 2.00
Effect A and Effect B 0. 00
Effect A and Effect A 8. 00
Ef fect B and Error 1.00
Effect B and Effect AB 0. 00
Effect B and Effect B 8. 00
Ef fect AB and Error 1.00
Ef fect AB and Effect AB 2.00
Error and Error 1.00

* * Analysis of Variance / Variance Conponents * *

degrees of freedomfor A 3. 00000
sum of squares for A 194. 50000
mean square of A 64. 83334
F-statistic for A 32.87324
p-value for A 0. 00000
Percent Variation Explained by A *ok KKk kK k%
95% Confi dence Interval Lower Limt for A ok ok ok ok ok ok
95% Confidence Interval Upper Limt for A R
degrees of freedomfor B 3. 00000
sum of squares for B 4. 25000
F-statistic for B 1.19298
nmean square of B 1.41667
p-value for B 0. 34396
Estimate of B 0. 02865
Percent Variation Expl ai ned by B 1. 89655
95% Confi dence Interval Lower Limt for B 0. 00000
95% Confi dence Interval Upper Limt for B 2.31682
degrees of freedom for AB 9. 00000
sum of squares for AB 17. 75000
nean square of AB 1.97222
F-statistic for AB 1.66082
p-val ue for AB 0. 18016
Estimate of AB 0. 39236
Percent Variation Expl ai ned by AB 19. 48276
95% Confi dence Interval Lower Limt for AB 0. 00000
95% Confi dence Interval Upper Limt for AB 2. 75803
degrees of freedomfor Error 16. 00000
sum of squares for Error 19. 00000
mean square of Error 1.18750
F-statistic for Error koK ok ok ko
p-val ue for Error ok ok ok Kk
Estimate of Error 1.18750
Percent Expl ai ned by Error 78. 62868

95% Confi dence Interval Lower Limt for Error 0. 65868
95% Confi dence Interval Upper Limt for Error 2. 75057

nmeans
G and nean 5. 38
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A neans 1 2.75
A neans 2 3.50
A neans 3 6. 25
A neans 4 9. 00
B nmeans 1 6. 00
B nmeans 2 5.13
B nmeans 3 5.13
B nmeans 4 5.25
AB neans 1 1 4. 50
AB neans 1 2 2.00
AB neans 1 3 2.00
AB neans 1 4 2.50
AB neans 2 1 4.50
AB neans 2 2 3.00
AB neans 2 3 3.50
AB neans 2 4 3.00
AB neans 3 1 7.50
AB neans 3 2 6. 00
AB neans 3 3 5.50
AB neans 3 4 6. 00
AB neans 4 1 7.50
AB neans 4 2 9.50
AB neans 4 3 9.50
AB neans 4 4 9.50
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Chapter 5: Categorical and Discrete
Data Analysis

Routines
5.1 Statistics in the Two-Way Contingency Table
Two-way contingency table analysis................... contingency_table 260
Exact probabilities in an r x ¢ table;
total enumeration..............cccce oo exact_enumeration 273
Exact probabilities in an r x c table..........cccccccoveee.. exact_network 275

5.2 Generalized Categorical Models
Generalized linear models.........cccccceviiiiiiiiinnnennn. categorical_glm 281

Usage Notes

Routinei nsl s_f _conti ngency_t abl e (page 260) computes many statistics of
interest in atwo-way table. Statistics computed by this routine includes the usual
chi-sguared statistics, measures of association, Kappa, and many others. Exact
probabilities for two-way tables can be computed by

i msl s_f_exact _enunerati on (page 273), but this routine uses the total
enumeration algorithm and, thus, often uses orders of magnitude more computer
timethani nsl s_f _exact _net wor k (page 275), which computes the same
probabilities by use of the network algorithm (but can still be quite expensive).

Theroutinei nsl s_f _cat egori cal _gl m(page 281) in the second section is
concerned with generalized linear models (see McCullagh and Nelder 1983) in
discrete data. This routine can be used to compute estimates and associated statistics
in probit, logistic, minimum extreme value, Poisson, negative binomial (with known
number of successes), and logarithmic models. Classification variables as well as
weights, frequencies and additive constants may be used so that general linear
models can be fit. Residuals, a measure of influence, the coefficient estimates, and
other statistics are returned for each model fit. When infinite parameter estimates
are required, extended maximum likelihood estimation may be used. Log-linear
models can befitini msl s_f _cat egori cal _gl mthrough the use of Poisson
regression models. Results from Poisson regression models involving structural and
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sampling zeros will beidentical to the results obtained from the log-linear model
routines but will be fit by a quasi-Newton algorithm rather than through iterative
proportiona fitting.

contingency_table

Performs a chi-squared analysis of atwo-way contingency table.

Synopsis
#include <insls. h>

float i msl s_f _contingency_table (int n_rows, int n_col umms,
float table[], .., 0)

The type double functionisi nsl s_d_cont i ngency_t abl e.

Required Arguments

int n_rows (Input)
Number of rowsin the table.

int n_col ums (Input)
Number of columnsin the table.

float table[] (Input)
Array of lengthn_r ows x n_col unms containing the observed countsin
the contingency table.

Return Value

Pearson chi-squared p-value for independence of rows and columns.

Synopsis with Optional Arguments

#include <i nsls. h>

float i msl s_f _contingency table (int n_rows, int n_col unms,
float table[],
I MSLS CHI SQUARED, int *df, float *chi _squared,
float *p_val ue,
I MSLS LRT, int *df, float *g_squared, float *p_val ue,
| MSLS_EXPECTED, float **expect ed,
| MSLS EXPECTED USER, float expected[],
| MSLS_CONTRI BUTI ONS, float **chi _squared_contri buti ons,
| MBLS_CONTRI BUTI ONS_USER,
float chi _squared_contributions[],
| MSLS CHI _SQUARED STATS, float **chi _squared_stats,
| MBLS_CHI _SQUARED STATS_USER,
float chi _squared_stats[],
| MSLS_STATI STI CS, float **stati stics,
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| MBLS_STATI STI CS_USER, float statistics[],
0)

Optional Arguments

| MSLS CHI _SQUARED, int *df, float *chi _squared, float *p_val ue
(Output)
Argument df isthe degrees of freedom for the chi-squared tests
associated with the table, chi _squar ed is the Pearson chi-squared test
statistic, and argument p_val ue isthe probability of alarger Pearson
chi-squared.

I MSLS_LRT, int *df, float *g_squared, float *p_val ue (Output)
Argument df isthe degrees of freedom for the chi-squared tests
associated with the table, argument g_squar ed isthelikelihood ratio
Gi (chi-squared), and argument p_val ue isthe probability of alarger
G

| MBLS_EXPECTED, float **expect ed (Output)
Address of a pointer to the internally allocated array of size
(n_rows + 1) x (n_col ums + 1) containing the expected values of
each cell in the table, under the null hypothesis, in the first n_r ows rows
and n_col umms columns. The marginal totals are in the last row and
column.

| MSLS_EXPECTED USER, float expected[] (Output)
Storage for array expect ed is provided by the user.
See | MSLS_EXPECTED.

| MSLS_CONTRI BUTI ONS, float **chi _squared_contri butions (Output)
Address of a pointer to an internally allocated array of size
(n_rows + 1) x (n_col ums + 1) containing the contributions to chi-
squared for each cell in the tablein the first n_r ows rows and
n_col ums columns. The last row and column contain the total
contribution to chi-squared for that row or column.

| MSLS_CONTRI BUTI ONS_USER, float chi _squared_contri buti ons[]
(Output)
Storage for array chi _squar ed_cont ri but i ons isprovided by the
user. See | MSLS_CONTRI BUTI ONS.

| MBLS_CHI _SQUARED_STATS, float **chi _squared_stats (Output)
Address of a pointer to an internally allocated array of length 5
containing chi-squared statistics associated with this contingency table.
The last three elements are based on Pearson’s chi-square statistic (see
| MBLS_CHI _SQUARED).
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The chi-sguared statistics are given as follows:

Element

Chi-squared Statistics

0
1
2
3
4

exact mean

exact standard deviation
phi

contingency coefficient
Cramer’sV

| MSLS CHI _SQUARED STATS USER, float chi _squared_stat s[]

(Output)

Storage for arraghi _squar ed_st at is provided by the user. See

| MBLS_CHI _SQUARED STATS.

| MSLS _STATI STICS, float **statistics (Output)
Address of a pointer to an internally allocated array of size 23

containing statistics associated with this table. Each row corresponds to

a statistic.

Py,
s
=

Statistic

© 00 N O 0ok~ W N B, O

T T e =
N~ o o0 W N RO

gamma

Kendall'st,

Stuart’st,

SomersD for rows (given columns)

SomersD for columns (given rows)

product moment correlation

Spearman rank correlation

Goodman and Kruskalfor rows (given columns)
Goodman and Kruskalfor columns (given rows)
uncertainty coefficient) (symmetric)
uncertaintyJ,.| . (rows)

uncertaintyJ,. | ,. (columns)

optimal predictiorh (symmetric)

optimal predictior,.| . (rows)

optimal predictior. | ,. (columns)

optimal predictior,.| . (rows)

optimal predictior. | ,. (columns)

test for linear trend in row probabilitiesiifr ows = 2
If n_rows is not 2, a test for linear trend in column
probabilities ifn_col ums = 2.
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Row Statistic
18 Kruska-Wallis test for no row effect
19 Kruska-Wallis test for no column effect
20 kappa (square tables only)
21 McNemar test of symmetry (sgquare tables only)
22 McNemar one degree of freedom test of symmetry
(square tables only)

If astatistic cannot be computed, or if some valueis not relevant for the
computed statistic, the entry isNaN (Not a Number). The columns are as
follows:

Column Value
0 estimated statistic
standard error for any parameter value

standard error under the null hypothesis

t value for testing the null hypothesis

rMow|Nn|e

p-value of thetest in column 3

In the McNemar tests, column O contains the statistic, column 1 contains
the chi-squared degrees of freedom, column 3 contains the exact p-value
(1 degree of freedom only), and column 4 contains the chi-squared
asymptotic p-value. The Kruskal-Wallis test is the same except no exact
p-value is computed.

| MBLS_STATI STI CS_USER, float statistics[] (Output)
Storage for array st at i sti cs provided by the user. See
| MSLS_STATI STI CS.

Description

Functioni nsl s_f _conti ngency_t abl e computes statistics associated with an
r x ¢ (n_r ows X n_col ums) contingency table. The function computes the chi-
squared test of independence, expected values, contributions to chi-squared, row
and column marginal totals, some measures of association, correlation,

prediction, uncertainty, the McNemar test for symmetry, atest for linear trend, the
odds and the log odds ratio, and the kappa statistic (if the appropriate optional
arguments are selected).

Notation

Let x;; denote the observed cell frequency in theij cell of the table and n denote
the total count in the table. Let p;; = p;.p;. denote the predicted cell probabilities
under the null hypothesis of independence, where p;. and p;. are the row and
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column marginal relative frequencies. Next, compute the expected cell counts as
€ = Np;;-

Also required in the following are a,,,, and b,,,, foru,v=1, ..., n. Let (r,, c,)
denote the row and column response of observation s. Then, a,,, = 1, 0, or -1,
depending on whetherr, <r,,r,=r,, orr,>r,, respectively. Theb,, are
similarly defined in terms of the ¢, variables.

Chi-squared Statistic

For each cell in the table, the contri butlon to x isgiven as (x; - ,,) le;. The
Pearson chi-squared statistic (denoted X ) is computed as the sum of the cell
contributions to chi-squared. It has (r — 1) (c — 1) degrees of freedom and tests
the null hypothesis of mdependence i.e., Hy:p; = p;-p;.- The null hypothesisis
rejected if the computed value of x istoo large.

The maximum likelihood equivalent of x Nes is computed as follows:

ZZX In(x; / np; )

G’is asymptotically equivalent to x and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and
Cramer's V)

There are three measures related to chi-sgquared that do not depend on sample

size:
phi, =4/x*/n

contingency coefficient, P = le(n+x2)
Cramer'sV, V =[x /(nmin(r,c))

Since these statistics do not depend on sample size and are large when the
hypothesis of independence is rejected, they can be thought of as measures of
association and can be compared across tables with different sized samples.
While both P and V have a range between 0.0 and 1.0, the upper bound of P is
actually somewhat less than 1.0 for any given table (seeKendall and Stuart 1979,
p. 587). The significance of all three statistics is the same as that of the
statistic, chi _squar ed.

The distribution of the x2 statistic in finite sampl es approximates a chi-squared
distribution. To compute the exact mean and standard deviation of the X statistic,
Haldane (1939) uses the multinomial distribution with fixed table marginals. The
exact mean and standard deviation generally differ little from the mean and
standard deviation of the associated chi-squared distribution.
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Standard Errors and p-values for Some Measures of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-
values are reported. Estimates of the standard errors are computed in two ways.
Thefirst estimate, in Column 1 of the array st at i sti cs, isasymptoticaly valid
for any value of the statistic. The second estimate, in Column 2 of the array, is
only correct under the null hypothesis of no association. The z-scores in Column
3 of statistics are computed using this second estimate of the standard errors. The
p-valuesin Column 4 are computed from this z-score. See Brown and Benedetti
(1977) for adiscussion and formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, ¢, P, and V, do not require any ordering of the row
and column categories. Functioni sl s_f _cont i ngency_t abl e also computes
several measures of association for tables in which the rows and column
categories correspond to ranked observations. Two of these tests, the product-
moment correlation and the Spearman correlation, are correlation coefficients
computed using assigned scores for the row and column categories. The cell
indices are used for the product-moment correlation, while the average of thetied
ranks of the row and column marginalsis used for the Spearman rank correlation.
Other scores are possible.

Gamma, Kendall'st,, Stuart'st,, and SomerdD are measures of association that
are computed like a correlation coefficient in the numerator. In all these
measures, the numerator is computed as the “covariance” betwegn the
variables and,, variables defined above, i.e., as follows:

> D Awbw

Recall thal,, andb,, can take valuesl, O, or 1. Since the produaf,b,, = 1
only if a,, andb,, are both 1 or are bothl, it is easy to show that this
“covariance” is twice the total number of agreements minus the number of
disagreements, where a disagreement occurs ayhiep = —1.

Kendall'st, is computed as the correlation betweenafjevariables and thi,,,,
variables (see Kendall and Stuart 1979, p. 593). In a rectangularrtatod, (
Kendall'st, cannot be 1.0 (if all marginal totals are positive). For this reason,
Stuart suggested a modification to the denominatoiimfvhich the denominator
becomes the largest possible value of the “covariance.” This maximizing value is
approximatelynzr’rV(m— 1), wherem = min (, ¢). Stuart'st,. uses this

approximate value in its denominator. For lange. = mt,/(m - 1).

”

Gamma can be motivated in a slightly different manner. Because the “covariance
of thea,, variables and thb,, variables can be thought of as twice the number of
agreements minus the disagreemens-2D), whereA is the number of

agreements arid is the number of disagreements, Gamma is motivated as the
probability of agreement minus the probability of disagreement, given that either
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agreement or disagreement occurred. Thisis shown as
y=(A-D)/(A+D).

Two definitions of Somers'D are possible, one for rows and a second for

columns. Somer® for rows can be thought of as the regression coefficient for
predictinga,,, fromb,,. Moreover, Somer’'® for rows is the probability of
agreement minus the probability of disagreement, given that the column variable,
b,,, is not 0. Somer®d for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients. The measures in this section do not require
any ordering of the row or column variables. They are based entirely upon
probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table.

Under the null hypothesis of independence, choose the column with the highest
column marginal probability for all rows. In this case, the probability of
misclassification for any row is 1 minus this marginal probability. If

independence is not assumed within each row, choose the column with the highest
row conditional probability. The probability of misclassification for the row

becomes 1 minus this conditional probability.

Define the optimal prediction coefficient |, for predicting columns from rows
as the proportion of the probability of misclassification that is eliminated because
the random variables are not independent. It is estimated by

(1-pm) -~ Z Pim)

1- P.m

wherem is the index of the maximum estimated probability in the my) or

row margin p,,,). A similar coefficient is defined for predicting the rows from the
columns. The symmetric version of the optimal predickiamobtained by
summing the numerators and denominatods. of andA,. | ,, then dividing.
Standard errors for these coefficients are given in Bishop et al. (1975, p. 388).

}‘c|r =

A problem with the optimal prediction coefficietss that they vary with the
marginal probabilities. One way to correct this is to use row conditional
probabilities. The optimal predictioxr coefficients are defined as the
corresponding\ coefficients in which first the row (or column) marginals are
adjusted to the same number of observations. This yields

Z max; pj; — max; (Z Pjji)

R_maxj(z Pjji)

0
}\c|r
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wherei indexes the rows, j indexes the columns, and p;; is the (estimated)
probability of columnj given row i.
)\D

rlc
issimilarly defined.

Goodman and Kruskal t: A second kind of prediction measure attempts to
explain the proportion of the explained variation of the row (column) measure
given the column (row) measure. Define the total variation in the rows as follows:

n/2—(in2,)/(2n)

Note that thisis 1/(2n) times the sums of squares of thea,,,, variables.

With this definition of variation, the Goodman and Kruskal T coefficient for rows
is computed as the reduction of the total variation for rows accounted for by the
columns, divided by the total variation for the rows. To compute the reduction in
the total variation of the rows accounted for by the columns, note that the total
variation for the rows within columnj is defined as follows:

gj = X.; /2—(in]2)/(2xi.)

Thetotal variation for rows within columns is the sum of the q; variables.
Consistent with the usual methods in the analysis of variance, the reduction in the
total variation is given as the difference between the total variation for rows and
the total variation for rows within the columns.

Goodman and Kruskal’st for columns is similarly defined. See Bishop et al.
(1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in
the log-likelihood that is achieved by the most general model over the
independence model, divided by the marginal log-likelihood for the rows. This is
given by the following equation:

Z X Iog(xi. x.; I nx; )

Uy =2
e z x;. log(x;. /n)

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numeratbr.asandU, | , but
averages the denominators of these two statistics. Standard ertdraréogiven
in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It
tests the null hypothesis that no row populations are identical, using average ranks
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for the column variable. The Kruskal-Wallis statistic for columnsis similarly
defined. Conover (1980) discusses the Kruskal-Wallistest.

Test for Linear Trend: When there are two rows, it is possible to test for a
linear trend in the row probabilitiesif it is assumed that the column variableis
monotonically ordered. In this test, the probabilities for row 1 are predicted by
the column index using weighted simple linear regression. This slope is given by

zx-i(xli 1% =% In)(j =)
p=-

zx-i(j‘j_)z

J

where
j_ZZX.jj/n
]

is the average column index. An asymptotic test that the slope is 0 may then be
obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for alinear trend in the column probabilitiesis
computed. Thistest assumes that the rows are monotonically ordered.

Kappa: Kappaisameasure of agreement computed on square tables only. In the
kappa statistic, the rows and columns correspond to the responses of two judges.
The judges agree along the diagonal and disagree off the diagonal. Let

pozzxii/”

denote the probability that the two judges agree, and let

pc:ZQi/n
T

denote the expected probability of agreement under the independence model.
Kappaisthen given by (p, — p)/(1 - p,).

McNemar Tests. The McNemar test is atest of symmetry in asquare
contingency table. In other words, it is atest of the null hypothesisH,:8;; = 6;;.
The multiple degrees-of-freedom version of the McNemar test withr (r — 1)/2
degrees of freedom is computed as follows:

2
(x5 = x;1)
B (Xij +in)

The single degree-of-freedom test assumes that the differences, x; - x;;, are dl in
one direction. The single degree-of-freedom test will be more powerful than the
multiple degrees-of-freedom test when this is the case. The test statistic is given
asfollows:
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™M

: (x5 = ;1)

(x5 +x;)

A

1<

The exact probability can be computed by the binomial distribution.
Examples

Example 1

The following example is taken from Kendall and Stuart (1979) and involves the
distance vision in the right and left eyes. Output contains only the p-value.

#i ncl ude <insls. h>

voi d main()

int n_rows = 4,
int n_colums = 4
float table[4]][4] = {821, 112, 85, 35,
116, 494, 145, 27,
72, 151, 583, 87,
43, 34, 106, 331};
float p_val ue;
p_value = insls_f_contingency_table(n_rows, n_columms,

& abl e[0][0], 0);
printf ("P-value = %0.6f.\n", p_value);

}
Output
P-val ue = 0. 000000.
Example 2

The following example, which illustrates the use of kappa and McNemar tests,
uses the same distance vision data as the previous example. The available
statistics are output using optional arguments.

#i ncl ude <insls. h>

voi d main()

i nt n_rows = 4;

i nt n_colums = 4;

i nt df 1, df 2;

fl oat table[16] = {821.0, 112.0, 85.0, 35.0,
116. 0, 494.0, 145.0, 27.0,
72.0, 151.0, 583.0, 87.0,
43.0, 34.0, 106.0, 331.0};

fl oat p_val uel, p_value2, chi_squared, g_squared;
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fl oat *expected, *chi _squared_contributions;
fl oat *chi _squared_stats, *statistics;
char *|abel s[] = {
"Exact nean",
"Exact standard deviation",
"Phi ",
"pr
" Cramer’s V"};
char *stat_row_labels[] = {"Gamma", "Tau B", "Tau C",
"D-Row", "D-Column", "Correlation”, "Spearman",
"GK tau rows", "GK tau cols.", "U - sym.", "U - rows",
"U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",
"I-star-rows", "l-star-col.", "Lin. trend",
"Kruskal row", "Kruskal col.", "Kappa", "McNemar",
"McNemar df=1"};
char *stat_col_labels[] = {","statistic", "standard error",
"std. error under Ho", "t-value testing Ho",
"p-value'};

imsls_f_contingency_table (n_rows, n_columns, table,
IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_valuel,
IMSLS_LRT, &df2, &g_squared, &p_value2,
IMSLS_EXPECTED, &expected,
IMSLS_CONTRIBUTIONS,

&chi_squared_contributions,
IMSLS_CHI_SQUARED_STATS, &chi_squared_stats,
IMSLS_STATISTICS, &statistics,

0);

printf("Pearson chi-squared statistic ~ %11.4f\n", chi_squared);
printf("p-value for Pearson chi-squared %211.47\n", p_valuel);

printf("degrees of freedom %211d\n", dfl);
printf("G-squared statistic %211.4f\n", g_squared);
printf("p-value for G-squared %11.4f\n", p_value2);
printf("degrees of freedom %211d\n", df2);
imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4,
table,
IMSLS_WRITE_FORMAT, "%11.1f",
0);
imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5,
expected,
IMSLS_WRITE_FORMAT, "%11.2f",
0);
imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n",
5,5,

chi_squared_contributions,
IMSLS_WRITE_FORMAT, "%11.2f",
0);

imsls_f_write_matrix("* * * Chi-square Statistics * * *\n",
5,1,
chi_squared_stats,
IMSLS_ROW _LABELS, labels,
IMSLS_WRITE_FORMAT, "%11.4f",
0);

imsls_f_write_matrix("* * * Table Statistics * * *\n",
23, 5,
statistics,
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| MSLS ROW LABELS, stat_row | abels,
| MSLS COL_LABELS, stat_col | abels,

| MSLS_WRI TE_FORMAT, "90. 4f",

0);

}
Output

Pearson chi-squared statistic 3304. 3682
p-val ue for Pearson chi-squared 0. 0000
degrees of freedom 9
G squared statistic 2781. 0188
p-val ue for G squared 0. 0000
degrees of freedom 9

* * * Table Values * * *

1 2 3 4
1 821.0 112.0 85.0 35.0
2 116.0 494. 0 145.0 27.0
3 72.0 151.0 583.0 87.0
4 43.0 34.0 106.0 331.0

* * * Expected Values * * *

1 2 3 4
1 341. 69 256. 92 298. 49 155. 90
2 253. 75 190. 80 221. 67 115.78
3 289. 77 217.88 253. 14 132. 21
4 166. 79 125. 41 145. 70 76.10
5 1052. 00 791. 00 919. 00 480. 00

* * * Contributions to Chi-squared* * *

1 2 3 4
1 672. 36 81.74 152. 70 93.76
2 74.78 481. 84 26.52 68. 08
3 163. 66 20. 53 429. 85 15. 46
4 91. 87 66. 63 10. 82 853. 78
5 1002. 68 650. 73 619. 88 1031. 08

* * * Chi-square Statistics * * *

Exact nean 9. 0028
Exact standard devi ation 4,2402
Phi 1. 0096
P 0. 7105
Cramer's V 0.5829

* * * Table Statistics * * *

statistic standard error std. error t-value testing

under Ho Ho
Gamma 0.7757 0.0123  0.0149 52.1897
Tau B 0.6429 0.0122 0.0123 52.1897
Tau C 0.6293 0.0121 ......... 52.1897
D-Row 0.6418 0.0122 0.0123 52.1897

D-Column 0.6439 0.0122  0.0123 52.1897

1053. 00
782.00
893. 00
514. 00

3242. 00

1000. 56
651. 21

1023. 10
3304. 37
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Correl ation
Spear man

K tau rows
CK tau cols.
U- sym

U- rows

U - cols.
Lanbda- sym
Lanbda-r ow
Lanbda- col

| -star-rows
| -star-col
Lin. trend
Kruskal row
Kruskal col
Kappa
McNemar
McNemar df =1

Gamma

Tau B

Tau C

D- Row

D- Col um
Correl ation
Spear man

K tau rows
CK tau cols.
U- sym

U- rows

U - cols.
Lanbda- sym
Lanbda- r ow
Lanbda- col

| -star-rows
| -star-col
Lin. trend
Kruskal row
Kruskal col
Kappa
McNemar
McNemar df =1

0. 6926 0.0128

0. 6939 0. 0127

0. 3420 0.0123

0. 3430 0.0122

0.3171 0. 0110

0.3178 0. 0110

0. 3164 0. 0110

0.5373 0.0124

0.5374 0.0126

0. 5372 0.0126

0. 5506 0.0136

0. 5636 0. 0127
1561. 4861 3. 0000
1563. 0300 3. 0000

0.5744 0.0111

4.7625 6. 0000

0. 9487 1. 0000

p- val ue

0. 0000

0. 0000

0. 0000

0. 0000

0. 0000

0. 0000

0. 0000

0. 0000

0. 0000

0. 0000

0. 5746

0. 3301

Warning Errors
| MBLS_DF_GT_30

| MBLS_EXP_VALUES TOO SMALL

0.0172 40. 2669

0. 0127 54. 6614

0.0106 | 54.3583

. 0. 3459
The degrees of freedom for

“IMSLS_CHI_SQUARED” are
greater than 30. The exact mean,
standard deviation, and the normal
distribution function should be
used.

Some expected values are less than
#. Some asymptotig-values may
not be good.
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| MSLS_PERCENT_EXP_VALUES LT_5 Twenty percent of the expected
values are calculated less than 5.

exact_enumeration

Computes exact probabilititesin atwo-way contingency table using the total
enumeration method.

Synopsis
#include <insls. h>

float i sl s_f_exact_enuneration (int n_rows, int n_col umms,
float table[], .., 0)

The type double function isi nsl s_d_exact _enuner ati on.

Required Arguments

int n_rows (Input)
Number of rowsin the table.

int n_col ums (Input)
Number of columnsin the table.

float tabl e[] (Input)
Array of lengthn_r ows x n_col unms containing the observed countsin
the contingency table.

Return Value

The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is taken in the Neyman-
Pearson sense. Tpevalue is “two-sided”.

Synopsis with Optional Arguments
#include <insls. h>

float i msl s_f_exact_enuneration (int n_rows, int n_col ums, float
tabl e[],
| MSBLS_PROB_TABLE, float *prt,
| MSLS P_VALUE, float *p_val ue,
| MBLS_CHECK_NUMERI CAL_ERROR, float *check,
0)

Optional Arguments

| MSLS_PROB_TABLE, float *prt (Output)
Probablitity of the observed table occuring, given that the null
hypothesis of independent rows and columns is true.
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I MSBLS_P_VALUE, float *p_val ue (Output)
The p-value for independence of rows and columns. The p-value
represents the probability of a more extreme table where “extreme” is
taken in the Neyman-Pearson sense.Falue is “two-sided”.

Thep-value is also returned in functional form (see “Return Value”).

A table is more extreme if its probability (for fixed marginals) is less
than or equal tprt .

| MBLS_CHECK_NUMERI CAL_ERROR, float *check (Output)
Sum of the probabilities of all tables with the same marginal totals.
Parameter check should have a value of 1.0. Deviation from 1.0
indicates numerical error.

Description

Functioni nsl s_f _exact _enumer ati on computes exact probabilities for an

x ¢ contingency table for fixed row and column marginals (a marginal is the
number of counts in a row or column), wheren_r ows andc =n_col ums.

Letf; denote the count in roixand columrj of a table, and Ief. andf.; denote

the row and column marginals. Under the hypothesis of independence, the
(conditional) probability of the fixed marginals of the observed table is given by

r c
|‘J fi.!l_l !
P
f,,!””fij!

1= ]:

wheref.. is the total number of counts in the talile.corresponds to output
argumenprt .

A “more extreme” tabl& is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for ¥afite

the same marginal sums) is less than the conditional probability computed for the
observed table. The user should note that this definition can be considered “two-
sided” in the cell counts.

Because nsl s_f _exact _enuner at i on used total enumeration in computing
the probability of a more extreme table, the amount of computer time required
increases very rapidly with the size of the table. Tables with a large totalffcount
or a large value af x ¢ should not be analyzed using

i msl s_f _exact _enuner ati on. In such cases, try using

i msl s_f _exact _networKk.

Example

In this example, the exact conditional probability for the2contingency table
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8 12
8 2
is computed.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d main()

{
float p;
float table[4] = {8, 12,
8, 2};
p = inmsls_f_exact_enuneration(2, 2, table, 0);
printf("p-value = 9. 4f\n", p);
}
Output
p-val ue = 0. 0577

exact_network

Computes Fisher exact probabilitites and a hybrid approximation of the Fisher
exact method for atwo-way contingency table using the network algorithm.

Synopsis
#include <i nsl's. h>

float i msl s_f _exact _network (int n_rows, int n_col umms,
float table[], .., 0)

The type double function isi nsl s_d_exact _net wor k.

Required Arguments

int n_rows (Input)
Number of rowsin the table.

int n_col ums (Input)
Number of columnsin the table.

float tabl e[] (Input)
Array of lengthn_r ows x n_col umms containing the observed counts
in the contingency table.
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Return Value

The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is takenahléyman-
Pearson sense. &p-value is “two-sided”.

Synopsis with Optional Arguments
#include <insls. h>

float i msl s_f_exact_network (int n_rows, int n_col umms,

float table[],

| MSBLS_PROB_TABLE, float *prt,

| MSLS P_VALUE, float *p_val ue,

| MBLS_APPROXI MATI ON_PARAMETERS, float expect,
float percent, float expected_mi ni num

| MBLS_NO_APPROXI MATI ON,

| MSLS_WORKSPACE, int factorl, int factor2,
int max_attenpts, int *n_attenpts,

0)

Optional Arguments

| MSLS_PROB_TABLE, float *prt (Output)
Probablitity of the observed tabbccuring given that the null hypothesis
of independent rows and columns is true.

| MSLS_P_VALUE, float *p_val ue (Output)
The p-value for independence of rows and columns Fhialue
represents the probability of a more extreme table where “extreme” is in
the Neyman-Pearson senseephval ue is “two-sided”. Thep-value is
also returned in functional form (see “Return \&u

A table is more extreme if its probability (for fixed marginals) is less
than or equaldprt.

| MSLS_APPROXI MATI ON_PARAMETERS, float expect ed, float percent,
float expected_m ni mum (Input)
Parameter expected is the expected value used in the hybrid
approximation to Fisher’s exact test algorithm for deciding when to use
asymptotic probabilities when computing path lengths. Parameter
per cent is the percentage of remaining cells that must havwaatstd
expected values greater than expect before asymptotic probabilities can
be used in computing path lengths. Paranmetpect ed_mni ni numis
the minimum cell estimated value allowed for asymptotic chi-squared
probabilities to be used.

Asymptotic probabilities are used in computing path lengths whenever
percent or more of the cells in the table have estimated expected values
of expect or more, with no cell having expected value less than

expect ed_mi ni rum See the “Description” section for detall
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Defaults: expect ed =5.0, percent =80.0,
expect ed_mi ni mum=1.0
Note that these defaults correspond to“Bechran” condition.

I MSLS_NO_APPROXI MATI ON,
The Fisher exact test is used. Argunsetpect ed, per cent , and
expect ed_ni ni mumare ignored.

| MSLS_WORKSPACE, int factorl, int factor2,
int max_attenpts, (Input)
int *n_attenpts (Output)
The network algorithm requires a large amount of workspace. Some of
the workspace requirements are well-defined, while most of the
workspace requirements can only be estimated. The estimate is based
primarily on table size.

Functini msl s_f _exact _enuner at i on allocates a default amount of
workspace suitable for small problems. If the algorithm determines that
this initial allocation of workspace is inadaquate, the memory is freed, a
larger amount of memory allocated (twice as much as the previous
allocation), and the network algorithm is re-started. The algorithm
allows for up tavex_at t enpt s attempts to complete the algorithm.

Because each attempt requires computer time, it is suggested that
f act or 1 andf act or 2 be set to some large numbers (like 1,000 and
30,000) if the problem to be solved is large. It is suggested that
fact or 2 be 30 times larger thdract or 1. Although

i msl s_f _exact _enuner at i on will eventually work its way up to a
large enough memory allocation, it is quicker to allocate enough
memory initially.

The known (well-defined) workspace requirements are as follows:
Definef.. = 2Zf;; equal to the sum of all cell frequencies in the observed
table nt =f.. + 1, mx = ma (n_r ows, n_col ums),

mn = min (n_r ows, n_col ums),

t1 = ma (800+ 7mx, (5+ 2mx) (n_r ows +n_col ums + 1) ), and

t2 = m (400+ mx, + 1,n_r ows +n_col ums + 1).

The following amount of integer workspace is allocated:
3mMx + 2mn +t1.

The following amount float (or double, if using
i msl s_d_exact _net wor k) workspace is allocateaht + t2.

The remainder of the workspace that is required must be estimated and
allocated basednd act or 1 andf act or 2. The amount of integer
workspace allocated &n (f act or 1 +f act or 2). The amount of real
workspace allocated n (6f act or 1 + 2f act or 2). Variabke n is the

index for the attempt, £ n < nmax_at t enpt s.

Defaults f act or 1 =10Q f act or 2 = 300Q max_at t enpts = 10
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Description

Functioni nmsl s_f _exact _net wor k computes Fisher exact probabilities or a
hybrid algorithm approximation to Fisher exact probabilitiesfor anr x ¢
contingency table with fixed row and column marginals (amarginal is the number
of countsin arow or column), wherer =n_r ows and ¢ =n_col umms. Let f;
denote the count in row i and column j of atable, and let f; and f.; denote the row
and column marginals. Under the hypothesis of independence, the (conditional)
probability of the fixed marginals of the observed tableis given by

r C
|‘J fi.!l_l !
R
f,,!””fij!

1= 1=

wheref.. is the total number of countsin the table. P, corresponds to output
argumentprt .

A “more extreme” tabl& is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for ¥afite

the same marginal sums) is less than the conditional probability computed for the
observed table. The user should note that this definition can be considered “two-
sided” in the cell counts.

See Example for a comparison of execution times for the various algorithms.

Note that the Fisher exact probability and the usual asymptotic chi-squared
probability will usually be different. (The network approximation is often 10

times faster than the Fisher exact test, and even faster when compared to the total
enumeration method.)

Examples

Example 1

The following example demonstrates and compares the various methods of
computing the chi-squargdvalue with respect to accuracy and execution time.
As seen in the output of this example, the Fisher exact probability and the usual
asymptotic chi-squared probability (generated using function

i msl s_f _conti ngency_t abl e) can be different. Also, note that the network
algorithmwith approximation can be up to 10 times faster than the network
algorithmwithout approximation, and up to 100 times faster than the total
enumeration method.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d nmain()

int n_rows = 3;
int n_colums = 5;
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float p;
float table[15] = {20, 20, 0, O, O,
10, 10, 2, 2, 1,
0

doubl e a, b;

printf("Asynptotic Chi-Squared p-value\n");

p = inmsls_f _contingency_ table(n_rows, n_colums, table, 0);
printf("p-value = 9. 4f\n", p);

printf("\nNetwork Al gorithmw th Approximtion\n");

a =insls_ctime();
p = inmsls_f_exact_network(n_rows, n_colums, table, 0);
b =inmsls_ctine();

printf("p-value = 9. 4f\n", p);
printf("Execution tine = 940.4f\n", b-a);

printf("\nNetwork Al goritmwi thout Approximtion\n");
a insls _ctime();
p i sl s_f_exact_network(n_rows, n_colums, table,
| MSBLS_NO_APPROXI MATI ON, 0) ;
b = inmsls_ctine();
printf("p-value = 9. 4f\n", p);
printf("Execution tine = 940.4f\n", b-a);

printf("\nTotal Enuneration Method\n");

a =insls_ctime();

p i nsl s_f_exact_enuneration(n_rows, n_colums, table, 0);
b insls_ctime();

printf("p-value = 9. 4f\n", p);

printf("Execution tine = 940.4f\n", b-a);

Output
Asynptotic Chi-Squared p-val ue
p-val ue = 0. 0323

Net wor k Al gorithm w th Approxi mation
p-val ue = 0. 0601
Execution time = 0. 0400

Net wor k Al goritm wi t hout Approxi mation
p-val ue = 0. 0598
Execution time = 0. 4300

Tot al Enuneration Met hod
p-val ue = 0. 0597
Execution tinme = 3. 1400

Example 2

This document example demonstrates the optional keyword | MSLS_WORKSPACE
and how different workspace settings affect execution time. Setting the workspace
available too low results in poor performance since the algorithm will fail, re-
alocate alarger amount of workspace (afactor of 10 larger) and re-start the
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calculations (See Test #3, for which n_at t enpt s is returned with avalue of 2).
Setting the workspace available very large will provide no improvement in
performance.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d main()

int n_rows = 3;
int n_colums = 5;

float p;
float table[15] = {20, 20, 0O, O, O,
10, 10, 2, 2, 1,
20, 20, 0, O, 0};
doubl e a, b;
int i, n_attenpts, sinulation_size = 10;
printf("Test #1, factorl = 1000, factor2 = 30000\n");
a =insls_ctime();
for (i=0; i<simulation_size; i++) {
p = inmsls_f_exact_network(n_rows, n_colums, table,

I MSLS_NO_APPROXI MATI ON,

| MSLS_WORKSPACE, 1000, 30000, 10, &n_attenpts, O0);
}
b =imsls_ctine();
printf("n_attenpts = 9%d\n", n_attenpts);
printf("Execution tinme = %0.4f\n", b-a);

printf("\nTest #2, factorl = 100, factor2 = 3000\n");
a =insls_ctime();

for (i=0; i<simulation_size; i++) {
p = inmsls_f_exact_network(n_rows, n_colums, table,
| MSLS_NO_APPROXI MATI ON,
| MSLS_WORKSPACE, 100, 3000, 10, &n_attenpts, 0);
}
b =inmsls_ctine();

printf("n_attenpts = 9%d\n", n_attenpts);
printf("Execution tinme = %0.4f\n", b-a);

printf("\nTest #3, factorl = 10, factor2 = 300\n");
a =insls_ctime();

for (i=0; i<simulation_size; i++) {
= imsl s_f_exact_network(n_rows, n_columms, table,
| MSLS_NO_APPROXI MATI ON,
| MSLS_WORKSPACE, 10, 300, 10, &n_attenpts, 0);
}
b = inmsls_ctine();

printf("n_attenpts = 9%2d\n", n_attenpts);
printf("Execution tinme = %0.4f\n", b-a);
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Output

Test #1, factorl = 1000, factor2 = 30000
n_attenpts = 1
Execution tine = 4, 3700

Test #2, factorl = 100, factor2 = 3000
n_attenpts = 1
Execution tine = 4. 2900

Test #3, factorl = 10, factor2 = 300
n_attenpts = 2
Execution tine = 8. 3700

Warning Errors

| MSLS HASH TABLE_ERRCR 2 The value “ldkey” = # is too small. “Idkey”
is calculated as
“factorl™pow(10,’n_attempt>1) ending
this execution attempt.

| MSLS HASH TABLE_ERRCR 3 The value “ldstp” = # is too small. “Idstp”
is calculated as
“factor2™pow(10,’n_attempt>1) ending
this execution attempt.

Fatal Errors

| MSBLS_HASH TABLE_ERROR 1 The hash table key cannot be computed
because the largest key is larger than the
largest representable integer. The algorithm
cannot proceed.

categorical_glm

Analyzes categorical data using logistic, Probit, Poisson, and other generalized
linear models.

Synopsis
#include <i sl . h>

int *i msl s_f_categorical _glm(int n_observations, int n_cl ass,
int n_continuous, int nodel , float x[], ..., 0)

The typedouble function isi nsl s_d_cat egorical _glm

Required Arguments

int n_observations (Input)
Number of observations.
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int n_cl ass (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model  (Input)
Argument model specifies the model used to analyze the data. The six
models are asfollows:

model Relationship® | PDF of Response Variable
0 Exponential Poisson
1 Logistic Negative Binomial
2 Logistic Logarithmic
3 Logistic Binomial
4 Probit Binomial
5 Log-log Binomial

Note that the lower bound of the response variableis 1 for nodel =3
and is O for al other models. See the “Description” sectidor more
information about these models.

float x[] (Input)
Array of sizen_observati ons (n_cl ass +n_conti nuous) +m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that therfirst ass columns

contain data for the class variables, the mextont i nuous columns
contain data for the continuous variables, and the next column contains
the response variable. The final (and optiomah) 1 columns contain

the optional parameters.

Return Value

An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <i nsls. h>

int *i msl s_f_categorical _glm(int n_observations, int n_cl ass,
int n_continuous, int nodel , float x[],
IMSLS X _ COL_DIM int x_col _dim
I MBLS_X_COL_FREQUENCI ES, int i frq,
| MSLS_X_COL_FI XED_PARANETER, int i fi x,

*Relationship between the parameéeoy A, and a linear model of the explanatory variabke,
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| MBLS_X_COL_DI ST_PARAMETER, int i par,

I MSLS X COL_VARI ABLES, int iclass[], int i continuous[],
int iy,

I MSLS_EPS, float eps,

| MSLS_MAX_| TERATI ONS, int max_iterations,

| MS5LS_| NTERCEPT,

| MSLS_NO I NTERCEPT,

| MSLS EFFECTS, int n_effects, int n_var_effects[],
int i ndi ces_effects,

| MBLS_ | NI TI AL_EST | NTERNAL,

I MSLS_ | NI TI AL_EST_I NPUT, int n_coef _i nput,
float estimates[],

| MSBLS_MAX_CLASS, int max_cl ass,

I MSLS CLASS I NFQ, int **n_cl ass_val ues,
float **cl ass_val ues,

| MSLS CLASS | NFO USER, int n_cl ass_val ues[],
float cl ass_val ues[],

| MSLS CCOEF_STAT, float **coef statistics,

| MSLS CCEF_STAT_USER, float coef statistics[],

I MSLS CRI TERI ON, float *criterion,

| MSLS_COv, float **cov,

| MSLS COV_USER, float cov|[],

| MSLS_MEANS, float **nmeans,

| MSLS MEANS USER, float neans[],

| MSBLS_CASE_ANALYSI S, float **case_anal ysi s,

| MSLS CASE ANALYSI S USER, float case_anal ysis[],

| MSLS LAST_STEP, float **I ast _st ep,

| MSLS LAST STEP_USER, float | ast _step[],

| MSLS_OBS_STATUS, int **obs_st at us,

| MSLS OBS STATUS USER, int obs_status[],

| MSLS | TERATIONS, int *n, float **iterati ons,

| MSLS | TERATI ONS_USER, int *n, float iterations[],

I MSLS_N_ROWS_M SSI NG, int *n_r ows_mi ssi ng,

0)

Optional Arguments

IMSLS X _COL_DIM int x_col _di m (Input)
Column dimension of input array x.
Default: x_col _di m=n_cl ass + n_cont i nuous

| MSBLS_FREQUENCI ES, int ifrg (Input)
Column number of x containing the frequency of response for each
observation.

| MBLS_FI XED_PARAMETER, int ifix (Input)
Column number inx containing afixed parameter for each observation
that is added to the linear response prior to computing the model
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parameter. The ‘fixed’ parameter allows one to test hypothesis about the
parameters via the log-likelihoods.

| MBLS_DI ST_PARAMETER, int i par  (Input)
Column number i containing the value of the known distribution
parameter for each observation, wheli€][i par ] is the known
distribution parameter associated with it observation. The meaning
of the distributional parameter depends upon model as follows:

model Parameter Meaning of parameter [i ] [i par]
0 E In (E) is a fixed intercept to be included in
the linear predictor (i.e., thaffset).
1 S Number of successes required for the
negative binomial distribution.
2 - Not used for this model.
3-5 N Number of trials required for the binomia|
distribution.

Default: Whemmodel # 2, each observation is assumed to have a
parameter value of 1. Whemdel = 2, this parameter is not referenced.

| MSBLS_CREATE_NEW X, int iclass[], int i continuous[], int iy
(Input)
This keyword allows specification of the variables to be used in the
analysis and overrides the default ordering of variables described for
input argument. Columns are numbered 0xocol _di m To avoid
errors, always specify the keywdrfiSLS_X_COL_DI Mwhen using this
keyword.

Argumenti cl ass is an index vector of length cl ass containing the
column numbers of that correspond to classification variables.

Argumenti cont i nuous is an index vector of length cont i nuous
containing the column numbersyothat correspond to continuous
variables.

Argumenti y indicates the column of which contains the independent
variable.

I MSLS_EPS, float eps (Input)
Argumenteps is the convergence criterion. Convergence is assumed
when the maximum relative change in any coefficient estimate is less
thaneps from one iteration to the next or when the relative change in
the log-likelihood, criterion, from one iteration to the next is less than
eps/100.0.
Default:eps = 0.001

| MSLS_MAX_| TERATI ONS, int max_iterations (Input)
Maximum number of iterations. Usex_i t er ati ons = 0 to compute
the Hessian, stored @ov, and the Newton step, storedgin, at the
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initial estimates (The initial estimates must be input. Use keyword
| MBLS_I NI TI AL_EST_| NPUT).
Default: max_i t er ati ons =30

| MSLS_| NTERCEPT, or

| MBLS_NO_| NTERCEPT,
By default, or if | MSLS_I NTERCEPT is specified, the intercept is
automatically included in the model. If | MSBLS_NO | NTERCEPT is
specified, there is no intercept in the model (unless otherwise provided
for by the user).

| MSBLS_EFFECTS, int n_effects, int n_var_effects[],
int i ndi ces_effects[] (Input)
Variable n_ef f ect s isthe number of effects (sources of variation) in
themodel. Variablen_var _ef f ect s isan array of lengthn_effects
containing the number of variables associated with each effect in the
model. Argumenti ndi ces_ef f ect s isan index array of length
n_var_effects [0] + n_var_effects [1] +
+ n_var_effects [n_effects —1]. Thefirst n_var_effects [0]
elements give the column numbers of x for each variablein the first
effect. The next n_var _ef f ect s [1] elements give the column numbers
for each variable in the second effect. ... Thelast
n_var _effects [n_effects — 1] elements give the column numbers
for each variable in the last effect.

I MSLS_ | NI TI AL_EST_| NTERNAL, or

I MSLS_ | NI TI AL_EST_I NPUT, int n_coef _i nput, float esti mat es][]
(Input)
By default, or if 1 MSLS_I NI T_I NTERNAL is specified, then unweighted
linear regression is used to obtain initial estimates. If
I MSLS_ | NI TI AL_EST_| NPUT is specified, then the n_coef _i nput
elements of estimates contain initial estimates of the parameters (which
requires that the user know the number of coefficients in the model prior
tothecal toi msl s_f _categorical _gl m.

| MBLS_MAX_CLASS, int max_cl ass (Input)
An upper bound on the sum of the number of distinct values taken on by
each classification variable.
Default: max_cl ass =n_observati ons xn_cl ass

I MSBLS_CLASS_I NFQ, int **n_cl ass_val ues, float **cl ass_val ues
(Output)
Argument n_cl ass_val ues the address of a pointer to the internally
alocated array of length n_cl ass containing the number of values
taken by each classification variable; the i-th classification variable has
n_cl ass_val ues [i] distinct values. Argument cl ass_val ues isthe
address of a pointer to the internally allocated array of length
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n_cl ass-1
n_cl ass_val ues]i]
1=0

containing the distinct values of the classification variables in ascending
order. Thefirst n_cl ass_val ues [0] elements of cl ass_val ues
contain the values for the first classification variables, the next

n_cl ass_val ues [1] elements contain the values for the second
classification variable, etc.

I MSLS _CLASS | NFO USER, int n_cl ass_val ues[],
float cl ass_val ues[] (Output)
Storage for arraysn_cl ass_val ues and cl ass_val ues is provided
by the user. See| MSLS_CLASS_| NFO.

| MBLS_CCEF_STAT, float **coef _statistics (Output)
Address of a pointer to an internally allocated array of size
n_coef fi ci ent' s x 4 containing the parameter estimates and
associated statistics.
Column Statistic
0 Coefficient Estimate.
1 Estimated standard deviation of the estimated coefficient.

2 Asymptotic normal score for testing that the coefficient is
zero.

3 The p-value associated with the normal score in column 2.

| MBLS_CCEF_STAT_USER, float coef _statistics[] (Output)
Storage for array coef _st ati sti cs isprovided by the user. See
| MBLS_COEF_STAT.

| MSLS_CRI TERI ON, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the
log-likelihood.

I MSLS_COv, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients xn_coefficients containing the estimated
asymptotic covariance matrix of the coefficients. For
max_i t erati ons =0, thisis the Hessian computed at the initial
parameter estimates.

| MSLS_COV_USER, float cov[] (Quput)
Storage for array cov is provided by the user. See | MSLS_COV above.

| MSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the
means of the design variables. The array is of lengthn_coef fici ents
if I MBLS_NO_| NTERCEPT is specified, and of length
n_coeffici ents — 1 otherwise.
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| MSLS_MEANS_USER, float neans[] (Output)
Storage for array means is provided by the user. See | MSLS_MEANS.

| MSLS_CASE_ANALYSI S, float **case_anal ysi s (Output)
Address of a pointer to the internally allocated array of size
n_observat i ons x 5 containing the case analysis.

Column Statistic

0 Predicted mean for the observation if model = 0. Other-
wise, contains the probability of successon asingletrial.

1 Theresidua.

2 The estimated standard error of the residual.

3 The estimated influence of the observation.

4 The standardized residual .

Case statistics are computed for all observations except where missing
values prevent their computation.

| MSBLS_CASE_ANALYSI S_USER, float case_anal ysis[] (Output)
Storage for array case_anal ysi s isprovided by the user. See
| MBLS_CASE_ANALYSI S.

| MBLS_LAST_STEP, float **| ast_step (Output)
Address of a pointer to the internally allocated array of length
n_coef fi ci ent s containing the last parameter updates (excluding step
halvings). For max_i t erati ons =0, | ast _st ep containstheinverse
of the Hessian times the gradient vector, all computed at the initial
parameter estimates.

| MSLS_LAST_STEP_USER, float | ast_step[] (Output)
Storage for array | ast _st ep isprovided by the user. See
| MBLS_LAST_STEP.

| MSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally alocated array of length
n_obser vat i ons indicating which observations are included in the
extended likelihood.

obs_status [i] Status of observation

0 Observation i isin the likelihood

1 Observation i cannot be in the likelihood because
it contains at least one missing valueinx.

2 Observation i isnot in the likelihood. Its

estimated parameter isinfinite.

| MBLS_| TERATIONS, int *n, float **iterations (Output)
Address of a pointer the internally allocated array of size
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n_observati ons x 5 containing information about each iteration of the
analysis.
Column  Statistic

0 Method of iteration. Equal to 0 if aQ-N step was taken.
Equal to 1if aN-R step was taken.

1 Iteration number

2 Step Size

3 Maximum scaled coefficient update
4 Log-likelihood

| MBLS_| TERATI ONS_USER, int *n, float iterations[] (Output)

Storage for array iterations is provided by the user. See
| MSLS_| TERATI ONS.

| MSLS_OBS_STATUS_USER, int obs_status[] (Output)

Storage for array obs_st at us isprovided by the user. See
| MBLS_OBS_STATUS.

I MSBLS_N_ROAS_M SSI NG, int *n_rows_ni ssing (Output)

Number of rows of datathat contain missing valuesin one or more of the
following arrays or columns of x; i par,iy,ifrq,ifix,iclass,
i continuous, orindi ces_effects.

Remarks

1.

Dummy variables are generated for the classification variables as follows:
An ascending list of all distinct values of each classification variableis
obtained and stored in cl ass_val ues. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable
isone. See keyword | MSLS_LEAVE_OUT_LAST for optional argument

I MSBLS DUMW inroutinei nsl s _f regressors_for_gl m(Chapter 2).

The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Description

Functioni msl s_f _cat egori cal _gl muses iteratively reweighted least squares
to compute (extended) maximum likelihood estimates in some generalized linear
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modelsinvolving categorized data. One of several models, including the probit,
logistic, Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation;
or, through the use of vector f r equenci es, each vector can represent several
observations. Also note that classification variables and their products are easily
incorporated into the models via the usual regression-type specifications.

The modelsavailableini nsl s_f _cat egori cal _gl mare:

Model PDF of the Response Parameterization
Variable
0 fy)=Q, exp()) /¥ A =N xexp(w+n)
I o e .. G|
f(y)_( y-1 je (-9) 1+exp(w+n)
2 f(y)=(1-0)"/(yin0) )
1+exp(w+n)
3 - exp(w+n)
—| Nlgy(q— Ny 0=—~ ‘7
f(y) (y 67(1-6) 1+exp(w+n)
4 —| N |qy N-y
f(y)=|y [67(1-6) 0= (w+n)
5 —_| N |qy N-y
fly)=|y p°(1-9) B=1-exp(-exp (w+n))

Here, ® denotes the cumulative normal distribution, N and Sare known
distribution parameters specified for each observation viathe par anet er vector,
and wis an optional fixed parameter of the linear response, y;, specified for each
observation. (If | MSLS X COL_FI XED_PARAMETERis not specified, then wis
taken to be 0.) Since the log-log model (model =5) probabilities are not
symmetric with respect to 0.5, quantitatively, aswell as qualitatively, different
models result when the definitions of “success” and “failure” arecimémged in
this distribution. In this model and all other models inva\dn® is taken to be
the probability of a “success”.

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistand validity.

2. Estimates of the means of the “independent” or design variables are
computed. The éguency or the observation in all but binomial
distribution models is taken from vector frequencies. In binomial
distribution models, the frequency is taken as the product of
n=paraneter [i]jandfrequenci es [i]. Means are computed as
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= E fiX
2!
By default, and when | MSLS | NI T_I NTERNAL is specified, initial
estimates of the coefficients are obtained (based upon the observation
intervals) as multiple regression estimates relating transformed
observation probabilities to the observation design vector. For example,
in the binomial distribution models, 8 may be estimated as

6= y[i]/par anet er[i]
and, when nodel = 3, thelinear relationship is given by

In(6/(1-6)) = xp

whileif nodel =4, @' (6) = X3. When computing initial estimates,
standard modifications are made to prevent illegal operations such as
division by zero. Regression estimates are obtained at this point, as well
as later, by use of functioni nsl s_f _regressi on (Chapter 2).

Newton-Raphson iteration for the maximum likelihood estimatesis
implemented viaiteratively re-weighted least squares. Let

lP(xiT B)

denote the log of the probability of the i-th observation for coefficients
B. In the least-squares model, the weight of thei-th observation istaken
as the absol ute value of the second derivative of

llJ(xiT B)
with respect to
Yi=x'B

(times the frequency of the observation), and the dependent variableis
taken asthe first derivative W with respect to y;, divided by the square
root of the weight times the frequency. The Newton step is given by

AB= (Z‘W" (v; )‘Xi XiT)_lz yi)x

where all derivatives are evaluated at the current estimate of y and
B,a =B — APB. This step is computed as the estimated regression
coefficients in the least-squares model. Step halving is used when
necessary to ensure a decrease in the criterion.
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5. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next isless than eps or when
the relative change in the log-likelihood from one iteration to the next is
lessthan eps / 100. Convergenceis also assumed after naxi t iterations
or when step halving leads to a step size of less than 0.0001 with no
increase in the log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon
(1981). Let I, (y;) denote the log-likelihood of the i-th observation
evaluated at ;. Then, the standardized residual is computed as

@)
where
Vi
isthe value of y; when evaluated at the optimal
B

The denominator of this expression is used as the “standard error of the
residual” while the numerator is “raw” residual. Following Cook and
Weisberg (1982), the influence of théh observation is assumed to be

LD 10 ()

This quantity is a one-step approximation to the change in the estimates
when tha-th observation is deleted. Here, the partial derivatives are
with respect t@.

Programming Notes

1. Indicator (dummy) variables are created for the classification variables
using function nsl s_f _regressors_for_gl m(Chapter 2using
keywordl MBLS_LEAVE_OUT_LAST as the argument to the
| MBLS_DUMWY optional argument.

2. To enhance precision, “centering” of covariates is performed if the
model has an intercept andobser vati ons -
n_rows_ni ssi ng > 1. In doing so, the sample means of the design
variables are subracted from each observation prior to its inclusion in the
model. On convergence, the intercept, its variance, and its covariance
with the remaining estimates are transformed to the uncentered estimate
values.

3. Two methods for specifying a binomial distribution model are possible.
In the first methodf r equenci es contains the frequency of the
observation whilg is 0 or 1 depending upon whether the observation is
a success or failure. In this cabes par anet er [i] is always 1. The
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model istreated as repeated Bernoulli trials, and interval observations
are not possible. A second method for specifying binomial modelsisto
usey to represent the number of successesin par anet er [i] trids. In
this case, frequencies will usually be 1.

Examples

Example 1

The first example is from Prentice (1976) and involves the mortality of beetles
after five hours exposure to eight different concentrations of carbon disulphide.
The table below lists the number of beetles exposed (N) to each concentration
level of carbon disulphide (X, given aslog dosage) and the number of deaths
which result (y). The datais given asfollows:

Log Dosage Number of Number of Deaths
Beetles Exposed
1.690 59 6
1.724 60 13
1.755 62 18
1.784 56 28
1.811 63 52
1.836 59 53
1.861 62 61
1.883 60 60

The number of deaths at each concentration level are fitted as a binomial response
using logit (model = 3), probit (nodel = 4), and log-log

(model =5) models. Note that the log-log model yields a smaller absolute log
likelihood (14.81) than the logit model (18.78) or the probit model (18.23). This
is to be expected since the response curve of the log-log model has an asymmetric
appearance, but both the logit and probit models are symmetric about 6 = 0.5.

Example 2

Consider the use of aloglinear model to analyze survival-time data. Laird and
Oliver (1981) investigate patient survival post heart valve replacement surgery.
Surveilance after surgery of the 109 patientsincluded in the study ranged from 3
to 97 months. All patients were classified by heart valve type (aortic or mitral)
and by age (lessthan 55 years or at least 55 years). The data could be considered
as athree-way contingency table where patients are classified by valve type, age,
and survival (yes or no). However, it would be inappropriate to analyze this data
using the standard methodology associated with contingency tables; since, this
methodol ogy ignores survival time.

292 « categorical_glm

IMSL C/Stat/Library



Consider avariable, say exposure time (E;), that is defined as the sum of the
length of times patients of each cross-classification are at risk. The length of time
for apatient that diesis the number of months from surgery until death and for a
survivor, the length of time is the number of months from surgery until the study
ends or the patient withdraws from the study. Now we can model the effect of A =
age and V = valve type on the expected number of deaths conditional on exposure
time. Thus, for the data (shown in the table below), assume the number of deaths
are independent Poisson random variables with means m;; and fit the following

model,

- A L3V
|OQ[E—j = U+)\i +}\J
where u isthe overall mean,
A
isthe effect of age, and
v
Aj
isthe effect of the valve type.
Heart Valve Type
Age Aortic (0) Mitral (1)
<55years (Age=0) Deaths 4 1
Exposure 1259 2082
= 55years (Age=1) Deaths 7 9
Exposure 1417 1647

From the coefficient statistics table of the output, note that the risk is estimated to
be €'*? = 3.39 times higher for older patientsin the study. Thisincreasein risk is
significant (p = 0.02). However, the decrease in risk for the mitral valve patients

is estimated to be e

isnot significant (p = 0.45).

Warning Errors
| MBLS_TOO MANY_HALVI NGS

| MSLS_TOO MANY_ | TERATI ONS

=0.72 times that of the aortic valve patients and this risk

Too many step halvings. Convergenceis
assumed.

Too many iterations. Convergenceis
assumed.
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Fatal Errors
| MBLS_TOO FEW COEF

| MBLS_MAX_CLASS TOO SMALL

| MSLS_| NVALI D_DATA 8

| MBLS_NMVAX_EXCEEDED

I MSLS_ | NI TI AL_EST_| NPUT is specified
and “n_coef_input” = #. The model
specified requires # coefficients.

The number of distinct values of the
classification variables exceeds
“max_class” = #.

“n_class_values[#]” = #. The number of
distinct values for each classification
variable must be greater than one.

The number of observations to be deleted
has exceeded “lp_max” = #. Rerun with a
different model or increase the workspace.
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Chapter 6: Nonparametric Statistics

Routines
6.1 One sample tests - Nonparametric Statistics
SIGN TEST i sign_test 296
Wilcoxon rank sum test.........cccceevvvvvevveivivnninnnns wilcoxon_sign_rank 299
Noehter’s test for cyclical trend..................... noether_cyclical_test 303
Cox and Stuarts’ sign test for trends in location
and diSPersion .......ccccceveeeeriiiiiiieeee e cox_stuart_trends_test 306
Tie StatistiCS....ooooieiiie tie_statistics 312

6.2 Two or more samples

Wilcoxon’s rank sum test .........cccccvvvvvevevveeiennnns wilcoxon_rank_sum 314
Kruskal-Wallis test.........cccccceveviiiiii kruskal_wallis_test 319
Friedman’s teSt.......cccccveiiiii friedmans_test 322
Cochran's Q teSt......uuuuuurereiriririiiiiieeeeniereeneeeneereenennns cochran_q_test 326
K-sample trends test .........coovvveiiiiii, k_trends_test 329

Usage Notes

Much of what is considered nonparametric statistics is included in other chapters.
Topics of possible interest in other chapters are: nonparametric measures of
location and scale (Chapter 1, “Basic Statisticg’nonparametric measures in a
contingency tableGhapter 5, “Categorical and Discrete Data Analysis”
measures of correlation in a contingency tableapter 3, “Correlatior); and
tests of goodness of fit and randomné3sapter 7, “Tests of Goodness of Fit
and Randomness”).

Missing Values

Most routines described in this chapter automatically handle missing values
(NaN, “Not a Number”see the introduction of this manal
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Tied Observations

Many of the routines described in this chapter contain an argument | MSLS_FUZZ in
the input. Observations that are withinf uzz of each other in absolute value are said
to be tied. Moreover, in some routines, an observation within f uzz of somevaueis
said to be equal to that value. Inroutinei nsl s_f _wi | coxon_si gn_rank

(page 299), for example, such observations are eliminated from the analysis. If
fuzz = 0.0, observations must be identically equal before they are considered to be
tied. Other positive values of f uzz allow for numerical imprecision or roundoff
error.

sign_test
Performs asign test.

Synopsis
#include <i nsl's. h>
float i msls_f_sign_test (int n_observations, float x[], ..., 0)

The type double functionisi sl s_d_si gn_t est.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of lengthn_obser vat i ons containing the input data.

Return Value

Binomial probability of n_posi ti ve_devi at i ons or more positive differences
inn_observations —n_zero_devi ati on trials. Call this value probability. If
no option is chosen, the null hypothesisis that the median equals 0.0.

Synopsis with Optional Arguments
#include <i nsls. h>

float i msls_f_sign_test (int n_observations, float x[],
| MSLS PERCENTAGE, float percent age,
| MSLS_PERCENTI LE, float percentile,
| MBLS_N_PCSI TI VE_DEVI ATl ONS,
int *n_positive_deviations,
| MSLS N _ZERO DEVI ATIONS, int *n_zero_devi ati ons,
0)
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Optional Arguments

| MSLS PERCENTAGE, float percentage (Input)
Valueintherange (0, 1). Argument per centi | e isthe
100 x per cent age percentile of the population.
Default: per cent age = 0.5

| MSLS _PERCENTI LE, float percentile (Input)
Hypothesized percentile of the population from which x was drawn.
Default: percentil e =0.0

I MSLS N _POSI Tl VE_DEVI ATI ONS, int *n_positive_devi ations
(Output)
Number of positive differencesx[j — 1] — percenti | e for
j=1,2,...,n_observations.

I MSBLS N _ZERO DEVI ATI ONS, int *n_zero_devi ati ons (Output)
Number of zero differences (ties) x[j — 1] — percenti | e for
j=1,2,...,n_observations.

Description

Functioni msl s_f _si gn_t est tests hypotheses about the proportion p of a
population that lies below a value g, where p corresponds to argument

per cent age and g corresponds to argument per cent i | e. In continuous
distributions, this can be atest that q isthe 100 p-th percentile of the population
from which x was obtained. To carry out testing, i msl s_f _si gn_t est tallies
the number of values above g inn_posi ti ve_devi ati ons. The binomial
probability of n_posi ti ve_devi ati ons or more values above q isthen
computed using the proportion p and the sample sizen_obser vat i ons
(adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative
hypotheses:

. Hy: Pr(x < q) = p (the p-th quantileis at least q)
H:Pr(x<qg)<p
Reject H,, if probability isless than or equal to the significance level

. Hy: Pr(x < g) < p (the p-th quantileis at least q)
H:Pr(x<qg)>p
Reject H,, if probability is greater than or equal to 1 minus the significance
level

. Ho: Pr (x = q) = p (the p-th quantileis )
H,: Pr((x < q) <p) or Pr((x < q) > p)
Reject H,, if probability isless than or equal to half the significance level or
greater than or equal to 1 minus half the significance level
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#i ncl ude <i sl s.

void main ()

i nt
fl oat
fl oat
-25.0,
45. 0,
probability

The assumptions are as follows:
1.  They areindependent and identically distributed.

2. Measurement scaleis at least ordinal; i.e., an ordering less than, greater
than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of p and g. For
example, to perform a matched sample test that the difference of the medians of y
and zis0.0, let p=0.5,g= 0.0, and x; =y, — z; in matched observationsy and z
To test that the median differenceisc, letq=c.

Examples

Example 1

This example tests the hypothesis that at least 50 percent of a population is
negative. Because 0.18 < 0.95, the null hypothesis at the 5-percent level of
significance is not rejected.

h>

n_observations = 19;

probability;

x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,
-4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,

-33.0, -45.0, -12.0};

= imsls_f_sign_test(n_observations, x, 0);

printf("probability = 9%40.6f\n", probability);

probability =

#i ncl ude <insls.
void main ()

i nt
i nt
fl oat
fl oat
fl oat
fl oat
-25.0,

Output
0. 179642

Example 2

This example tests the null hypothesis that at least 75 percent of apopulationis
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of
significance is rejected.

h>

n_observations = 19;

n_positive_deviations, n_zero_deviations;

probability;

percentage = 0.75

percentile = 0.0;

x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,
-4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,
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45.0, -33.0, -45.0, -12.0};

probability = insls_f_sign_test(n_observations, x, |MLS_ PERCENTAGE,
percent age, | MSLS _PERCENTI LE, percentile,
| MSLS_N _PCSI Tl VE_DEVI ATI ONS, &n_posi tive_devi ati ons,
| MSLS N ZERO DEVI ATI ONS, &n_zero_devi ations, 0);

printf("probability = %940.6f.\n", probability);

printf("Nunber of positive deviations is %d.\n",
n_positive_devi ations);

printf("Nunber of ties is %l.\n", n_zero_deviations);

Output

probability = 0. 922543.
Nunmber of positive deviations is 12.
Nunmber of ties is O.

wilcoxon_sign_rank

Performs a Wilcoxon signed rank test.

Synopsis
#include <i nsl's. h>

float *i nsl s_f _wi | coxon_si gn_rank (int n_observati ons,
floatx[], ..., 0)

The type double function isi nsl s_d_wi | coxon_si gn_r ank.

Required Arguments

int n_observations (Input)
Number of observationsin x.

float x[] (Input)

Array of lengthn_obser vat i ons containing the data.
Return Value
Pointer to an array of length two containing the values described below.

The asymptotic probability of not exceeding the standardized (to an asymptotic
variance of 1.0) minimum of (W+, W-) using method 1 under the null hypothesis
that the distribution is symmetric about 0.0.

And, the asymptotic probability of not exceeding the standardized (to an
asymptotic variance of 1.0) minimum of (W+, W-) using method 2 under the null
hypothesis that the distribution is symmetric about 0.0.
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Synopsis with Optional Arguments

#include <i nsls. h>

float * inmsls_f_wil coxon_sign_rank (int n_observati ons,
float x[],

I MSLS FUzz, float fuzz,

| MSLS_STAT, float **stat,

| MBLS_STAT USER, float stat[],

I MSLS_N_M SSI NG, float *n_ni ssi ng,
| MBLS_RETURN USER, float prob[],
0)

Optional Arguments

I MSLS FUzz, float fuzz  (Input)
Nonnegative constant used to determine tiesin computing ranks in the
combined samples. A tieis declared when two observations in the
combined sample are withinf uzz of each other.
Default valuefor f uzz is0.0.

I MSLS STAT, float **st at (Output)
Address of a pointer to an internally allocated array of length
10 containing the following statistics:

Row | Statistics

The positive rank sum, W+, using method 1.
The absolute value of the negative rank sum, W-, using method 1.

The standardized (to anasymptotic variance of 1.0) minimum of
(W+, W-) using method 1.

3 The asymptotic probability of not exceeding st at (2) under the
null hypothesis that the distribution is symmetric about 0.0.

4 The positive rank sum, W+, using method 2.
5 The absolute value of the negative rank sum, W-, using method 2.

6 The standardized (to an asymptotic variance of 1.0) minimum of
(W+, W-) using method 2.

7 The asymptotic probability of not exceeding st at (6) under the
null hypothesis that the distribution is symmetric about 0.0.

8 The number of zero observations.

9 The total number of observations that are tied, and that are not
within fuzz of zero.
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| MSBLS_STAT_USER, float stat[]  (Output)
Storage for array st at isprovided by the user.
See | MSLS_STAT.

I MSBLS_N_M SSI NG, float *n_mi ssi ng, (Output)
Number of missing valuesiny.

| MBLS_RETURN_USER, float prob[], (Output)
User alocated storage for return values.
See Return Value.

Description

Functioni nmsl s_f _wi | coxon_si gn_r ank performs aWilcoxon signed rank
test of symmetry about zero. In one sample, thistest can be viewed as a test

that the population median is zero. In matched samples, atest that the medians
of the two populations are equal can be computed by first computing difference
scores. These difference scores would then be used as input to

i msl s_f_wil coxon_sign_rank. A genera reference for the methods used is
Conover (1980).

Routinei sl s_f _wi | coxon_si gn_r ank computes statistics for two methods
for handling zero and tied observations. In the first method, observations within
f uzz of zero are not counted, and the average rank of tied observationsis used.
(Observations withinf uzz of each other are said to betied.) In the second
method, observations withinf uzz of zero are randomly assigned a positive or
negative sign, and the ranks of tied observations are randomly permuted.

The W+ and W- statistics are computed as the sums of the ranks of the positive
observations and the sum of the ranks of the negative observations, respectively.
Asymptotic probabilities are computed using standard methods (see, e.g.,
Conover 1980, page 282).

The W+ and W- statistics may be used to test the following hypotheses about the
median, M. In deciding whether to reject the null hypothesis, use the bracketed
statistic if method 2 for handling tiesiis preferred. Possible null hypotheses and
aternatives are given asfollows:
e Hy:M<0 H:M>0
Reject if stat [ 0] [or stat [ 4] ] istoo large.
e Hy:M=20 H :M<O0
Reectif stat[1] [orstat[5]]istoo large.
° HO M= O Hl M # 0
Reject if st at [ 2] [or st at [ 6] ] istoo small. Alternatively, if an asymptotic
test isdesired, reject if 2* stat[ 3] [or2* stat[7]]islessthanthe
significance level.

Tabled values of the test statistic can be found in the references. If possible,
tabled values should be used. If the number of nonzero observationsistoo large,
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then the asymptotic probabilities computed by i msl s_f _wi | coxon_si gn_r ank
can be used.

The assumptions required for the hypothesis tests are as follows:

1 The distribution of each X; is symmetric.

2 The X; are mutually independent.

3. All X;’s have the same median.

4 An ordering of the observations exists (iX§.> X, andX, > X; implies

thatX; > X;).

If other assumptions are made, related hypotheses that are more (or less)
restrictive can be tested.

Example

This example illustrates the application of the Wilcoxon signed rank test to a

test on a difference of two matched samples (matched pairs) {X1 = 223, 216,

211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that
the median difference is 10.0 (rather than 0.0) is performed by subtracting 10.0
from each of the differences prior to calliwgl coxon_si gn_r ank. As can be

seen from the output, the null hypothesis is rejected. The warning error will
always be printed when the number of observations is 50 or less unless printing is
turned off for warning errors.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d main()

{
float *stat=NULL, *result=NULL;
int nobs = 7, nnmss;
float fuzz = .0001;
float x[] ={-25., -21., -19., -15., -13., -11., -8.};
result = inmsls_f_w | coxon_sign_rank(nobs, X,
| MSLS_N_M SSI NG &nnmi ss,
| MSLS_FUzZ, fuzz,
| MSLS_STAT, &stat,
0);
printf("Statistic\t\t\tMethod 1\t Met hod 2\ n");
printf("W\t\t\t\t 93.0f\t\t 9B8.0f\n", stat[0], stat[4])
printf("W\t\t\t\t 93.0f\t\t 98.0f\n", stat[1l], stat[5])
printf("Standardi zed Mnimumt\t%. 4f\t\t9%. 4f\n", stat]
printf("p-value\t\t\t\t 96.4f\t\t 9%6.4f\n\n", stat[3], s
printf("Nunber of zeros\t\t\t93.0f\n", stat[8]);
printf("Nunber of ties\t\t\t%3.0f\n", stat[9]);
printf("Nunber of missing\t\t %l\n", nmss);

2], stat[6]):
tat[7]);
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Output

*** WARNING ERROR 4 fromimsls_f_wilcoxon_sign_rank. NOBS = 7. The nunber

* k% of observations, NOBS, is |less than 50, and exact
*okx tabl es shoul d be referenced for probabilities.
Statistic Met hod 1 Met hod 2

Wh 0 0
W 28 28

Standardized Mnimum.... -2.3664 -2.3664
p-value.................. 0. 0090 0. 0090

Nunber of zeros.......... 0

Nurmber of ties........... 0

Number of missing........ 0

noether_cyclical trend

Performs the Noether test for cyclical trend.

Synopsis
#include <insls. h>

float *insl s_f_noether_cyclical trend (int n_observations,
floatx[], ..., 0)

The type double functionisi nsl s_d_noet her _cycli cal _trend.

Required Arguments

int n_observations (Input)
Number of observationsinx. n_obser vati ons must be greater than
or equal to 3.

float x[] (Input)
Array of lengthn_obser vat i ons containing the datain chronological
order.

Return Value

Array, p, of length 3 containing the probabilities of st at [ 1] or more, st at [ 2]
or more, or st at [ 3] or more monotonic Sequences.

If stat[0] islessthan 1, p[ 0] issetto NaN (not a number).

Synopsis with Optional Arguments

#include <i nsls. h>
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float *insls_f_noether_cyclical trend ((int n_observati ons,
float x[ ],
| MSLS FUZZ, float fuzz,
| MSLS _STAT, int **stat,
| MSLS _STAT USER, int stat[],
I MSLS N M SSING int *n_m ssing,
| MSBLS_RETURN USER, float p[],
0)

Optional Arguments

I MSLS FUzz, float fuzz (Input)
Nonnegative constant used to determine tiesin computing ranks in the
combined samples. A tieis declared when two observations in the
combined sample are within fuzz of each other.
Default valuefor fuzz is0.0.

| MBLS_STAT, int **stat (Output)
Address of a pointer to an internally allocated array of length 6
containing the following statistics:

Row Statistics

stat [ 0] | Thenumber of consecutive sequences of length three used to detect
cyclical trend when tying middle elements are eliminated from the
sequence, and the next consecutive observation is used.

stat[ 1] | The number of monotonic sequences of length three in the set defined by
stat[0].

stat[2] | Thenumber of nonmonotonic sequences where tied threesomes are counted
as honmonotonic.

stat[ 3] | The number of monotonic sequences where tied threesomes are counted as
monotonic.

stat[ 4] | Thenumber of middle observations eliminated because they weretied in
forming the st at[ 0] sequences.

stat[5] | Thenumber of tied sequencesfound in forming the stat[2] and
stat[ 3] seguences. A sequenceis called atied sequence if the middie
element istied with either of the two other elements.

| MBLS_STAT_USER, int stat[] (Output)
Storage for array stat is provided by the user.
See | MSLS_STAT.

I MSBLS N M SSI NG, int *n_mi ssing (Output)
Number of missing valuesin X.
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| MSLS_RETURN_USER, float p[] (Input)
User alocated array of length 3 containing the return values.

Description

Routinei nsl s_f _noet her _cycli cal _trend performsthe Noether test for
cyclical trend (Noether 1956) for a sequence of measurements. In thistest, the
observations are first divided into sets of three consecutive observations. Each set
isthen ingpected, and if the set is monotonically increasing or decreasing, the
count variable is incremented.

The count variables, stat [ 1], stat[2],andst at [ 3], differ in the manner in
which ties are handled. A tie can occur in a set (of size three) only if the middle
element istied with either of the two ending elements. Tied ending elements are
not considered. In st at [ 1] , tied middle observations are eliminated, and a new
set of size 3 is obtained by using the next observation in the sample. Inst at [ 2],
the original set of size threeis used, and tied middle observations are counted as
nonmonotonic. Inst at [ 3] , tied middle observations are counted as monotonic.

The probabilities of occurrence of the counts are obtained from the binomial
distribution with p = 1/3, where p is the probability that a random sample of size
three from a continuous distribution is monotonic. The binomial sample sizeis, of
course, the number of sequences of size three found (adjusted for ties).

Hypothesistest:

Ho:q=Pr(X;>X;.1 > Xi_g) + PrX; < Xi_ < X;.,)<s1U3 H :1q>13
Reject if p[ 0] (or p[ 1] or p[ 2] depending on the method used for handling ties)
isless than the significance level of the test.

Assumption: The observations are independent and are from a continuous
distribution.
Example

A test for cyclical trend in a sequence of 1000 randomly generated observationsis
performed. Because of the sample used, there are no tiesand al three test
statistics yield the same result.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d main()

{

float *pval ue=NULL;

int nobs = 1000, nmiss, *stat = NULL;
float *x = NULL;

i msl s_random seed_set (123457);

x = insls_f_random uniform nobs, 0);
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pval ue = insls_f_noether_cyclical trend(nobs, x,
| MSLS_STAT, &stat,
I MSLS N M SSING &nnmi ss,
0);
insls f wite matrix("P", 1, 3, pvalue,
| MSLS_COL_NUVBER_ZERQ,

0);
imsls_i_wite_matrix("STAT", 1, 6, stat,
I MSLS_COL_NUMBER ZERO,
0);
printf("\n n mssing = %\ n", nmss);
}
Output
P
0 1 2
0.6979 0.6979 0. 6979
STAT
0 1 2 3 4 5
333 107 107 107 0 0

N missing =0

cox_stuart_trends_test

Performs the Cox and Stuart sign test for trends in location and dispersion.

Synopsis
#include <i nsls. h>

float *insls_f_cox_stuart_trends_test (int n_observations,
floatx[], ..., 0)

The type double functionisi nsl s_d_ cox_stuart_trends_test.

Required Arguments

int n_observations (Input)
Number of observationsinx. n_obser vat i ons must be greater
than or equal to 3.

float x[] (Input)
Array of lengthn_obser vat i ons containing the datain chronological
order.
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Return Value

Array, pst at , of length 8 containing the probabilities. Thefirst four elements
of pst at are computed from two groups of observations.

| pstat[1]

0 Probability of nstat[0] + nstat[2] or more negative signs
(ties are considered negative).

1 Probability of obtaining nst at [ 1] or more positive signs (ties are
considered negative).

2 Probability of nstat[0] + nstat[2] or morenegative signs (tiesare

considered positive).

3 Probability of obtaining nst at [ 1] or more positive signs (tiesare
considered positive).

Thelast four elements of pst at are computed from three groups of

observations.

4 Probability of nstat[0] + nstat[2] or morenegative signs (ties
are considered negative).

5 Probability of obtaining nst at[ 1] or more positive signs (ties are
considered negative).

6 Probability of nstat[0] + nstat[2] or morenegative signs (ties

are considered positive).

7 Probability of obtaining nst at[ 1] or more positive signs (ties are
considered positive).

Synopsis with Optional Arguments

#include <i nsls. h>

float *insls_f_cox_stuart_trends_test (int n_observations,
float x[ ],

| MSLS DI SPERSI ON, int k, int ids,
I MSLS FUzz, float fuzz,

| MSLS _NSTAT, int **nstat,

| MBLS_NSTAT USER, int nstat[],
I MSBLS_N_M SSI NG, int *n_mi ssing,

| MBLS_RETURN_USER, float pstat[],
0)
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Optional Arguments

I MSLS DI SPERSI ON, int k, int ids, (Input)
If 1 MSLS DI SPERSI ON iscalled, the Cox and Stuart tests for trendsin
dispersion are computed. Otherwise, as default, the Cox and Stuart tests
for trends in location are computed.
k isthe number of consecutive x elements to be used to measure
dispersion.
If ids iszero, therangeis used asameasure of dispersion.
Otherwise, the centered sum of squaresis used.

I MSLS FUzz, float fuzz  (Input)
Value used to determine when elementsinx aretied.

If | x[i]=x[ll islessthan or equal to fuzz, x[i] and xI[j]
aresaidtobetied. fuzz must be nonnegative. Default value for fuzz is
0.0.

IMSLS_NSTAT, int **nstat (Output)

Address of a pointer to an internally allocated array of length 8
containing the following statistics:

I nstat[I]
Number of negative differences (two groups)
Number of positive differences (two groups)

Number of zero differences (two groups)

w N B O

Number of differences used to calculate pstat[0]
through pstat[3] (two groups).

Number of negative differences (three groups)
Number of positive differences (three groups)

Number of zero differences (three groups)

~N o o b

Number of differences used to calculate pstat
[4] through pstat[7] (three groups).

IMSLS_NSTAT_USERInt nstat[] (Output)
Storage for array nstat  is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, int*n_missing (Output)
Number of missing valuesinX.

IMSLS_RETURN_USERfloat pstat[] (Input)
User dlocated array of length 8 containing the return values.
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Description

Functioni nmsl s_f cox_stuart _trends_test testsfor trendsin dispersion or
location in a sequence of random variables depending upon the call of

I MSLS_DI SPERSI ON. A derivative of the sign test is used

(see Cox and Stuart 1955).

Location Test

For the location test (Def aul t) with two groups, the observations are first
divided into two groups with the middle observation thrown out if there are an
odd number of observations. Each observation in group one is then compared
with the observation in group two that has the same lexicographical order. A
count is made of the number of times a group-one observation is less than

(nst at [ 0] ), greater than (nst at [ 1] ), or equal to (nst at [ 2] ), its counterpart in
group two. Two observations are counted as equal if they are within f uzz of one
another.

In the three-group test, the observations are divided into three groups, with the
center group losing observationsif the division is not exact. The first and third
groups are then compared as in the two-group case, and the counts are stored in
nst at [ 4] throughnst at [ 6] .

Probabilitiesin pst at are computed using the binomial distribution with sample
size equal to the number of observationsin thefirst group (nst at [ 3] or
nstat[ 7] ), and binomial probability p = 0.5.

Dispersion Test

The dispersion tests (when optional argument | MSLS DI SPERSI ONiis called)
proceed exactly as with the tests for location, but using one of two derived
dispersion measures. The input value k is used to definen_obser vat i ons/k
groups of consecutive observations starting with observation 1. The first k
observations define the first group, the next k observations define the second
group, etc., with the last observations omitted if n_obser vat i ons isnot evenly
divisible by k. A dispersion score is then computed for each group as either the
range (i ds = 0), or amultiple of the variance (i ds # 0) of the observationsin the
group. The dispersion scores form a derived sample. The tests proceed on the
derived sample as above.

Ties

Ties are defined as occurring when a group one observation iswithin f uzz of its
last group counterpart. Tiesimply that the probability distribution of X is not strictly
continuous, which means that Pr(X; > X,) # 0.5 under the null hypothesis of no trend
(and the assumption of independent identically distributed observations). When ties
are present, the computed binomial probabilities are not exact, and the hypothesis
tests will be conservative.
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Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the
corresponding observation in group 2 (two groups) or group 3 (three groups).
«  Ho:Pr(X;>X)=Pr(X,<X)=05
Hi 2 Pr(X; > X)) < Pr(X; < X))
Hypothesis of upward trend. Reject if pst at [ 2] (or pst at [ 6] ) islessthan
the significance level.
s Hy:Pr(X;>X) =Pr(X;<X) =05
H : Pr(X; > X)) > Pr(X; < X))
Hypothesis of downward trend. Reject if pst at [ 1] (or pstat[ 5] ) isless
than the significance level.
«  Hy:Pr(X;>X)=Pr(X,<X)=05
Hy : Pr(X; > X)) # Pr(X; < X))
Two tailed test. Rgject if 2 max(pst at [ 1], pstat[2]) (or 2
max(pst at [ 5], pst at [ 6] ) islessthan the significance level.

Assumptions

1 The observations are arandom sample; i.e., the observations are
independently and identically distributed.

2. The distribution is continuous.

Example

This example illustrates both the location and dispersion tests. The data, which
are taken from Bradley (1968), page 176, give the closing price of AT& T on the
New Y ork stock exchange for 36 daysin 1965. Tests for trendsin location

(Def aul t ), and for trends in dispersion (1 MSLS_DI SPERSI ON) are performed.
Trendsin location are found.

#i ncl ude <insls. h>

#i ncl ude <stdio. h>

voi d main()

{

float *pstat=NULL;

int nobs = 36, ids =0, k =2, nnmss, *stat = NULL;
float fuzz = 0.001;

float x[] = {9.5 9.875 9.25 9.5 9.375 9.0, 8.75, 8.625 8.0, 8.25,
8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,7.75, 7.75, 8.0, 7.5,
7.5, 7.125, 7.25, 7.25, 7.125, 6.75,6.5 7.0, 7.0, 6.75, 6.625, 6.625,

7.125, 7.75};

pstat = imsls_f _cox_stuart_trends_test(nobs, X,
| MSLS_STAT, &stat,
I MSLS N M SSI NG &nnmi ss,
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0);
imsls_i _wite_matrix("nstat", 1, 8, stat,
I MSLS_COL_NUMBER ZERO,
0);
insls f wite matrix("pstat", 1, 8, pstat,
| MBLS WRI TE_FORMAT, "9%0.5f", 0);
I MSLS_COL_NUMBER_ZERO,

0);
printf("n mssing = %d\n", nm ss);
pstat = inmsls_f_cox_stuart_trends_test(nobs, X,

I MSLS_DI SPERSI ON, k, ids,
| MSLS_STAT, &stat,
I MSLS_N M SSI NG &nmi ss,
0);
insls i _wite matrix("nstat", 1, 8, stat, 0);
| MSLS_COL_NUMBER_ZERO,
0);
imsls_f_wite_matrix("pstat", 1, 8, pstat,
| MBLS WRI TE_FORMAT, "9%0. 6f",
| MSLS_COL_NUMBER_ZERO,
0);

printf("n mssing = %d\n", nm ss);

}

Output
*** WARNING Error | MSLS_AT_LEAST_ONE_TIE fromimsls_cox_stuart_trends_test.
*** At |east one tie is detected in X

NSTAT
0 1 2 3 4 5 6 7
0 17 1 18 0 12 0 12
PSTAT
0 1 2 3 4
1. 00000 0. 00007 1. 00000 0. 00000 1. 00000
5 6 7
0. 00024 1. 00000 0. 00024

n mssing =0

*** WARNING Error | MSLS_AT_LEAST_ONE_TIE fromimsls_cox_stuart_trends_test.
*** At |east one tie is detected in X
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o 1 2 3 4 5 6 7
4 3 2 9 4 2 0 6
PSTAT
0 1 2 3
0. 253906 0.910156 0. 746094 0. 500000
5 6 7
0. 890625 0. 343750 0. 890625
n mssing =0

4
0. 343750

tie_statistics
Compute tie statistics for a sample of observations.

Synopsis
#include <i nsl's. h>

float *insls_f_tie_statistics (int n_oservations, floatx[],

. 0)

The type double functionisi nsl s_d_tie_statistics.

Required Arguments

int n_observations (Input)
Number of observationsin x.

float x[] (Input)

Array of length n_obser vat i ons containing the observations.

x must be ordered monotonically increasing with all missing values removed.

Return Value

Array of length 4 containing the tie statistics.

T

tied0] = ti(ti-1)|/2
2 [t -3)

ties[1] = i[tj(tj -1\t +1)]/12
=1
T

tieg2] = ) ti(t. —1)(2t. +5
Z it ~3)(2t +5)

tieS[S]Ith(tj ~1)(t; -2)
=1
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wheret; is the number of tiesin thej-th group (rank) of ties, and T is the number
of tie groupsin the sample.

Synopsis with Optional Arguments

#include <insls. h>
float * insls_f_tie_statistics (int n_oservations, floatx[],
| MBLS FUZZ, float fuzz

| MBLS_RETURN_USER, float ties[],
0)

Optional Arguments

I MSLS FUZZ, float f uzz, (Input)
Value used to determine ties.
Observationsi and j aretied if the successive differences x[k + 1] —
x[K]  between observationsi and j, inclusive, are al less than fuzz .
fuzz must be nonnegative. Default: fuzz =0.0

IMSLS_RETURN_USERfloat ties[], (Output)
If specified ties[]  returnsthetie statistics. Storage for ties[]
isprovided by the user. See Return Value.

Description

Functionimsl| s_f_tie_statistics computes tie statistics for a monotonically
increasing sample of observations. “Tie statistics” are statistics that may be used
to correct a continuous distribution thgoronparametric test for tied

observations in the data. Observatioandj are tied if the successive differences
X(k + 1) — X(k), inclusive, are all less thdmzz. Note that if each of the
monotonically increasing observations is equal to its predecessor plus a constant,
if that constant is less th&uzz, then all observations are contained in one tie
group. For example, ffuzz = 0.11, then the following observations are all in one
tie group.

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example

We want to compute tie statistics for a sample of length 7.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d main()

{

float *ties=NULL;

int nobs = 7;

float fuzz = .001;

float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.};
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ties = insls_f _tie_statistics(nobs, x,
| MSLS_FUZZ, fuzz,
0);
imsls f wite_matrix("TIES\n", 1, 4, ties,
I MSLS_WRI TE_FORMAT, "9%. 2f"
0);

Output

TIES
0 1 2 3
4.00 2.50 84.00 6.00

wilcoxon_rank_sum

Performs a Wilcoxon rank sum test.

Synopsis
#include <i nsl's. h>

float i msl s_f _wi | coxon_rank_sum (int n1_observati ons, float x1[],
int n2_observations, float x2[], ..., 0)

The type double function isi nsl s_d_wi | coxon_r ank_sum

Required Arguments

int n1_observations (Input)
Number of observationsin the first sample.

float x1[] (Input)
Array of lengthnl_obser vat i ons containing the first sample.

int n2_observations (Input)
Number of observationsin the second sample.

float x2[] (Input)

Array of lengthn2_obser vat i ons containing the second sample.
Return Value
The two-sided p-value for the Wilcoxon rank sum statistic that is computed with
average ranks used in the case of ties.

Synopsis with Optional Arguments
#include <insls. h>
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float i msl s_f _wi | coxon_rank_sum (int n1_observati ons, float x1[],
int n2_observations, float x2[],
| MSLS_FUZzZ, float fuzz,
| MSLS_STAT, float **st at
| MBLS_STAT_USER, float stat[],
0)

Optional Arguments

I MSLS FUzZ, float fuzz (Input)
Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tieis declared when two observations in the
combined sample are withinf uzz of each other.
Default: f uzz =100 x i nsl s_f _machi ne(4) x max {|X; [, [[}

| MSLS STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length 10
containing the following statistics:

Row | Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x
observations) adjusted for ties in such a manner that Wis
as small as possible

2 x E(W) — W, where E(W) is the expected value of W
probability of obtaining a statistic less than or equal to
min{W, 2 x E(W) — W}

3 W statistic adjusted for ties in such a manner that Wis as
large as possible

4 2 x E(W) — W, where E(W) is the expected value of W,
adjusted for tiesin such amanner that Wis aslarge as
possible

5 probability of obtaining a statistic less than or equal to
min{W, 2 x E(W) — W}, adjusted for ties in such a manner
that Wis as large as possible

W statistic with average ranks used in case of ties

7 estimated standard error of st at [6] under the null
hypothesis of no difference

8 standard normal score associated with st at [6]
9 two-sided p-value associated with st at [8]

| MSLS_STAT_USER, float stat[] (Output)
Storage for array st at isprovided by the user. See | MSLS_STAT.
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Description

Functioni nsl s_f _wi | coxon_r ank_sumperforms the Wilcoxon rank sum test
for identical population distribution functions. The Wilcoxon test isalinear
transformation of the Mann-Whitney U test. If the difference between the two
populations can be attributed solely to a difference in location, then the Wilcoxon
test becomes atest of equality of the population means (or medians) and is the
nonparametric equivalent of the two-samplet-test. Function

i msl s_f_wi | coxon_r ank_sumobtains ranks in the combined sample after first
eliminating missing values from the data. The rank sum statistic is then computed
as the sum of the ranksin thex1 sample. Three methods for handling ties are
used. (A tieis counted when two observations are withinf uzz of each other.)
Method 1 uses the largest possible rank for tied observations in the smallest
sample, while Method 2 uses the smallest possible rank for these observations.
Thus, the range of possible rank sumsis obtained.

Method 3 for handling tied observations between samples uses the average rank
of the tied observations. Asymptotic standard normal scores are computed for the
W score (based on a variance that has been adjusted for ties) when average ranks
are used (see Conover 1980, p. 217), and the probability associated with the two-
sided alternative is computed.

Hypothesis Tests

In each of the following tests, the first line gives the hypothesis (and its
aternative) under the assumptions 1 to 3 below, while the second line gives the
hypothesis when assumption 4 is also true. The rejection region is the same for
both hypotheses and is given in terms of Method 3 for handling ties. Another
output statistic should be used, (st at [0] or st at [3]), if another method for
handling tiesis desired.

Test

Null Hypothesis Alternative Action

Hypothesis

Hy:Pr(x1<x2)=05 |H;:Pr(x1<x2)#05 |Regectifstat [9]islessthanthe

significance level of the test.
Alternatively,

Hy:E(x1) = E(x2)

H,:E(x1) # E(x2)

reject the null hypothesisif st at
[6] istoo large or too small.

Ho:Pr(x1 <x2)<05

H,:Pr(x1 <x2)>05

Hy:E(x1) = E(x2)

T

E(x1) < E(x2)

Reject if st at [6] istoo small

Ho:Pr(x1 <x2)=05

H,:Pr(x1<x2)<05

H,:E(x1) < E(x2))

H,:E(x1) > E(x2)

Reject if st at [6] istoo large
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Assumptions

1 Argumentsx1 and x2 contain random samples from their respective
populations.

All observations are mutually independent.

3. The measurement scaleis at least ordinal (i.e., an ordering less than,
greater than, or equal to exists among the observations).

4, If f(x) and g(y) are the distribution functions of x and y, then
g(y) = f(x + ¢) for some constant c(i.e., the distribution of y is, at worst, a
trand ation of the distribution of x).

Tables of critical values of the W statistic are given in the references for small
samples.

Examples

Example 1

The following example is taken from Conover (1980, p. 224). It involves the
mixing time of two mixing machines using atotal of 10 batches of a certain kind
of batter, five batches for each machine. The null hypothesisis not rejected at the
5-percent level of significance. The warning error is always printed when one or
more ties are detected, unless printing for warning errorsis turned off. See
functioni nsl s_error_opti ons (Chapter 14).

#i ncl ude <insls. h>

voi d main()

i nt nl_observations = 5;

i nt n2_observati ons = 5;

float x1[5] ={7.3, 6.9, 7.2, 7.8, 7.2};

float x2[5] ={7.4, 6.8, 6.9, 6.7, 7.1};

float p_val ue;

p_value = insls_f_wlcoxon_rank_sun(nl_observations, x1,

n2_observations, x2, 0);
printf("p-value = %1.4f\n", p_val ue);

}
Output
***% WARNI NG Error | MSLS AT _LEAST ONE TIE frominsls_f_wlcoxon_rank_sum
*x ok At least one tie is detected between the sanples.
p-val ue = 0. 1412
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Example 2

The following example uses the same data as the previous example. Now, all the
statistics are output in the array st at .

#i ncl ude <insls. h>

voi d nain()

i nt nl_observations = 5;
i nt n2_observati ons = 5;
float x1[5] ={7.3, 6.9, 7.2, 7.8, 7.2
float x2[5] ={7.4, 6.8, 6.9, 6.7, 7.1

float *stat;

char *| abel s[10] = {"W I coxon Wstati

"p-value . "

"Adjusted WIcoxon statistic

"Adjusted 2E(W - W .o "
"Adjusted p-value ........ ... ... .. "

"Wstatistics for averaged ranks
"Standard error of W (averaged ranks)

"Standard normal score of W (averaged ranks)"

"Two- si ded p-val ue of W (averaged ranks ....
ns, x1,

inmsls_f_wlcoxon_rank_sun(nl_observatio
n2_observations, x2,
| MBLS_STAT, &stat,
0);

inmsls f wite matrix("statistics", 10,

1, stat,
| MBLS_ROW LABELS, | abel s,

'};

I MSLS WRI TE_FORMAT, "%7. 3f",

0);
}

Output
***% WARNI NG Error | MSLS AT _LEAST ONE TIE frominsls_f_wlcoxon_rank_sum
*x % At least one tie is detected between the sanpl es.
statistics

W lcoxon Wstatistic ...................... 34. 000
2E(W - WL 21. 000
P-val Ue ... . . 0. 110
Adj usted W1l coxon statistic ............... 35. 000
Adjusted 2*E(W - W... ... .. .. 20. 000
Adjusted p-value ........ ... ... ... ... .. ... 0. 075
Wstatistics for averaged ranks............ 34. 500
Standard error of W (averaged ranks) ...... 4,758
St andard nornmal score of W (averaged ranks) 1.471
Two- si ded p-val ue of W (averaged ranks .... 0. 141

Warning Errors
| MSLS_NOBSX_NOBSY_TOO SMALL

“nl_observations” = # and
“n2_observations” = #. Both
sample sizes, “nl_observations”
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and “n2_observations”, are less
than 25. Significance levels should
be obtained from tabled values.

| MSLS_AT_LEAST ONE_TIE At least one tie is detected
between the samples.

Fatal Errors

I MSLS ALL_X Y_M SSI NG Each element of “x1” and/or “x2”
is a missing (NaN, Not a Number)
value.

kruskal wallis_test

Performs a Kruskal-Wallis test for identical population medians.

Synopsis
#include <insls. h>

float *insls_f_kruskal _wallis_test (int n_groups, int ni[],
float y[], ..., 0)

The typedouble function isi nsl s_d_kruskal _wal lis_test.

Required Arguments

int n_groups (Input)
Number of groups.

int ni[] (Input)
Array of lengthn_gr oups containing the number of responses for each
of then_gr oups groups.

floaty[] (Input)
Array of lengthni [0] + ... + ni[n_groups-1] that contains the
responses for each of the n_groups groypsust be sorted by group,
with theni [ 0] observations in group 1 coming first, thé[ 1]
observations in group two coming second, and so on.

Return Value

Array of length 4 containing the Kruskal-Wallis statistics.

I stat[l1]
0 Kruskal-Wallis H statistic.
1 Asymptotic probability of a larger H under the null hypothesis of

identical population medians.

Chapter 6: Nonparametric Statistics kruskal_wallis_test « 319



2 H corrected for ties.

3 Asymptotic probability of alarger H (corrected for ties) under the null
hypothesis of identical populations

Synopsis with Optional Arguments
#include <insls. h>

float *i msl s_f _kruskal wal lis_test (intn_groups,intni,floaty[],
| MSLS_FUZzZ, float fuzz,
| MSBLS_RETURN_USER, float stat[],
0)

Optional Arguments

| MBLS_FUzz, float fuzz  (Input)
Constant used to determinetiesiny. If (after sorting) | y[i] -
yli + 1]| islessthan or equal to fuzz , then atieis counted. fuzz
must be nonnegative.

IMSLS_RETURN_USER(loat stat[] (Output)
User defined array for storage of Kruskal-Wallis statistics.

Description

Thefunctionimsls_f_kruskal_wallis_test generalizes the Wilcoxon two-
sample test computed by routinei nsl s _f _wi | coxon_rank_sum

(page 314) to more than two populations. It computes atest statistic for testing
that the population distribution functions in each of K populations are identical.
Under appropriate assumptions, this is a nonparametric analogue of the one-way
analysis of variance. Since more than two samples are involved, the alternative is
taken as the analogue of the usual analysis of variance alternative, namely that the
populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of the
population to which they belong. Average ranks are used for tied observations
(observations within fuzz of each other). Missing observations (observations
equal to NaN, not a number) are not included in the ranking. Let R; denote the
sum of the ranks in thei-th population. The test statistic H is defined as:

K 2 2
L SR Ny
H‘?Z(T 4J
1=1

where N isthe total of the sample sizes, n; isthe number of observationsin the
i-th sample, and Sis computed as the (bias corrected) sample variance of the R;.

The null hypothesisisrejected whenstat[3]  (or stat[1] ) islessthan the
significance level of the test. If the null hypothesisis rejected, then the procedures
given in Conover (1980, page 231) may be used for multiple comparisons. The
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routinei nmsl s_f _kruskal _wal | i s_test computes asymptotic probabilities
using the chi-squared distribution when the number of groupsis 6 or greater, and
a Beta approximation (see Wallace 1959) when the number of groupsis5 or less.
Tablesyielding exact probabilitiesin small samples may be obtained from Owen
(1962).

Example

The following example is taken from Conover (1980, page 231). The data
represents the yields per acre of four different methods for raising corn. Since

H = 25.5, the four methods are clearly different. The warning error is always
printed when the Beta approximation is used, unless printing for warning errorsis
turned off.

#i ncl ude <insls. h>

voi d main()

{

int ngroup = 4,

float y[]

float fuzz =
char *rlabel []

ni[] = {9, 10, 7, 8};
= {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,
81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91.,
93., 96., 95., 94., 7v8., 82., 81., 77., 79., 81., 80.,
81.};
.001, stat[4];
= {"H (no ties) =",
"Prob (no ties) =",
"H (ties) =",
"Prob (ties) ="},
i msl s_f_kruskal _wal lis_test(ngroup, ni, v,
| MSLS_FUZZ, fuzz,
| MSLS_RETURN_USER, stat,
0);
imsls_f wite_matrix(" ", 4, 1, stat,
| MSLS_ROW LABELS, rl abel,

* k%

H (no ties)
Prob (no ties)
H (ties)

Prob (ties)

of freedomare |less than 5,

0);

Output
*** WARNI NG ERROR

frominmsls_kruskal _wallis_test. The chi-squared degrees

so the Beta approximation is used.

25. 46
0.00
25. 63
0.00
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friedmans_test

Performs Friedman'’s test for a randomized complete block design.

Synopsis
#include <i nsls. h>

float imsls_f _friedmans_test (int n_bl ocks, int n_treatnents,
float y[], ..., 0)

The typedouble function isi nsl s_d_fri edmans_t est.

Required Arguments

int n_bl ocks (Input)
Number of blocks.

int n_treatnments (Input)
Number of treatments.

floaty[]  (Input)
Array of sizen_bl ocks x n_treatnents containing the
observations. The first_t r eat nent s positions ofy[ ] contain the
observations on treatments 1, 2, n..t r eat ment s in the first block.
The secona_t r eat ment s positions contain the observations in the
second block, etc., and so on.

Return Value

The Chi-squared approximation of the asymptotic p-value for Friedman’s
two-sided test statistic.

Synopsis with Optional Arguments

#include <i nsls. h>

float i msls_f _friedmans_test (int n_bl ocks, int n_treatnents,
float y[],
| MSLS FUZzZ, float fuzz,
| MSLS_ALPHA, float al pha,
| MSLS_STAT, float **st at
| MBLS_STAT_USER, float stat[],
I MSLS SUM RANK, int **sum ranks,
| MBLS_SUM RANK_USER, int sum rank][ ]
| MSLS DI FFERENCE, float di fference,
0)
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Optional Arguments

I MSLS FUzz, float fuzz  (Input)
Constant used to determine ties. In the ordered observations, if
| y[i1=y[i +1]| islessthan or equal to fuzz , then yli] and
y[i + 1] aresaid to be tied. Default valueis0.0.

IMSLS_ALPHA float alpha  (Input)
Critical level for multiple comparisons. alpha should be between 0 and
1 exclusive. Default valueis 0.05.

IMSLS_STAT, float **stat (Output)
Address of a pointer to an array of length 6 containing the Friedman
statistics. Probabilities reported are computed under the appropriate null

hypothesis.

I stat (1)

0 Friedman two-sided test statistic.

1 Approximate F valuefor st at [0].

2 Page test statistic for testing the ordered alternative that the median of
treatment i is less than or equal to the median of treatment i + 1, with
strict inequality holding for somei.

3 Asymptotic p-value for stat [0]. Chi-squared approximation.

4, Asymptotic p-valuefor stat[1] . F approximation.

5. Asymptotic p-value for stat[2] . Normal approximation.

IMSLS_STAT_USER float stat]] (Output)

Storage for array stat is provided by the user. See IMSLS_STAT.

IMSLS_SUM_RANK, float **sum_rank , (Output)
Address of a pointer to an array of length n_treatments
containing the sum of the ranks of each treatment.

IMSLS_SUM_RANK_USERfloat sum_rank[] , (Output)
Storage for array sum_rank is provided by the user.
See IMSLS_SUM_RANK.

IMSLS_DIFFERENCE, float *difference ,  (Output
Minimum absolute difference in two elements of sum_rank to infer at
the alphalevel of significance that the medians of the corresponding
treatments are different.
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Description

Functioni nsl s_f _fri edmans_t est may be used to test the hypothesis of
equality of treatment effects within each block in a randomized block design. No
missing values are allowed. Ties are handled by using the average ranks. The test
statistic is the nonparametric analogue of an analysis of variance F test statistic.

The test proceeds by first ranking the observations within each block. Let A
denote the sum of the squared ranks, i.e., let

k b 5
A:;;Rank(\(”)

where Rank(Y;) is the rank of thei-th observation within thej-th block, b = NBis
the number of blocks, and k = NT is the number of treatments. L et

where

The Friedman test statistic (st at [ 0] ) isgiven by:

(k=1)(bB -b?k(k+1)* / 4)

A-bk(k+1)* / 4

that, under the null hypothesis, has an approximate chi-squared distribution with k
— 1 degrees of freedom. The asymptotic probability of obtaining alarger chi-
sguared random variableisreturnedin st at [ 3] .

If the F distribution is used in place of the chi-squared distribution, then the usual
oneway analysis of variance F-statistic computed on the ranksis used. This
statistic, reported inst at [ 1] , isgiven by

(b-1)T
“b(k-1)-T
and asymptotically follows an F distribution with (k— 1) and (b — 1)(k — 1)
degrees of freedom under the null hypothesis. st at [ 4] isthe asymptotic
probability of obtaining alarger F random variable. (If A=B, stat[0] and
stat[ 1] aresetto machineinfinity, and the significance levels are reported as
k!/(k!)b , unless this computation would cause underflow, in which case the
significance levels are reported as zero.) Iman and Davenport (1980) discuss the
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relative advantages of the chi-squared and F approximations. In general, the F
approximation is considered best.

The Friedman T statistic is related both to the Kendall coefficient of concordance
and to the Spearman rank correlation coefficient. See Conover (1980) for a
discussion of the relationships.

If, at the o = al pha level of significance, the Friedman test resultsin rejection of
the null hypothesis, then an asymptotic test that treatmentsi and j are different is
given by: reject H, if [R; = Rj| > D, where

D = ty_q/24/20( A= B)/ (b-1)(k -1))

wheret has (b — 1)(k — 1) degrees of freedom. Page’s statificat [ 2] ) is used
to test the same null hypothesis asRhedman test but is sensitive to a
monotonic increasing alternative. The Page test statistic is given by

k

It is largest (and thus most likely to reject) wheamRhare monotonically
increasing.

Assumptions
The assumptions in ¢éfFriedman test are as follows:

1. The k-vectors of responses within each df thblocks are mutually
independent (i.e., the results within one block have no effect on the
results within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each
block is equally likely. The alternative is that at least one of the treatments tends
to have larger values than one or more of the other treatmeetsri€timan test

is a test for the equality of treatment means or medians.

Example

The following example is taken from Bradley (1968), page 127, and tests the
hypothesis that 4 drugs have the same effects upon a person’s visual acuity.
Five subjects were used.

#i ncl ude <insls. h>

voi d main()

{

int n_blocks =5, n_treatnments = 4;

float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69, .64,

.62,.41,.57,.28,.35,.65,.57,.53,.60};
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float fuzz = .001,

al pha = . 05;
float pvalue, *sumrank, stat[6], difference;
pvalue = inmsls_f_friedmans_test (n_bl ocks,

n_treatnents, v,

I MSLS_SUM RANK, &sum rank,

| MBLS_STAT_USER, stat,

| MSLS_DI FFERENCE, &di f f erence,

0);
printf("\np value for Friedman’'s T = % \n\n", pval ue);
printf("Friedman’s T = ............ %. 2f\n", stat[0]);
printf("Friedman’s F = ............ %.2f\n", stat[1]);
printf("Page Test = ............... 9%.2f\n", stat[2]);
printf("Prob Friedman's T = ....... %.5f\n", stat[3]);
printf("Prob Friedman's F = ....... %.5f\n", stat[4]);
printf("Prob Page Test = .......... %.5f\n", stat[5]);
printf("Sumof Ranks = ............ %, 2f 9. 2f o%dt. 2f %, 2f\ n",

sum rank[ 0], sumrank[1], sumrank[2], sumrank[3]);
printf("difference = .............. %.5f\n", difference);
}
Output

p val ue for Friedman's T =0.040566
Friedman T......... 8.28
Friedman F......... 4.93
Page test.......... 111.00

Prob Friedman T.... 0.04057

Prob Friedman F.... 0.01859

Prob Page test..... 0.98495

Sum of Ranks....... 16.00 17.00 7.00 10.00
Difference............ 6.65638

The Friedman null hypothesisis rejected at the a = .05 while the Page null
hypothesisis not. (A Page test with amonotonic decreasing alternative would be
rejected, however.) Using sum_rank and difference , one can conclude that
treatment 3 is different from treatments 1 and 2, and that treatment 4 is different
from treatment 2, all at the a = .05 level of significance.

cochran_q_test

Performs a Cochran Q test for related observations.
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Synopsis
#include <insls. h>

float i msl s_f _cochran _q test (int n_observations, int n_vari abl es,
float *x, ..., 0)

The type double functionisi nsl s_d_cochran_q_test.

Required Arguments

int n_observations (Input)
Number of blocks for each treatment.

int n_vari abl es (Input)
Number of treatments.

float *x (Input)
Array of sizen_observati ons X n_vari abl es containing the matrix
of dichotomized data. There are n_obser vat i ons readings of zero or
one on each of then_vari abl es treatments.

Return Value

The p-value, p_val ue, for the Cochran Q statistic.

Synopsis with Optional Arguments
#include <i nsl's. h>

float i msl s_f _cochran_qg_test (int n_observati ons,
int n_vari abl es, float *x,
IMSLS X _ COL_DIM int x_col _dim
| MSLS_Q STATI STI C, float *q,
0)

Optional Arguments

IMSLS X COL_DIM int x_col _di m (Input)
Number of columnsin x.
Default: x_col _di m=n_vari abl es

| MBLS_Q STATI STI C, float *q (Output)
Cochran’'sQ statistic.

Description

Functioni msl s_f _cochran_qg_t est computes the Cochr&ptest statistic that
may be used to determine whether orManatched sets of responses differ
significantly among themselves. The data may be thought of as arising out of a
randomized block design in which the outcome variable must be success or
failure, coded as 1.0 and 0.0, respectively. Within each block, a multivariate
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vector of 1's of 0's is observed. The hypothesis is that the probability of success
within a block does not depend upon the treatment.

Assumptions

1. The blocks are a random sample from the population of all possible
blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H, : All treatments have the same effect.
H, : The treatments do not all have the same effect.

2. Letp;; denote the probability of outcome 1.0 in blackeatment.
Ho:p;i =Pi = ... =P, for eachi.

H, :p;; # py for some, and some # k.
wherec (equal ton_var i abl es) is the number of treatments.

The null hypothesis is rejected if Cochran@'statistic is too large.

Remarks

1. The input data must consist of zeros and ones only. For example, the
data may be pass-fail informationwnvar i abl es questions asked of
n_observat i ons people or the test responsesiobbser vat i ons
individuals ton_vari abl es different conditions.

2. The resulting statistic is distributed approximately as chi-squared with
n_vari abl es — 1 degrees of freedomiif obser vati ons is not too
small.n_obser vat i ons greater than or equal toon_vari abl es is a
conservative recommendation.

Example

The following example is taken from Siegal (1956, p. 164). It measures the
responses of 18 women to 3 types of interviews.

#i ncl ude <insls. h>
mai n()

PPRrPOORO™™
coooooo
Coocoo0o00o™
coo0oo0o00o
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coo0o0oc00000

. 0};

PRPRPRRPPRRORO
LCoLLeLeLeree
RPRRPRPRREPRPOOR
LOLLLLLLoee
CoRpocoOorrRoOoO

pg = insls_f _cochran_qg test(18, 3, x, 0);
printf("pg = 99.5f\n", pq);
return;

Output
pq = 0. 00024

Warning Errors

IMSLS ALL 0 OR 1 “X" consists of either all ones or all zeros.
“q" is set to NaN (not a number). “pq” is set
to 1.0.

Fatal Errors

| MBLS_I NVALI D_X_VALUES “X[#][#]” = #. “X” must consist of zeros and
ones only.

k_trends_test

Performs a k-sample trends test against ordered alternatives.

Synopsis
#include <i nsl's. h>

float *insls_f_ k_trends_test (int n_groups, int ni[], float y[], ...,
0)

The typedouble function isi nsl s_d_ k_trends_test.

Required Arguments

int n_groups (Input)
Number of groups. Must be greater than or equal to 3.
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int ni[] (Input)
Array of length n_gr oups containing the number of responses for each
of then_gr oups groups.

floaty[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that containsthe
responses for each of the n_groups groups. y must be sorted by group,
with theni [ 0] observationsin group 1 coming first, the ni [ 1]
observations in group two coming second, and so on.

Return Value

Array of length 17 containing the test results.

[ stat[1]

0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null
hypothesis.

2 p-value associated with st at [ 0] .

3 p-value associated withst at [ 1] .

4 Continuity corrected st at [ 2] .

5 Continuity corrected st at [ 3] .

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewnessiis zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon st at [ 0] .

10 Coefficient of rank correlation based upon st at [ 1] .

11 Total number of ties between samples.

12 The t-statistic associated with st at [ 2] .

13 The t-statistic associated with st at [ 3] .

14 Thet-statistic associated with st at [ 4] .

15 The t-statistic associated with st at [ 6] .

16 Degrees of freedom for each t-statistic.

Synopsis with Optional Arguments

#include <i nsls. h>
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float *i msl s_f _k_trends_test (int n_groups,intni,floaty[],
| MBLS_RETURN_USER, float stat[],
0)

Optional Arguments

| MSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of test results.

Description

Functioni nmsl s_f _k_trends_t est performs ak-sample trends test against
ordered aternatives. The alternative to the null hypothesis of equality is that
Fi(X) <Fy(X) < ... Fi(X), where F|, F,, etc., are cumulative distribution
functions, and the operator < impliesthat the less than relationship holds for all
values of X. Whilethetrendstest used ink_t rends_t est requiresthat the
background populations be continuous, ties occurring within a sample have no
effect on the test statistic or associated probabilities. Ties between samples are
important, however. Two methods for handling ties between samples are used.

These are;
1. Tiesare randomly split (st at [ 0] ).
2. Ties are counted in amanner that is unfavorable to the alternative

hypothesis (st at [ 1] ).

Computational Procedure

Consider the matrices

M km — km) —
(m' ) (0 otherwise

where X}, isthe i-th observation in the k-th population, X, isthe j-th observation

in the m-th population, and each matrix M*™ isn, by n,, wheren; = ni (i). Let S,,,

denote the sum of all elementsin M*™. Then, st at [ 1] iscomputed as the sum

over al elementsin S,,,,, minus the expected value of this sum (computed as

Zk < mnknm

when there are no ties and the distributionsin al populations are equal). In
st at [ 0], ties are broken randomly, and the element in the summation is taken as
2.0 or 0.0 depending upon the result of breaking thetie.

2 ifxm.<xmi]

stat[2] andstat[ 3] arecomputed using thet distribution. The probabilities
reported are asymptotic approximations based upon the t statisticsin st at [ 12]
and st at [ 13] , which are computed as in Jonckheere (1954, page 141).
Similarly, st at [ 4] and st at [ 5] givethe probabilitiesfor st at [ 14] and

st at [ 15] , the continuity corrected versionsof st at [ 2] andstat[ 3] . The
degrees of freedom for each t statistic (st at [ 16] ) are computed so as to make
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the t distribution selected as close as possible to the actual distribution of the
statistic (see Jonckheere 1954, page 141).

st at [ 6] , the variance of thetest statistic st at [ 0] , and st at [ 7] , the kurtosis
of the test statistic, are computed as in Jonckheere (1954, page 138). The
coefficients of rank correlationinst at [ 8] and st at[ 9] reduce to the Kendall T
statistic when there are just two groups.

Exact probabilitiesin small samples can be obtained from tables in Jonckheere
(1954). Note, however, that the t approximation appears to be a good one.
Assumptions

1 The X,,,; for each sample are independently and identically distributed
according to a single continuous distribution.

2. The samples are independent.

Hypothesis tests

Hy : Fi(X) 2 Fy(X) 2 ... 2 Fi(X)

H : F(X) <Fy(X) < ... <Fi(X)

Rejectif stat[2] (orstat[3],0rstat[4] orstat[5],depending upon the
method used) istoo large.

Example

The following example is taken from Jonckheere (1954, page 135). It involves
four observations in four independent samples.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d nain()

{

float *stat;

int n_groups = 4;

int ni[] = {4, 4, 4, 4};
char *fm = "9®. 5f";
char *rlabel[] = {

"stat[0]
"stat[ 1]
"stat[2]
"stat[ 3]
"stat[4]
"stat[5]
"stat[ 6]
"stat[7]

- Test Statistic (random) ............
- Test Statistic (null hypothesis)

- p-value for stat[0] ................. ,
- p-value for stat[1] ................. "
- Continuity corrected for stat[2] ....",
- Continuity corrected for stat[3] ....",
- Expected mean ............. ... ... ,
- Expected kurtosis ...................
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"stat[8] - Total sanple size

"stat[9] - Rank corr. coef. based on stat[O0]
"stat[10]- Rank corr. coef. based on stat[1] ,
"stat[11]- Total nunber of ties ................
"stat[12]- t-statistic associated w stat[2]
"stat[13]- t-statistic asscoiated w stat[ 3]
"stat[14]- t-statistic associated w stat[4]
"stat[15]- t-statistic asscoiated w stat[5]

"stat[16]- Degrees of freedom.................. "1
float y[] = {19., 20., 60., 130., 21., 61., 80., 129.,
40., 99., 100., 149., 49., 110., 151., 160.};
stat = imsls_f_k_trends_test(n_groups, ni, y, 0);
imsls_f wite_matrix("stat", 17, 1, stat,
I MSLS WRI TE_FORNMAT, fnt,
| MSLS_ROW LABELS, rl abel,
0);
}
Output
st at
stat(0) - Test statistic (random) ........... 46. 00000
stat(1l) - Test statistic (null hypothesis) .. 46. 00000
stat(2) - p-value for stat(0) ............... 0.01483
stat(3) - p-value for stat(1l) ............... 0.01483
stat(4) - Continuity corrected stat(2) ...... 0.01683
stat(5) - Continuity corrected stat(3) ...... 0.01683
stat(6) - Expected nean ..................... 458. 66666
stat(7) - Expected kurtosis ................. -0. 15365
stat(8) - Total sanple size ................. 16. 00000
stat(9)- Rank corr. coef. based on stat(0) 0. 47917
stat(10)- Rank corr. coef. based on stat(1l) . 0. 47917
stat(11)- Total nunber of ties .............. 0. 00000
stat(12)- t-statistic associated w stat(2) 2.26435
stat(13)- t-statistic associated w stat(3) 2.26435
stat(14)- t-statistic associated w stat(4) 2.20838
stat(15)- t-statistic associated wstat(5) .. 2.20838
stat(16)- Degrees of freedom................ 36. 04963
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Chapter 7: Tests of Goodness of Fit

Routines
7.1 General Goodness-of-fit tests
Chi-squared goodness-of-fit test ...........ccccuvveeeee. chi_squared_test 336
Shapiro-Wilk W test for normality...........cccccceeeeennnnns normality test 344

One-sample continuos data Kolmogorov-Smirnov
.............................................................................. kolmogorov_one 348
Two-sample continuos data Kolmogorov-Smirnov
.............................................................................. kolmogorov_two 351

.................................................................... multivar_normality _test 354

7.2 Tests for Randomness
Runs test, Paris-serial test, d2 test or triplets tests
............................................................................. randomness_test 358

Usage Notes

Theroutines in this chapter are used to test for goodness of fit and randomness.
The goodness-of -fit tests are described in Conover (1980). There are two
goodness-of -fit tests for general distributions, a Kolmogorov-Smirnov test and a
chi-squared test. The user supplies the hypothesized cumulative distribution
function for these two tests. There are three routines that can be used to test
specifically for the normal or exponentia distributions.

The tests for randomness are often used to evaluate the adequacy of
pseudorandom number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be
used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for
missing values (NaN, not a number) in the input data. The routines that test for
randomness do not allow for missing values.
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chi_squared_test

Performs a chi-squared goodness-of -fit test.

Synopsis
#include <insls. h>

float i msls_f _chi _squared_test (float user _proc_cdf(),
int n_observations, int n_categories, float x[], .., 0)

The type double functionisi nsl s_d_chi _squared_test.

Required Arguments

float user _proc_cdf (float y) (Input)
User-supplied function that returns the hypothesized, cumulative
distribution function at the point y.

int n_observations (Input)
Number of data elementsinput inx.

int n_categories (Input)
Number of cells into which the observations are to be tallied.

float x[] (Input)

Array withn_obser vat i ons components containing the vector of data

elements for this test.

Return Value

The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments

#include <i nsls. h>

float i msls_f _chi _squared_test (float user proc_cdf (),
int n_observations, int n_categories, float x[],
| MSLS N PARAVETERS ESTI MATED, int n_par aneters,
| MSLS_CUTPAO NTS, float **cut points,
| MSLS CUTPQO NTS_USER, float cut points[],
| MBLS_CUTPO NTS_EQUAL,
| MSLS CHI _SQUARED, float *chi _squared,
| MBLS_DEGREES OF FREEDOM float *df ,
| MSLS FREQUENCI ES, float frequencies[],
| MSLS BOUNDS, float | ower _bound, float upper bound,
| MSLS CELL_COUNTS, float **cel | _counts,
| MSLS CELL_COUNTS USER, float cel | _counts[],
| MSLS CELL_EXPECTED, float **cel | _expected,
| MSLS_CELL_EXPECTED USER, float cel | _expected[],
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I MSLS CELL_CHI _SQUARED, float **cel | _chi _squared,
I MSLS CELL_CHI _SQUARED USER, float cel | chi _squared[],
0)

Optional Arguments

I MSBLS N _PARAMETERS ESTI MATED, int n_paraneters (Input)
Number of parameters estimated in computing the cumulative
distribution function.

I MBLS_CUTPO NTS, float **cut poi nts (Output)
Address of a pointer to an internally allocated array of length
n_cat egori es — 1 containing the vector of cutpoints defining the cell
intervals. The intervals defined by the cutpoints are such that the lower
endpoint is not included and the upper endpoint isincluded in any
interval. If | MSBLS_CUTPO NTS_EQUAL is specified, equal probability
cutpoints are computed and returned in cut poi nt s.

I MBLS CUTPO NTS_USER, float cut points[] (Input/Output)
Storage for array cut poi nt s isprovided by the user. See
| MBLS_CUTPO NTS.

| MBLS_CUTPOI NTS_EQUAL
If I MSLS CUTPO NTS_USER s specified, then equal probability
cutpoints can still be used if, in addition, the
I MSBLS CUTPO NTS_EQUAL option is specified. If
I MSBLS_CUTPO NTS_USERIs not specified, equal probability cutpoints
are used by default.

I MSBLS CHI _SQUARED, float *chi _squared (Output)
If specified, the chi-squared test statistic isreturned in * chi _squar ed.

| MBLS_DEGREES OF FREEDOM float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit
test isreturned in * df .

I MSBLS FREQUENCI ES, float frequencies[] (Input)
Array withn_obser vat i ons components containing the vector
frequencies for the observations stored in x.

| MSLS BOUNDS, float | ower bound, float upper _bound (Input)
If I MBLS_ BOUNDS is specified, then | ower _bound isthe lower bound
of the range of the distribution and upper _bound isthe upper bound of
thisrange. If | ower _bound = upper _bound, arange on the whole real
lineis used (the default). If the lower and upper endpoints are different,
points outside the range of these bounds are ignored. Distributions
conditional on arange can be specified when | MSLS_BOUNDS is used.
By convention, | ower _bound is excluded from the first interval, but
upper _bound isincluded in the last interval.
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| MBLS_CELL_COUNTS, float **cel | _counts (Output)
Address of a pointer to an internally allocated array of length
n_cat egori es containing the cell counts. The cell counts are the
observed frequenciesin each of then_cat egori es célls.

| MBLS_CELL_COUNTS_USER, float cel | _counts[] (Output)
Storage for array cel | _count s is provided by the user. See
| MBLS_CELL_COUNTS.

| MBLS_CELL_EXPECTED, float **cel | _expected (Output)
Address of a pointer to an internally allocated array of length
n_cat egori es containing the cell expected values. The expected value
of acell isthe expected count in the cell given that the hypothesized
distribution is correct.

| MSLS_CELL_EXPECTED USER, float cel | _expected[] (Output)
Storage for array cel | _expect ed is provided by the user. See
| MBLS_CELL_EXPECTED.

I MSBLS CELL_CHI _SQUARED, float **cel | _chi _squared (Output)
Address of a pointer to an internally allocated array of length
n_cat egori es containing the cell contributions to chi-squared.

I MSBLS_CELL_CHI _SQUARED USER, float cel | _chi _squared[] (Output)
Storage for array cel | _chi _squar ed is provided by the user. See
| MBLS_CELL_CHI _SQUARED.

Description

Functioni nmsl s_f _chi _squared_t est performs a chi-sguared goodness-of-fit
test that arandom sample of observationsis distributed according to a specified
theoretical cumulative distribution. The theoretical distribution, which can be
continuous, discrete, or a mixture of discrete and continuous distributions, is
specified by the user-defined function user _pr oc_cdf . Becausethe user is
allowed to give arange for the observations, atest that is conditional on the
specified range is performed.

Argument n_cat egor i es givesthe number of intervalsinto which the
observations are to be divided. By default, equiprobable intervals are computed
byimsls_f_chi_squared_test, butintervalsthat are not equiprobable can be
specified through the use of optional argument | MSLS_CUTPQO NTS.

Regardless of the method used to obtain the cutpoints, the intervals are such that
the lower endpoint is not included in the interval, while the upper endpoint is
always included. If the cumulative distribution function has discrete elements,
then user-provided cutpoints should always be used since

imsl s_f _chi_squared_t est cannot determine the discrete elementsin
discrete distributions.
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By default, the lower and upper endpoints of the first and last intervals are —oo
and +oo, respectively. If | MSLS_BOUNDS is specified, the endpoints are user-
defined by the two arguments| ower _bound and upper _bound.

A taly of countsis maintained for the observationsin x as follows:

e |f the cutpoints are specified by the user, the tally is made in the interval
to which x; belongs, using the user-specified endpoints.

« |f the cutpoints are determined by i nsl s_f _chi _squar ed_t est, then
the cumulative probability at x;, F(x;), is computed by the function
user _proc_cdf.

Thetally for x; ismade in interval number [mF(x;) + 10 where

m=n_cat egori es and {0is the function that takes the greatest integer that is
no larger than the argument of the function. Thus, if the computer time required
to calculate the cumulative distribution function is large, user-specified cutpoints
may be preferred to reduce the total computing time.

If the expected count in any cell is less than 1, then the chi-squared approximation
may be suspect. A warning message to this effect is issued in this case, as well as
when an expected value is less than 5.

Examples

Example 1

This example illustrates the useiofs| s_f _chi _squared_test ona
randomly generated sample from the normal distribution. One-thousand randomly
generated observations are tallied into 10 equiprobable intervals. The null
hypothesis, that the sample is from a normal distribution, is specified by use of
i msl s_f_normal _cdf (Chapter 11js the hypothesized distribution function.
In this example, the null hypothesis is not rejected.

#i ncl ude <imsls. h>

#def i ne SEED 123457
#def i ne N_CATEGORI ES 10
#defi ne N_OBSERVATI ONS 1000
mai n()

fl oat *x, p_val ue;

i msl s_random seed_set ( SEED) ;
/* Generate Normal deviates */
x = imsls_f_randomnnormal (N_OBSERVATIONS, 0);
/* Performchi squared test */
p_value = imsls_f_chi_squared_test (insls_f_normal _cdf,
N_OBSERVATI ONS,
N_CATEGORI ES, x, 0);
[* Print results */
printf ("p-value = %.4f\n", p_value);
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Output
p-val ue = 0.1546

Example 2

In this example, optional arguments are used for the datain theinitial example.
#i ncl ude <insls. h>

#defi ne SEED 123457

#defi ne N_CATEGORI ES 10

#def i ne N_OBSERVATI ONS 1000

mai n()
fl oat *cel|l _counts, *cutpoints, *cell _chi_squared;
fl oat chi _squared_statistics[3], *x;
char *stat_row | abel s[] = {"chi-squared",

"degrees of freedont, "p-value"};

i nsl s_random seed_set ( SEED) ;

/* Generate nornmal deviates */
x = insls_f_random normal (N_OBSERVATIONS, 0);

/* Performchi squared test */
chi _squared_statistics[2] =

inmsls_f _chi_squared_test (insls_f_nornmal _cdf,
N_OBSERVATI ONS,  N_CATEGORI ES, X,

| MSLS_CUTPQO NTS, &cut poi nt s,

| MSLS_CELL_COUNTS, &cel | _counts,

| MSLS CELL_CHI _SQUARED, &cel | _chi _squar ed,

| MSLS _CHI _SQUARED, &chi _squared_statistics[0],
| MSLS DEGREES OF FREEDOM &chi _squared_statistics[1],
0);

/* Print results */

inmsls f wite_matrix ("\nChi Squared Statistics\n", 3, 1,
chi _squared_stati stics,
| MSLS ROW LABELS, stat_row | abels,
0);

inmsls f wite matrix ("Cut Points", 1, N _CATEGORIES-1,
cutpoints, 0);

inmsls f wite_matrix ("Cell Counts", 1, N CATEGORI ES,
cell _counts, 0);

imsls_f_wite_matrix ("Cell Contributions to Chi-Squared", 1,
N_CATEGORI ES, cel | _chi _squared,

0);
}
Output
Chi Squared Statistics
chi - squared 13.18
degrees of freedom 9. 00
p- val ue 0. 15
Cut Points
1 2 3 4 5 6
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-1.282 -0. 842 -0.524 -0. 253 -0. 000 0. 253

7 8 9
0.524 0. 842 1.282
Cell Counts
1 2 3 4 5 6
106 109 89 92 83 87
7 8 9 10
110 104 121 99

Cell Contributions to Chi-Squared
2

1 3 4 5 6
0. 36 0.81 1.21 0.64 2.89 1.69
7 8 9 10
1.00 0.16 4.41 0.01

Example 3

In this example, a discrete Poisson random sample of size 1,000 with parameter
0 =5.0isgenerated by functioni nsl s_f _random poi sson (Chapter 12). In
thecaltoinsl s f chi_squared_test,functioninsl s f poi sson_cdf
(Chapter 11) isused as function user _pr oc_cdf .

#i ncl ude <insls. h>

#def i ne SEED 123457
#def i ne N_CATEGORI ES 10
#def i ne N_PARAMETERS_ESTI MATED O
#def i ne N_NUMBERS 1000
#def i ne THETA 5.0
fl oat user _proc_cdf (fl oat);
mai n()
i nt i, *poisson;
fl oat cel |l _statistics[3][ N.CATEGORI ES] ;
fl oat chi _squared_statistics[3], Xx[N_NUMBERS];
fl oat cut poi nt s[] ={1.5, 2.5, 3.5, 4.5, 5.5 6.5,
7.5, 8.5, 9.5};
char *cell _row_| abel s[] = {"count", "expected count",
"cell chi-squared"};
char *cell _col _| abel s[] = {"Poi sson val ue", "0", "1", "2",
"3, "4, "5", "e", "7",
"8", "9"};
char *stat _row_| abel s[] = {"chi-squared",

"degrees of freedont, "p-value"};

i msl s_random seed_set ( SEED) ;

/* CGenerate the data */
poi sson = imsls_random poi sson(N_NUMBERS, THETA, 0);

/* Copy data to a floating point vector*/
for (i = 0; i < N_NUMBERS; i++)
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x[i] = poisson[i];

chi _squared_statistics[2] =
inmsls_f_chi_squared_test(user_proc_cdf, N _NUMBERS,
N_CATEGORI ES, X,

| MSLS_CUTPQO NTS_USER, cut poi nts,

| MSLS CELL_COUNTS_USER, &cel |l statistics[0][0],

| MSLS _CELL_EXPECTED USER, &cel |l statistics[1][0],

| MSLS CELL_CHI _SQUARED USER, &cell _statistics[2][0],

| MSLS _CHI _SQUARED, &chi _squared_statistics[0],
| MSLS DEGREES OF FREEDOM &chi _squared_statistics[1],
0);

/* Print results */
inmsls f wite_matrix("\nChi-squared Statistics\n", 3, 1,
&chi _squared_statistics[0],
| MSLS ROW LABELS, stat_row | abel s,
0);
imsls f wite matrix("\nCell Statistics\n", 3, N _CATEGORI ES,
&cel |l _statistics[0][0],

| MSLS ROW LABELS, cell _row | abel s,
| MSLS _COL_LABELS, cell _col _I| abel s,
| M5SLS VRl TE_FORNVAT, "o®. 1f ",

0);

float user_proc_cdf (float k)
fl oat cdf _v;

cdf v = insls_f_poisson_cdf ((int) k, THETA);
return cdf _v;

}
Output
Chi -squared Statistics
chi - squared 10. 48
degrees of freedom 9. 00
p- val ue 0.31

Cell Statistics

Poi sson val ue 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150. 0
expect ed count 40. 4 84.2 140. 4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7
Poi sson val ue 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expect ed count 146. 2 104. 4 65. 3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0
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Programming Notes

Functionuser _proc_cdf must be supplied with calling sequence

user _proc_cdf (y), which returns the value of the cumulative distribution

function at any pointy in the (optionally) specified range. Many of the

cumulative distribution functionsin Chapter 11, “Probability Distribution
Functions and Inverses;an be used farser _proc_cdf, either directly if the
calling sequence is correct or indirectly if, for example, the sample means and
standard deviations are to be used in computing the theoretical cumulative

distribution function.

Warning Errors
| MBLS_EXPECTED VAL_LESS THAN 1
| MBLS_EXPECTED VAL_LESS THAN 5

Fatal Errors
| MSLS_ALL_OBSERVATI ONS_M SSI NG

| MSLS_| NCORRECT CDF 1

| MSLS_| NCORRECT CDF 2

| MSLS_| NCORRECT CDF_3

| MSLS_| NCORRECT CDF_4

An expected value is less than 1.

An expected value is less than 5.

All observations contain missing
values.

Functionuser _proc_cdf is not a
cumulative distribution function.
The value at the lower bound must
be nonnegative, and the value at
the upper bound must not be
greater than 1.

Functionuser _proc_cdf is not a
cumulative distribution function.
The probability of the range of the
distribution is not positive.

Functionuser _proc_cdf is not a
cumulative distribution function.
Its evaluation at an elementxris
inconsistent with either the
evaluation at the lower or upper
bound.

Functionuser _proc_cdf is not a
cumulative distribution function.
Its evaluation at a cutpoint is
inconsistent with either the
evaluation at the lower or upper
bound.
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I MSLS_| NCORRECT_CDF_5 An error has occurred when
inverting the cumulative
distribution function. This function
must be continuous and defined
over thewholered line.

normality test

Performs atest for normality.

Synopsis
#include <insls. h>

float i msl s_f _normality_test (int n_observations, float x[], ..., 0)

The type double functionisi nsl s_d_nornmal ity test.

Required Arguments

int n_observations (Input)
Number of observations. Argument n_obser vat i ons must bein the
range from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must
be greater than 4 for the Lilliefors test.

float x[] (Input)
Array of sizen_obser vat i ons containing the observations.

Return Value

The p-value for the Shapiro-Wilk Wtest or the Lilliefors test for normality. The
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less
than 0.01 are reported as 0.01, and probabilities greater than 0.10 for the normal
distribution are reported as 0.5. Otherwise, an approximate probability is
computed.

Synopsis with Optional Arguments
#include <i nsl's. h>

float imsls_f _normality test (int n_observations, float x[],
| MSLS_SHAPI RO W LK_W float *shapiro_wi | k_w,
| MSLS LI LLI EFORS, float *max_di f f er ence,
| MSLS CHI _SQUARED, int n_cat egori es, float *df,
float *chi _squared,
0)
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Optional Arguments

I MSBLS SHAPI RO W LK W float *shapiro_wi | k_w (Output)
Indicates the Shapiro-Wilk Wtest is to be performed. The Shapiro-Wilk
W statistic isreturned in shapi r o_wi | k_w. Argument
| MSLS_SHAPI RO W LK_Wis the default test.

I MSLS LI LLI EFORS, float *max_di fference (Output)
Indicates the Lilliefors test is to be performed. The maximum absolute
difference between the empirical and the theoretical distributionsis
returned in max_di f f er ence.

I MSBLS CHI _SQUARED, int n_cat egories (Input),
float *df, float *chi _squared (Output)
Indicates the chi-squared goodness-of -fit test is to be performed.
Argument n_cat egor i es isthe number of cellsinto which the
observations are to be tallied. The degrees of freedom for the test are
returned in argument df, and the chi-square statistic is returned in
argument chi _squar ed.

Description

Three methods are provided for testing normality: the Shapiro-Wilk W test, the
Lillieforstest, and the chi-squared test.

Shapiro-Wilk W Test

The Shapiro-Wilk Wtest is thought by D’Agostino and Stevens (1986, p. 406) to
be one of the best omnibus tests of normality. The function is based on the
approximations and code given by Royston (1982a, b, c). It can be used in
samples as large as 2,000 or as small as 3. In the Shapiro and WKitest,
given by

w=(S ax,) /(3 (x-%)

wherex, is thei-th largest order statistic amds the sample mean. Royston
(1982) gives approximations and tabled values that can be used to compute the
coefficientsa;, i = 1, ..., n, and obtains the significance level of iNestatistic.

Lilliefors Test

This function computes Lilliefors test and jitsvalues for a normal distribution in
which both the mean and variance are estimated. The one-sample, two-sided
Kolmogorov-Smirnov statisti® is first computed. Thp-values are then

computed using an analytic approximation given by Dallal and Wilkinson (1986).
Because Dallal and Wilkinson give approximations in the range

(0.01, 0.10) if the computed probability of a greddeis less than 0.01, an

I MSLS _NOTE is issued and thevalue is set to 0.50. Note that because
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parameters are estimated, p-valuesin Lilliefors test are not the same asin the
Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational
message is printed. A general reference for the Lilliefors test is Conover (1980).
The original reference for the test for normality is Lilliefors (1967).

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of
freedom of the test. Argument n_cat egor i es finds the number of intervalsinto
which the observations are to be divided. The intervals are equiprobabl e except
for thefirst and last interval which are infinitein length.

If more flexibility is desired for the specification of intervals, the same test can be
performed with acall to functioni nsl s_f chi _squared_t est (page 336)
using the optional arguments described for that function.

Examples

Example 1

The following example is taken from Conover (1980, pp. 195, 364). The data
consists of 50 two-digit numbers taken from a telephone book. The W test failsto
reject the null hypothesis of normality at the .05 level of significance.

#i ncl ude <insls. h>

voi d main()

i nt n_observations = 50
float x[] ={23.0, 36.0, 54.0, 61.0, 73.0, 23.0
37.0, 54.0, 61.0, 73.0, 24.0, 40.0
56.0, 62.0, 74.0, 27.0, 42.0, 57.0
63.0, 75.0, 29.0, 43.0, 57.0, 64.0
77.0, 31.0, 43.0, 58.0, 65.0, 81.0
32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
70.0, 97.0};
float p_value
/* Shapiro-WIlk test */
p_value = insls f nornmality test (n_observations, X,
0);
printf ("p-value = %1.4f.\n", p_value);
}
Output
p-val ue = 0. 2309
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Example 2

The following example uses the same data as the previous example. Here, the
Shapiro-Wilk W statistic is output.

#i ncl ude <insls. h>

voi d nain()

i nt n_observations = 50;

float x[] = {23.0, 36.0, 54.0, 61.0,
37.0, 54.0, 61.0, 73.0,
56.0, 62.0, 74.0, 27.0,
63.0, 75.0, 29.0, 43.0,
77.0, 31.0, 43.0, 58.0,
32.0, 44.0, 58.0, 66.0,
45.0, 58.0, 68.0, 89.0,
58.0, 68.0, 93.0, 35.0,
70.0, 97.0};

float p_value, shapiro_wlk_ w

LLLLLLee

LLLLLLee

/* Shapiro-WIk test */
p_value = insls _f nornality test (n_observations, X,
| MSLS_SHAPI RO W LK_W
&shapiro_wil k_w,

0);
printf ("p-value = %1.4f.\n", p_val ue

)

printf ("Shapiro WIlk Wstatistic = %1.4f.\n",

shapiro wilk _w;

}
Output
p-val ue = 0. 2309.
Shapiro WIlk Wstatistic = 0. 9642

Warning Errors
| MSBLS_ALL_OBS_TI ED

Fatal Errors

| MSLS_NEED AT LEAST 5

| MSLS_NEG | N_EXPONENTI AL

| MSLS_NO VAR ATI ON_| NPUT

All observations in “x” are tied.

All but # elements of “x” are missing. At
least five nonmissing observations are
necessary to continue.

In testing the exponential distribution, an
invalid element in “x” is found (“X[]” = #).
Negative values are not possible in
exponential distributions.

There is no variation in the input data. All
nonmissing observations are tied.
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kolmogorov_one

Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Synopsis
#include <i nsls. h>

float *i nsl s_f _kol nogorov_one (float cdf (), int n_observati ons,
floatx[], ..., 0)

The type doubl e functionisinsls_d_ kol nogorov_one.

Required Arguments

float cdf (float x) (Input)
User-supplied function to compute the cumulative distribution function
(cdf) at agivenvalue. Theformis cdf (x), where
x isthevalue at which cdf isto be evaluated (Input)
and cdf isthevalueof cdf at x. (Output)

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of sizen_obser vat i ons containing the observations.

Return Value

Pointer to an array of length 3 containing Z, p;, and p, .

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _kol nogorov_one (float cdf (), int n_observati ons,
float x[],
| MSLS DI FFERENCES, int **di f f er ences,
| MSLS_DI FFERENCES USER, int di f f er ences][ ]
I MSLS N M SSING, int *n_m ssi ng,
| MSLS RETURN USER, float test_statistic[]
0)

Optional Arguments

| MBLS_DI FFERENCES, int **di f f erences (Output)
Address of a pointer to the internally allocated array containing
D,, D,", Dy.

| MSLS_DI FFERENCES USER, int di f f er ences][ ]
Storage for the array di f f er ences isprovided by the user.
See | MSLS_DI FFERENCES.
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I MBLS_N_M SSI NG, int *n_mni ssing (Ouput)
Number of missing valuesisreturned in*n_ni ssi ng.

| MBLS_RETURN_USER, float test _statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both
one-sided and two-sided alternativesis stored in array
test_statistics provided by the user.

Description

Theroutinei nsl s_f _kol mogor ov_one performs a Kolmogorov-Smirnov
goodness-of -fit test in one sample. The hypotheses tested follow:

e Hy: F(X)=F9x) H;:F(x)#FYx)
e Hy: F(x)2FY(x) H;:F(x)<FYx)
e Hy: F(X)< FY(x) H;: F(x)>FY(x)

where F is the cumulative distribution function (cdf ) of the random variable, and
the theoretical cdf , F* , is specified viathe user-supplied function cdf . Let
n=n_observations - n_m ssing. Thetest statistics for both one-sided
alternatives

D, = differences| 1]
and
D,, = differences| 2]

and thetwo-sided (D,, = di f f er ences|[ 0] ) alternative are computed as well as
an asymptotic z-score (di f f er ences|[ 3] ) and p-values associated with the one-
sided (di f f er ences[ 4] ) and two-sided (di f f er ences[ 5] ) hypotheses. For

n > 80, asymptotic p-values are used (see Gibbons 1971). For n < 80, exact
one-sided p-values are computed according to a method given by Conover (1980,
page 350). An approximate two-sided test p-value is obtained as twice the one-
sided p-value. The approximation is very close for one-sided p-values less than
0.10 and becomes very bad as the one-sided p-values get larger.

Programming Notes

1 The theoretical cdf isassumed to be continuous. If the cdf isnot
continuous, the statistics
Dy,
will not be computed correctly.
2. Estimation of parametersin the theoretical cdf from the sample data
will tend to make the p-values associated with the test statistics too

liberal. The empirical cdf will tend to be closer to the theoretical cdf
than it should be.
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3. No attempt is made to check that all pointsin the sample arein the
support of the theoretical cdf . If all sample points are not in the support
of thecdf , the null hypothesis must be rejected.

Example

In this example, arandom sample of size 100 is generated viaroutine

i msl s_f_random uni f or m(Chapter 12) for the uniform (0, 1) distribution. We
want to test the null hypothesis that thecdf isthe standard normal distribution
with amean of 0.5 and avariance equal to the uniform (0, 1) variance (1/12).

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
float cdf(float);
voi d main()
{
float *statistics=NULL, *diffs = NULL, *x=NULL;
int nobs = 100, *nmiss;
i msl s_random seed_set (123457);
x = insls_f_random uniform nobs, 0);
statistics = insls_f_kol nbgorov_one(cdf, nobs, Xx,
I MSLS N M SSING &nnmi ss,
| MSLS_DI FFERENCES, &diffs,
0);
98. 4f\n", diffs[0]);
98. 4f\n", diffs[1]);
printf("D 98. 4f\n", diffs[2]);
printf("zZ 8. 4f\n", statistics[0]);
printf("Prob greater D one sided = 98.4f\n", statistics[1]);
printf("Prob greater D two sided = 98.4f\n", statistics[2]);
printf("N mssing = %\n", nnss);

printf("D
printf("D+

}

float cdf (float x)

{

float mean = .5, std = .2886751, z;
z = (x-nean)/std;
return(imsls_f_normal _cdf(z));

}
Output
D = 0.1471
D+ = 0. 0810
D = 0.1471
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z = 1.4708

Prob greater D one-sided
Prob greater D two-sided

N mi ssing =

0

0.0132
0. 0264

kolmogorov_two

Performs a Kolmogorov-Smirnov two-sample test.

Synopsis
#include <i nsl's. h>

float *i nsl s_f _kol mogorov_two (int n_observations_x, floatx[],int
n_observations_y, floaty[], .., 0)

The type double function isi nsl s_d_kol nogor ov_t wo.

Required Arguments

int n_observations_x (Input)
Number of observationsin sample one.

float x[] (Input)
Array of sizen_obser vat i ons_x containing the observations from
sample one.

int n_observations_y (Input)
Number of observationsin sample two.

float y[] (Input)
Array of sizen_obser vat i ons_y containing the observations from
sample two.

Return Value

Pointer to an array of length 3 containing Z, p;, and p, .

Synopsis with Optional Arguments

#include <i nsls. h>

float *i msl s_f _kol nogorov_two (int n_observations_x, float x[],int
n_observations_y, floaty[], ..
I MSLS_DI FFERENCES, int **di f f er ences,
| MSLS DI FFERENCES USER, int differences[],
I MBLS_N_M SSI NG X, int *xmi ssing,
IMSLS N M SSING Y, int *ymi ssi ng,
| MSBLS_RETURN_USER, float test_statistic[],
0)
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Optional Arguments

I MSLS DI FFERENCES, int **di ff erences (Output)
Address of a pointer to the internally allocated array containing
Dnv Dn+! Dn--

I MSLS DI FFERENCES USER, int di fferences[] (Output)
Storage for array di f f er ences isprovided by the user.
See| MBLS DI FFERENCES.

I MSBLS N M SSI NG X, int *xm ssi ng (Ouput)
Number of missing valuesin thex sampleisreturned in *xmni ssi ng.

IMSLS N M SSING Y, int *ynmi ssing (Ouput)
Number of missing valuesin they sampleisreturned in *yni ssi ng.

I MSBLS RETURN USER, float test statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both
one-sided and two-sided aternativesis stored in array
test_statistics provided by the user.

Description

Functioni nsl s_f kol nogor ov_t wo computes Kolmogorov-Smirnov two-

sampl e test statistics for testing that two continuous cumulative distribution

functions (CDF's) are identical based upon two random samples. One- or two-
sided alternatives are allowed. Expetalues are computed for the two-sided test
whenn_observations_x * n_observati ons_y is less than 104.

Let F,,(x) denote the empirical CDF in tiesample, leG,,(y) denote the
empirical CDF in theéf sample, whera =n_observati ons_x —

n_m ssing_x andm=n_observations_y — n_mi ssing_y, and let the
corresponding population distribution functions be denoteB(kyandG(y),
respectively. Then, the hypotheses testednsy s f kol nogor ov_t wo are as
follows:

*Hy: F(x)=G(x) Hy:F(x)#G(x)
*Hy: F(X)<G(x) Hy:F(x)>G(x)
*Hy: F(x)2G(x) HpiF(x)<G(x)
The test statistics are given as follows:
Dy = max( Dy D (diffs[0])
D = max, (Fo(X) = Gp(x))  (diffs1])
Dy = max, (Gp(x) — Fy(x))  (diffg2])
Asymptotically, the distribution of the statistic

Z = Dpp4/(Mm+n)/ (mn)
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(returned in st at i sti cs[ 0] ) convergesto adistribution given by Smirnov
(1939).

Exact probabilities for the two-sided test are computed when nmisless than or
equal to 10*, accordi ng to an algorithm given by Kim and Jennrich (1973). When
nmis greater than 10%, the very good approximations given by Kim and Jennrich
are used to obtain the two-sided p-values. The one-sided probability is taken as
one half the two-sided probability. Thisis avery good approximation when the p-
valueissmall (say, lessthan 0.10) and not very good for large p-values.

Example

The following exampleillustratesthei msl s_f kol nogor ov_t wo routine with
two randomly generated samples from a uniform(0,1) distribution. Since the two
theoretical distributions are identical, we would not expect to reject the null
hypothesis.

#i ncl ude <insls. h>

#i ncl ude <stdio. h>

voi d main()

{

float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL;

int nobsx = 100, nobsy = 60, *nm ssx, *nm ssy;

i msl s_random seed_set (123457);

x = imsls_f_random_uniforn(nobsx, 0);

y = imsls_f_random_uniforn(nobsy, 0);

statistics = insls_f_kol nbgorov_two(nobsx, x, nobsy, v,
I MBLS_N_M SSI NG X, &nmi ssx,
| MSLS_N_M SSI NG Y, &nmi ssy,
| MSLS_DI FFERENCES, &diffs,
0);

printf("D = 98.4f\n", diffs[0]);

printf("D+ = 98.4f\n", diffs[1]);

printf ("D = 98.4f\n", diffs[2]);

printf("z = 98.4f\n", statistics[0]);

printf("Prob greater D one sided = 98.4f\n", statistics[1]);
printf("Prob greater D two sided = 98.4f\n", statistics[2]);
printf("Mssing X = %\n", nm ssx);

printf("Mssing Y = %\n", nm ssy);
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Output

D = 0.1800
D+ = 0.1800
D- = 0.0100
z 1.1023
Prob greater D one sided
Prob greater D two sided
M ssing X = 0
Mssing Y = 0

0. 0720
0. 1440

multivar_normality _test

Computes Mardia’s multivariaé measuresfeskewness and kurtosis and tests for
multivariate normality.

Synopsis

#include <i nsls. h>

float *insls_f_multivar_normality_test (int n_observations,int
n_vari abl es, floatx[], ..., 0)

The typedouble function i nsl s_d_mul tivar_normality_test.

Required Arguments

int n_observations (Input)
Number of observations (number of rows of data)

int n_vari abl es (Input)
Dimensionality of the multivariate space for whichettkewness and
kurtosis are to be computed. Number of variabies i

float x[] (Input)
Array of siZn_observati ons byn_vari abl es containing the data.
Return Value
A pointer to an array of dimension 13 containing output statistics
I stat[ | ]
0 estimated skewness
1 expecteskewness assuming a multivariate normal distribution
2

asymptotic chi-squared statistic assuming a multivariate normal
distribution

3 probability of a greater chi-squared
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Mardia and Foster’' s standard normal score for skewness
estimated kurtosis

asymptotic standard error of the estimated kurtosis

4
5

6 expected kurtosis assuming a multivariate normal distribution

7

8 standard normal score obtained from st at [ 5] through st at [ 7]
9

p-value corresponding to st at [ 8]
10 Mardia and Foster’s standard normal score for kurtosis
11 Mardia sSy statistic based upon st at [ 4] and st at [ 10]
12 p-valuefor st at [ 11]

Synopsis with Optional Arguments

#include <i nsls. h>

float i msl s_f_multivar_normality_test (int n_observations_x,int
n_vari abl es, floatx[], ...

| MSLS FREQUENCI ES, int frequencies[],
| MSLS WEI GHTS, float wei ghts[],

I MSLS SUM FREQ, int *sum frequenci es,
| MSLS SUM VEI GHTS, float *sum wei ght s,
I MSLS N ROAS M SSING, int *nrmi ss,

| MSLS MEANS, float **neans,

| MSLS MEANS USER, float neans[],
IMBLS R, float **R matri x,

I MSBLS R USER, float R matrix[],

| MSLS RETURN USER, float test statistics[],
0)

Optional Arguments

I MSBLS_FREQUENCI ES, int frequencies[] (Input)
Array of size n_r ows containing the frequencies. Freguencies must be
integer valued. Default assumes all frequencies equal one.

I MSLS VEI GHTS, float wei ghts[] (Input)
Array of size n_r ows containing the weights. Weights must be greater
than non-negative. Default assumes all weights equal one.

I MSLS_SUM FREQ int *sum frequencies (Output)
The sum of the frequencies of all observations used in the computations.

Chapter 7: Tests of Goodness of Fit multivar_normality_test s 355



| MSLS_SUM WEI GHTS, float *wei ght s[] (Output)
The sum of the weights times the frequencies for all observationsused in
the computations.

I MBLS N ROAS_M SSI NG, int **nrmi ss (Output)
Number of rows of datainx[] containing any missing values (NaN).

I MSBLS MEANS, float **means (Output)
The address of apointer to an array of length n_vari abl es
containing the sample means.

| MBLS MEANS USER, float neans[] (Output)
Storage for array means isprovided by user. See | MSLS_MEANS.

I MSLS R, float**R matri x (Output)
The address of apointer toan n_vari abl es by n_vari abl es upper
triangular matrix containing the Cholesky R'R factorization of the
covariance matrix.

I MBLS R USER, floatR matrix[] (Output)
Storage for array R _matri x isprovided by user. See | MSLS R

I MSBLS RETURN USER, float test statistics[] (Output)
User supplied array of dimension 13 containing the estimates and their
associated test statistics.

Description

Functioni nmsl s_f _nultivar_normality_test computesMardia’'s (1970)
measursb; , andb, , of multivariae skewness and kurtosis, respectfully, for
p=n_vari abl es. These measures are then used in computing tests for
multivariate normality. Three test statistics, one based bppalone, one based
uponb, , alone, and an omnibus test statistic formed by combining normal scores
obtained fronb, , andb, , are computed. On the ordefmp operations are
required in computing, , when the methodfdsogau (1983) is used, where
n=n_observations. On the orderfonp operations are required in computing

b, p-
Let
dj = \ww; (% _X)Ts_l(xj -X)
where
S = yitaw (5 - X)(% - %)
ity
n
X :n; w; i
Siawfi &

f; is the frequency of th-th observation, and; is the weight for this
observation. (Weightw; are defined such thatis distributed according to a
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multivariate normal, N(u, Z/w;) distribution, where X is the covariance matrix.)
Mardia’'s multivariagé skewness statistic is defined as:

n

1 n
by p :FZ Zl fifydj
<

while Mardia’s kurtosis is given as:
1w , 2
bz,p == fidi

Both measures are invariant under the affine (matrix) transfonmtia- D,

and reduce to thunivariate measures whp =n_vari abl es = 1. Using

formulas givenn Mardia and Foster (1983), the approximate expected value,
asymptotic standard error, and asymptpti@lue forb, ,, and the approximate
expected value, an asymptotic chi-squared statistitpamlue for tie b, ,

statistic are computed. These statistics are all computed under the null hypothesis
of a multivariate normal distribution. In addition, standard normal stbfréd, )
andW,(b, ,) (different from but similar to the asymptotic normal and chi-squared
statistics above) are computed. These scores are combined into an asymptotic chi-
squared statistic with two degrees of freedom:

S =W (byp) + Wby )

This chi-squared statistic may be used to test for multivariate normality.
A p-value for the chi-squared statistic is also computed.

Example

In the following example, 150 observations from a 5 dimensional standard normal
distribution are generated via rowinnsl s_f random nor mal (Chapter 2).
The skewness and kurtosis statistics are then computed for these observations.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>
voi d main()

{
float *x, swt, *xnean, *r, *stats;
int i, nobs = 150, ncol =5, nvar =5, izero = 0, ni, nrmss;
i nsl s_random seed_set (123457) ;
x = imsls_f_random normal (nobs*nvar, 0);
stats = insls_f_nultivar_normality_test(nobs, nvar, X,

I MSLS_SUM FREQ, &ni,
| MSLS_SUM VEEI GHTS, &swt,
I MSBLS_N_ROWS_M SSI NG, &nrmi ss,
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IMSLS_ R, &, | MSLS_MEANS, &xnean,
0);

printf("Sum of frequencies = %\ nSum of the weights =%8. 3f\ nNunmber
rows mssing = 9%3d\n", ni, swt, nrmss);

inmsls f wite matrix("stat", 13, 1, stats,
I MSLS_ROW NUMBER_ZERQ,

0);

}
Output
Sum of frequencies = 150
Sum of the weights = 150.000
Nunmber rows m ssing = 0
st at

0 0.73
1 1.36
2 18. 62
3 0.99
4 -2.37
5 32. 67
6 34.54
7 1.27
8 -1.48
9 0.14
10 1.62
11 8.24
12 0.02

randomness_test

Performs a test for randomness.

Synopsis
#include <i nsl's. h>

float i msl s_f _randomess_test (int n_observations, floatx[],
int n_run..., 0)

The type double function isi nsl s_d_r andomrmess_t est .

Required Arguments

int n_observations (Input)
Number of observationsin x.

float x[] (Input)
Array of sizen_obser vat i ons containing the data.
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int n_run (Input)
Length of longest run for which tabulation is desired. For optional
arguments| MSLS_PAI RS, | MSBLS_DSQUARE, and | MSLS_DCUBE,
n_r un stands for the number of equiprobable cellsinto which the
statistics are to be tabulated

Return Value

The probability of alarger chi-squared statistic for testing the null hypothesis of a
uniform distribution.

Synopsis with Optional Arguments

#include <i nsls. h>

float i msl s_f _randomess_test (int n_observations_x, floatx[], int
n_run,

I MSLS_RUNS, float **runs_count, float **covari ances,

I MSBLS_RUNS_USER, float runs_count[], float covari ances[],
I MSLS PAIRS, int pairs_| ag, float**pairs_count,

| MSLS PAI RS USER, float pairs_|lag[], float pairs_count[],
| MSLS DSQUARE, float **dsquare_count,

| MSLS DSQUARE_USER, float dsquare_count[],

| MSLS DCUBE, float **dcube_count,

| MSLS DCUBE_USER, float dcube count[],

| MBLS RUNS EXPECT, float **runs_expect,

| MSLS_RUNS_EXPECT_USER, float runs_expect[],
| M5LS _EXPECT, float *expect,

| MBLS CHI _SQUARED, float *chi _squar ed,

| M5LS DF, float *df,

| MBLS RETURN USER, float *pval ue,

0)

Optional Arguments

I MSBLS_RUNS, float **runs_count, float **covari ances, (Output) or
I MSLS PAIRS, int pairs_lag (Input), float**airs_count, (Output) or
I MSBLS DSQUARE, float **dsquare_count, (Output) or

I MSLS DCUBE, float **dcube_count, (Output)

I MSBLS_RUNS i ndicatestherunstest isto be performed. Array of
length n_observati ons containing the counts of the number of runs
up of each length isreturnedin *r uns_count s. n_observati ons by
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n_obser vat i ons matrix containing the variances and covariances of
the countsisreturned in *covari ances. | MSBLS_RUNS isthe defualt
test, however, to return the counts and covariances | MSLS_RUNS
argument must be used.

I MSLS_PAI RS indicates the pairstest isto be performed. Thelag to be
used in computing the pairs statisticisstored inpai rs_l ag.  Pairs
(X[i], X[i + lag]) fori = 0,...,N-pairs_lag -1 are
tabulated, where Nisthetotal sasmplesize. n_run by n_run  matrix
containing the count of the number of pairsin each cell.

IMSLS_DSQUAREnNdicates the d test is to be performed.
**dsquare_counts  isan address of a pointer to an internally allocated
array of length n_run containing the tabulations for the d? test.

IMSLS_DCUBEHNdicates the triplets test is to be performed.
**dcube_counts isan address of apointer to an internally allocated
array of lengthn_run by n_run by n_run containing the tabulations for
the triplets test.

IMSLS_RUNS_USERfloat runs_counts], float covariances(] (Output)
Storage for runs_counts  and covariances s provided by the user.
See IMSLS_RUNS

IMSLS_PAIRS_USER, float pairs_lag]], float pairs_counts[] (Output)
Storage for pairs_lag and pairs_counts  isprovided by the user.
See IMSLS_PAIRS.

IMSLS_DSQUARE_USERIoat dsquare_count]] (Output)
Storage for dsquare_count is provided by the user.
See IMSLS_DSQUARE

IMSLS_DCUBE_USER, float dcube_count]] (Output)
Storage for dcube_count isprovided by the user. See IMSLS_DCUBE

IMSLS_CHI_SQUARED, float *chi_squared (Output)
Chi-squared statistic for testing the null hypothesis of a uniform
distribution.

IMSLS_DF, float *df (Qutput)
Degrees of freedom for chi-squared.

IMSLS_RETURN_USER,float *pvalue  (Output)
If specified, pvalue  returnsthe probability of alarger chi-squared
statistic for testing the null hypothesis of a uniform distribution.

If IMSLS_RUNS is specified:

IMSLS_RUNS_EXPECT, float **runs_expect (Output)
The address of a pointer to an internally allocated array of length n_run
containing the expected number of runs of each length.

IMSLS_RUNS_EXPECT_USER, float runs_expect[| (Output)
Storage for runs_expect  isprovided by the user.
See IMSLS_RUNS_EXPECT
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If 1 MSBLS_PAIRS, | MSLS DSQUARE, or | MSLS DCUBE is specified:

| MSLS_EXPECT, float **expect (Output)
Expected number of counts for each cell. Thisargument isoptional only
if oneof | MSBLS_PAI RS, | M5LS_DSQUARE, or | MBLS DCUBE is used.

Description
Runs Up Test

Functioni nmsl s_f _randomess_t est performs one of four different tests for
randomness. Optional argument | MSLS_RUNS computes statistics for the runs up
test. Runstests are used to test for cyclical trend in sequences of random
numbers. If the runs down test is desired, each observation should first be
multiplied by —1 to change its sign, and | MSLS_RUNS called with the modified
vector of observations.

I MSLS_RUNS first tallies the number of runs up (increasing sequences) of each
desired length. Fori =1, ...,r — 1, wherer = n_r un, r uns_count [i] contains the
number of runs of lengthi. r uns_count [n_r un] contains the number of runs of
length n_r un or greater. As an example of how runs are counted, the sequence

(1, 2, 3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, | MSLS_RUNS computes the
expected values and the covariances of the counts according to methods given by
Knuth (1981, pages 65-67). Let R denote a vector of length n_r un containing
the number of runs of each length so that thei-th element of R, r;, contains the
count of the runs of lengthi. Let X5 denote the covariance matrix of R under the
null hypothesis of randomness, and let pi; denote the vector of expected values
for R under this null hypothesis, then an approximate chi-squared statistic with
n_r un degrees of freedom is given as

X* =(R-pg)" IR(R-HR)

In general, the larger the value of each element of i, the better the chi-squared
approximation.

Pairs Test

I MSLS_PAI RS computes the pairs test (or the Good’s serial test) on a
hypothesized sequence of uniform (0,1) pseudorandom numbers. The test
proceeds as follows. Subsequent pai(§)(X(i + pai rs_| ag)) are tallied into a
k x k matrix, wher&k = n_r un. In this tally, element(m) of the matrix is
incremented, where

j= |_kX(i )J +1
m=| kX(i +1)]+1
wherel =pai rs_| ag, and the notationllrepresents the greatest integer

function,[YUis the greatest integer less than or equ¥] tehereY is a real
number. Ifl =1, then =1, 3,5,...,n-1.IfI>1,then=1,2,3,...,n—1,
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where n isthetotal number of pseudorandom numbersinput on the current
invocation of | MSLS_PAI RS (i.e., n=n_obser vat i ons).

Given the tally matrix inpai r s_count , chi-squared is computed as

k_l(O"_e)z

2 _ ]

X=2 e
i,]=0

wheree = Zo,-j/k2, and o;; is the observed count in cell (i, j)
(0; = pai rs_count (i, J)).

Because pair statistics for the trailing observations are not tallied on any call, the
user should call 1 MSLS_PAI RS withn_obser vat i ons aslarge as possible. For
pairs_lag <20and n_observati ons = 2000, little power islost.

d? Test

I MSLS_DSQAR computes the d " test for succeeding quadruples of hypothesized
pseudorandom uniform (0, 1) deviates. The d test is performed as follows. Let
X, X5, X3, and X, denote four pseudorandom uniform deviates, and consider

D* = (% =X)" + (X = %)’
The probability distribution of D’is given as
3 44
Pr(D? <d?)=d2n-39"+ 9"
3 2

when D < 1, where Ttdenotes the value of pi. If D? > 1, this probability is given
as

Pr(D? sdz):%+(n—2)d2 +4/d? -1

1
a2
1
d

3 1
2 _ 4
+8u—d——4d2 arctan

3 2

See Gruenberger and Mark (1951) for a derivation of this distribution.

For each succeeding set of 4 pseudorandom uniform numbers input in X, d * and
the cumulative probability of d > (Pr(D* < d %)) are computed. The resulting
probability istallied into one of k =n_r un equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total
number of observations/4). Then, under the null hypothesis that the numbers input
are random uniform (0, 1) numbers, the expected value for each element in
dsquar e_count ise=n/k. An approximate chi-squared statistic is computed as
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k-1

X2 = Z(OI -e)’

1=0 e

where 0; = dsquar e_count (i) is the observed count. Thus, )(2 hask — 1 degrees
of freedom, and the null hypothesis of pseudorandom uniform (O, 1) deviatesis
rejected if )f istoo large. As n increases, the chi-sgquared approximation becomes
better. A useful generalization isthat e > 5 yields a good chi-squared
approximation.

Triplets Test

| MBLS_DCUBE computes the triplets test on a sequence of hypothesized
pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows:

Each set of three successive deviates, X , X, and X, istallied into one of m equal
sized cubes, wherem=n_run. Leti =[mX] + 1, =[mX,] + 1, and k=[mX] +
1. For thetriplet (X, X, X), dcube_count (i, j, K) isincremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m cells

are equally probable and each has expected value e = n/m, where n is the number
of tripletstallied. An approximate chi-squared statistic is computed as

k-1 2
2 _ Ojk —€)
X° = Z —

i,],k=0

where 0, = dcube_count (i, j, K).

The computed chi-squared has m-1 degrees of freedom, and the null hypothesis
of pseudorandom uniform (0, 1) deviatesisrejected if )(2 istoo large.

Example 1

The following exampleillustrates the use of the runs test on 10* pseudo-random
uniform deviates. In the example, 2000 deviates are generated for each call to

I MSLS_RUNS. Since the probability of alarger chi-squared statistic is 0.1872,
thereis no strong evidence to support rejection of this null hypothesis of
randomness.

#i nclude "insls. h>
#i ncl ude <stdio. h>
voi d main()
{
int nran = 10000, n_run = 6;
char *fmt = "98.1f";
float *x, pvalue, *runs_counts, *covariances, *runs_expect, chisq, df;
i nsl s_random seed_set (123457) ;
x = imsls_f_random.unifornm(nran, 0);
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pval ue

= insls_f_randommess_test(nran, x, n_run
| MSBLS_CHI _SQUARED, &chi sq,
| MBLS _DF, &df,
| MSLS_RUNS_EXPECT, &runs_expect,
| MSLS RUNS, &runs_counts, &covari ances,
0);

insls f wite_matrix("runs_counts", 1, n_run, runs_counts, 0);
imsls_f_wite_matrix("runs_expect”, 1, n_run, runs_expect,

| MBLS_WRI TE_FORVAT, fnt,
0);

insls f wite_matrix("covariances", n_run, n_run, covariances,

printf("chisq
printf("df
printf("pval ue

1
1709

1667. 3

1278.

..
o
N ©
[ocJFN

Q0 OURWNE
==
1%
o
1 1
NN
DN

pval ue

~NOO OONPF

I MSLS WRI TE_FORNMAT, fnt,
0);

%\n", chisq);

%\n", df);

%\n", pvalue);

Output
runs_count
2 3 4 5 6
2046 953 260 55 4
runs_expect
2 3 4 5 6
2083.4 916.5 263. 8 57.5 11.9

covari ances

2 3 4 5 6
-194.6 -148.9 -71.6 -22.9 -6.7
1410.1 -490.6 -197.2 -55.2 -14. 4
-490. 6 601. 4 -117. 4 -31.2 -7.8
-197.2 -117.4 222.1 -10.8 -2.6

-55.2 -31.2 -10.8 54.8 -0.6
-14. 4 -7.8 -2.6 -0.6 11.7
8.76514
6. 00000
0. 187225
Example 2

The following example illustrates the calculations of thel MSLS_PAI RS statistics
when arandom sample of size 10* is used and the pai rs_l ag is 1. Theresults
are not significant. IMSL routineins! s_f _random uni f or m(Chapter 12) is
used in obtaining the pseudorandom deviates.

#i nclude "insls.h"
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#i ncl ude <stdio. h>
voi d main()

{
int nran = 10000, n_run = 10;
float *x, pvalue, *pairs_counts, *covariances, expect, chisq, df;
i msl s_random seed_set (123467) ;
x = insls_f_randomuniformnran, 0);
pval ue = insls_f_randommess_test(nran, X, n_run

| MBLS CHI _SQUARED, &chi sq,

| MSLS_DF, &df,

| MSLS_EXPECT, &expect,

| MSBLS PAIRS, 5, &pairs_counts,

0);
imsls_f_wite_matrix("pairs_counts", n_run, n_run, pairs_counts, 0);
printf("expect = 98.2f\n", expect);
printf("chisq = 98.2f\n", chisq);
printf("df = 98.2f\n", df);
printf("pvalue = 090.4f\n", pvalue);

}

Output
pai rs_count
1 2 3 4 5 6 7 8 9 10
111 82 95 117 102 102 112 84 90 73
104 106 109 108 101 97 102 92 109 88
88 111 86 105 112 79 103 105 106 99
91 110 108 92 88 108 113 93 105 114
104 105 103 104 101 94 96 86 93 103
104 103 104 79 89 92 104 92 99
103 91 97 101 116 83 117 118 106 99
105 105 110 91 92 82 100 104 110 89
92 102 82 101 93 128 101 109 125 98

QCQOWONOUITRAWNE
(o]
(o]

1 79 99 103 97 104 101 93 93 98 105
expect = 99. 95
chi-squared = 104. 86
df = 99. 00
pval ue = 0. 3242
Example 3

In the following example, 2000 observations generated via IMSL routine
i msl s_f_random uni f or m(Chapter 12) areinput to | MSLS_DSQARin one
call. In the example, the null hypothesis of a uniform distribution is not rejected.

#i ncl ude <inmsls. h>
#i ncl ude <stdio. h>

Chapter 7: Tests of Goodness of Fit randomness_test ¢ 365



voi d nain()

{

int nran = 2000, n_run = 6;

87
expect
chi sq
df
pval ue

float *x, pvalue, *dsquare_counts, expect, chisq, df;
i nsl s_random seed_set (123457) ;
x = imsls_f_randomuniforn(nran, 0);
pval ue = insls_f_randommess_test(nran, x, n_run
| MSLS_CHI _SQUARED, &chi sq,
| MSLS _DF, &df,
| MSLS_EXPECT, &expect,
| MSLS DSQUARE, &dsquare_counts
0);
insls f wite matrix("dsquare_counts”, 1, n_run, dsquare_counts, 0);
printf("expect = 9%0.4f\n", expect);
printf("chisqg = %0.4f\n", chisq)
printf("df = 98.2f\n", df);
printf("pvalue = %0.4f\n", pval ue);
Output
dsquare_counts
2 3 4 5 6
84 78 76 92 83
= 83. 3333
= 2. 0560
= 5. 00
= 0. 8413
Example 4

In the following example, 2001 deviates generated by IMSL routine

i msl s_f _random uni f or m(Chapter 12 ) areinput to | MSLS_DCUBE, and
tabulated in 27 equally sized cubes. In the example, the null hypothesisis not
rejected.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d nain()

{

int nran = 2001, n_run = 3

float *x, pvalue, *dcube_counts, expect, chisq, df;
i nsl s_random seed_set (123457);

x = imsls_f_randomunifornm(nran, 0);

pval ue = insls_f_randommess_test(nran, x, n_run
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| MSBLS_CHI _SQUARED, &chi sq
| MSLS_DF, &df,
| MSLS_EXPECT, &expect,
| MSLS_DCUBE, &dcube_counts,
0);
imsls_f _wite_matrix("dcube_counts", n_run, n_run, dcube_counts, 0);

inmsls f wite _matrix("dcube _counts", n_run, n_run
&dcube_counts[n_run*n_run], 0)

imsls_f_wite_matrix("dcube_counts", n_run, n_run
&dcube_counts[2*n_run*n_run], 0);

printf("expect = 9%0.4f\n", expect);
printf("chisq = %0.4f\n", chisq);
printf("df = 98.2f\n", df);
printf("pvalue = %0.4f\n", pval ue);

}
Output
dcube_count s
1 2 3
1 26 27 24
2 20 17 32
3 30 18 21
dcube_counts
1 2 3
1 20 16 26
2 22 22 27
3 30 24 26
dcube_count s
1 2 3
1 28 30 22
2 23 24 22
3 33 30 27
expect = 24.7037
chisq = 21.7631
df = 26. 00
pval ue = 0. 701586
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Chapter 8: Time Series and
Forecasting

Routines
ARIMA Models
Compute least-squares or method of moments estimates
Of PArAMELEIS ... e arma 371
Compute forecasts and
their associated probability limits.............covvvvvvvviennnns arma_forecast 381
Perform differencing on a time Series .........cccccceeeeeveieennnn. difference 386
Perform a Box-Cox transformation ................... box_cox_transform 390
Sample autocorrelation function...............ceeeeeeeeee. autocorrelation 395
Sample partial autocorrelation function........ partial_autocorrelation 399
Lack-of-fit test based on the
corrleation fUNCLON ... lack_of fit 402
Compute estimates of the parameters of
a GARCH(p,q) model .......ccooeeieiiie e garch 405

Usage Notes

Theroutines in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN
(seetheroutinei sl s_f _machi ne, Chapter 14), and the routine will return an
appropriate error message. To enable fitting of the model, the missing values
must be replaced by appropriate estimates.

General Methodology

A major component of the model identification step concerns determining

if agiven time seriesis stationary. The sample correlation functions

computed by routinesi nsl s_f _aut ocorrel ati on (page 395), and

imsls_f partial _autocorrelation (page 399) may be used to diagnose

the presence of nonstationarity in the data, as well as to indicate the type of
transformation required to induce stationarity. The family of power transformations
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provided by routine i nsl s_f _box_cox_t r ansf or m(page 390) coupled with
the ability to difference the transformed data using routine

i msl s_f_difference (page 386) affords a convenient method of transforming
awide class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also provide
insight into the nature of the underlying model. Typically, this information is
displayed in graphical form via time series plots, plots of the lagged data, and
various correlation function plots.

The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fitting.
Theroutinei msl s_f _random arma (Chapter 12may be used to generate a

time series according to a specified autoregressive moving average model./

Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time
domain is often proposed and parameter estimation, diagnostic checking and
forecasting are performed.

ARIMA Model (Autoregressive Integrated Moving Average)

A small, yet comprehensive, class of stationary time-series models consists of the
nonseasonal ARMA processes defined by

®B) (W, - =6(B)A, tOZ

wherez={...,-2,-1, 0, 1, 2, ...} denotes the set of integ&ss the backward
shift operator defined b&kWt =W,_,, W is the mean dV,, and the following
equations are true:

@®B)=1-@B- @B -..-@B" p=0
6(B)=1-6B-6,8"-..-9,8/,g20
The model is of ordemp( g) and is referred to as an ARMA, (@) model.
An equivalent version of the ARMAy(q) model is given by
@B)W,=6,+6(B)A, tOZ

wheref, is an overall constant defined by the following:

eozu[l_iq)l}

See Box and Jenkins (1976, pp—93) for a discussion of the meaning and
usefulness of the overall constant.

If the “raw” data, £}, are homogeneous and nonstationary, then differencing
usingi nsl s_f _di fference (page 386)nduces stationarity, and the model is
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caled ARIMA (AutoRegressive Integrated Moving Average). Parameter
estimation is performed on the stationary time seriesW,, = [ dZ, , Where
09= a- B)" is the backward difference operator with period 1 and order d,
d>0.

Typically, the method of moments includes argument | MSLS_METHOD_OF_MOVENTS
inacall tofunctioni nmsl s_f _ar na (page 371) for preliminary parameter estimates.
These estimates can be used as initial values into the least-squares procedure by
including argument | MSLS_LEAST_SQUARES in acall to functioni nsl s_f _ar ma.
Other initial estimates provided by the user can be used. The least-squares procedure
can be used to compute conditional or unconditional least-squares estimates of the
parameters, depending on the choice of the backcasting length. The parameter
estimates from either the method of moments or least-squares procedures can be
input to functioni nsl s_f _arma_f or ecast (page 381) through thear ma_i nf o
structure. The functions for preliminary parameter estimation, least-squares
parameter estimation, and forecasting follow the approach of Box and Jenkins (1976,
Programs 2—4, pp. 498-509).

arma

Computes least-square estimates of parameters for an ARMA model.

Synopsis
#include <i nsl's. h>

float *i nsl s_f_arma (int n_observations, float z[], int p, int q, ..,
0)

The type double functionisi nsl s_d_ar na.

Required Arguments

int n_observations (Input)
Number of observations.

float z[] (Input)
Array of length n_obser vat i ons containing the observations.

int p (Input)
Number of autoregressive parameters.
int g (Input)

Number of moving average parameters.

Return Value

Pointer to an array of length 1 + p + g with the estimated constant, AR, and MA
parameters. If | MBLS _NO_CONSTANT is specified, the O-th element of thisarray is
0.0.
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Synopsis with Optional Arguments
#include <insls. h>

float *i nsl s_f_arma (int n_observations, float z[], int p, int g,
| MSLS_NO_CONSTANT, or
| MSLS_CONSTANT,
I MSLS AR LAGS, int ar_| ags[],
| MBLS_MA_LAGS, int na_l ags[],
| MSLS_METHOD_OF MOMENTS, or
| MSLS_LEAST_SQUARES,
| MSLS BACKCASTI NG, int | ength, float tol erance,
| MSLS_CONVERGENCE_TOLERANCE,
float conver gence_t ol er ance,
| MSLS_RELATI VE_ERRCR, float rel ative_error,
| MSLS MAX | TERATI ONS, int max_iterations,
| MSLS_MEAN_ESTI MATE, float *z_rmean,
| MBLS_| NI TI AL_ESTI MATES, float ar[], float ma[],
| MSLS_RESI DUAL, float **resi dual ,
| MSLS RESI DUAL_USER, float residual[],
| MSLS_PARAM EST_CoOv, float **param est cov,
| MSLS PARAM EST_COV_USER, float param est cov[],
| MSLS_AUTOCOV, float **aut ocov,
| MSLS AUTOCOV_USER, float aut ocov|[],
| MSLS_SS _RESI DUAL, float *ss_residual ,
| MSLS RETURN_USER, float *constant, float ar[], float ma[],
| MBLS_ARMA | NFO, Imsls f arma **ar na_i nf o,
0)

Optional Arguments

| MBLS_NO_CONSTANT, or

| MBLS_CONSTANT
If I MBLS_NO_CONSTANT is specified, the time seriesis not centered
about its mean, w_nrean. If | MSLS_CONSTANT, the defaullt, is specified,
the time series is centered about its mean.

I MBLS_AR_LAGS, int ar_lags[] (Input)
Array of length p containing the order of the autoregressive parameters.
The elements of ar _| ags must be greater than or equal to 1.
Default: ar _I ags =[1, 2, ..., p]

I MSBLS_MA_LAGS, int ma_l ags[] (Input)
Array of length g containing the order of the moving average
parameters. The ma_| ags elements must be greater than or equal to 1.
Default: ma_l ags =[1, 2, ..., q]

| MBLS_METHOD OF MOMENTS, or

| MSLS_LEAST_SQUARES
If I MBLS_METHOD OF_MOMENTS is specified, the autoregressive and
moving average parameters are estimated by a method of moments
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procedure. If | MBLS_LEAST_SQUARES is specified, the autoregressive
and moving average parameters are estimated by aleast-squares
procedure.

| MBLS_BACKCASTI NG, int | engt h, float t ol erance (Input)
If | MBLS_BACKCASTI NGis specified, | engt h is the maximum length of
backcasting and must be greater than or equal to 0. Argument
t ol er ance isthetolerance level used to determine convergence of the
backcast algorithm. Typically, t ol er ance is set to afraction of an
estimate of the standard deviation of the time series.
Default: | engt h = 10; t ol er ance = 0.01 x standard deviation of z

| MSLS_CONVERGENCE _TOLERANCE, float conver gence_t ol erance (Input)
Tolerance level used to determine convergence of the nonlinear |east-
sguares algorithm. Argument conver gence_t ol er ance representsthe
minimum relative decrease in sum of squares between two iterations
required to determine convergence. Hence, conver gence_t ol er ance
must be greater than or equal to 0. The default value is max {10,
eps™} for single precision and max
{10‘20, epsm} for double precision, where eps=i nsl s_f _nmachi ne(4)
for single precision and eps=i nsl s_d_nachi ne(4) for double
precision.

| MSLS_RELATI VE_ERRCR, float rel ative_error (Input)
Stopping criterion for use in the nonlinear equation solver used in both
the method of moments and least-sguares algorithms.
Default: rel ative_error =100 xi msl s_f _machi ne(4)
See documentation for functioni nsl s_f _nachi ne (Chapter 14).

| MSLS_MAX_| TERATI ONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equation solver
used in both the method of moments and least-squares algorithms.
Default: max_i t er ati ons =200

| MSLS_MEAN_ESTI MATE, float *z_nean (Input or Input/Output)
Oninput, z_nean isan initia estimate of the mean of the time seriesz.
Onreturn, z_nean contains an update of the mean.
If I MSLS_NO_CONSTANT and | MSLS_LEAST SQUARES are specified,
w_mean is not used in parameter estimation.

| MBLS_I NI TI AL_ESTI MATES, float ar[], float ma[] (Input)
If specified, ar isan array of length p containing preliminary estimates
of the autoregressive parameters, and ma is an array of length g
containing preliminary estimates of the moving average parameters,
otherwise, these are computed internally. | MSLS_| NI TI AL_ESTI MATES
isonly applicableif | MSLS_LEAST_SQUARES is also specified.

| MSLS_RESI DUAL, float **resi dual (Output)
Address of a pointer to an internally allocated array of length
n_observati ons —max (ar _| ags [i]) + 1 engt h containing the
residuals (including backcasts) at the final parameter estimate point in
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thefirst n_observati ons —max (ar _| ags [i]) + nb, wherenb is
the number of values backcast.

| MBLS_RESI DUAL_USER, float residual [] (Output)
Storage for array r esi dual is provided by the user. See
| MSLS_RESI DUAL.

| MBLS_PARAM EST_CoOv, float **param est _cov (Output)
Address of a pointer to aninternally alocated array of sizenp x np,
wherenp=p +q + 1if z is centered about w_mean,andnp=p +qif z
isnot centered. The ordering of variablesin par am est _cov is
z_mean, ar, and ma. Argument np must be 1 or larger.

| MSLS_PARAM EST_COV_USER, float param est_cov[] (Output)
Storage for array par am est _cov isprovided by the user. See
| MBLS_PARAM EST_COV.

| MBLS_AUTOCOV, float **aut ocov (Output)
Address of a pointer to an array of length p + g + 1 containing the
variance and autocovariances of thetime seriesz. Argument
aut ocov [0] contains the variance of the series z. Argument
aut ocov [K] contains the autocovariance of lag k, where
k=1,.,p+qg+1

| MBLS_AUTOCOV_USER, float aut ocov[] (Output)
Storage for array aut ocov is provided by the user. See
| MBLS_AUTOCOV.

I MSLS_SS_RESI DUAL, float *ss_resi dual (Output)
If specified, ss_r esi dual containsthe sum of sgquares of the random
shock, ss_resi dual =residual [1]* +... +residual [na]’.

| MBLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, const ant isthe constant parameter estimate, ar isan array
of length p containing the final autoregressive parameter estimates, and
ma isan array of length g containing the final moving average parameter
estimates.

I MSBLS_ARMA | NFO, Imgls f arma **arma_i nfo (Output)
Address of a pointer to an internally allocated structure of type
Imds f arma that contains information necessary in the call to
i msl s_forecast.

Description

Functioni nsl s_f _ar na computes estimates of parameters for a nonseasonal
ARMA model given asample of observations, {W}, fort=1, 2, ..., n, where
n=n_observati ons. There are two methods, method of moments and |east
squares, from which to choose. The default is method of moments.

Two methods of parameter estimation, method of moments and least squares, are
provided. The user can choose the method of moments algorithm with the
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optional argument | MSLS_METHOD OF MOVENTS. The least-squares algorithm is
used if the user specifies| MSLS_LEAST_SQUARES. If the user wishes to use the
least-squares a gorithm, the preliminary estimates are the method of moments
estimates by default. Otherwise, the user can input initial estimates by specifying
optional argument | MSLS_I NI TI AL_ESTI MATES. The following table lists the
appropriate optional arguments for both the method of moments and least-squares

algorithm:
Method of Moments only | Least Squares only Both Method of Moments
and Least Squares
| MBLS_METHOD_OF_MOMENTS | | MBLS_LEAST_SQUARES | MBLS_RELATI VE_ERRCR
| MSLS_CONSTANT | MBLS_MAX_| TERATI ONS
(or 1 MSLS_NO_CONSTANT)
| MBLS_AR _LAGS | MBLS_MEAN_ESTI MATE
| MBLS_MA_LAGS | MBLS_AUTOCOV( _USER)
| MBLS_BACKCASTI NG | MBLS_RETURN_USER

| MBLS_CONVERGENCE_TOLERANCE | | MSLS_ARMA_I NFO
| MBLS_I NI TI AL_ESTI MATES

| MBLS_RESI DUAL (_USER)

| MBLS_PARAM EST_CoV (_USER)
| MBLS_SS_RESI DUAL

Method of Moments Estimation

Suppose the time series{Z,} is generated by an ARMA (p, ) model of the form
@B)Z, =6, + 8(B)A,

fort0{0, £1, £2, ..}

Let i =w_nean be the estimate of the mean p of the time series{ Z;}, where [1
equals the following:

M for p known

n
M= Zzt for p known
0

The autocovariance function is estimated by

. 1=, . .
6= Y (2~ )2 ~)
t=1
fork=0, 1, ..., K, whereK = p + g. Note that 6 (0) is an estimate of the sample

variance.
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Given the sample autocovariances, the function computes the method of moments

estimates of the autoregressive parameters using the extended Y ule-Walker
equations as follows:

where

0; =0(q+i), i=1..,p
The overall constant 6, is estimated by the following:

A

0 forp=0

6p=1.[ &=

ul—Z(pI forp>0
1=1

The moving average parameters are estimated based on a system of nonlinear
equations given K = p + q + 1 autocovariances, a(k) fork=1, ..., K, and p
autoregressive parameters @; fori =1, ..., p.

Let Z', = @(B)Z,. The autocovariances of the derived moving average process
Z', = B(B)A, are estimated by the following relation:

a(k) forp=0

6-' k = i - ~ JaS . . N
( ZZ‘H‘PJ(OGKH—JD) forpz1,p,=-1
1=0 |=

The iterative procedure for determining the moving average parameters is based

on therelation

(1+6 +...+63)0% fork =0
o(k) =
(~6k +0104s +... +6,4. 8, )% fork =1

where a(k) denotes the autocovariance function of the original Z, process.
LetT= (T, Ty, - T,) andf= (fy, i, .. )7, where

{GA forj=0

YiT1-8, /1, forj=1,..,q

J

and
q-j . _
f; :zTiTm“G'(j) forj=0,1....q
1=0
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Then, the value of T at the (i + 1)-th iteration is determined by the following:
. . N
.[|+1:.[|_(-|—|) fi

The estimation procedure begins with the initial value

7° :(1/6'(0), 0,...,0)7

and terminates at iteration i when either |[f i|| islessthanrel ative_error ori
equalsmax_i t er at i ons. The moving average parameter estimates are obtained
from the final estimate of T by setting

éj =-1j/15forj=1...,q
The random shock variance is estimated by the following:
p ~
6(0)—Zcp|6(i) forq=0

~2
0—A_ 1=1

13 forq=0

See Box and Jenkins (1976, pp. 498-500) for a description of a function that
performs similar computations.

Least-squares Estimation

Suppose the time series{Z;} is generated by a nonseasonal ARMA model of the
form,

@B) (Z, - 1) = 6(B)A, fort O0{0, £1, £2, ...}
where B is the backward shift operator, | isthe mean of Z,, and
@B)=1- @,B"Y —gB"Y - - (ppB""(p) forp=0
6(B)=1-0,8"" -9,B"? - . -g,B"? forq=0

with p autoregressive and g moving average parameters. Without loss of
generality, the following is assumed:

1<l <l @s...<ly(p)
1<lh<lh (@ <...<lh (@

so that the nonseasonal ARMA model is of order (p', q'), wherep' =1, (p) and
g =ly (g). Note that the usual hierarchical model assumes the following:

() =i, 1<i<p
b ()=j,1<j<q

Consider the sum-of-squares function
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where

[A]=E[Al1.06.2)]

and T is the backward origin. The random shocks { A} are assumed to be
independent and identically distributed

N(0,0%)
random variables. Hence, the log-likelihood function is given by

(1.00.0,)= 1(1.9)-nin(o - 29

A
wheref (4, @, 6) isafunction of , ¢, and 6.

For T =0, the log-likelihood function is conditional on the past values of both Z,
and A, required to initialize the model. The method of selecting theseinitial
values usually introduces transient bias into the model (Box and Jenkins 1976,
pp. 210-211). For T = o, this dependency vanishes, and estimation problem
concerns maximization of the unconditional log-likelihood function. Box and
Jenkins (1976, p. 213) argue that

S.(11.0.8)/ (20%)
dominates
I(u,(p,e,oi)

The parameter estimates that minimize the sum-of-squares function are called
|east-squares estimates. For large n, the unconditional least-squares estimates are
approximately equal to the maximum likelihood-estimates.

In practice, afinite value of T will enable sufficient approximation of the
unconditional sum-of-squares function. The values of [A7] needed to compute the
unconditional sum of squares are computed iteratively with initial values of Z,
obtained by back forecasting. The residuals (including backcasts), estimate of
random shock variance, and covariance matrix of the final parameter estimates
also are computed. ARIMA parameters can be computed by using

imsls_f _difference (page386), withinsls_f_ar ma.

Examples

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
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#i nc
voi d
{

i
i
i
i
i
f
f
f
f

this example consists of the number of sunspots observed from 1770 through
1869. The method of moments estimates

éo,fpl,fpz, and él
for the ARMA(2, 1) model
=6+ @z + @z B A, +A

where the errors A, are independently normally distributed with mean zero and
variance

A

ude <insls. h>

mai n()

nt p = 2;

nt q=1;

nt i;

nt n_observations = 100;
nt max_iterations = 0;
loat w176][2];

|l oat Zz[100];

| oat *paraneters;

loat relative_error = 0.0;

insls f data sets(2, IMSLS X COL_DI'M

2, | MBLS_RETURN USER, w,

0);
for (i=0; i<n_observations; i++) z[i] = wW21+i][1];
paraneters = insls_f_arma(n_observations, &[0], p, q,

| MSLS RELATI VE_ERROR, relative_error,
| MSLS MAX | TERATI ONS, nmax_iterations,
0);

printf("AR estinmates are 9%1.4f and 9%1. 4f.\n",

paraneters[1], paraneters[2]);

printf("MA estimate is %1.4f.\n", paraneters[3]);

}

Output
AR estimates are 1. 2443 and -0.5751.
MA estimate is -0.1241.

Example 2

The data for this example are the same as that for theinitial example. Preliminary
method of moments estimates are computed by default, and the method of |east
sguaresis used to find the final estimates. Note that at the end of the output, a
warning error appears. In most cases, this error message can be ignored. There
are three general reasons this error can occur:

1 Convergence is declared using the criterion based on tolerance, but the
gradient of the residual sum-of-squares function is nonzero. This occurs
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in this example. Either the message can beignored or t ol er ance can
be reduced to allow more iterations and a slightly more accurate
solution.

2. Convergence is declared based on the fact that avery small step was
taken, but the gradient of the residual sum-of-squares function was
nonzero. This message can usually be ignored. Sometimes, however, the
algorithm is making very slow progress and is not near a minimum.

3. Convergenceis not declared after 100 iterations.

Trying asmaller valuefor t ol er ance can help determine what caused the error
message.

#i ncl ude <insls. h>

voi d main()

i nt p = 2;

i nt q=1;

i nt i;

i nt n_observati ons = 100;

float W 176][2];

float z[100];

float *paraneters;

float tolerance = 0.125;

inmsls_f_data_sets(2, IMSLS X COL_DI'M
2, I MSLS_RETURN_USER, w,
0);
for (i=0; i<n_observations; i++) z[i] = w21+i][1];

parameters = insls_f_arma(n_observations, &[0], p, q,
| MSLS_LEAST_SQUARES,
| MSLS_CONVERGENCE_TOLERANCE,

tol erance,

0);

printf("AR estimates are %1.4f and %1. 4f.\n",

paraneters[ 1], paraneters[2]);
printf("MA estimate is %1.4f.\n", paraneters[3]);

}
Output
*** WARNING Error | MSLS_LEAST_SQUARES_FAI LED fromimsls_f_arna. Least
*oxk squares estinmation of the paraneters has failed to converge.
*okx Increase "length" and/or "tol erance" and/or
*oxk "convergence_tol erance". The estinmates of the paranmeters at
t he
*okx last iteration may be used as new starting val ues.
AR estimates are 1.3926 and - 0. 7329.
MA estimate is -0.1375.
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Warning Errors

| MSLS LEAST SQUARES FAI LED L east-sguares estimation of the
parameters has failed to converge.
Increase “length” and/or
“tolerance” and/or
“convergence_tolerance.” The
estimates of the parameters at the
last iteration may be used as new
starting values.

arma_forecast

Computes forecasts and their associated probability limits for an ARMA model.

Synopsis
#include <insls. h>

float *insls_f_arma_forecast (Imss f arma *arma_info,
int n_predict, .., 0)

The typedouble function isi nsl s_d_arma_f or ecast .

Required Arguments

Imds f_arma *arma_i nfo (Input)
Pointer to a structure of typends f arma that is passed from the
i msl s_f _ar ma function.

int n_predict (Input)
Maximum lead time for forecasts. Argumenpr edi ct must be
greater than 0.

Return Value

Pointer to an array of length pr edi ct x (backwar d_ori gi n + 3) containing

the forecasts up t@_pr edi ct steps ahead and the information necessary to
obtain pairwise confidence intervals. More information is given in the description
of argument MSLS_RETURN_USER.

Synopsis with Optional Arguments
#include <insls. h>

float *insls_f_arma_forecast (Imss f arma *arma_info,
int n_predict,
| MSLS CONFI DENCE, float confi dence,
| MSBLS_BACKWARD ORI G N, int backward_origin,
| MSLS RETURN_USER, float forecasts[],
0)
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Optional Arguments

I MSLS_CONFI DENCE, float confi dence (Input)
Valuein the exclusiveinterval (0, 100) used to specify the conf i dence
percent probability limits of the forecasts. Typical choicesfor
confi dence are 90.0, 95.0, and 99.0.
Default: confi dence =95.0

| MSBLS BACKWARD ORI G N, int backward_origin (Input)
If specified, the maximum backward origin. Argument
backwar d_ori gi n must be greater than or equal to 0 and less than or
equal to n_obser vat i ons — max (maxar, maxma), where maxar = max
(ar _I ags [i]), maxma = max (ma_I ags [j]), and
n_obser vat i ons = the number of observationsin the series, asinput in
functioni sl s_ar ma. Forecasts at originsn_obser vat i ons —
backwar d_ori gi n throughn_obser vat i ons are generated.
Default: backward_origin=0

I MBLS RETURN USER, float forecasts[] (Output)
If specified, a user-specified array of length
n_predict x (backward_ori gi n + 3) asdefined below.

Column Content

i forecastsfor lead times| =1, ..., n_pr edi ct at origins
n_observati ons —backward_origin—1+j, wherej =0,
..., backward_origin

backward_origin+2 | deviationsfrom each forecast that give the conf i dence
percent probability limits

backward_origin+3 | ps weights of theinfinite order moving average form of the
model

If specified, the forecasts for lead times| =1, ..., n_pr edi ct at origins
n_observations —backward_ori gi n —1+j, where
j=1, ..., backward_origin+1

Description

The Box-Jenkins forecasts and their associated probability limitsfor a
nonseasonal ARMA model are computed given a sample of
n=n_observations {Z} fort=1,2,..,n.

Suppose the time series{Z,;} is generated by a nonseasonal ARMA model of the
form

®B)Z, =8, + 8(B)A,

fort O {0, £1, £2, ...}, where B is the backward shift operator, 6, is the constant,
and
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([(B) =1- (plquJ(l) _ (szltp(z) - - (ppBlzp(p)
6(B)=1-0,8"" -g,B"( - . -g,B"(

with p autoregressive and g moving average parameters. Without loss of
generality, the following is assumed:

1<l ()<l D <...<ly(p)
1<lh()<lhy@<...<1h(9)

so that the nonseasonal ARMA model is of order (p', d'), where p' = ly(p) and
g = ly(g). Note that the usua hierarchical model assumes the following:

l,()=i,1<i<p
lh()=]j,1<j<q

The Box-Jenkins forecast at origin t for lead time| of Z,,, isdefined in terms of
the difference equation

ZAt (1)=6o+ (Pl[zt+|—|¢(1)] tot (pp[zt+|-|¢(p)]

A ‘91['“&+|—|9(1)] — = [Au] _el[AHl—lO(l)]_'"_GOI[AHI—IG(q)]
where the following is true:

Z ok fork=0,-1,-2,...
[Zt+k _{

Z(k) fork=12,...

[An]= Zik = Zieka(1) fork =0,-1,-2,...
* 0 fork=1,2,...

The 100(1 - o) percent probability limitsfor Z,,,; are given by

11 12
YAOE: 21,2{1+ z Lpf} oA

=1

where z, _, 5y isthe 100(1 — a/2) percentile of the standard normal distribution
oA
(returned fromi nsl s_f _ar ma) and
{wi}

are the parameters of the random shock form of the difference equation. Note that

the forecasts are computed for lead times| =1, 2, ..., L at origins
t=(n-b),(n-b+1),..nwhereL=n_predi ct andb=backward_ori gi n.

The Box-Jenkins forecasts minimize the mean-square error
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E[Z -2, (|)]2
Also, the forecasts can be easily updated according to the following equation:;
Zeal) = 2,1 +D) + ) Ay
This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Example

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Functioni msl s_f _arma_f or ecast computes forecasts and 95-percent
probability limits for the forecasts for an ARMA(2, 1) model fit using function
i msl s_f _ar ma with the method of moments option. With

backwar d_ori gi n = 3, columns zero through three of f or ecast s provide
forecasts given the data through 1866, 1867, 1868, and 1869, respectively.
Column four gives the deviations from the forecast for computing probability
limits, and column six gives the psi weights, which can be used to update
forecasts when more datais available. For example, the forecast for the 102-nd
observation (year 1871) given the data through the 100-th observation (year
1869) is 77.21; and 95-percent probability limits are given by 77.21%F 56.30.
After observation 101 ( Z,, for year 1870) is available, the forecast can be
updated by using

L Y2
ZAt(l)i Za/z{l*' Z wf} Oa

=1

with the psi weight (), = 1.37) and the one-step-ahead forecast error for
observation 101 (Z,,; — 83.72) to give the following:

77.21 + 1.37 x (Z,, - 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are
now given by the forecast ¥ 33.22.
#i ncl ude <insls. h>

voi d main()

loat w176][2];

| oat *paraneters;
loat rel _error = 0.0;

-
i nt p = 2;
i nt q=1;
i nt i;
i nt n_observations = 100;
i nt max_iterations = 0;
i nt n_predict = 12;
i nt backward_origin = 3;
f
float z[100];
f
f
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float *forecasts;
Imsls_f_arma *arnma_i nf o;

char *col _labels[] = {
"Lead Ti nme",
"Forecast From 1866",
"Forecast From 1867",
"Forecast From 1868",
"Forecast From 1869",
"Dev. for Prob. Limts",
"Psi"};

insls f _data sets(2, IMSLS X COL_DI'M
2, | MBLS_RETURN USER, w,
0);
for (i=0; i<n_observations; i++) z[i] = wW21+i][1];

paraneters = insls_f_arma(n_observations, &[0], p, q,
| MSLS_RELATI VE_ERROR,
rel _error,

| MBLS_MAX_| TERATI ONS,
max_iterations,
| MSLS_ARMA | NFO,
&ar me_i nf o,
0);
printf("Method of Monents initial estimates:\n");
printf("AR estinmates are 9%d1.4f and 9%1. 4f.\n",
paraneters[1], paraneters[2]);
printf("MA estimate is %1.4f.\n", paraneters[3]);

forecasts = insls_f_arma_forecast(arnma_info, n_predict,
| MSBLS_BACKWARD ORI Gl N,
backward_ori gin,
0);

insls f wite matrix("* * * Forecast Table * * *\n",
n_predict, backward_origi n+3,
f orecasts,
| MSLS COL_LABELS, col | abels,
I MSLS WRI TE_FORMAT, "od1.4f",

0);
}
Output
Met hod of Monents initial estinates:
AR estimates are 1. 2443 and -0.5751.
MA estimate is -0.1241.

* * * Forecast Table * * *

Lead Tine Forecast From Forecast From Forecast From Forecast From

1866 1867 1868 1869
1 18. 2833 16. 6151 55. 1893 83. 7196
2 28.9182 32.0189 62. 7606 77.2092
3 41. 0101 45. 8275 61. 8922 63. 4608
4 49. 9387 54. 1496 56. 4571 50. 0987
5 54. 0937 56. 5623 50. 1939 41. 3803
6 54.1282 54. 7780 45. 5268 38. 2174
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7 51. 7815 51.1701 43,3221 39. 2965
8 48. 8417 47.7072 43. 2631 42. 4582
9 46. 5335 45. 4736 44, 4577 45, 7715
10 45, 3524 44,6861 45,9781 48. 0758
11 45,2103 44,9909 47.1827 49. 0371
12 45,7128 45. 8230 47.8072 48. 9080
Lead Tinme Dev. for Prob. Psi
Limts
1 33.2179 1.3684
2 56. 2980 1.1274
3 67.6168 0. 6158
4 70. 6432 0.1178
5 70. 7515 -0. 2076
6 71.0869 -0.3261
7 71.9074 -0. 2863
8 72.5337 -0.1687
9 72.7498 -0.0452
10 72.7653 0. 0407
11 72. 7779 0. 0767
12 72.8225 0.0720
difference

Differences a seasona or nonseasonal time series.

Synopsis
#include <insls. h>

float *insl s_f _difference (int n_observations, float z[],
int n_di fferences, int periods[],..,0)

The type double functionisi nsl s_d_di f f er ence.

Required Arguments

int n_observations (Input)
Number of observations.

float z[] (Input)
Array of length n_obser vat i ons containing the time series.

int n_di fferences (Input)
Number of differences to perform. Argument n_di f f er ences must be
greater than or equal to 1.

int periods[] (Input)
Array of lengthn_di f f er ences containing the periods at which z isto
be differenced.

Return Value

Pointer to an array of length n_obser vat i ons containing the differenced series.
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Synopsis with Optional Arguments
#include <insls. h>

float *i nsl s_f_di fference (int n_observati ons, float z[],
int n_differences, int periods[],
| MSLS_ORDERS, int orders[],
| MSLS LOST, int *n_| ost,
| MSLS_EXCLUDE_FI RST, or
| MBLS_SET_FI RST_TO NAN,
| MBLS_RETURN_USER, float w[],
0)

Optional Arguments

I MSBLS ORDERS, int orders[] (Input)
Array of lengthn_di f f er ences containing the order of each difference
given in periods. The elements of orders must be greater than or equal to
0.

| MBLS_LOST, int *n_l ost (Output)
Number of observations lost because of differencing the time seriesz.

| MBLS_EXCLUDE_FI RST, or

| MBLS SET_FI RST_TO NAN
If | MSLS_EXCLUDE_FI RST is specified, thefirst n_| ost are excluded
from wdue to differencing. The differenced serieswis of length
n_observations —n_lost.If I MBLS_SET_FI RST_TO NANis
specified, thefirst n_| ost observations are set to NaN (Not a Number).
Thisisthe default if neither | MSLS _EXCLUDE_FI RST nor
| MBLS_SET_FI RST_TO NAN s specified.

| MBLS_RETURN_USER, float w{] (Output)
If specified, w contains the differenced series. If
| MBLS_EXCLUDE_FI RST also is specified, wis of length
n_observations.If | MBLS_SET_FI RST_TO _NANis specified or
neither | MSLS_EXCLUDE_FI RST nor | MSLS_SET_FI RST_TO NANis
specified, wisof lengthn_obser vati ons —n_| ost .

Description

Functioni nsl s_f _di f f er ence perfformsm=n_di f f er ences successive
backward differences of period s; = peri ods [i — 1] and order
d;=orders[i—1]fori=1,.., monthen=n_observati ons observations
{z} fort=1,2, .., n.

Consider the backward shift operator B given by
Bkzt =2y

for al k. Then, the backward difference operator with period sis defined by the
following:
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AZ,=(1-B%)Z,=2-2., fors=0

Note that B,Z, and A,Z, are defined only for t = (s+ 1), ..., n. Repeated
differencing with period sis simply

Nz, = 1BS Z ) BIZ,
ji(d-j)

whered = Oisthe order of differencing. Note that
257,
isdefinedonly fort=(sd+ 1), ..., n

The general difference formula used in the functioni nsl s_f _di f f erence is
given by

NaN fort=1,...,n_
W =9 dad  ady _

AgAg ... AQZ, fort=n_+1,...,n
where n; represents the number of observations “lost” because of differencing
and NaN represents the missing value code. See the functions
i msl s_f_machi ne andi nsl s_d_nachi ne (Chapter 14}o retrieve missing
values. Note that

L= Z 8;d;
]

A homogeneous, stationary time series can be arrived at by appropriately
differencing a homogeneous, nonstationary time series (Box and Jenkins 1976, p.
85). Preliminary application of an appropriate transformation followed by
differencing of a series can enable model identification and parameter estimation
in the class of homogeneous stationary autoregressive moving average models.

Examples

Example 1

Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. Functioms! s_f _di f f er ence is used to compute

W Al Al Zzt (Zz Zz—l 2) - (Zz—l - Zz—13)
fort =14, 15, ..., 24.
#i ncl ude <insls. h>

voi d main()

- _
i nt i
int n_observations = 24;
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i
i
f
f

z

nt n_differences
nt periods[2] = {
|l oat *z;

loat *difference

= 2;

1

12};

= insls_f_data_sets (4, 0)
difference = insls_f_difference (n_observations, z

n_differences
0);

printf ("i\tz[i]\tdifference[i]\n");

f

O©CO~NOUAWNREFL O™

#i ncl

voi d

or (i =0;

printf ("%\t%\t%\n"

Output
z[i] difference[i]
112. 000000  NaN
118. 000000  NaN
132. 000000  NaN
129. 000000  NaN
121. 000000  NaN
135. 000000  NaN
148. 000000  NaN
148. 000000  NaN
136. 000000  NaN
119. 000000  NaN
104. 000000  NaN
118. 000000  NaN
115. 000000  NaN
126. 000000 5. 000000
141. 000000 1.000000
135. 000000 - 3. 000000
125. 000000 -2.000000
149. 000000 10. 000000
170. 000000 8. 000000
170. 000000 0. 000000
158. 000000 0. 000000
133. 000000 -8.000000
114. 000000 -4.000000
140. 000000 12. 000000

Example 2

< n_observati ons;
i,

i ++)

z[i],

difference[i]);

peri ods,

The data for this example is the same as that for the initial example. The first
n_| ost observations are excluded from W due to differencing, and n_I ost is

also output.
ude <insls. h>
mai n()
nt i;
nt n_observati ons
nt n_di fferences
nt periods[2] = {
nt n_| ost;

= 2

1

24

12};
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float *z;
float *difference
/* Get airline data */
z = insls_f _data_sets (4, 0)
/* Conpute differenced tine series when observations
|l ost are excluded fromthe differencing */
difference = insls_f_difference (n_observations, z
n_differences, periods
| MSLS_EXCLUDE_FI RST,
I MSLS LOST, &n_| ost,
0);
/* Print the nunber of |ost observations */
_lost equals %\n", n_lost);
n\nil\tz[i]\t difference[i]\n");
/* Print the original time series and the differenced
tinme series */

printf ("n
printf ("\

for (i = 0; i < n_observations - n_lost; i++)
printf ("%\t%\t%\n", i, z[i], difference[i]);
}
Output

n_| ost equals 13

i z[i] difference[i]
0 112. 000000 5. 000000
1 118. 000000 1. 000000
2 132. 000000 - 3.000000
3 129. 000000 -2.000000
4 121. 000000 10. 000000
5 135. 000000 8. 000000
6 148. 000000 0. 000000
7 148. 000000 0. 000000
8 136. 000000 -8.000000
9 119. 000000  -4.000000
10 104. 000000 12. 000000

Fatal Errors

I MSLS PERI ODS LT_ZERO “period[#]” = #. All elements of “period”
must be greater than 0.

| MSLS_ORDER NEGATI VE “order[#]" = #. All elements of “order”
must be nonnegative.

| MSLS Z CONTAI NS_NAN “z[#]” = NaN; “z” can not contain missing

values. There may be other elements of “z”
that are equal to NaN.

box_cox_transform

Performs a forward or an inverse Box-Cox (power) transformation.
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Synopsis
#include <i nsl's. h>

float *i nsl s_f _box_cox_transform (int n_observati ons, float z[],
float power, ..., 0)

The type double functionisi nsl s_d_box_cox_transform

Required Arguments

int n_observations (Input)
Number of observationsin z.

float z[] (Input)
Array of lengthn_obser vat i ons containing the observations.

float power (Input)
Exponent parameter in the Box-Cox (power) transformation.

Return Value

Pointer to an internally alocated array of length n_obser vat i ons containing
the transformed data. To release this space, use f r ee. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <insls. h>

float *insl s_f_box_cox_transform (int n_observati ons, float z[],
float power,
| MBLS_SHI FT, float shift,
| MBLS_| NVERSE_TRANSFORM
| MBLS_RETURN_USER, float X[ ]
0)

Optional Arguments

| MBLS_SHI FT, float shift (Input)
Shift parameter in the Box-Cox (power) transformation. Parameter shift
must satisfy the relation min (z(i)) + shi ft > 0.
Default: shi ft =0.0.

| MSLS_| NVERSE_TRANSFORM
If I MBLS_| NVERSE_TRANSFORMis specified, the inverse transform is
performed.

| MBLS_RETURN_USER, float x[] (Output)
User-allocated array of length n_obser vat i ons containing the
transformed data.
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Description

Functioni nmsl s_f _box_cox_t r ansf or mperforms aforward or an inverse
Box-Cox (power) transformation of n = n_obser vat i ons observations{Z;} for
t=1,2,..,n

The forward transformation is useful in the analysis of linear models or models
with nonnormal errors or nonconstant variance (Draper and Smith 1981, p. 222).
In the time series setting, application of the appropriate transformation and
subsequent differencing of a series can enable model identification and parameter
estimation in the class of homogeneous stationary autoregressive-moving average
models. The inverse transformation can later be applied to certain results of the
analysis, such as forecasts and prediction limits of forecasts, in order to express
the resultsin the scale of the original data. A brief note concerning the choice of
transformationsin the time series modelsis given in Box and Jenkins (1976, p.
328).

The class of power transformations discussed by Box and Cox (1964) is defined
by
(Z.+ E))\ -1
X = A
In(Z, +&) A=0

A£0

whereZ, + & > 0for al t. Since

A
}l\lﬂw = ||"](Z1 +E)

the family of power transformations is continuous.

Let A = power and & = shi f t ; then, the computational formula used by
i msl s_f_box_cox_transfor misgiven by

(z, +&) A£0
In(Z, +&) A=0

where Z, + € > O for all t. The computational and Box-Cox formulas differ only in
the scale and origin of the transformed data. Consequently, the general analysis of
the datais unaffected (Draper and Smith 1981, p. 225).

The inverse transformation is computed by
|z -2 A£0
t_{exp(zt)—é A=0
where {Z,} now represents the result computed by

i msl s_f_box_cox_transf or mfor aforward transformation of the original
data using parameters A and &.
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Examples

Example 1

The following example performs a Box-Cox transformation with power = 2.0 on

10 data points.

#i ncl ude <insls. h>

void main() {

int n_observations = 10;
fl oat power = 2.0;
float *x;
static float z[10] ={
1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};

/* Transform Data using Box Cox Transform */
x = imsls_f_box_cox_transformn_observations, z, power, 0);

imsls_f_wite_matrix("Transformed Data", 1, n_observations, x, 0);

free(x);
Output
Transformed Data
1 2 3 4 5 6
1.0 4.0 9.0 16.0 25.0 30.2
7 8 9 10
42.2 56. 2 64.0 100. 0
Example 2

This example extends the first example—an inverse transformation is applied to

the transformed data to return to the orignal data values.

#i ncl ude <insls. h>

void main() {

0);

int n_observations = 10;
fl oat power = 2.0;
float *x, *y;
static float z[10] ={
1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5 8.0, 10.0};

/* Transform Data using Box Cox Transform */
x = imsls_f_box_cox_transformn_observations, z, power, 0);

imsls_f_wite_matrix("Transformed Data", 1, n_observations, x, 0);
/* Performan |Inverse Transformon the Transforned Data */
y = imsls_f_box_cox_transform n_observations, X, power,

| MBLS_I NVERSE_TRANSFORM  0) ;

imsls_f_wite_matrix("lInverse Transformed Data", 1, n_observations,

Y,
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free(x);

free(y);
Output
Tr ansf or ned Dat a
1 2 3 4 5 6
1.0 4.0 9.0 16.0 25.0 30.2
7 8 9 10
42.2 56. 2 64.0 100.0
I nverse Transforned Data
1 2 3 4 5 6
1.0 2.0 3.0 4.0 5.0 5.5
7 8 9 10
6.5 7.5 8.0 10.0

Fatal Errors
| MBLS | LLEGAL_SHI FT

| MBLS_BCTR_CONTAI NS_NAN

| MSLS_BCTR_F_UNDERFLOW

| MSLS_BCTR_F_OVERFLOW

| MSLS_BCTR_| _UNDERFLOW

| MSLS_BCTR | _OVERFLOW

| MSLS_BCTR | _ABS_UNDERFLOW

“shift” = # and the smallest element of “z”
is “z[#]" = #. “shift” plus “z[#]" = #. “shift”
+ “z[i]" must be greater than 0 for=1, ...,

“n_observations”. “n_observations” = #.

One or more elements of “z” is equal to
NaN (Not a number). No missing values are
allowed. The smallest index of an element
of “z” that is equal to NaN is #.

Forward transform. “power” = #. “shift” =
#. The minimum element of “z” is “z[#]" =
#. (“z[#]"+ “shift™) » “power” will
underflow.

Forward transformation. “power” = #.
“shift” = #. The maximum element of “z” is
“z[#]" = #. (“z[#]" + “shift”) » “power” will

overflow.

Inverse transformation. “power” = #. The
minimum element of “z” is “z[#]" = #.
exp(“z[#]") will underflow.

Inverse transformation. “power” = #. The
maximum element of “z[#]" = #.
exp(“z[#]") will overflow.

Inverse transformation. “power” = #. The
element of “z” with the smallest absolute
value is “z[#]" = #. “z[#]" " (1/ “power”)
will underflow.
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I MSLS_BCTR | _ABS_OVERFLOW Inverse transformation. “power” = #. The
element of “z” with the largest absolute
value is “z[#]" = #. “z[#]" ~ (1/ “power”)
will overflow.

autocorrelation

Compute the sample autocorrelation function of a stationary time series.

Synopsis
#include <i nsls. h>

float i nsl s_f_autocorrel ation (int n_observations, float x[],
int | agmax, ...
0)

Required Arguments

intn_observations (Input)
Number of observations in the time sesiesn_obser vat i ons must
be greater than or equal to 2.

float x[] (Input)
Array of lengthn_obser vat i ons containing the time series.

intl agmax (Input)
Maximum lag of autocovariance, autocorrelations, and standard errors of
autocorrelations to be computeldagmax must be greater than or equal
to 1 and less tham observat i ons.

Return Value

Pointer to an array of lengtlagmax + 1 containing the autocorrelations of the
time seriex. TheO-th element of this array is 1. Theh element of this array
contains the autocorrelation of lagvherek =1, ...,1 agnmax.

Synopsis with Optional Arguments

#include <i nsls. h>

float i msl s_f_autocorrel ation (int n_observations, float x[], int
| agnmax,
| MSLS RETURN USER, float autocorrel ations[],
| MSLS_ACV, float **autocovari ances,
I MSBLS_ACV_USER, float autocovari ances[],
| MSLS SEAC, float **standard_errors, int
se_option,
| MSLS SEAC USER, float standard_errors[],
int se_opti on,
I MSLS X MEAN I N, float x_nean_in,
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I MSLS_X_MEAN_OUT, float *x_mean_out,
0)

Optional Arguments

I MBLS RETURN USER, float autocorrelations[] (Output)
If specified, autocorrel ations isanarray of length | agmax + 1
containing the aut ocorrel ati ons of thetimeseries x. The O-th
element of thisarray is1. The k-th element of thisarray containsthe
autocorrelation oflag kK where kK =1, ..., |agnax.

I MSLS_ACV, float ** aut ocovari ances (Output)
Address of a pointer to an array of length | agnax + 1 containing the
variance and autocovariances of thetime seriesx. The O-th element of
this array isthe variance of the time seriesx. The k-th element contains
the autocovariance of lag k wherek=1, ..., | agnax.

| MSLS_ACV_USER, float aut ocovari ances[] (Output)
If specified, aut ocovari ances isan array of length| agmax + 1
containing the variance and autocovariances of the time series x.
See| MBLS_ACV.

I MSLS_SEAC, float **st andar d_errors, intse_opti on (Output)
Address of a pointer to an array of length | agmax containing the
standard errors of the autocorrelations of the time series x.

Method of computation for standard errors of the autocorrelationsis
chosen by i se_opti on.

i se_option Action

1 Compute the standard errors of aut ocorrel ati ons using
Barlett's formula.

2 Compute the standard errors atit ocorr el ati ons
using Morans formula.

| MSBLS SEAC USER, float st andard_errors[],intse_option (Output)
If specified aut ocovari ances is an array of lengtl agnmax containing
the standard errors ofdfautocorrelations of the time series
Seel MSLS_SEAC.

I MBLS X MEAN I N, float x_mean_i n (Input)
User input the estimate of the time sekie

I MBLS X MEAN _QUT, float *x_mean_out (Output)
If specified x_mean_out is the estimate of the mean of the time
seriesx.
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Description

Functioni msl s_f _aut ocorrel ati on estimates the autocorrelation function
of astationary time seriesgiven asampleof n = n_obser vati ons
observations{ X} fort=1, 2, ...,n.

Let
(l=x_mean

be the estimate of the meamf the time seriesX;} where

o, p known
i={1g

—Z X¢ M unknown

n t=1

The autocovariance functiar(k) is estimated by
n-k

6K)== 3 (X =W)X ~R), K=0L... K

t=1

whereK =1 agmax. Note that

A

6(0)

is an estimate of the sample variance. The autocorrelation fup¢kipis
estimated by

ﬁ(k):gﬂ;;, =04,...,K
Note that
p(0)=1
by definition.

The standard errors of the sample autocorrelations may be optionally computed
according to argumente_opt i on for the optional argument MSLS_SEAC.

One method (Bartlett 1946) is based on a general asymptotic expression for the
variance of the sample autocorrelation coefficient of a stationary time series with
independent, identically distributed normal errors. The theoretical formula is

00

var{p(k)} =% 3 [PP(0)+p(i = K)p(i + k)= dp(ip(k)p(i — k) +20% ()PP (k)]

i=—0c0
where
p(k)
assumesgl is unknown. For computational purposes, the autocorrelations r(k) are
replaced by their estimates

p(k)
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for |k| < K, and the limits of summation are bounded because of the assumption
that r(k) = O for al k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the
sample autocorrelation coefficient of arandom process with independent,
identically distributed normal errors. The theoretical formulais

n-k

n(n+2)

var{p(k }—

where | is assumed to be equal to zero. Note that this formula does not depend on
the autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Functioni sl s_f _aut ocor r el at i on with optiona arguments computes
the estimated autocovariances, estimated autocorrel ations, and estimated standard
errors of the autocorrelations.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

float *resul t=NULL, data[176][2], x[100], xmean;
int i, nobs = 100, |agmax = 20;
float *acv=NULL, *seac=NULL;

I s _f data_sets(2, | MSLS RETURN USER, data, 0);
r (i=0;i<nobs;i++) x[i] = data[21+i][1];
result = insls_f_autocorrel ati on(nobs, x, |agmax,
| MBLS_X_MEAN OUT, &xnean,
| MBLS_ACV, &acv,
| MSLS_SEAC, &seac, 1,
0);
printf("Mean 8. 3f\n", xmean);
printf("Variance 8. 1f\n", acv[O0]);
printf("\nLag\t ACA t\ t AC\t\t SEAC\ n");
printf("0\toB. 1f\t98.5f\t\n", acv[0],result[0]);
for(i=1; i<21; i++)

printf("oRd\t98. 1f\t98. 5f\t98.5f\n", i, acv[i], result[i],
seac[i-1]);
}
Output
Mean = 46. 976
Vari ance = 1382.9
Lag ACV AC SEAC
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0 1382.9 1. 00000
1 1115.0 0. 80629 0.03478
2 592.0 0. 42809 0. 09624
3 95.3 0. 06891 0. 15678
4 -236.0 -0.17062 0. 20577
5 -370.0 -0. 26756 0. 23096
6 -294.3 -0.21278 0. 22899
7 -60. 4 -0.04371 0. 20862
8 227.6 0. 16460 0.17848
9 458. 4 0. 33146 0. 14573
10 567. 8 0.41061 0. 13441
11 546. 1 0. 39491 0. 15068
12 398.9 0. 28848 0.17435
13 197.8 0. 14300 0. 19062
14 26.9 0.01945 0. 19549
15 -77.3 -0. 05588 0. 19589
16 -143.7 -0.10394 0. 19629
17 -202.0 -0. 14610 0. 19602
18 -245.4 -0.17743 0.19872
19 -230.8 -0. 16691 0. 20536
20 -142.9 -0.10332 0. 20939

1.00 5

0.80

0.60 4

0.40 4

0.20 4 [j)
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Figure 8-1 Sample Autocorrelation Function
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partial_autocorrelation

Compute the sample partial autocorrelation function of a stationary time series.
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Synopsis
#include <i nsl's. h>

float *insl s_f_partial _autocorrelation (int | agmex, int cf[], ...,
0)

The typedouble function isi nsl s_d_parti al _autocorrel ati on.

Required Arguments

int 1 agmax (Input)
Maximum lag of partial autocorrelations to be computed.

float cf[] (Input)
Array of lengthl agnmax + 1 containing the autocorrelations of the time
serie.

Return Value

Pointer to an array of lengttagmax containing the partial autocorrelations of
the time series.

Synopsis with Optional Arguments

#include <i nsl's. h>

float *insls_f_partial __autocorrelation (int | agmax, float cf[],
I MSLS_RETURN_USER, float partial _autocorrel ations[],
0)

Optional Arguments

| MSLS_RETURN_USER, float partial _autocorrel ations[] (Output)
If specified, the partial autocorrelations are stored in an array of length
| agmax provided by the user.

Description

Functioni msl s_f _partial _autocorrel ati on estimates the partial
autocorrelations of a stationary time series giverkthd agnmax sample
autocorrelations

p(k)
fork=0, 1, ...,K. Consider the AR{ process defined by
Xy = QX1 F Qo Xp -+ @ Xy + A
whereq,; denotes th¢th coefficient in the process. The set of estimates
{0u )
fork=1, ...,K is the sample partial autocorrelation function. The autoregressive
parameters
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{@}
forj =1, .., kare approximated by Yule-Walker estimates for successik)AR
models whezk = 1, .., K. Based on the sample Yule-Walker equations

(1) = @bl 1)+ @oP( = 2)++PuP(j —K), j=12,...k

a recursive relationshipif& = 1, ..., K was developed by Durbin (1960). The
equations are given by

f)(l) k=1
0o = PO 0Pk
1- 35 @ PCJ)
and
A _{(}Jk—l,j‘&)kk(bk—l,k—j j=12,...,k-1
Dy =13~ .
P =Kk

This procedure is sensitive to rounding error and should not be used if the
parameters are neaethonstationarity boundary. A possible alternative would be
to estimate §,,} for successive AFk) models using least or maximum

likelihood. Based on the hypothesis that the true process i8) AB{x and

Jenkins (1976, page 65) note

var{@u}==  k=p+l
n

See Box ad Jenkins (1976, pages 82—84) for more information concerning the
partial autocorrelatiofunction.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routie PACF to used to compute the estimated pheigocorrelations.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

float *partial =NULL, data[176][2], x[100];

int i, nobs

float *ac;

100, lagmax = 20

imsl s_f_data_sets(2, | MSLS RETURN USER, data, 0);

for (i=0;i<nobs;i++) x[i] = data[21+i][1];

= inmsl s_f_autocorrel ati on(100, x, |agmax, 0);

partial = imsls_f_partial_autocorrelation(lagmax, ac, 0);
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inmsls f wite _matrix("Lag PACF", 20, 1, partial, 0);

}
Output

Lag PACF
1 0. 806

2 -0.635

3 0.078

4 -0.059

5 -0.001

6 0.172

7 0. 109

8 0. 110

9 0.079
10 0.079
11 0. 069
12 -0.038
13 0.081
14 0.033
15 -0.035
16 -0.131
17 -0.155
18 -0.119
19 -0.016
20 -0.004
lack of fit

Performs lack-of -fit test for a univariate time series or transfer function given the
appropriate correlation function.

Synopsis

#include <i msl s. h>
float i msl s_lack_of fit (intn_observations, float cf[],
intl agmax, int npfree,..., 0)

Required Arguments

intn_observations (Input)
Number of observations of the stationary time series.

floatcf[] (Input)
Array of length | agnax+1 containing the correlation function.

int | agmax (Input)
Maximum lag of the correlation function.

int npfree (Input)
Number of free parameters in the formulation of the time series model.
npf r ee must be greater than or equal to zero and less than | agmax.
Woodfield (1990) recommends npfree = p + q.
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Return Value

Pointer to an array of length 2 with the test statistic, Q, and its p-value, p. Under
the null hypothesis, Q has an approximate chi-squared distribution with
| agmax- | agm n+1- npf r ee degrees of freedom.

Synopsis with Optional Arguments
#include <i nsl s. h>

float *i msl s_f _l ack_of _fit (intn_observations,floatcf[], intl agnax,
int npfree,
| MBLS_RETURN_USER, float stat[],
| MBLS_LAGM N, int | agni n,
0)

Optional Arguments

I MBLS RETURN USER, floatstat[] (Input)
User defined array for storage of lack-of-fit statistics.

I MSBLS _LAGM N, int | agnmi n (Input)
Minimum lag of the correlation function. | agni n corresponds to the
lower bound of summation in the lack of fit test statistic. Default value
isl.

Description

Routinei nsl s_f _| ack_of _fit may be used to diagnose lack of fit in both
ARMA and transfer function models. Typical arguments for these situations are

Model LAGM N LAGVAX NPFREE
ARMA (p, ) 1 JNOBS b+ q
Transfer function 0 vV NOBS r+s

Function i msl s_f | ack_of fit performsaportmanteau lack of fit test for a
time series or transfer function containing n observations given the appropriate
sample correlation function

p(k)
fork=L,L+1,...,KwhereL =1 agnmi n and K =1 agmax.
The basic form of the test statistic Q is

K
Q= n(n+2)Z(n—k)‘1f>(k)
k=L

withL = 1if
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p(k)
is an autocorrelation function. Given that the model is adequate, Q has a chi-
squared distribution with K — L + 1 — m degrees of freedom where m= npfree
is the number of parameters estimated in the model. If the mean of the time series
is estimated, Woodfield (1990) recommends not including this in the count of the
parameters estimated in the model. Thus, for an ARMA(p, g) model set npfree=
p + q regardless of whether the mean is estimated or not. The original derivation
for time series models is due to Box and Pierce (1970) with the above modified
version discussed by Ljung and Box (1978). The extension of the test to transfer
function modelsis discussed by Box and Jenkins (1976, pages 394—395).

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770 through
1869. An ARMA(2,1) with nonzero mean is fitted using roatins!| s_f _ar ma

(page 32). The autocorrelations of the residuals are estimated using routine

imsl s_f_autocorrel ation (pag 39). A portmanteau lack of fit test is
computed using 10 lags Witnsl s_f _| ack_of _fit.

The warning message fro msl s_f _ar ma in the output can be ignored.
(See the example for routihes! s_f _ar ma for a full explanation of the warning
message.)

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

nt p = 2;
nt q = 1;
nt i;

nt n_observations = 100;
nt max_i tereations = 0;

nt lagmn = 1;
nt | agnax = 10;
nt npfree = 4;

i

i

i

i

i

i

i

i ;

float data[176][2], x[100];
float *paraneters;
float *correl ations;
float *residuals;
float tolerance = 0.125;
float ts;

fl oat pval ue;

float *result;

/* Get sunspot data for 1770 through 1869, store it in x[]. */
insls_f _data _sets(2, |IMSLS RETURN USER, data, 0);
for (i=0;i<n_observations;i++) x[i] = data[21+i][1];

/* Get residuals fromARMA(2,1) for autocorrelation/lack of fit */
paranmeters = insls_f_arma(n_observations, x, p, g,
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| MBLS_LEAST SQUARES,
| MSLS CONVERGENCE_TOLERANCE, tol erance,
| MSLS RESI DUAL, &residuals,

0);
/* Get autocorrelations fromresiduals for lack of fit test */
/* NOTE: nunber of OBS is equal to nunber of residuals */
correlations = insls_f_autocorrel ati on(n_observati ons-p+l agnax,
resi dual s, |agmax,
0);
/* Get lack of fit test statistic and p-val ue */
/* NOTE: nunber of OBS is equal to original nunber of data */
result = insls_f_lack _of fit(n_observations, correlations, |agmax,
npfree, 0);
/* Print paraneter estimates, test statistic, and p-val ue */
/* NOTE: Test Statistic Qfollows a Chi-squared dist. */
printf("Lack of Fit Statistic, Q= \t%.5f\n P-val ue of Q
=\t %.5f\n\n", result[0], result[1]);
}
Output
***WARNI NG ERROR | MSLS LEAST _SQUARES FAILED frominsls_f_arma. Least
*oxk squares estimation of the paraneters has failed to converge.
ek Increase “length” and/or “tolerence” and/or
rokk “convergence_tolerence”. The estimates of the parameters at
ek the last iteration may be used as new starting values.
Lack of Fit statistic (Q) = 14.572
P-value (PVALUE) =  0.9761
garch
Compute estimates of the parameters of a GARCH(p,q) model.
Synopsis
#include <imsls.h>
float *imsls_f_garch (intp, intq, intm, floaty[] , float xguess[] ,
e, 0)

The typedouble function isi msl s_d_gar ch.

Required Arguments

int p (Input)
Number of autoregressive (AR) parameters
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int g (Input)
Number of moving average (MA) parameters

int m (Input)
Length of the observed time series.

float y[] (Input)
Array of length mcontaining the observed time series data.

float xguess[] (Input)
Array of lengthp + g + 1 containing theinitial valuesfor the
parameter array x[ ] .

Return Value

Pointer to the parameter array x[] of lengthp + g + 1 containing the estimated
values of sigma squared, the AR parameters, and the MA parameters.

Synopsis with Optional Arguments

#include <i nsls. h>

float *insls_f_garch (int p, int g, int m float y[], float xguess[],
| MSLS_MAX_SI GWA, float max_si gma,

| MBLS_A, float *a,

| MSLS_AI C, float *ai c,

| MBLS_VAR, float *var,

| MSLS_VAR USER, float var[],

| MSLS VAR COL_DIM int var _col _dim
| MBLS_RETURN_USER, float x[],

0)

Optional Arguments

| MSLS_MAX_SI GVA, float max_si gma, (Input)
Value of the upperbound on the first element (sigma) of the array of returned
estimated coefficients. Default = 10.

| MSLS_A, float *a, (Output)
Value of Log-likelihood function evaluated at the estimated parameter
array x.

| MSLS Al C, float *ai ¢, (Output)
Value of Akaike Information Criterion evaluated at the estimated
parameter array x.

| MSLS_VAR, float *var, (Output)
Array of size (p+g+1) x(p+g+1) containing the variance-covariance
matrix.
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| MSLS_VAR USER, float var[], (Output)
Storage for array var is provided by the user.
Seel MSLS_VAR.

| MSLS_ VAR COL_DIM int var_col _di m (Input)
Column dimension ( p+q+1) of the variance-covariance matrix.

| MSLS_RETURN _USER, float x[], (Output)
If specified, x returnsanarray of lengthp + g + 1 containing the
estimated values of sigma squared, the AR parameters, and the MA parameters.
Storage for estimated parameter array x is provided by the user.

Description
The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model is
defined as

Yt = 40,

p q

2 _ 2 2

0y =0 +ZBi0t—i +ZGth—i:
1=1 1=1

where z's are independent and identically distributed standard normal random
variables,

0>0,5; 20,a0; 20and
p q
Bi+)a <l
The above model is denoted as GAR@H). The pis the autoregressive lag and
theq is the moving average lag. Wh@ =0,i =1,2,..,p, the above model
reduces to ARCHY) which was proposedytEngle (1982). Th nonnegativity
conditions on the parameters implied a nonnegative variance and the condition on
the sum of th3;'s anda ' sisrequired for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models
have often found to appropriately account for conditional heteroskedasticity
(Palm 1996). Thisfinding issimilar to linear time series analysis based on
ARMA models.

It isimportant to notice that for the above models positive and negative past
values have a symmetric impact on the conditional variance. In practice, many
series may have strong asymmetric influence on the conditional variance. To take
into account this phenomena, Nelson (1991) put forward Exponential GARCH
(EGARCH). Lai (1998) proposed and studied some properties of agenera class
of models that extended linear relationship of the conditional variancein ARCH
and GARCH into nonlinear fashion.

The maximal likelihood method is used in estimating the parametersin
GARCH(p,q). Thelog-likelihood of the model for the observed series{ Y} with
lengthmis
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m 1 1<
log(L) :Elog(ZH)—EZ y2 /o _EZ loga?,
t=1 t=1

p q
where af =0 + ZBiotz—i + Z aiYe -
=1

1 1=1

In the model, if g = O, the model GARCH is singular such that the estimated
Hessian matrix H is singular.

Theinitial values of the parameter array x[ ] entered in array xguess[ ] must
satisfy certain constraints. Thefirst element of xguess refersto sigma and must
be greater than zero and less than max_si gnma. The remaining p+q initial values
must each be greater than or equal to zero but less than one.

To guarantee stationarity in model fitting,

p+q

Z x(i)<1,

1=1
is checked internally. Theinitial values should be selected from the values between
zero and one. The ai ¢ is computed by

2% log (L) +2* (p+gtl),

where log(L) isthe value of the log-likelihood function at the estimated
parameters.

In fitting the optimal model, the subroutinei nsl s_ni n_con_gen_| i n aswell
as its associated subroutines are modified to find the maximal likelihood
estimates of the parametersin the model. Statistical inferences can be performed
outside the subroutinei nsl s_f _gar ch based on the output of the log-likelihood
function (a) , the Akaike Information Criterion (ai c) , and the variance-
covariance matrix (var) .

Example

The data for this example are generated to follow a GARCH(p,q) process by
using arandom number generation functionsgar ch . The data set is analyzed
and estimates of sigma, the AR parameters, and the MA parameters are returned.
The values of the Log-likelihood function and the Akaike Information Criterion
are returned from the optional arguments| MSLS_A and | MSLS_ Al C.

#i ncl ude <insls. h>
#i ncl ude <math. h>

static void

#defi ne
#defi ne
#defi ne
#defi ne

M

N
P
Q

sgarch (int p, int g, int m float x[],

float y[], float z[], float yO[], float sigma[]);
1000

(P+Q+ 1)
2
1
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void main ()

i nt i, n,p,q m

fl oat a, a orig, aic, gsigm[M, sigmaM,
var[NN[N], wkl[M + 1000], wk2[M + 1000],
wk3[M + 1000], x[N], xguess[N, Vy[M;

fl oat *result;

i nsl s_random seed_set (23579);

m= M

P

Q

p+g+1;
=1.3;

. 2;

X 3 Q0T
[« I
—_

[
x[ 1]
x[ 2] . 3;
x[ 3] . 4;
xguess[ 0
xguess[ 1]
xguess| 2]
xguess| 3]
/*

* Get a random sequence that will
* be used to generate the tine series that

* FGARCH
*/
i sl s_f _random norma

sgarch (p, 9, m x, v,
result

(m

= insls_f_garch(p

| MSLS_RETURN_USER, v,

be sent to SGARCH to

is sent to

0);

wkl, wk2, wk3);

q. m vy,

IMBLS A, &a,
I MSBLS_AI C, &aic,

0);
estimate
estimate
estimate
estimate

printf("
printf("
printf("
printf("
printf("
printf("
return;

Si gma
AR(1)
AR(2)
MA( 1)

}

static void

{

sgarch (int p,
float y[],

i nt

fl oat

i,
sl,

iy

s2, s3,
inmsls_f _random normal (
imsls_i _max (p,

I
I
fo

=

(i =0, i <1I;

/*

s3 = 0.0;

if (imsls_i_max (p, Q)
for (i = 1;

for (i =

0, i <1;

a);
inmsls_i _max (I, 1);
i i++) yo[i] =

<(p+q+1);

i ++) sigma[i] =

is\todl. 4f\n",
is\todl. 4f\n",
is\todl. 4f\n",
is\todl. 4f\n",

\nLog-1likelihood function value is\to%dl. 4f\n",
Akai ke Information Criterion value is\t%1. 4f\n",

int q, int
float z[],

m

sc;

m + 1000,

z[i]

>= 1) {

float yO[],

| MBLS_RETURN_USER,

Xxguess,

resul t[
resul t[
resul t[
resul t[ 3]

0]):
1]);
2]);
),

a);
aic);

float x[],
float sigma[])

z, 0);

* x[0];

COVPUTE THE | NI TI AL VALUE OF SI GVA */

i++) s3 += x[i]

x[0] / (1.0 - s3);
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for (i =1; i < (m+ 1000); i++) {
sl
s2 ;
if (qg>=1) {
for (j =0, j <q; j++)
sl += x[j + 1] * yO[i - j - 1] * yO[i - j - 1];
}
if (p>1) {
for (j =0; j <p; j++)
s2 += x[q + 1 +j] * sigm[i - | - 1];

0. 0;
0. 0;

}sigma[i] = x[0] + sl + s2;
yo[i] = z[i] * sqrt (sigma[i]);

L
* DI SCARD THE FI RST 1000 SI MULATED OBSERVATI ONS
*
/
for (i =0; i <m i++) y[i] =y0[1000 + i];
return;
} /* end of function */

Output

Sigma estimate is 1. 6480
AR(1) estimate is 0. 2427
AR(2) estimate is 0. 3175
MA(1) estimate is 0. 3335

Log-1i kel ihood function value is -2707.0903
Akai ke Information Criterion value is 5422. 1807
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Chapter 9: Multivariate Analysis

Routines
Perform a K-means (centroid) cluster analysis.... cluster_k_means 412
Compute principal components..................... principal_components 417
Extract factor-loading estimates............cccceeeeeeeeeennn. factor_analysis 423
Perform discriminant function analysis........... discriminant analysis 434

Usage Notes

Cluster Analysis

Functioni nmsl s_f _cl ust er _k_neans performs a K-means cluster analysis.

Basic K-means clustering attempts to find a clustering that minimizes the within-

cluster sums-of-squares. In this method of clustering the data, matrix X is grouped

so that each observation (row in X) is assigned to one of afixed number, K, of

clusters. The sum of the squared difference of each observation about its assigned
cluster’s mean is used as the criterion for assignment. In the basic algorithm,
observations are transferred from one cluster or another when doing so decreases
the within-cluster sums-of-squared differences. When no transfer occurs in a pass
through the entire data set, the algorithm stops. Function

i msl s_f_cluster_k_neans is one implementation of the basic algorithm.

The usual course of eventskAmeans cluster analysis is to use

i msl s_f_cluster_k_neans to obtain the optimal clustering. The clustering is
then evaluated by functions describeimpter 1, “Basic Statisticsgnd/or

other chapters in this manual. Oft&ameans clustering with more than one value
of K is performed, and the value Kfthat best fits the data is used.

Clustering can be performed either on observations or variables. The discussion
of the function msl s_f _cl ust er _k_neans assumes the clustering is to be
performed on the observations, which correspond to the rows of the input data
matrix. If variables, rather than observations, are to be clustered, the data matrix
should first be transposed. In the documentation for

imsls_f _cluster_k_means, the words “observation” and “variable” are
interchangeable.
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Principal Components

Theideain principal componentsisto find asmall number of linear combinations
of the original variables that maximize the variance accounted for in the original
data. This amounts to an eigensystem analysis of the covariance (or correlation)

matrix. In addition to the eigensystem analysis,

i msl s_f _princi pal _conmponent s computes standard errors for the
eigenvalues. Correlations of the original variables with the principal component

scores a so are computed.

Factor Analysis

Factor analysis and principal component analysis, while quite different in
assumptions, often serve the same ends. Unlike principal componentsin which
linear combinations yielding the highest possible variances are obtained, factor
analysis generally obtains linear combinations of the observed variables
according to amodel relating the observed variable to hypothesized underlying
factors, plus arandom error term called the unique error or uniqueness. In factor
analysis, the unique errors associated with each variable are usually assumed to
be independent of the factors. Additionally, in the common factor model, the
unique errors are assumed to be mutually independent. The factor analysis model

is expressed in the following equation:
X—-u=Af+e

where x isthe p vector of observed values, | isthe p vector of variable means, A
isthe p x k matrix of factor loadings, f isthe k vector of hypothesized underlying
random factors, eisthe p vector of hypothesized unique random errors, p isthe
number of variablesin the observed variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand
or was expensive on early computers, quick (but dirty) algorithms that made the
calculations possible were developed. One result is the many factor extraction
methods available today. Generally speaking, in the exploratory or model
building phase of afactor analysis, amethod of factor extraction that is not
computationally intensive (such as principal components, principal factor, or
image analysis) is used. If desired, a computationally intensive method is then

used to obtain the fina factors.

cluster_k _means

Performs a K-means (centroid) cluster analysis.

Synopsis
#include <insls. h>

int *i nsls_f_cluster_k_nmeans (int n_observati ons,
int n_vari abl es, float x[], int n_clusters,
float cl uster_seeds, .., 0)
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The type double function isi nsl s_d_cl ust er _k_neans.

Required Arguments

int n_observations (Input)
Number of observations.

int n_vari abl es (Input)
Number of variables to be used in computing the metric.

float x[] (Input)
Array of lengthn_obser vati ons x n_vari abl es containing the
observations to be clustered.

int n_clusters (Input)
Number of clusters.

float cl uster_seeds[] (Input)
Array of lengthn_cl usters x n_vari abl es containing the cluster
seeds, i.e., estimates for the cluster centers.

Return Value

The cluster membership for each observation is returned.

Synopsis with Optional Arguments
#include <i nsls. h>

int*i msl s_f_cluster_k_nmeans (int n_observati ons,

int n_variabl es, float x[], int n_clusters,
float cl uster_seeds,
| MSLS WEI GHTS, float wei ghts[],
| MSLS_FREQUENCI ES, float frequencies[],
| MSLS MAX | TERATI ONS, int max_iterations,
| MSLS_CLUSTER MEANS, float **cl ust er _neans,
| MSLS CLUSTER MEANS USER, float cl uster _means[],
| MSLS_CLUSTER SSQ float **cl uster_ssq,
| MSLS CLUSTER SSQ USER, float cluster_ssq[],
IMSLS X _ COL_DIM int x_col _dim
| MBLS_CLUSTER MEANS COL_DI M

int cl uster_means_col _dim
| MBLS_CLUSTER SEEDS COL_DI M

int cluster_seeds_col _dim
| MSLS CLUSTER COUNTS, int **cl uster _counts,
| MSLS _CLUSTER COUNTS_USER, int cl uster_counts[],
| MSBLS_CLUSTER VARI ABLE_COLUWNS,

int cluster_variabl es[],
I MSLS RETURN USER, int cl uster _group[],
0)
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Optional Arguments

I MSLS VEI GHTS, float wei ghts[] (Input)
Array of lengthn_obser vat i ons containing the weight of each
observation of matrix x.
Default: weights [] =1

I MSBLS FREQUENCI ES, float frequencies[] (Input)
Array of lengthn_obser vat i ons containing the frequency of each
observation of matrix x.
Default: frequencies [] =1

I MSBLS _MAX | TERATI ONS, int max_iterations (Input)
Maximum number of iterations.
Default: max_iterati ons =30

I MSBLS CLUSTER MEANS, float **cl ust er _means (Output)
The address of apointer to an internally allocated array of length
n_clusters xn_vari abl es containing the cluster means.

| MSBLS CLUSTER MEANS USER, float cl uster_neans[] (Output)
Storage for array cl ust er _means is provided by the user. See
| MBLS_CLUSTER MEANS.

I MBLS CLUSTER SSQ float **cl uster_ssq (Output)
The address of apointer to internally allocated array of length
n_cl ust er s containing the within sum-of-squares for each cluster.

I MBLS CLUSTER SSQ USER, float cl uster_ssq[] (Output)
Storage for array cl ust er _ssq isprovided by the user. See
| MBLS_CLUSTER_SSQ.

IMSLS X COL_DIM int x_col _di m (Input)
Column dimension of x.
Default: x_col _dim = n_vari abl es

I MBLS CLUSTER MEANS COL_ DI M int cluster_neans_col _di m (Input)
Column dimension for the vector cl ust er _neans.
Default: cl uster _means_col _di m = n_vari abl es

I MSBLS CLUSTER SEEDS COL_DI M int cluster_seeds_col _di m (Input)
Column dimension for the vector cl ust er _seeds.
Default: cl uster _seeds_col _di m= n_vari abl es

I MBLS CLUSTER COUNTS, int **cl uster_counts (Output)
The address of apointer to an internally allocated array of length
n_cl ust er s containing the number of observationsin each cluster.

I MSBLS CLUSTER COUNTS_USER, int cl uster _counts[] (Output)
Storage for array cl ust er _count s isprovided by the user. See
| MBLS_CLUSTER _COUNTS.

I MSBLS CLUSTER VARI ABLE_COLUMNS, int cluster_variabl es[] (Input)
Vector of length n_vari abl es containing the columns of x to be used
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in computing the metric. Columns are numbered 0, 1, 2, ...,
n_vari abl es
Default: cl uster _variables[]=0,1,2,...,n_vari abl es

| MSBLS_RETURN_USER, int cl uster_group[] (Output)
User-allocated array of length n_obser vat i ons containing the cluster
membership for each observation.

Description

Functioni nmsl s_f _cl ust er _k_neans isan implementation of Algorithm

AS 136 by Hartigan and Wong (1979). It computes K-means (centroid) Euclidean
metric clusters for an input matrix starting with initial estimates of theK-cluster
means. The function allows for missing values coded asNaN (Not a Number) and
for weights and frequencies.

Let p=n_vari abl es bethe number of variables to be used in computing the
Euclidean distance between observations. The ideain K-means cluster analysisis
to find a clustering (or grouping) of the observations so as to minimize the total
within-cluster sums-of-squares. In this case, the total sums-of-squares within each
cluster is computed as the sum of the centered sum-of-squares over all
nonmissing values of each variable. That is,

N

K p
0= 2 Z Z P W B (% = % )2

i=1 j=1 m=1

wherev; denotesthe row index of the m-th observation in thei-th cluster in the
matrix X; n; isthe number of rows of X assigned to group i; f denotes the
frequency of the observation; w denotes its weight; 6 is 0 if the j-th variable on
observationv; ismissing, otherwisedis1; and

isthe average of the nonmissing observations for variablej in groupi. This
method sequentially processes each observation and reassigns it to another cluster
if doing so resultsin a decrease of the total within-cluster sums-of-sgquares. See
Hartigan and Wong (1979) or Hartigan (1975) for details.

Example

This example performs K-means cluster analysis on Fisher’s iris data, which is
obtained by functiohnsl s_f _dat a_sets (Chapter 14)The initial cluster seed
for each iris type is an observation known to be in the iris type.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>
mai n()

{

#defi ne N_OBSERVATI ONS 150
#defi ne N_VARI ABLES 4
#defi ne N_CLUSTERS 3
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f1 oat x[ N_OBSERVATI ONS] [ 5] ;

fl oat cluster_seeds[ N CLUSTERS] [ N_VARI ABLES] ;

fl oat cl uster_neans[ N CLUSTERS] [ N_VARI ABLES] ;

fl oat cluster_ssq[ N CLUSTERS];

i nt cluster_variabl es[N VAR ABLES] = {1, 2, 3, 4};
i nt cluster_counts[ N CLUSTERS] ;

i nt cl ust er_group[ N OBSERVATI ONS] ;

i nt i;

/* Retrieve the data set */
insls_f data sets(3, |IMSLS RETURN USER, x, 0);
/* Assign initial cluster seeds */
for (i=0; i<N VAR ABLES; i ++)
cluster_seeds[0][i] x[O][i+1];
cluster_seeds[1][i] x[50][i+1];
cluster_seeds[2][i] x[ 100] [i +1];

/* Performthe analysis */
inmsls_f_cluster_k_nmeans(N_OBSERVATI ONS, N _VARI ABLES, x,
N_CLUSTERS, cl uster_seeds,
| MSLS_X COL_DI M 5,
| MSLS CLUSTER VARI ABLE_COLUWNS, cluster_vari abl es,
| MSLS CLUSTER_COUNTS_USER, cluster_counts,
| MSLS CLUSTER _MEANS USER, cl uster _neans,
| MSLS CLUSTER_SSQ USER, cl uster_ssq,
| MSLS RETURN_USER, cl uster_group,
0)
/* Print results */
inmsls_ i _wite matrix("Custer Menbership", 1, N_OBSERVATI ONS,
cluster_group, 0);
insls f wite matrix("C uster Means", N _CLUSTERS, N _VARI ABLES,
cl uster_neans, 0);
imsls_f_wite_matrix("Cduster Sum of Squares", 1, N_CLUSTERS,
cluster_ssq, 0);
insls i _wite matrix("# Cbservations in Each Cluster", 1,
N_CLUSTERS, cluster_counts, 0);

}
Cl uster Menbership

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
11111111111 1111111 11
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
11111111112 2 3 2 2 2 2 2 22
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 22
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

2 2 2 2 2 2 2 2 2 2 22 2 22 22 22
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

2 3 2 3 3 3 3 2 3 3 383 3 383 3 2 <2
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
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3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2

148 149 150
3 3 2
Cl uster Means
1 2 3 4
1 5. 006 3.428 1. 462 0. 246
2 5.902 2.748 4,394 1.434
3 6. 850 3.074 5.742 2.071
Cl uster Sum of Squares
1 2 3
15. 15 39. 82 23. 88
# Cbservations in Each C uster
1 2 3
50 62 38

Warning Errors
| MSLS NO_ CONVERGENCE Convergence did not occur.

principal_components

Computes principal components.

Synopsis
#include <i nsls. h>

float *i nsl s_f _princi pal _conponents (int n_vari abl es,
float covariances[], ..., 0)

The type double function isi sl s_d_pri nci pal _conmponent s.

Required Arguments

int n_vari abl es (Input)
Order of the covariance matrix.

float covariances[] (Input)
Array of lengthn_vari abl es x n_vari abl es containing the
covariance or correlation matrix.

Return Value

Anarray of lengthn_vari abl es containing the eigenvalues of the matrix
covari ances ordered from largest to smallest.
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Synopsis with Optional Arguments
#include <insls. h>

float *i nsl s_f _princi pal _conponents (int n_vari abl es,
float covari ances|[],
| MSLS_COVARI ANCE_MATRI X, or
| MBLS_CORRELATI ON_MATRI X,
| MSLS_CUM PERCENT, float **cum percent,
| MSLS CUM PERCENT USER, float cum percent[],
| MSLS_ElI GENVECTCRS, float **ei genvect ors,
| MSLS El GENVECTORS USER, float ei genvectors[],
| MSLS_CORRELATI ONS, float **correl ati ons,
| MSLS CORRELATI ONS_USER, float correl ations[],
| MSLS_STD DEV, int n_degrees_freedom float **std_dev,
| MSLS STD DEV_USER, int n_degrees_freedom
float std_dev[],
IMSLS COV_COL_DIM int cov_col _dim
| MSBLS_RETURN_USER, float ei genval ues[],
0)

Optional Arguments

| MBLS_COVARI ANCE_MATRI X
Treat the input vector covar i ances asacovariance matrix. Thisoption
isthe default.
or

| MSLS_CORRELATI ON_MATRI X
Treat the input vector covar i ances as a correlation matrix.

| MBLS_CUM PERCENT, float **cum percent (Output)
The address of a pointer to an internally allocated array of length
n_vari abl es containing the cumulative percent of the total variances
explained by each principal component.

I MSBLS_CUM PERCENT_USER, float cum percent[] (Output)
Storage for array cum per cent is provided by the user. See
| MBLS_CUM PERCENT.

| MSLS_ElI GENVECTORS, float **ei genvectors (Output)
The address of apointer to an internally allocated array of length
n_vari abl es x n_vari abl es containing the eigenvectors of
covari ances, stored columnwise. Each vector is normalized to have
Euclidean length equal to the value one. Also, the sign of each vector is
set so that the largest component in magnitude (the first of the largest if
there are ties) is made positive.

I MSLS_El GENVECTORS_USER, float ei genvectors[] (Output)
Storage for array ei genvect or s isprovided by the user. See
| MSLS_ElI GENVECTORS.
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| MSLS_CORRELATI ONS, float **correl ati ons (Output)
The address of apointer to an internally allocated array of length
n_vari abl es * n_vari abl es containing the correlations of the
principal components (the columns) with the observed/standardized
variables (the rows). If | MSBLS_COVARI ANCE_MATRI X is specified, then
the correlations are with the observed variables. Otherwise, the
correlations are with the standardized (to a variance of 1.0) variables. In
the principal component model for factor analysis, matrix
correl ati ons isthe matrix of unrotated factor loadings.

| MBLS_CORRELATI ONS_USER, float correl ations[] (Output)
Storage for array corr el at i ons isprovided by the user. See
| MSLS_CORRELATI ONS.

I MSLS_STD DEV, int n_degrees_freedom float **std_dev
(Input/Output)
Argument n_degr ees_f r eedomcontains the number of degrees of
freedomin covari ances. Argument st d_dev isthe address of a
pointer to an internally allocated array of length n_var i abl es
containing the estimated asymptotic standard errors of the eigenvalues.

| MSLS_STD DEV_USER, int n_degrees_freedom float std_dev[]
(Input/Output)
Storage for array st d_dev is provided by the user. See
| MSLS_STD_DEV.

I MSLS_COV_COL_DI M int cov_col _di m (Input)
Column dimension of covariances.
Default: cov_col _di m = n_vari abl es

I MSBLS_RETURN_USER, float ei genval ues[] (Qutput)
User-supplied array of length n_vari abl es containing the eigenvalues
of covariances ordered from largest to smallest.

Description

Functioni nmsl s_f _pri nci pal _conponent s findsthe principal components of
aset of variables from a sample covariance or correlation matrix. The
characteristic roots, characteristic vectors, standard errors for the characteristic
roots, and the correlations of the principal component scores with the original
variables are computed. Principal components obtained from correlation matrices
are the same as principal components obtained from standardized (to unit
variance) variables.

The principal component scores are the elements of thevector y =T Ty, where T
is the matrix whose columns are the characteristic vectors (eigenvectors) of the
sample covariance (or correlation) matrix and x is the vector of observed (or
standardized) random variables. The variances of the principal component scores
are the characteristic roots (eigenvalues) of the covariance (correlation) matrix.
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#i ncl ude
#i ncl ude

mai n()

Asymptotic variances for the characteristic roots were first obtained by Girschick
(1939) and are given more recently by Kendall et al. (1983, p. 331). These
variances are computed either for covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized)
variables are given in the matrix cor r el at i ons. When the principal
components are obtained from a correlation matrix, cor r el at i ons isthe same
as the matrix of unrotated factor loadings obtained for the principal components
model for factor analysis.

Examples

Example 1

In this example, eigenvalues of the covariance matrix are computed.

<stdi 0. h>
<insls. h>

{
#define N_VARI ABLES 9

float *val ues

static float covariances[ N VARI ABLES][ N_VARI ABLES] = {
1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0. 395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505
0. 346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409
0. 426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68
0. 434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0. 47
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Performanal ysis */
val ues = insls_f_principal _conponents(N VARl ABLES, covariances, 0);

/* Print results. */

insls f wite matrix("Ei genval ues", 1, N _VARI ABLES, val ues, 0)

/* Free allocated nenory. */

free(val ues);

}
Output
Ei genval ues
1 2 3 4 5 6
4. 677 1.264 0. 844 0. 555 0. 447 0.429
7 8 9
0. 310 0. 277 0. 196
Example 2

In this example, principal components are computed for anine-variable
correlation matrix.
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#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()
#defi ne N_VARI ABLES 9

float *values, *eigenvectors, *std _dev, *cum percent, *a

static float covariances[ N VARI ABLES] [ N VARl ABLES] = {
1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505
0. 346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409
0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68
0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0. 47
0. 639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Performanalysis */

values = insls_f_principal _conponents(N VAR ABLES, covariances
| MSLS OORRELATICN MATRI X,
INBLS El GENVECTORS, &ei genvectors
| MSLS_STD DEV, 100, &std_dev,
| M5SLS_CUM_PERCENT, &cum percent,
| MSLS CORRELATI ONS, &a
0);

/* Print results */
insls f wite matrix("Ei genval ues", 1, N _VARI ABLES, val ues, 0)
insls f wite_matrix("Ei genvectors”, N VAR ABLES, N _VARI ABLES,
ei genvectors, 0);
inmsls f wite matrix("STD', 1, N_VARI ABLES, std _dev, 0);
imsls f wite matrix("PCT", 1, N_VARI ABLES, cum percent, 0);
imsls f wite matrix("A", N VAR ABLES, N VAR ABLES, a, 0);

/* Free allocated nenory */
free(val ues);
free(ei genvectors);
free (cum percent)
free (std_dev);

free(a);
}
Output
Ei genval ues
1 2 3 4 5 6
4.677 1.264 0. 844 0. 555 0. 447 0. 429
7 8 9
0. 310 0. 277 0. 196
Ei genvectors
1 2 3 4 5 6
1 0. 3462 -0. 2354 0.1386 - 0. 3317 -0.1088 0.7974
2 0. 3526 -0.1108 -0. 2795 -0. 2161 0. 7664 -0. 2002
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3 0. 2754 -0. 2697 -0. 5585 0. 6939 -0.1531 0.1511
4 0. 3664 0. 4031 0. 0406 0.1196 0. 0017 0.1152
5 0. 3144 0.5022 -0.0733 -0. 0207 -0. 2804 -0.1796
6 0. 3455 0. 4553 0. 1825 0.1114 0.1202 0. 0697
7 0. 3487 -0.2714 -0.0725 -0. 3545 -0.5242 -0. 4355
8 0. 2407 -0. 3159 0.7383 0. 4329 0. 0861 -0. 1969
9 0. 3847 -0. 2533 -0.0078 -0. 1468 0. 0459 -0. 1498
7 8 9
1 0.1735 -0. 1240 -0. 0488
2 0.1386 -0. 3032 -0.0079
3 0. 0099 - 0. 0406 -0. 0997
4 -0. 4022 -0.1178 0. 7060
5 0. 7295 0. 0075 0. 0046
6 -0. 3742 0. 0925 -0.6780
7 -0. 2854 - 0. 3408 -0.1089
8 0. 1862 -0.1623 0. 0505
9 -0.0251 0. 8521 0.1225
STD
1 2 3 4 5 6
0. 6498 0.1771 0. 0986 0.0879 0. 0882 0. 0890
7 8 9
0. 0944 0. 0994 0.1113
PCT
1 2 3 4 5 6
0.520 0. 660 0.754 0. 816 0. 865 0.913
7 8 9
0. 947 0.978 1. 000
A
1 2 3 4 5 6
1 0. 7487 -0. 2646 0.1274 -0. 2471 -0.0728 0.5224
2 0. 7625 -0. 1245 -0. 2568 -0. 1610 0.5124 -0.1312
3 0. 5956 -0. 3032 -0.5133 0.5170 -0.1024 0. 0990
4 0.7923 0. 4532 0.0373 0. 0891 0.0012 0. 0755
5 0.6799 0. 5646 -0.0674 -0.0154 -0.1875 -0.1177
6 0.7472 0. 5119 0.1677 0. 0830 0. 0804 0. 0456
7 0. 7542 -0. 3051 -0. 0666 -0. 2641 -0. 3505 -0. 2853
8 0. 5206 -0. 3552 0.6784 0. 3225 0. 0576 -0.1290
9 0. 8319 -0. 2848 -0.0071 -0.1094 0. 0307 -0.0981
7 8 9
1 0. 0966 -0. 0652 -0.0216
2 0.0772 -0. 1596 -0. 0035
3 0. 0055 -0.0214 -0. 0442
4 -0. 2240 -0. 0620 0. 3127
5 0. 4063 0. 0039 0. 0021
6 -0. 2084 0. 0487 -0. 3003
7 -0. 1589 -0.1794 -0. 0482
8 0.1037 -0. 0854 0.0224
9 -0. 0140 0. 4485 0. 0543

422« principal_components IMSL C/Stat/Library



Warning Errors

| MSLS 100_DF Because the number of degrees of freedom
in “covariances” and “n_degrees_freedom”
is less than or equal to 0, 100 degrees of
freedom will be used.

| MSLS COV_NOT_NONNEG DEF “eigenvalues[#]” = #. One or more
eigenvalues much less than zero are
computed. The matrix “covariances” is not
nonnegative definite. In order to continue
computations of “eigenvalues” and
“correlations,” these eigenvalues are treated
as 0.

| MSLS FAI LED TO CONVERGE The iteration for the eigenvalue failed to
converge in 100 iterations before deflating.

factor_analysis

Extracts initial factor-loading estimates in factor analysis.

Synopsis
#include <i nsl s. h>

float *insls_f_factor_analysis (int n_vari abl es,
float covariances[], int n_factors, .., 0)

The typedouble function isi nsl s_d_f act or _anal ysi s.

Required Arguments

int n_vari abl es (Input)
Number of variables.

float covariances[] (Input)
Array of lengthn_vari abl es x n_vari abl es containing the variance-
covariance or correlation matrix.

int n_factors (Input)
Number of factors in the model.
Return Value
An array of lengtm_vari abl es x n_f act or s containing the matrix of factor
loadings.

Synopsis with Optional Arguments
#include <insls. h>
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float *insl s_f_factor_analysis (int n_vari abl es,
float covari ances[], int n_factors,
I MSLS_MAXI MUM LI KELI HOOD, int df _covari ances, or
| MBLS_PRI NCI PAL_COVPONENT, or
I MSLS_PRI NCI PAL_FACTOR, or
| MBLS_UNWEI GHTED LEAST SQUARES, or
| MSLS_GENERALI ZED LEAST_SQUARES, int df _covari ances, or
| MSLS_| MAGE, or
I MSBLS_ALPHA, int df _covari ances,
I MSLS_UNI QUE_VARI ANCES | NPUT, float uni que_vari ances[],
I M5SLS_UNI QUE_VARI ANCES_QOUTPUT,
float uni que_vari ances[],
| MSLS_MAX_| TERATI ONS, int max_iterations,
| MBLS_MAX_STEPS LI NE_SEARCH,
int max_steps_l i ne_search,
| MSLS CONVERGENCE_EPS, float convergence_eps,
| MSBLS_SW TCH_EXACT_HESSI AN, float switch_epsil on,
| MSLS ElI GENVALUES, float **ei genval ues,
| MSLS_ElI GENVALUES USER, float ei genval ues[],
| MSLS CHI _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue,
| MSLS _TUCKER RELI ABI LI TY_COEFFI Cl ENT,
float *coefficient,
I MSLS N I TERATIONS, int *n_iterations,
I MSBLS_FUNCTI ON_M N, float *functi on_nin,
| MSLS LAST STEP, float **| ast _st ep,
| MBLS_LAST_STEP_USER, float | ast _step[],
IMSLS COV_COL_DIM int cov_col _dim
| MSBLS_RETURN_USER, float factor_| oadi ngs[],
0)

Optional Arguments

I MSLS_MAXI MUM LI KELI HOOD, int df _covari ances (Input)
Maximum likelihood (common factor) model used to obtain the
estimates. Argument df _covari ances isthe number of degrees of
freedom in covariances.
or

I MSLS_PRI NCI PAL_COVPONENT
Principal component (principal component model) used to obtain the
estimates.
or

| MSLS_PRI NCI PAL_FACTCOR
Principal factor (common factor model) used to obtain the estimates.
or
| MSLS_UNWEI GHTED LEAST SQUARES
Unweighted least-squares (common factor model) method used to obtain
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the estimates. This option is the defaullt.
or

| MSBLS GENERALI ZED LEAST_SQUARES, int df covariances (Input)
Generalized least-squares (common factor model) method used to obtain
the estimates.
or

| MSLS_| MAGE
Image-factor analysis (common factor model) method used to obtain the
estimates.
or

I MSBLS _ALPHA, int df covariances (Input)
Alpha-factor analysis (common factor model) method used to obtain the
estimates. Argument df _covar i ances isthe number of degrees of
freedom in covariances.

I MSLS_UNI QUE_VARI ANCES | NPUT, float uni que_vari ances[] (Input)
Array of lengthn_vari abl es containing the initial estimates of the
unique variances.

Default: Initial estimates are taken as the constant 1 -
n_factors/2* n_vari abl es divided by the diagonal elements of the
inverse of covari ances.

I MSLS_UNI QUE_VARI ANCES_QUTPUT, float uni que_vari ances[] (Output)
User-allocated array of length n_var i abl es containing the estimated
unique variances.

I MSBLS MAX | TERATI ONS, int max_iterations (Input)
Maximum number of iterations in the iterative procedure.
Default: max_i terati ons =60

| MSBLS _MAX_STEPS LI NE_SEARCH, int max_steps_l i ne_search (Input)
Maximum number of step halvings allowed during any one iteration.
Default: max_steps_| i ne_search =10

I MSBLS CONVERGENCE EPS, float convergence_eps (Input)
Convergence criterion used to terminate the iterations. For the
unweighted least squares, generalized |east squares or maximum
likelihood methods, convergence is assumed when the relative change in
the criterionislessthan conver gence_eps. For alpha-factor analysis,
convergence is assumed when the maximum change (relative to the
variance) of auniquenessislessthanconver gence_eps.
Default: conver gence_eps = 0.0001

| MSBLS SW TCH_EXACT_HESSI AN, float switch_epsilon (Input)
Convergence criterion used to switch to exact second derivatives. When
the largest relative change in the unique standard deviation vector isless
thanswi t ch_epsi | on, exact second derivative vectors are used.
Argument swi t ch_epsi | on isnot used with the principal component,
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principal factor, image-factor analysis, or alpha-factor anaysis methods.
Default: swi t ch_epsil on=0.1

| MSLS_ElI GENVALUES, float **ei genval ues (Output)
The address of apointer to an internally allocated array of length
n_vari abl es containing the eigenvalues of the matrix from which the
factors were extracted.

| MSLS_El GENVALUES USER, float ei genval ues[] (Output)
Storage for array ei genval ues is provided by the user. See
| MSLS_El GENVALUES.

| MSLS CHI _SQUARED TEST, int *df, float *chi _squar ed,
float *p_val ue (Output)
Number of degrees of freedom in chi-squared isdf ; chi _squared is
the chi-squared test statistic for testing that n_f act or s common factors
are adequate for the data; p_val ue isthe probability of a greater chi-
sguared statistic.

| MSLS_TUCKER RELI ABI LI TY_COEFFI Cl ENT, float *coeffi ci ent
(Output)
Tucker reliability coefficient.

| MSLS_N_I TERATI ONS, int *n_i terations (Output)
Number of iterations.

I MSLS_FUNCTI ON_M N, float *function_ni n (Output)
Value of the function minimum.

| MBLS_LAST_STEP, float **| ast _step (Output)
Address of a pointer to an internally allocated array of length
n_vari abl es containing the updates of the unique variance estimates
when convergence was reached (or the iterations terminated).

| MSLS_LAST_STEP_USER, float | ast_step[] (Output)
Storage for array | ast _st ep isprovided by the user. See
| MBLS_LAST_STEP.

I MSLS COV_COL_DIM int cov_col _di m (Input)
Column dimension of the matrix covar i ances.
Default: cov_col _di m = n_vari abl es

I MSBLS_RETURN_USER, float factor_| oadi ngs[] (OQutput)
User-allocated array of lengthn_vari abl es*n_f act or s containing
the unrotated factor loadings.

Description

Functioni nsl s_f _factor_anal ysi s computes unrotated factor loadingsin
exploratory factor analysis models. Models available in

imsl s_f _factor_anal ysi s aretheprincipal component model for factor
analysis and the common factor model with additions to the common factor
model in alpha-factor analysis and image analysis. Methods of estimation include

426 « factor_analysis IMSL C/Stat/Library



principal components, principal factor, image analysis, unweighted least squares,
generalized least squares, and maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as
>=AA\T + W, where S isthe p % p population covariance matrix, A isthe

p x k matrix of factor loadings relating the factorsf to the observed variables x,
and W isthe p x p matrix of covariances of the unique errors e. Here,

p=n_vari abl es and k=n_f act or s. The relationship between the factors, the
unique errors, and the observed variablesis given as x = Af + e, wherein
addition, the expected values of e, f, and x are assumed to be 0. (The sample
means can be subtracted from x if the expected value of xisnot 0.) It alsois
assumed that each factor has unit variance, the factors are independent of each
other, and that the factors and the unique errors are mutually independent. In the
common factor model, the elements of unique errors e also are assumed to be
independent of one another so that the matrix W is diagonal. Thisis not the case
in the principal component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is
optimized and the amount of computer effort required to obtain estimates.
Generally speaking, the least-squares and maximum likelihood methods, which
use iterative algorithms, require the most computer time with the principal factor,
principal component and the image methods requiring much less time since the
algorithms in these methods are not iterative. The algorithm in alpha-factor
analysisis aso iterative, but the estimates in this method generally require
somewhat less computer effort than the least-squares and maximum likelihood
estimates. In al methods, one eigensystem analysisis required on each iteration.

Principal Component and Principal Factor Methods

Both the principal component and principal factor methods compute the factor-
loading estimates as

FA™Y2
where " and the diagonal matrix A are the eigenvectors and eigenvalues of a
matrix. In the principal component model, the eigensystem analysisis performed
on the sample covariance (correlation) matrix S, while in the principal factor
model, the matrix (S+ W) isused. If the unique error variances W are not known

in the principal factor mode, theni sl s_f _f act or _anal ysi s obtains
estimates for them.

The basic ideain the principal component method is to find factors that maximize
the variance in the original data that is explained by the factors. Because this
method allows the unique errors to be correlated, some factor analysts insist that
the principal component method is not a factor analytic method. Usually,
however, the estimates obtained by the principal component model and factor
analysis model will be quite similar.

It should be noted that both the principal component and principal factor methods
give different results when the correlation matrix is used in place of the
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covariance matrix. Indeed, any rescaling of the sample covariance matrix can lead
to different estimates with either of these methods. A further difficulty with the
principal factor method is the problem of estimating the unique error variances.
Theoretically, these must be known in advance and be passed to

i msl s_f_factor_anal ysi s using optional argument

I MSLS_UNI QUE_VARI ANCES_| NPUT. In practice, the estimates of these
parameters are produced by i nsl s_f _f act or _anal ysi s when

| MBLS_UNI QUE_VARI ANCES_| NPUT is not specified. In either case, the resulting
adjusted covariance (correlation) matrix

S-¢
may not yield then_f act or s positive eigenvaluesrequired for n_f actors
factors to be obtained. If this occurs, the user must either lower the number of
factors to be estimated or give new unique error variance values.

Least-squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this
section isiterative (see Joreskog 1977). As with the principal factor model, the
user may either initialize the unique error variances or allow

i msl s_f_factor_anal ysi s to compute initial estimates. Unlike the principal
factor methodi sl s_f _f act or _anal ysi s optimizes the criterion function
with respect to botl andrl". (In the principal factor metho#! is assumed to be
known. Giver, estimates foA may be obtained.)

The major difference between the methods discussed in this section is in the
criterion function that is optimized. L8denote the sample covariance

(correlation) matrix, and |&X denote the covariance matrix that is to be estimated
by the factor model. In the unweighted least-squares method, also called the
iterated principal factor method or the minres method (see Harman 1976, p. 177),
the function minimized is the sum-of-squared differences bet®ard>. This

is written agb,, = 0.5 (trace $ - ).

Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)
likelihood {®,,, = trace E™'S) - log (= 9)}, while generalized least squares
optimizes the functiom®,, = trace ESI - I)Z.

In all three methods, a two-stage optimization procedure is used. This proceeds
by first solving the likelihood equations farin terms of¥ and substituting the
solution into the likelihood. This gives a criteripr{¥, A (W)), which is

optimized with respect t&. In the second stage, the estimafteare obtained

from the estimates fob.

The generalized least-squares and maximum likelihood methods allow for the
computation of a statisti¢ ¥5LS_CHI _ SQUARED_TEST) for testing that

n_f act or s common factors are adequate to fit the model. This is a chi-squared
test that all remaining parameters associated with additional factors are 0. If the
probability of a larger chi-squared is so small that the null hypothesis is rejected,
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then additional factors are needed (although these factors may not be of any
practical importance). Failure to reject does not legitimize the model. The statistic
I MSLS_CHI _SQUARED TEST isalikelihood ratio statistic in maximum likelihood
estimation. As such, it asymptotically follows a chi-squared distribution with
degrees of freedom given by df .

The Tucker and Lewis reliability coefficient, p, is returned by

| MSLS_TUCKER_RELI ABI LI TY_CCEFFI ClI ENT when the maximum likelihood
or generalized |east-sguares methods are used. This coefficient is an estimate of
theratio of explained variation to the total variation in the data. It is computed as
follows:

_ MMy - mM,
mMO _1

_d_2p+5_2_k
6 6

~In(s)

0= p(p-1)/2
@
((p—k)z—p—k)/Z

M =

where |§ isthe determinant of covariances, p = n_vari abl es,
k=n_vari abl es, @isthe optimized criterion, and d = df _covari ances.

Image Analysis

The term image analysis is used here to denote the noniterative image method of
Kaiser (1963). It is not the image analysis discussed by Harman (1976, p. 226).
The image method (as well as the alpha-factor analysis method) begins with the
notion that only afinite number from an infinite number of possible variables
have been measured. The image factor pattern is calculated under the assumption
that the ratio of the number of factors to the number of observed variablesis near
0, so that a very good estimate for the unique error variances (for standardized
variables) is given as 1 minus the squared multiple correlation of the variable
under consideration with all variablesin the covariance matrix.

First, the matrix D* = (diag (S") )™ is computed where the operator “diag”

results in a matrix consisting of the diagonal elements of its argumeStisitite
sample covariance (correlation) matrix. Then, the eigenvalsesl eigenvectors

[ of the matrixD™' SD™" are com?uted. Finally, the unrotated image-factor pattern
is computed aBr [(A - 1)*A™]'.

Alpha-factor Analysis

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the
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complete universe of variables of interest. The basic ideain this method is that
only afinite number of variables out of amuch larger set of possible variablesis
observed. The population factors are linearly related to thislarger set, while the
observed factors are linearly related to the observed variables. Let f denote the
factors obtainable from afinite set of observed random variables, and let € denote
the factors obtainable from the universe of observable variables. Then, the alpha
method attempts to find factor-loading estimates so as to maximize the correlation
between f and €. In order to obtain these estimates, the iterative agorithm of
Kaiser and Caffrey (1965) is used.

Comments

1. Functioni nsl s_f _factor_anal ysi s makes no attempt to solve for
n_factors.Ingeneral, if n_f act or s is not known in advance, several
different values of n_f act or s should be used and the most reasonable
value kept in the final solution.

2. Iterative methods are generally thought to be superior from a theoretical
point of view, but in practice, often lead to solutions that differ little
from the noniterative methods. For thisreason, it is usually suggested
that a noniterative method be used in the initial stages of the factor
analysis and that the iterative methods be used when issues such asthe
number of factors have been resolved.

3. Initial estimates for the unique variances can be input. If the iterative
methods fail for these values, new initial estimates should be tried. These
can be obtained by use of another factoring method. (Use the final
estimates from the new method as the initial estimatesin the old
method.)

Examples

Example 1

In this example, factor analysisis performed for a nine-variable matrix using the
default method of unweighted least squares.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()

#defi ne N_VARI ABLES 9
#define N FACTORS 3

float *a;

0,

. 523,
. 395,
L471,
. 346,

float covariances[ N VAR ABLES][ N VARI ABLES] = {
.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,

coocoor

. 426,

coooro
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0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68
0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0. 47
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Performanalysis */
a = insls_f _factor_analysis (9, covariances, 3, 0)

/* Print results */
insls f wite_matrix("Unrotated Loadi ngs", N _VARI ABLES, N _FACTORS

a, 0);
free(a);
Output
Unr ot at ed Loadi ngs
1 2 3
1 0.7018 -0. 2316 0. 0796
2 0. 7200 -0.1372 -0. 2082
3 0. 5351 -0. 2144 -0. 2271
4 0. 7907 0. 4050 0. 0070
5 0. 6532 0. 4221 -0. 1046
6 0. 7539 0. 4842 0. 1607
7 0. 7127 -0. 2819 -0.0701
8 0. 4835 -0. 2627 0. 4620
9 0.8192 -0. 3137 -0.0199
Example 2

The following data were originally analyzed by Emmett (1949). There are 211
observations on 9 variables. Following Lawley and Maxwell (1971), three factors
are obtained by the method of maximum likelihood.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()

#defi ne N_VARI ABLES 9
#define N FACTORS 3
float *a
float *evals;
float chi_squared, p_value, reliability coef, function_nin
i nt chi _squared_df, n_iterations
float uni g[ N VAR ABLES];

float covariances[ N VAR ABLES][ N VARI ABLES] = {
1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
0. 395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505
0. 346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409
0. 426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472
0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68
0. 434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0. 47
0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

/* Perform anal ysis */
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a = insls_f factor_analysis (9, covariances, 3
I M5SLS_MAXI MUM LI KELI HOOD, 210,
| MBLS_SW TCH_EXACT_HESSI AN, 0. 01,
| MSLS_CONVERGENCE_EPS, 0. 000001
| MBLS_MAX_| TERATI ONS, 30,
| MBLS_MAX_STEPS LI NE_SEARCH, 10,
| MSLS_El GENVALUES, &eval s,
| MSLS_UNI QUE_VARI ANCES OUTPUT, uni q,
| MBLS_CHI _SQUARED TEST,

&chi _squared_df,
&chi _squared,

&p_val ue,
| MSBLS_TUCKER RELI ABI LI TY_COEFFI Cl ENT, &reliability coef,
| MSLS_N_| TERATI ONS, &n_iterations
| MSLS_FUNCTI ON_M N, & unction_mnin,

0);

/* Print results */
insls f wite_matrix("Unrotated Loadi ngs", N _VARI ABLES, N _FACTORS
a, 0);
insls f wite_matrix("Ei genvalues", 1, N VARI ABLES, evals, 0);
insls f wite_matrix("Unique Error Variances", 1, N_VARI ABLES,

uniq, 0);
printf("\n\nchi_squared_df = %I\ n", chi_squared_df)
printf("chi_squared = %\n", chi_squared);
printf("p_value = %\n\n", p_value);
printf("reliability coef = %\n", reliability_coef);
printf("function_mn = %\n", function_mn)
printf("n_iterations = %I\n", n_iterations)
free(eval s);
free(a);
}
Output
Unr ot at ed Loadi ngs
1 2 3
1 0. 6642 -0. 3209 0.0735
2 0. 6888 -0.2471 -0.1933
3 0. 4926 -0. 3022 -0. 2224
4 0.8372 0. 2924 -0. 0354
5 0. 7050 0. 3148 -0. 1528
6 0.8187 0. 3767 0. 1045
7 0. 6615 -0. 3960 -0.0777
8 0. 4579 -0. 2955 0. 4913
9 0. 7657 -0.4274 -0.0117
Ei genval ues
1 2 3 4 5 6
0. 063 0. 229 0. 541 0. 865 0.894 0.974
7 8 9
1. 080 1.117 1. 140
Uni que Error Variances
1 2 3 4 5 6
0. 4505 0.4271 0.6166 0.2123 0. 3805 0.1769
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7 8 9

0. 3995 0. 4615 0. 2309
chi _squared_df = 12
chi _squared = 7.149356
p_val ue = 0. 847588
reliability coef = 1.000000
function_mn = 0. 035017
n_iterations = 5

Warning Errors

| MBLS_VARI ANCES | NPUT_| GNORED When using the

| MBLS_TOO MANY_| TERATI ONS

| MBLS_NO_DEG FREEDOM

| MBLS_TOO MANY_HALVI NGS

Fatal Errors

| MSLS_HESSI AN_NOT_POS_DEF

| MBLS_FACTOR_EVAL_NOT_PCS

| MSLS_COV_NOT_POS_DEF

| MBLS_COV_I S_SI NGULAR

| MLS_COV_EVAL_ERROR

| MSLS_PRI NCI PAL_COMPONENT
option, the unique variances are
assumed to be zero. Input for

| MSLS_UNI QUE_VARI ANCES | NPUT is
ignored.

Too many iterations. Convergenceis
assumed.

There are no degrees of freedom for the
significance testing.

Too many step halvings. Convergenceis
assumed.

The approximate Hessian is not semi-
definite on iteration #. The computations
cannot proceed. Try using different initial
estimates.

“eigenvalues[#]” = #. An eigenvalue
corresponding to a factor is negative or
zero. Either use different initial estimates
for “unique_variances” or reduce the
number of factors.

“covariances” is not positive semi-definite.
The computations cannot proceed.

The matrix “covariances” is singular. The
computations cannot continue because
variable # is linearly related to the
remaining variables.

An error occurred in calculating the
eigenvalues of the adjusted (inverse)
covariance matrix. Check “covariances.”
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| MSLS_ALPHA_FACTOR_EVAL_NEG In alphafactor analysison iteration #,
eigenvalue#is#. Asall eigenvalues
corresponding to the factors must be
positive, either the number of factors must
be reduced or new initial estimates for
“unique_variances” must be given.

discriminant_analysis

Performs a linear or a quadratic discriminant function analysis among several
known groups.

Synopsis
#include <insls. h>

void i nsl s_f _di scriminant_anal ysis (int n_rows, int n_vari abl es,
float *x, int n_groups, ..., 0)

The typedouble function isi nsl s_d_di scri mi nant _anal ysi s.

Required Arguments

int n_rows (Input)
Number of rows ok to be processed.

int n_vari abl es (Input)
Number of variables to be used in the discrimination.

float *x (Input)
Array of sizen_r ows byn_vari abl es + 1 containing the data. The
firstn_vari abl es columns coorespond to the variables, and the last
column (columm_vari abl es) contains the group numbers. The
groups must be numbered 1, 2,n..gr oups.

int n_groups (Input)
Number of groups in the data.

Synopsis with Optional Arguments
#include <i nsl's. h>

void i nsl s_f _di scriminant_anal ysis (int n_rows, int n_vari abl es,
float *x, int n_groups,
IMSLS X _ COL_DIM int x_col _dim
I MSLS X_INDI CES, int igrp, int ind[], intifrqg, int iw,
| MSLS_METHOD, int net hod,
I MSLS_| DO, int i do,
| MBLS_ROWS_ADD,
| MBLS ROAS_DELETE,
| MBLS PRI OR_EQUAL,
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| MBLS_PRI OR_PROPORTI ONAL,

I MSLS_PRI OR_I NPUT, float prior_input[],

I MSLS_PRI OR_QUTPUT, float **pri or _out put

I MSLS_PRI OR_QUTPUT_USER, float pri or_out put[]
| MSLS_GROUP_COUNTS, int **gcount s,

| MSLS_GROUP_COUNTS_USER, int gcount s[]

| MSLS_MEANS, float **nmeans,

| MSLS_MEANS USER, float neans][],

I MSLS_COv, float **covari ances,

| MSLS_COV_USER, float covari ances|[],

| MSLS_CCEF, float **coefficients

| MSLS_CCEF_USER, float coefficients[],

| MSLS_CLASS MEMBERSHI P, int **cl ass_menber shi p,
| MSLS_CLASS_MEMBERSHI P_USER, int cl ass_menbership[],
| MSLS CLASS TABLE, float **cl ass_t abl e,

| MSLS CLASS TABLE USER, float cl ass_table[],
| MSLS_PROB, float **prob,

| MBLS_PROB_USER, float prob[],

| MSLS MAHALANOBI S, float **d2,

| MSLS_MAHALANOBI S_USER, float d2[],

| MSLS_STATS, float **stat s,

| MBLS_STATS_USER, float stats[],

| MBLS_N_ROAS_M SSI NG, int *nrmiss,

0)

Optional Arguments
IMSLS X COL_DIM int x_col _di m (Input)

Column dimension of array x.
Default: x_col _dim=n_variables +1

IMSLS X INDICES, int igrp, int ind[], int ifrqg, int iw (Input)

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0...x_col _dim-1

Parameter i gr p contains the index for the column of x in which the
group numbers are stored.

Parameter i nd contains the indices of the variables to be used in the
analysis.

Parametersi f rg and i wt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Seti fr q = -1 if there
will be no column for frequencies. Seti w = -1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Defaults: i grp=n_variables,ind[] =0,1, ..., n_variabl es — 1,
ifrg=-1,andiwt =-1
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| MSLS_METHOD, int met hod (Input)

Method of discrimination. The method chosen determines whether linear

or quadratic discrimination is used, whether the group covariance
matrices are computed (the pooled covariance matrix is aways
computed), and whether the leaving-out-one or the reclassification
method is used to classify each observation.

method discrimination covariances classification
method computed method

1 linear pooled, group | reclassification
2 quadratic pooled, group | reclassification
3 linear pooled reclassification
4 linear pooled, group | leaving-out-one
5 quadratic pooled, group | leaving-out-one
6 linear pooled leaving-out-one

In the leaving-out-one method of classification, the posterior
probabilities are adjusted so as to eliminate the effect of the observation
from the sample statistics prior to its classification. In the classification
method, the effect of the observation is not eliminated from the
classification function.

When optional argument | MSLS_| DOis specified, the following rules
for mixing methods apply; Methods 1, 2, 4, and 5 can be intermixed, as
can methods 3 and 6. Methods 1, 2, 4, and 5 cannot be intermixed with
methods 3 and 6.

Default: met hod =1

I MSLS I DO, int i do (Input)
Processing option. See Comments 3 and 4 for more information.

ido action

0 Thisistheonly invocation; all the data are input at once.
(Default)

1 Thisisthefirst invocation with this data; additional calls will
be made. Initialization and updating for the n_r ows
observations of x will be performed.

2 Thisisanintermediate invocation; updating for the n_r ows
observations of x will be performed.

3 All satigtics are updated for the n_r ows observations. The
discriminant functions and other statistics are computed.
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ido action

4  Thediscriminant functions are used to classify each of the
n_r ows observations of x.

5  The covariance matrices are computed, and workspaceis
released. No further call to di scri mi nant _anal ysi s with
i do greater than 1 should be made without first calling
di scriminant _anal ysi s withi do =1.

6  Workspaceisreleased. No further callsto
di scriminant _anal ysi s withi do greater than 1 should be
made without first callingdi scri mi nant _anal ysi s with
i do = 1. Invocation with this option is not required if acall has
already been made withi do = 5.

Default: i do =0

| MBLS_ROWS_ADD, Or
| MSLS_ROWS_DELETE
By default (or if | MSLS_ROWS_ADD is specified), then the observations
in x are added to the discriminant statistics. If | MSLS ROAS_DELETE is
specified, then the observations are del eted.

If i do =0, these optional arguments are ignored (datais always added if
thereis only one invocation).

| MBLS_PRI OR_EQUAL, or

| MSLS_PRI OR_PROPORTI ONAL, or

I MSLS_PRI OR_I NPUT, float prior_input[] (Input)
By default, (or if | MSLS_PRI OR_EQUAL is specified), equal prior
probabilities are cal culated as 1.0/n_gr oups.

If | MBLS_PRI OR_PROPORTI ONAL is specified, prior probabilities are
calculated to be proportional to the sample size in each group.

If I MBLS_PRI OR_I NPUT_USERis specified, then array pri or _i nput is
an array of length n_gr oups containing the prior probabilities for each
group, such that the sum of al prior probabilitiesis equal to 1.0. Prior
probabilities are not used if i do isequal to 1, 2, 5, or 6.

| MBLS_PRI OR_QUTPUT, float **pri or _out put (Output)
Address of a pointer to an array of length n_gr oups containing the most
recently calculated or input prior probabilities. If
I MSLS_PRI OR_PROPORTI ONAL is specified, every element of
prior _out put isequal to -1 until acall ismadewithi do equal to 0 or
3, a which point the priors are calculated. Note that subsequent callsto
di scrim nant _anal ysi s with| MSLS_PRI OR_PROPORTI ONAL
specified, and ido not equal to 0 or 3 will result in the elements of
prior _out put being reset to -1.
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I MSLS_PRI OR_QUTPUT_USER, float prior_out put[] (Output)
Storage for array pri or _out put is provided by the user. See
| MBLS_PRI OR_OUTPUT.

| MBLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_gr oups containing
the number of observationsin each group. Array gcountsis updated
whenidoisequa to 0, 1, or 2.

| MBLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcount s isprovided by the user. See
| MBLS_GROUP_COUNTS.

| MSLS_MEANS, float **nmeans (Output)
Address of a pointer to an array of size n_gr oups by n_vari abl es.
The i-th row of means contains the group i variable means. Array means
is updated wheni do isequal to O, 1, 2, or 5. The means are unscaled
until acall ismadewithi do = 5. where the unscaled means are
calculated as >wf; x; and the scaled means as

z w; fiX;
zWi f

where x; is the value of the i-th observation, w; is the weight of thei-th
observation, and f; is the frequency of the i-th observation.

| MBLS MEANS USER, float neans[] (Output)
Storage for array neans is provided by the user. See | MSLS_MEANS.

I MSLS _COv, float **covari ances (Output)
Address of a pointer to an array of length
n_vari abl es + n_vari abl es + g containing the within-group
covariance matrices (met hods 1, 2, 4, and 5 only) asthefirst g-1
matrices, and the pooled covariance matrix as the g-th matrix (that is, the
firstn_vari abl es x n_vari abl es elements comprise the group 1
covariance matrix, thenext n_vari abl es x n_vari abl es elements
comprise the group 2 covariance, ..., and thelast n_vari abl es x
n_vari abl es elements comprise the pooled covariance matrix). If
met hod is3 or 6 then g isequal to 1. Otherwise, g isequal to n_gr oups
+ 1. Argument cov is updated wheni do isequal to 0, 1, 2, 3, or 5.

I MBLS COV_USER, float covariances[] (Output)
Storage for array covari ances is provided by the user. See
| M5SLS_COVARI ANCES.

| MSLS CCEF, float **coefficients (Output)
Address of a pointer to an array of sizen_gr oups by
(n_vari abl es + 1) containing the linear discriminant coefficients. The
first column of coef fi ci ent s contains the constant term, and the
remaining columns contain the variable coefficients. Rowi — 1 of
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coef fi ci ent s correspondsto group i, for
i=1,2,..,n_variables +1. Array coefficients areaways
computed as the linear discriminant function coefficients even when
quadratic discrimination is specified.

Array coef fi ci ent s isupdated wheni do isequal to O or 3.

| MBLS_CCEF_USER, float coefficients[] (Output)
Storage for array coefficientsis provided by the user. See
| MSLS_COEFFI Cl ENTS.

| MBLS_CLASS_MEMBERSHI P, int **cl ass_nenber ship (Output)
Address of a pointer to an integer array of length n_r ows containing the
group to which the observation was classified. Array
cl ass_menber shi p isupdated wheni do isequal to O or 4.

If an observation has an invalid group number, frequency, or weight
when the leaving-out-one method has been specified, then the
observation is not classified and the corresponding elements of

cl ass_menber shi p (and pr ob, seel MSLS_POSTERI OR_PROB) are set
to zero.

| MSLS_CLASS_MEMBERSHI P_USER, int cl ass_menbershi p[] (Ouput)
Storage for array cl ass_nmenber shi p is provided by the user. See
| MBLS_CLASS_MEMBERSHI P.

| MSLS_CLASS_TABLE, float **cl ass_t abl e (Output)
Address of a pointer to an array of size n_gr oups by n_gr oups
containing the classification table. Array cl ass_t abl e is updated when
i doisequal to O, 1, or 4. Each observation that is classified and has a
group number 1.0, 2.0, ..., n_gr oups isentered into the table. The rows
of the table correspond to the known group membership. The columns
refer to the group to which the observation was classified. Classification
results accumulate with each call to
i mel s_f _di scrim nant _anal ysi s withi do equal to 4. For
example, if two callswithi do equal to 4 are made, the elementsin
cl ass_t abl e sum to the total number of valid observationsin the two
cals.

| MSLS_CLASS_TABLE USER, float cl ass_tabl e[] (Output)
Storage for array cl ass_t abl e is provided by the user. See
| MBLS_CLASS_TABLE.

| MBLS_PROB, float **prob (Output)
Address of apointer to an array of size n_r ows by n_gr oups
containing the posterior probabilities for each observation. Argument
pr ob isupdated wheni do isequal to O or 4.

| MSLS_PROB_USER, float prob[] (Output)
Storage for array pr ob is provided by the user. See | MSLS_PROB.
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| MSLS_MAHALANOBI S, float **d2 (Output)
Address of a pointer to an array of size n_gr oups by n_gr oups
containing the Mahalanobis distances

D7

between the group means. Argument d2 is updated wheni do isegual to
Oor3.

For linear discrimination, the Mahalanobis distance is computed using
the pooled covariance matrix. Otherwise, the Mahal anobis distance

D7

between group meansi and j is computed using the within covariance
matrix for group i in place of the pooled covariance matrix.

| MBLS_MAHALANOBI S_USER, float d2[] (Output)
Storage for array d2 is provided by the user. See | MSLS_MAHALANOBI S.

| MBLS_STATS, float **stats (Output)
Address of apointer to an array of length 4 + 2 x (n_gr oups + 1)
containing various statistics of interest. Array st at s is updated when
i doisegual to 0, 1, 3, or 5. Thefirst element of st at s isthe sum of the
degrees of freedom for the within-covariance matrices. The second,
third, and fourth elements of st at s correspond to the chi-squared
statistic, its degrees of freedom, and the probability of a greater
chi _squar ed, respectively, of atest of the homogeneity of the within-
covariance matrices (not computed if met hod isequal to 3 or 6). The
fifth through 5 + n_gr oups elements of st at s contain the log of the
determinants of each group’s covariance matrix (not computed if
met hod is equal to 3 or 6) and of the pooled covariance matrix (element
4 +n_groups). Finally, the lash_gr oups + 1 elements oft at s
contain the sum of the weights within each group, and in the last
position, the sum of the weights in all groups.

| MSLS_STATS_USER, float stats[] (Output)
Storage for arraygt at s is provided by the user. See
| MSLS_STATS_USER.

| MSLS_N_ROWS_M SSI NG, int *nrni ss (Output)
Number of rows of data encountered in calls to
di scri mi nant _anal ysi s containing missing values (NaN) for the
classification, group, weight, and/or frequency variables. If a row of data
contains a missing value (NaN) for any of these variables, that row is
excluded from the computations.

Array nr ni ss is updated whendo is equal to 0, 1, 2, or 3.
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Comments

1 Common choices for the Bayesian prior probabilities are given by:
prior_input[i]=1.0/n_groups (equa priors)
prior_input[i] =gcounts/n_observations (proportiona priors)
prior_i nput[i ] = Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

2. Two passes of the data are made. In the first pass, the statistics required
to compute the discriminant functions are obtained (i do equal to 1, 2,
and 3). In the second pass, the discriminant functions are used to classify
the observations. When i do isequal to 0, al of the data are memory
resident, and both passes are made in one call to
imsl s_f _discrimnant_anal ysis. Wheni do > 0 (optional
argument | MSLS | DOis specified), athird call to
i msl s_f _discrimnant_anal ysi s involving no datais required
withi do equal to 5 or 6.

3. Here are afew rules and guidelines for the correct value of i do ina
series of calls:
1 Callswithi do =0or i do = 1 may be made at any time, subject

torule 2. These callsindicate that a new analysisisto begin,
and therefore allocate memory and destroy all statistics from
previous calls.

2 Each seriesof callstoi msl s_f _di scri mi nant _anal ysi s
which beginswithi do = 1 must end withi do equal to5or 6to
ensure the proper release of workspace, subject to rule 3.

3 i do may not be 4 or 5 beforeacall withi do = 3 has been
made.
4 i do may notbe?2, 3,4,5,0r 6

a) Immediately after acall withi do =0.

b) Before acall withi do = 1 has been made.

¢) Immediately after acall withi do equal to 5 or 6 has been
made.

Thefollowing isavalid sequence of i do’s:

ido Explanation

0 Data Set A: Perform a complete analysis. All data to be used in the
analysis must be presentdinSince cleanup of workspace is automatic
fori do = 0, no further calls are necessary.

1 Data Set B: Begin analysis. Ther ows observations it are used for
initialization.

2 Data Set B: Continue analysis. New observations placedie added
to (or deleted from, sdeVSLS_ROWS_DELETE) the analysis.
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ido Explanation

2 Data Set B: Continue analysis. n_r ows new observations placed in x
are added to (or deleted from, see | MSBLS_ROWS DELETE) the analysis.

3 Data Set B: Continue analysis. n_r ows new observations are added (or
deleted) and discriminant functions and other statistics are computed.

4 Data Set B: Classification of each of then_r ows observationsin the
current x matrix.

5 Data Set B: End analysis. Covariance matrices are computed and
workspaceis released. Thisanalysis could aso have been ended by
choosingi do =6

1 Data Set C: Begin analysis. Note that for this call to be valid the
previous call must have been made withi do equal to 5 or 6.

3 Data Set C: Continue anaysis.
4 Data Set C: Continue anaysis.
3 Data Set C: Continue anaysis.
6 |DatasetC: Endandlysis.

4. Because of the internal workspace allocation and saved variables,
functioni nmsl s_f _di scri mi nant _anal ysi s must complete the
analysis of adata set before beginning processing of the next data set.

Return Value

Thereturn valueisvoid.

Description

Functioni nmsl s_f _di scri mi nant _anal ysi s performs discriminant function
analysis using either linear or quadratic discrimination. The output includes a
measure of distance between the groups, atable summarizing the classification
results, a matrix containing the posterior probabilities of group membership for
each observation, and the within-sample means and covariance matrices. The
linear discriminant function coefficients are also computed.

By default (or if optional argument | MSLS_| DOis specified withi do = 0) all
observations are input during one call, a method of operation that has the
advantage of simplicity. Alternatively, one or more rows of observations can be
input during separate calls. This method does not require that al observations be
memory resident, a significant advantage with large data sets. Note, however, that
the algorithm requires two passes of the data. During the first pass the
discriminant functions are computed while in the second pass, the observations
are classified. Thus, with the second method of operation, the data will usually
need to be input twice.
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Because both methods result in the same operations being performed, the
algorithm is discussed as if only afew observations are input during each call.
The operations performed during each call depend upon the i do parameter.

Thei do = 1 step is the initialization step. “Private” internally allocated saved
variables corresponding teeans, cl ass_t abl e, andcovari ances are

initialized to zero, and other program parameters are set (copies of these private
variables are written to the corresponding output variables upon return from the
function call, assuminigdo values such that the results are to be returned).
Parametera_r ows, x, andnet hod can be changed from one call to the next
within the two sets {1, 2, 4, 5} and {3, 6} but nbétween these sets when

i do > 1. That is, do not specifyet hod = 1 in one call andet hod = 3 in

another call without first making a call witldo = 1.

After initialization has been performed in theéo = 1 step, the within-group
means are updated for all valid observations. i®bservations with invalid
group numbers are ignored, as are observation with missing valuddJThe
factorization of the covariance matrices are updated by adding (or deleting)
observations via Givens rotations.

Thei do = 2 step is used solely for adding or deleting observations from the
model as in the above paragraph.

Thei do = 3 step begins by adding all observations to the means and the
factorizations of the covariance matrices. It continues by computing some
statistics of interest: the linear discriminant functions, the prior probabilities (by
default, or ifl MSBLS_PROPORTI ONAL_PRI CRS is specified), the log of the
determinant of each of the covariance matrices, a test statistic for testing that all
of the within-group covariance matrices are equal, and a matrix of Mahalanobis
distances between the groups. The matrix of Mahalanobis distances is computed
via the pooled covariance matrix when linear discrimination is specified; the row
covariance matrix is used when the discrimination is quadratic.

Covariance matrices are defined as follows:Nefenote the sum of the
frequencies of the observations in growgmdM; denote the number of
observations in group Then, ifS; denotes the within-groupcovariance matrix,

M

1 o e o
§ :m;Wi fi (x5 =%)(x; =%)'

Wherew, is the weight of thgth observation in group f; is the frequency; is
thej-th observation column vector (in gro)pand X denotes the mean vector of
the observations in groupThe mean vectors are computed as

M; M.

1 I I
i:(—)z w; fi X where W = z w; f;
W & I | & )

Given the means and the covariance matrices, the linear discriminant function for
groupi is computed as:
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z =In(p)-05%' S;'% +x' ;'

whereIn (p;) isthe natural 1og of the prior probability for the i-th group, x isthe
observation to be classified, and S, denoted the pooled covariance matrix.

Let Sdenote either the pooled covariance matrix of one of the within-group
covariance matrices S. (Swill be the pooled covariance matrix in linear
discrimination, and S; otherwise.) The Mahalanobis distance between group i and
group j is computed as:

D =(%-%) SH(% -%,)

Finally, the asymptotic chi-squared test for the equality of covariance matricesis
computed as follows (Morrison 1976, p. 252):

y:c-lgni{m(|sp|)—m<|s|>}

where n; is the number of degrees of freedom in the i-th sample covariance
matrix, k isthe number of groups, and

k

-1 12p+3p1 1

6(p+1k 1) £ z

where p is the number of variables.

Wheni do = 4, the estimated posterior probability of each observation x
belonging to group is computed using the prior probabilities and the sample mean
vectors and estimated covariance matrices under a multivariate normal
assumption. Under quadratic discrimination, the within-group covariance
matrices are used to compute the estimated posterior probabilities. The estimated
posterior probability of an observation x belonging to groupii is

exp(~05D7(x))

Z exp(~05D7(x))

Gi(x) =

where
D2(x) = (x-%) S x-%)+Ins|-2In(p,) IMTH = 1or 2
| (x-%) S(x-%)-2In(p) IMTH =3

For the leaving-out-one method of classification (met hod equal to 4, 5 or 6), the
sample mean vector and sample covariance matrices in the formulafor

D?
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are adjusted so as to remove the observation x from their computation. For linear
discrimination (et hod equal to 1, 2, 4, or 6), the linear discriminant function
coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observation in x is classified into a group;
the result is tabulated in the matrix cl ass_t abl e and saved in the vector

cl ass_menber shi p. Matrix cl ass_t abl e isnot altered at this stage if

x[i ][x_gr oup] (by default, x_gr oup = 0; see optional argument

| MBLS_I NDI CES) contains a group number that is out of range. If the reclas-
sification method is specified, then all observations with no missing valuesin the
n_vari abl es classification variables are classified. When the |eaving-out-one
method is used, observations with invalid group numbers, weights, frequencies, or
classification variables are not classified. Regardless of the frequency, alis
added (or subtracted) from cl ass_t abl e for each row of x that is classified and
contains avalid group number.

When net hod > 3, adjustment is made to the posterior probabilities to remove
the effect of the observation in the classification rule. In this adjustment, each
observation is presumed to have aweight of x[i ][x_wei ght s] if

x_wei ght s > -1 (and aweight of 1.0 if x_wei ght s = -1), and a frequency of
1.0. See Lachenbruch (1975, p. 36) for the required adjustment.

Finaly, wheni do =5, the covariance matrices are computed from their LU
factorizations. Internally allocated and saved variables are cleaned up at this step
(i do equa to 5 or 6).

Example 1

The following example uses liner discrimination with equal prior probabilities on
Fisher's (1936) iris data. This example illustrates the execution of

i msl s_f _discrimnant_anal ysi s when one call is made (i.e. using the
default ofi do = 0).

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <insls. h>

mai n() {
i nt n_groups = 3;
i nt nrow, nvar, ncol, i, j, nrmss;

float *x, *xtenp;

float *prior_out, *neans, *cov, *coef;
float *table, *d2, *stats, *prob;

i nt *counts, *cm

static int pernf5] = {1, 2, 3, 4, 0};

/* Retrieve the Fisher Iris Data Set */

xtenmp = insls_f _data _sets(3, | MSLS N OBSERVATI ONS, &nrow,
| MVSLS_N_VARI ABLES, &ncol, 0);

nvar = ncol - 1;

/* Move the group colum to end of the the matrix */
x = insls_f_permute_matrix(nrow, ncol, xtenp, perm
| MBLS_PERMUTE_COLUWNS, 0);
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free(xtenp);

insls_f _discrimnant_analysis (nrow, nvar, X, n_groups,
| MSLS_METHOD, 3,
| M5SLS_CGROUP_COUNTS, &counts,
| MSLS CCOEF, &coef,
| MSLS_MEANS, &neans,
| MSLS_STATS, &stats,
| M5LS_CLASS MEMBERSHI P, &cm
| MSLS CLASS TABLE, &t abl e,
| MSLS PROB, &prob,
| MSLS_MAHALANCBI S, &d2,
| MSLS_COV, &cov,
| MSLS PRI OR_QUTPUT, &pri or_out,
| MSLS N ROA5 M SSI NG, &nrmi ss,
I M5LS_PRI OR_EQUAL,
| MSLS _METHOD, 3, 0);

nels i _wite matrix("Counts", 1, n_groups, counts, 0);

nels f _wite matrix("Coef", n_groups, nvar+1l, coef, 0);

nels f_wite matrix("Means", n_groups, nvar, neans, 0);

nsls f wite matrix("Stats", 12, 1, stats, 0);

nels i _wite matrix("Menbership”, 1, nrow, cm 0);

nels f wite matrix("Table", n_groups, n_groups, table, 0);
nels f_ wite matrix("Prob", nrow, n_groups, prob, 0);

nsls f_ wite matrix("D2", n_groups, n_groups, d2, 0);

nsls f _wite matrix("Covariance", nvar, nvar, cov, 0);

nels f wite matrix("Prior OUT", 1, n_groups, prior_out, 0);
printf("\nnrmss = 9%3d\n", nrmss);

free(neans);
free(stats);
free(counts);
free(coef);
free(cm;
free(table);
free(prob);

free(d2);
free(prior_out);
free(cov);
}
Output
Count s
1 2 3
50 50 50
Coef
1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17. 4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12. 4 3.7 12.8 21.1
Means
1 2 3 4
1 5. 006 3.428 1. 462 0. 246
2 5.936 2.770 4. 260 1.326
3 6. 588 2.974 5.552 2.026
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1
2 ...
3
4 ...
5 ...
6 .......
7T .
8
9
10
11
12
1 2 3 4
1 1 11
21 22 23 24
1 1 11
41 42 43 44
1 1 11
61 62 63 64
2 2 2 2
81 82 83 84
2 2 2 3
100 101 102
2 3 3
116 117 118
3 3 3
132 133 134
3 3 2
148 149 1
3 3
1
2
3
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

147
-10
50
50
50
150
5 6 7 8
1 1 1 1
25 26 27 28
1 1 1 1
45 46 47 48
1 1 1 1
65 66 67 68
2 2 2 2
85 86 87 88
2 2 2 2
103 104 105
3 3 3
119 120 121
3 3 3
135 136 137
3 3 3
50
3
Tabl e
1
50
0
0
Pr ob
1
. 000 0
. 000 0
. 000 0
. 000 0.
. 000 0
. 000 0
. 000 0.
. 000 0
. 000 0

Menber shi p
9 10 11 12 13 14 15 16
11 1 1 1 1 1 1
29 30 31 32 33 34 35 36
11 1 1 1 1 1 1
49 50 51 52 53 54 55 56
11 2 2 2 2 2 2
69 70 71 72 73 74 75 76
2 2 3 2 2 2 2 2
89 90 91 92 93 94 95 96
2 2 2 2 2 2 2 2
106 107 108 109 110 111
3 3 3 3 3 3
122 123 124 125 126 127
3 3 3 3 3 3
138 139 140 141 142 143
3 3 3 3 3 3
2 3
0 0
8 2
1 9
2 3
. 000 0. 000
. 000 0. 000
. 000 0. 000
000 0. 000
. 000 0. 000
. 000 0. 000
000 0. 000
. 000 0. 000
. 000 0. 000

17 18 19 20
1 1 1 1

37 38 39 40
1 1 1 1

57 58 59 60
2 2 2 2

77 78 79 80
2 2 2 2

97 98 99
2 2 2

112 113 114 115

3 3 3

3

128 129 130 131

3 3 3

3

144 145 146 147

3 3 3

3

Chapter 9: Multivariate Analysis

discriminant_analysis « 447



10 1. 000
11 1. 000
12 1. 000
13 1. 000
14 1. 000
15 1. 000
16 1. 000
17 1. 000
18 1. 000
19 1. 000
20 1. 000
21 1. 000
22 1. 000
23 1. 000
24 1. 000
25 1. 000
26 1. 000
27 1. 000
28 1. 000
29 1. 000
30 1. 000
31 1. 000
32 1. 000
33 1. 000
34 1. 000
35 1. 000
36 1. 000
37 1. 000
38 1. 000
39 1. 000
40 1. 000
41 1. 000
42 1. 000
43 1. 000
44 1. 000
45 1. 000
46 1. 000
47 1. 000
48 1. 000
49 1. 000
50 1. 000
51 0. 000
52 0. 000
53 0. 000
54 0. 000
55 0. 000
56 0. 000
57 0. 000
58 0. 000
59 0. 000
60 0. 000
61 0. 000
62 0. 000
63 0. 000
64 0. 000
65 0. 000
66 0. 000
67 0. 000
68 0. 000

PORRPRORORRPRFPPOOOROOROO0OO000000000000000000000000000000000000000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 999
. 996

. 996
. 999

. 000
. 000

. 000
. 999

. 994
. 000

. 981
. 000

0000000000000 000000000000000000000000000000000000000000000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 000
. 000

. 001
. 004

. 004
. 001

. 000
. 000

. 000
. 001

. 006
. 000

. 019
. 000
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69 0. 000 0. 960 0. 040
70 0. 000 1. 000 0. 000
71 0. 000 0. 253 0. 747
72 0. 000 1. 000 0. 000
73 0. 000 0. 816 0.184
74 0. 000 1. 000 0. 000
75 0. 000 1. 000 0. 000
76 0. 000 1. 000 0. 000
77 0. 000 0.998 0. 002
78 0. 000 0. 689 0.311
79 0. 000 0.993 0. 007
80 0. 000 1. 000 0. 000
81 0. 000 1. 000 0. 000
82 0. 000 1. 000 0. 000
83 0. 000 1. 000 0. 000
84 0. 000 0. 143 0. 857
85 0. 000 0.964 0.036
86 0. 000 0.994 0. 006
87 0. 000 0.998 0. 002
88 0. 000 0.999 0. 001
89 0. 000 1. 000 0. 000
90 0. 000 1. 000 0. 000
91 0. 000 0.999 0. 001
92 0. 000 0.998 0. 002
93 0. 000 1. 000 0. 000
94 0. 000 1. 000 0. 000
95 0. 000 1. 000 0. 000
96 0. 000 1. 000 0. 000
97 0. 000 1. 000 0. 000
98 0. 000 1. 000 0. 000
99 0. 000 1. 000 0. 000
100 0. 000 1. 000 0. 000
101 0. 000 0. 000 1. 000
102 0. 000 0. 001 0.999
103 0. 000 0. 000 1. 000
104 0. 000 0. 001 0.999
105 0. 000 0. 000 1. 000
106 0. 000 0. 000 1. 000
107 0. 000 0. 049 0.951
108 0. 000 0. 000 1. 000
109 0. 000 0. 000 1. 000
110 0. 000 0. 000 1. 000
111 0. 000 0.013 0. 987
112 0. 000 0. 002 0.998
113 0. 000 0. 000 1. 000
114 0. 000 0. 000 1. 000
115 0. 000 0. 000 1. 000
116 0. 000 0. 000 1. 000
117 0. 000 0. 006 0.994
118 0. 000 0. 000 1. 000
119 0. 000 0. 000 1. 000
120 0. 000 0.221 0.779
121 0. 000 0. 000 1. 000
122 0. 000 0. 001 0.999
123 0. 000 0. 000 1. 000
124 0. 000 0. 097 0.903
125 0. 000 0. 000 1. 000
126 0. 000 0. 003 0. 997
127 0. 000 0.188 0.812
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128 0. 000 0.134 0. 866
129 0. 000 0. 000 1. 000
130 0. 000 0. 104 0. 896
131 0. 000 0. 000 1. 000
132 0. 000 0. 001 0. 999
133 0. 000 0. 000 1. 000
134 0. 000 0.729 0.271
135 0. 000 0. 066 0.934
136 0. 000 0. 000 1. 000
137 0. 000 0. 000 1. 000
138 0. 000 0. 006 0. 994
139 0. 000 0.193 0. 807
140 0. 000 0. 001 0. 999
141 0. 000 0. 000 1. 000
142 0. 000 0. 000 1. 000
143 0. 000 0. 001 0. 999
144 0. 000 0. 000 1. 000
145 0. 000 0. 000 1. 000
146 0. 000 0. 000 1. 000
147 0. 000 0. 006 0. 994
148 0. 000 0. 003 0. 997
149 0. 000 0. 000 1. 000
150 0. 000 0.018 0.982
D2

1 2 3
1 0.0 89.9 179. 4
2 89.9 0.0 17.2
3 179. 4 17.2 0.0

Covari ance

1 2 3 4
1 0. 2650 0. 0927 0. 1675 0. 0384
2 0. 0927 0. 1154 0. 0552 0. 0327
3 0. 1675 0. 0552 0. 1852 0. 0427
4 0. 0384 0. 0327 0. 0427 0. 0419

Prior QUT
1 2 3
0. 3333 0. 3333 0. 3333
nrmss = 0
Example 2

Continuing with Fisher’s iris data, the example below computes the quadratic
discriminant functions using valuesldfO greater than 0. In the first loop, all
observations are added to the functions, one at a time. In the second loop, each of
the observations is classified, one by one, using the leaving-out-one method.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <insls. h>

mai n() {
i nt n_groups = 3
i nt nrow, nvar, ncol, i, j, nrmss

float *x, *xtenp;
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float *prior_out, *neans, *cov, *coef;
float *table, *d2, *stats, *prob;

i nt *counts, *cm

static int pernf5] = {1, 2, 3, 4, 0};

/* Retrieve the Fisher Iris Data Set */

xtenmp = insls_f _data _sets(3, | MSLS N OBSERVATI ONS, &nrow,
| MVSLS_N_VARI ABLES, &ncol, 0);

nvar = ncol - 1;

/* Move the group colum to end of the the matrix */

x = insls_f_pernmute_matrix(nrow, ncol, xtenp, perm
| MSBLS_PERMUTE_COLUWNS, 0);

free(xtenp);

prior_out = (float *) malloc(n_groups*sizeof(float));

counts = (int *) mal | oc(n_groups*si zeof (int));

means = (float *) malloc(n_groups*nvar*si zeof (float));

cov = (float *) malloc(nvar*nvar*1*si zeof (float));

coef = (float *) malloc(n_groups*(nvar+1)*sizeof (float));
tabl e = (float *) malloc(n_groups*n_groups*si zeof (float));
d2 = (float *) malloc(n_groups*n_groups*si zeof (float));
stats = (float *) malloc((4+2*(n_groups+1))*sizeof(float));
cm = (int *) mal | oc(nrow*si zeof (int));

pr ob = (float *) malloc(nrown_groups*si zeof (float));

/*Initialize Analysis*/

insls_f _discrimnant_analysis (0, nvar, x, n_groups,
IMSLS I DO, 1,
| MSLS_METHOD, 2, 0);

/*Add In Each Cbservation*/
for (i=0;i<nrowi=i+1) {
i msl s_f _discrimnant_analysis (1, nvar, (x+i*ncol), n_groups,
IMBLS_ IDO, 2, 0);

}

/ *Renove observation O fromthe analysis */

inmsls_f _discrimnant_analysis (1, nvar, (x+0), n_groups,
INBLS ROWS DELETE,
IMSLS IDO, 2, 0);

/*Add observation 0 back into the analysis */
insls_f _discrimnant_analysis (1, nvar, (x+0), n_groups,
IMBLS_IDO, 2, 0);

/*Conpute statistics*/

inmsls_f _discrimnant_analysis (0, nvar, X, n_groups,
I M5SLS PRI OR_ PROPORT! ONAL,
I MSLS PRI OR_ OJTPUT USER, pri or_out,
I VS

imsls_f_wite_matrix("Prior OQUT", 1, n_groups, prior_out, 0);

/*Cl assify One observation at a tinme, using proportional priors*/
for (i=0;i<nrowi=i+l) {
i sl s_f _discrimnant_analysis (1, nvar, (x+i*ncol), n_groups,
I MSLS | DO, 4,
| NBLS CLASS MEMBERSHI P_USER, (cmti),
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}

/*Conput e covariance matrices and rel ease internal

| MSLS PROB_USER, (prob+i*n_groups), 0);

wor kspace*/

insls_f_discrimnant_analysis (0, nvar, X, n_groups,
I MSLS I DO, 5,
I MSLS _COV_USER, cov,
I MSLS_GROUP_COUNTS_USER, counts,
| MSLS_COEF_USER, coef,
| MSLS _MEANS USER, neans,
| MSLS_STATS USER, stats,
| MSLS_CLASS TABLE_USER, tabl e,
| MSLS_MAHALANOBI S_USER, d2,
I MSLS N ROA5 M SSING &nrmiss, 0);
insls_ i _wite matrix("Counts", 1, n_groups, counts, 0);
insls f wite matrix("Coef", n_groups, nvar+1l, coef, 0);
insls f wite_matrix("Means", n_groups, nvar, neans, 0);
inmsls f wite matrix("Stats", 12, 1, stats, 0);
inmsls_ i _wite_matrix("Menbership", 1, nrow, cm 0);
inmsls f wite _matrix("Table", n_groups, n_groups, table, 0);
inmsls f wite _matrix("Prob", nrow, n_groups, prob, 0);
inmsls f wite matrix("D2", n_groups, n_groups, d2, 0);
insls f wite_matrix("Covariance", nvar, nvar, cov, 0);
printf("\nnrmss = 9%3d\n", nrmss);
free(neans);
free(stats);
free(counts);
free(coef);
free(cm;
free(table);
free(prob);
free(d2);
free(prior_out);
free(cov);
}
Output
Prior QUT
1 2 3
0. 3333 0. 3333 0. 3333
Count s
1 2 3
50 50 50
Coef
1 2 3 4 5
1 -86.3 23.5 23.6 -16. 4 -17. 4
2 -72.9 15.7 7.1 5.2 6.4
3 -104. 4 12.4 3.7 12.8 21.1
Means
1 2 3 4
1 5. 006 3.428 1. 462 0. 246
2 5. 936 2.770 4. 260 1.326
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3 6. 58
Stats
1 147
2 143.
3 20.
4 0.
5 -13.
6 -10.
7 - 8.
8 -10.
9 50.
10 50.
11 50.
12 150
1 2 3 4
1 1 1 1
21 22 23 24
1 1 1 1
41 42 43 44
1 1 1 1
61 62 63 64
2 2 2 2
81 82 83 84
2 2 2 3
100 101 102
2 3 3
116 117 118
3 3 3
132 133 134
3 3 2
148 149 150
3 3 3
1 5
2
3
1 1
2 1
3 1
4 1
5 1
6 1
7 1

8 2.974 5.552 2.026
.0
8
0
0
1
9
9
0
0
0
0
.0
Menber shi p
5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
111 1 11 1 1 1 1 1 1 1 1 11
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
111 1 11 1 1 1 1 1 1 1 1 11
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1111 11 2 2 2 2 2 2 2 2 2 2
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
103 104 105 106 107 108 109 110 111 112 113 114 115
3 3 3 3 3 3 3 3 3 3 3 3 3
119 120 121 122 123 124 125 126 127 128 129 130 131
3 3 3 3 3 3 3 3 3 3 3 3 3
135 136 137 138 139 140 141 142 143 144 145 146 147
3 3 3 3 3 3 3 3 3 3 3 3 3
Tabl e
1 2 3
0 0 0
0 8 2
0 1 9
Pr ob
1 2 3
. 000 0. 000 0. 000
. 000 0. 000 0. 000
. 000 0. 000 0. 000
. 000 0. 000 0. 000
. 000 0. 000 0. 000
. 000 0. 000 0. 000
. 000 0. 000 0. 000

Chapter 9: Multivariate Analysis

discriminant_analysis « 453



8 1. 000
9 1. 000
10 1. 000
11 1. 000
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13 1. 000
14 1. 000
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67 0. 000 0.973 0. 027
68 0. 000 1. 000 0. 000
69 0. 000 0.813 0. 187
70 0. 000 1. 000 0. 000
71 0. 000 0. 336 0. 664
72 0. 000 1. 000 0. 000
73 0. 000 0. 699 0. 301
74 0. 000 0.972 0.028
75 0. 000 1. 000 0. 000
76 0. 000 1. 000 0. 000
77 0. 000 0.998 0. 002
78 0. 000 0. 861 0.139
79 0. 000 0.992 0. 008
80 0. 000 1. 000 0. 000
81 0. 000 1. 000 0. 000
82 0. 000 1. 000 0. 000
83 0. 000 1. 000 0. 000
84 0. 000 0.154 0. 846
85 0. 000 0.943 0. 057
86 0. 000 0.996 0. 004
87 0. 000 0.999 0. 001
88 0. 000 0.999 0. 001
89 0. 000 1. 000 0. 000
90 0. 000 0.999 0. 001
91 0. 000 0.981 0.019
92 0. 000 0. 997 0.003
93 0. 000 1. 000 0. 000
94 0. 000 1. 000 0. 000
95 0. 000 0.999 0. 001
96 0. 000 1. 000 0. 000
97 0. 000 1. 000 0. 000
98 0. 000 1. 000 0. 000
99 0. 000 1. 000 0. 000
100 0. 000 1. 000 0. 000
101 0. 000 0. 000 1. 000
102 0. 000 0. 000 1. 000
103 0. 000 0. 000 1. 000
104 0. 000 0. 006 0.994
105 0. 000 0. 000 1. 000
106 0. 000 0. 000 1. 000
107 0. 000 0. 004 0.996
108 0. 000 0. 000 1. 000
109 0. 000 0. 000 1. 000
110 0. 000 0. 000 1. 000
111 0. 000 0. 006 0.994
112 0. 000 0. 001 0.999
113 0. 000 0. 000 1. 000
114 0. 000 0. 000 1. 000
115 0. 000 0. 000 1. 000
116 0. 000 0. 000 1. 000
117 0. 000 0.033 0. 967
118 0. 000 0. 000 1. 000
119 0. 000 0. 000 1. 000
120 0. 000 0. 041 0. 959
121 0. 000 0. 000 1. 000
122 0. 000 0. 000 1. 000
123 0. 000 0. 000 1. 000
124 0. 000 0.028 0.972
125 0. 000 0. 001 0.999
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Warning Errors
| MSLS_BAD OBS 1

| MVSLS_BAD_OBS_2

| MVSLS_BAD OBS_3

erPoRRPEPRPRPERPRPPRPRPOORPRPORPOROROOO
©
o1
o

706.

[EnY
~
COrw

0.0164
0. 0117
0. 0302
0. 0061

4
0. 0103
0. 0093
0. 0061
0.0111

In call #, row # of the data matrix, “x”, has group
number = #. The group number must be an
integer between 1.0 and “n_groups” = #,
inclusively. This observation will be ignored.

The leaving out one method is specified but this
observation does not have a valid group number
(Its group number is #.). This observation (row
#) is ignored.

The leaving out one method is specified but this
observation does not have a valid weight or it
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| MBLS_COV_SI NGULAR 3

Fatal Errors
| MSLS_BAD | DO 1

| MSLS_BAD_| DO 2

| MBLS_COV_SI NGULAR 1

| MVBLS_COV_SI NGULAR 2

| MBLS_COV_SI NGULAR 4

does not have avalid frequency. This
observation (row #) isignored.

The group # covariance matrix is singular.
“stats[1]” cannot be computed. “stats[1]” and
“stats[3]” are set to the missing value code
(NaN).

“ido” = #. Initial allocations must be performed
by making a call to discriminant_analysis with
“ido” = 1.

“ido” = #. A new analysis may not begin until the
previous analysis is terminated with ‘ido” equal
to 5 or 6.

The variance-covariance matrix for population
number # is singular. The computations cannot
continue.

The pooled variance-covariance matrix is
singular. The computations cannot continue.

A variance-covariance matrix is singular. The
index of the first zero element is equal to #.
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Chapter 10: Survival Analysis

Routines
Analyzes survival data using a generalized
linear MOdel.......cocuiiiiee e survival_gim 459
Estimates using various parametric modes ....... survival_estimates 483

Usage Notes

The routines described in this chapter have primary application in the areas of
reliability and life testing, but they may find application in any situation in which
timeisavariable of interest. Kalbfleisch and Prentice (1980), Elandt-Johnson and
Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and

Chiang (1968) are references for discussing the models and methods used here.
Routinei nsl s_f _survi val _gl m(page 459) fits any of severa generalized
linear models, andi nsl s_f _survival _esti nat es (page 483) computes
estimates of survival probabilities based on the same models.

survival_glm

Analyzes categorical data using logistic, Probit, Poisson, and other generalized
linear models.

Synopsis
#include <i sl . h>

int *i msl s_f_survival _gl m(int n_observations, int n_cl ass,
int n_continuous, int nodel, float x[], ..., 0)

The type double functionisi nsl s_d_survival _glm

Required Arguments

int n_observations (Input)
Number of observations.
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int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data.

model PDF of the Response Variable

o

Exponential

Linear hazard
Log-normal

Normal

Log-logistic

Logistic

Log least extreme value
Least extreme value
Log extreme value

© 00 N O 0o~ WDN PP

Extreme value
Weibull

=
o

See the “Description” section for more information about these models.

float x[] (Input)
Array of sizen_observati ons (n_cl ass +n_conti nuous) +m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that therfirst ass columns

contain data for the class variables, the mextont i nuous columns
contain data for the continuous variables, and the next column contains
the response variable. The final (and optionah) 1 columns contain

the optional parameters.

Return Value

An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <i nsls. h>

int *i msl s_f_survival _gl m(int n_observations, int n_cl ass,
int n_continuous, int nodel , float x[],
I MSLS_X_COL_CENSORNG, int i cen, int ilt, intirt,
IMSLS X COL_DIM int x_col _dim
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| MBLS_X_COL_FREQUENCI ES, int i frq,

| MBLS_X_COL_FI XED PARANETER, int i fi x,

I MSLS X COL_VARI ABLES, int iclass[], int i continuous[],
int iy

| MSLS_EPS, float eps,

| MSLS_MAX_| TERATI ONS, int max_iterations,

| MS5LS_| NTERCEPT,

| MSLS_NO_| NTERCEPT,

I MSLS_| NFI NI TY_CHECK, int nmax
I MBLS_NO I NFI NI TY_CHECK

| MSLS_EFFECTS, int n_effects, int n_var_effects[],
int i ndi ces_effects,

| MSLS_ | NI TI AL_EST_| NTERNAL,

I MSLS I NI TIAL_EST | NPUT, int n_coef i nput,
float estimates[],

| MSLS MAX_CLASS, int max_cl ass,

| MSLS _CLASS | NFOQ, int **n_cl ass_val ues,
float **cl ass_val ues,

| MSLS _CLASS | NFO USER, int n_cl ass_val ues[],
float cl ass_val ues[],

| MSLS_CCEF_STAT, float **coef _stati stics,

| MSLS COEF_STAT_USER, float coef statistics[],

I MSLS_CRI TERI ON, float *criterion,

| MSLS _COv, float **cov,

| MBLS_COV_USER, float cov[],

| MSLS MEANS, float **neans,

| MSLS_MEANS USER, float neans[],

| MSLS CASE ANALYSI S, float **case_anal ysi s,

| MSLS _CASE ANALYSI S USER, float case_anal ysis[],

| MSLS LAST STEP, float **| ast _st ep,

| MBLS_LAST_STEP_USER, float | ast_step[],

| MSLS OBS_STATUS, int **obs_st at us,

| MSLS_OBS_STATUS_USER, int obs_status[],

I MSLS | TERATIONS, int *n, float **iterati ons,

I MSLS | TERATI ONS_USER, int *n, float iterations[],

| MBLS_SURVI VAL_| NFO, Imsls f_survival **survival _info

I MSLS_N_ROWS_M SSI NG, int *n_r ows_mi ssi ng,

0)

Optional Arguments

I MBLS_X COL_DI'M int x_col _di m (Input)
Column dimension of input array x.
Default: x_col _di m=n_cl ass +n_conti nuous +1

| MBLS_X_COL_CENSORI NG, int icen, intilt, intirt (Input)
Parameter i cen isthe column inx containing the censoring code for
each observation.
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x [i][icen]  Censoring type

0 Exact failureat x [i] [i rt]

1 Right Censored. The response is greater than
x[i][irt].

2 Left Censored. The responseisless than or

equal tox [i][i rt].

3 Interval Censored. The response is greater
than x [i] [i rt], but lessthan or equal to

x [i]Ti 1t].

Parameter i | t isthe column number of x containing the upper endpoint
of the failure interval for interval- and left-censored observations. If
there are no left-censored or interval-censored observations, i | t should
be set to —1.

Parameter i rt isthe column number of x containing the lower endpoint
of thefailureinterval for interval- and right-censored observations. If
there are no | eft-censored or interval-censored observations, i rt should
be set to -1.

Exact failure times are specified in columni y of x. By default, i y is
columnn_cl ass +n_cont i nuous of x. The default can be changed if
keyword | MBLS_X_COL_VARI ABLES is specified.

Notethat itisalowabletosetiy =irt, sincearow withaniy value
will never haveani rt value, and vice versa. Thisuseisillustrated in
Example 2.

| MBLS_FREQUENCI ES, int i frq (Input)

Column number of x containing the frequency of response for each
observation.

| MBLS_FI XED_PARAVETER, int i fix (Input)

Column number inx containing afixed parameter for each observation

that is added to the linear response prior to computing the model

parameter. The “fixed” parameter allows one to test hypothesis about the
parameters via the log-likelihoods.

I MSBLS_X_COL_VARI ABLES int iclass[], int i continuous[], int iy

(Input)

This keyword allows specification of the variables to be used in the
analysis, and overrides the default ordering of variables described for
input argument. Columns are numbered from Oxtocol _di m— 1. To
avoid errors, always specify the keywondsSLS X_COL_DI Mwhen

using this keyword.

Argumenti cl ass is an index vector of length cl ass containing the
column numbers of that correspond to classification variables.
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Argumenti cont i nuous isan index vector of lengthn_cont i nuous
containing the column numbers of x that correspond to continuous
variables.

Argument i y corresponds to the column of x which contains the
dependent variable.

I MSLS EPS, float eps (Input)

Argument eps is the convergence criterion. Convergence is assumed
when the maximum relative change in any coefficient estimate isless
than eps from one iteration to the next or when the relative changein
the log-likelihood, criterion, from one iteration to the next is less than
eps/100.0.

Default: eps = 0.001

I MSBLS MAX | TERATI ONS, int max_iterations (Input)

Maximum number of iterations. Usenax_i t er at i ons = 0 to compute
the Hessian, stored in cov, and the Newton step, stored in gr, at the
initial estimates (The initial estimates must be input. Use keyword

I MSLS_| NI TI AL_EST_I NPUT).

Default: max_iterati ons =30

| MSLS_| NTERCEPT, or
| MSLS_NO_I NTERCEPT,

By default, or if I MSLS_| NTERCEPT is specified, theintercept is
automatically included in the model. I1f | MSLS_NO | NTERCEPT is
specified, thereis no intercept in the model (unless otherwise provided
for by the user).

I MSLS_|I NFI NI TY_CHECK, int | p_nmax (Input)

Remove aright- or |eft-censored observation from the log-likelihood
whenever the probability of the observation exceeds 0.995. At
convergence, use linear programming to check that all removed
observations actually have infinite linear response

7

obs_st at us [i] isset to 2 if the linear response isinfinite (See optional
argument | MSBLS_OBS_STATUS). If not all removed observations have
infinite linear response, re-compute the estimates based upon the
observations with finite

23

Parameter nmax is the maximum number of observations that can be
handled in the linear programming. Setting nnmax =n_obser vati ons is
always sufficient.

Default: No infinity checking; | p_max =0
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| MSLS_NO | NFI NI TY_CHECK
Iterates without checking for infinite estimates. This option isthe
default.

| MSLS EFFECTS, int n_effects, int n_var_effects[],
int i ndi ces_effects[] (Input)
Use this keyword to specify the effects in the model.

Variablen_ef f ect s isthe number of effects (sources of variation) in
themodel. Variablen_var _ef fects isanarray of lengthn_effects
containing the number of variables associated with each effect in the
model.

Argumenti ndi ces_ef f ect s isan index array of length
n_var_effects[0] +n_var_effects[1] +... +
n_var_effects[n_effects —1]. Thefirstn_var_effects [0]
elements give the column numbers of x for each variable in the first
effect. Thenext n_var _ef f ect s[1] elements give the column numbers
for each variable in the second effect. .... Thelast

n_var_effects [n_effects — 1] elements give the column numbers
for each variable in the |ast effect.

| MBLS_ | NI TI AL_EST_| NTERNAL, or
I MSLS I NI TIAL_EST | NPUT, int n_coef i nput, float esti mates[]

(Input)

By default, or if 1 MSLS_|I NI T_I NTERNAL is specified, then unweighted
linear regression is used to obtain initial estimates. If

I MSLS | NI TI AL_EST | NPUT is specified, thenthen_coef _i nput
elements of estimates contain initial estimates of the parameters (which
requires that the user know the number of coefficientsin the model prior
tothecall to survi val _gl m). See optional argument

| MSBLS CCOEF_STAT for a description of the “nuisance” parameter,
which is the first element of array estimates.

I MBLS MAX CLASS, int max_cl ass (Input)
An upper bound on the sum of the number of distinct values taken on by
each classification variable. Internal workspace usage can be
significantly reduced with an appropriate choiceaf cl ass.
Default:max_cl ass =n_observati ons xn_cl ass

I MSLS CLASS | NFO, int **n_cl ass_val ues, float **cl ass_val ues
(Output)
Argumentn_cl ass_val ues is the address of a pointer to the internally
allocated array of length_cl ass containing the number of values
taken by each classification variable; thh classification variable has
n_cl ass_val ues [i] distinct values. Argumentl ass_val ues is the
address of a pointer to the internally allocated array of length
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n_cl ass-1

Z n_cl ass_val ues[i]
1=

containing the distinct values of the classification variables in ascending
order. Thefirst n_cl ass_val ues [0] dlementsof cl ass_val ues
contain the values for the first classification variables, the next

n_cl ass_val ues [1] elements contain the values for the second
classification variable, etc.

I MSLS CLASS | NFO USER, int n_cl ass_val ues[],
float cl ass_val ues[] (Output)
Storage for arraysn_cl ass_val ues and cl ass_val ues is provided
by the user. See | MBLS_CLASS_| NFO.

| MSBLS CCEF_STAT, float **coef statistics (Output)
Address of a pointer to an internally allocated array of size
n_coef fi ci ent's x 4 containing the parameter estimates and
associated statistics:

Column Statistic

0 Coefficient estimate.

1 Estimated standard deviation of the estimated
coefficient.

2 Asymptotic normal score for testing that the
coefficient is zero.

3 The p-value associated with the normal scorein
Column 2.

When present in the model, the first coefficientincoef _stati stics is

the estimate of the “nuisance” parameter, and the remaining coefficients
are estimates of the parameters associated with the “linear” model,
beginning with the intercept, if present. Nuisance parameters are as

follows:
model
0 No nuisance parameter
1 Coefficient of the quadratic term in tin,

2-9 Scale parameteg,

10 Shape parameted,

| MBLS_CCEF_STAT_USER, float coef _statistics[] (Output)
Storage for arrayoef _st ati sti cs is provided by the user. See
| MBLS_COEF_STAT.
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I MSLS CRI TERI ON, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the
log-likelihood.

I MSLS _COv, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients xn_coefficients containing the estimated
asymptotic covariance matrix of the coefficients. For
max_i t erations =0, thisisthe Hessian computed at the initial
parameter estimates.

I MSBLS COV_USER, float cov[] (Quput)
Storage for array cov is provided by the user. See | M5LS_COV.

I MSBLS_MEANS, float **nmeans (Output)
Address of a pointer to the internally allocated array containing the
means of the design variables. The array is of length
n_coefficients —mifl MSLS_NO | NTERCEPT is specified, and of
lengthn_coef fici ents — m- 1 otherwise. Here, mis equal to 0 of
model =0, and equal to 1 otherwise.

| MBLS MEANS USER, float neans[] (Output)
Storage for array means is provided by the user. See | MSLS_MEANS.

I MBLS CASE_ANALYSI S, float **case_statistics (Output)
Address of a pointer to the internally allocated array of size
n_observati ons x 5 containing the case analysis below:

Column | Statistic

0 Estimated predicted value.

Estimated influence or leverage.

Estimated residual.

Estimated cumulative hazard.

Non-censored observations: Estimated density at the
observation failure time and covariate values.

AW N R

Censored observations: The corresponding estimated
probability.

If max_iterations =0,case_statistics isanarray of length
n_observat i ons containing the estimated probability (for censored
observations) or the estimated density (for non-censored observations)

| MBLS CASE_ANALYSI S USER, float case_statistics[] (Output)
Storage for array case_st ati sti cs isprovided by the user. See
| MBLS_CASE_ANALYSI S.

| MSBLS LAST STEP, float **| ast _step (Output)
Address of a pointer to the internally allocated array of length
n_coef fi ci ent s containing the last parameter updates (excluding step
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halvings). Parameter | ast _st ep is computed as the inverse of the
matrix of second partial derivatives times the vector of first partial
derivatives of thelog-likelihood. When max_i t er ati ons =0, the
derivatives are computed at theinitial estimates.

I MBLS LAST STEP_USER, float | ast_step[] (Output)
Storage for array | ast _st ep isprovided by the user. See
| MBLS_LAST_STEP.

I MBLS _OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length
n_obser vat i ons indicating which observations are included in the
extended likelihood.

obs_status [i] Status of Observation

0 Observationi isin the likelihood

1 Observation i cannot be in the likelihood because it
contains at least one missing valuein x.

2 Observation i is not in the likelihood. Its estimated
parameter isinfinite.

| MSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_st at us isprovided by the user. See
| MBLS_OBS_STATUS.

| MBLS_| TERATIONS, int *n, float **iterations (Output)
Address of a pointer to the internally allocated array of size, n x 5
containing information about each iteration of the analysis, wheren is
equal to the number of iterations.

column | statistic
0 Method of iteration
Q-N Step=0
N-R Step=1
1 Iteration number
2 Step size
3 Maximum scaled coefficient update
4 Log-likelihood

I MSLS | TERATI ONS_USER, int *n, float iterations[] (OQutput)
Storage for array iterationsis provided by the user. See
| MSLS_| TERATI ONS.

I MSLS_SURVI VAL_I NFO, Imsls f survival **survival _i nfo (Output)
Address of the pointer to an internally allocated structure of type
Imdls f survival containing information about the survival analysis. This
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structure is required input for function
inmsls_f _survival _estinmates.

I MSBLS N ROAS_M SSI NG, int *n_rows_ni ssing (Output)
Number of rows of data that contain missing valuesin one or more of the
following vectors or columnsof x:iy,icen,ilt,irt,ifrq,ifix,
i class,icont,orindices_effects.

Comments

1. Dummy variables are generated for the classification variables as
follows: An ascending list of all distinct values of each classification
variableis obtained and stored in cl ass_val ues. Dummy variables are
then generated for each but the last of these distinct values. Each dummy
variableis zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable
isone. See keyword | MSLS_LEAVE_OUT_LAST for optiona argument
I MSBLS DUMW ininsl s_f _regressors_for_gl m(Chapter 2).

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Description

Functioni nsl s_f _survi val _gl mcomputes the maximum likelihood estimates

of parameters and associated statistics in generalized linear models commonly
found in survival (reliability) analysis. Although the terminology used will be

from the survival area, the methods discussed have applications in many areas of
data analysis, including reliability analysis and event history analysis. These
methods can be used anywhere a random variable from one of the discussed
distributions is parameterized via one of the models available in

imsl s_f_survival _gl m Thus, while it is not advisable to do so, standard
multiple linear regression can be performed by routind s_f _sur -

vi val _gl m Estimates for any of 10 standard models can be computed. Exact,
left-censored, right-censored, or interval-censored observations are allowed (note
that left censoring is the same as interval censoring with the left endpoint equal to
the left endpoint of the support of the distribution).

Letn = xTB be the linear parameterization, wheris a design vector obtained
byimsls_f_survival gl mvia functioni msl s_f_regressors_for_glm

from a row ofx, andp is a vector of parameters associated with the linear model.
Let T denote the random response variable $tjddenote the probability that

T >t. All models considered also allow a fixed parameieor observation
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(input in columni f i x of x). Use of this parameter is discussed below. There al'so
may be nuisance parameters 8 > 0, or ¢ > 0 to be estimated (along with B) in the
various models. Let @ denote the cumulative normal distribution. The survival
modelsavailableini msl s_f _survival _gl mare

model  Name S (1)
0 Exponential exp [-t exp (w; + n)]
1 Linear hazard ot2
epot +7] exp(w; + n)}
2 Log-normal - (D[ In(t)—n-w; J
o
3 Normal -n-
1_¢(t n W.j
o
4 Log-logistic -n-
g-log {1+exp[ln(t) n WI]}_l
o
5 Logistic -
g {1+exp(t n W|)}—l
6 Log least extreme In(t)—n-w;
value exp{—exp[ -1 I}
7 L east extreme value -nN-w
exp{_exp(t nc W.)}
8 Log extreme value In(t)—-n-w,
1—exp{—exp[ n(t)=n-w
9 Extreme value -n-w
1_exp{_exp(tn_wu)}
o
10 Weibull

¢ 3]
eXp{{exp(wi ¥ n)} J

Note that the log-least-extreme-value model is areparameterization of the
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 requirethat T > 0, while
all of theremaining models alow any valuefor T, —oo < T < co.

Each row vector in the data matrix can represent a single observation; or, through
the use of vector frequencies, each row can represent several observations. Also
note that classification variables and their products are easily incorporated into
the models via the usual regression-type specifications.
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The constant parameter W; isinput in x and may be used for a number of
purposes. For example, if the parameter in an exponential model is known to
depend upon the size of the area tested, volume of aradioactive mass, or
population density, etc., then a multiplicative factor of the exponential parameter
A = exp (xB) may be known apriori. Thisfactor can beinput in W, (W; isthelog
of the factor).

An aternate use of W; is asfollows: It may be that A = exp (X, B; + %[3,), where 8
, iIsknown. Letting W, = x,[3,, estimates for 3, can be obtained via

i msl s_f_survival _gl mwith the known fixed values for 3,. Standard methods
can then be used to test hypothesis about 3, via computed log-likelihoods.

Computational Details
The computations proceed as follows:
Theinput parameters are checked for consistency and validity.

« Estimates of the means of the “independent” or design variables are
computed. Means are computed as

= E fix;
X =
2
If initial estimates are not provided by the user (see optional argument
I MSLS | NI TI AL_EST | NPUT), the initial estimates are calculated as follows:
. Models 2-10
A. Kaplan-Meier estimates of the survival probability,
S()
at the upper limit of each failure interval are obtained. (Because upper
limits are used, interval- and left-censored data are assumed to be exact
failures at the upper endpoint of the failure interval.) The Kaplan-Meier
estimate is computed under the assumption that all failure distributions

are identical (i.e., aP’s but the intercept, if present, are assumed to be
zero).

B. If there is an intercept in the model, a simple linear regression is
performed predicting

SHSY)-w =a+q’

wheret' is computed at the upper endpoint of each failure interval,
t' =tin models 3, 5, 7, and 9, afid= In (t) in models 2, 4, 6, 8, and 10,
andw; is the fixed constant, if present.

If there is no intercept in the model, theeris fixed at zero, and the
model
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S (&) - -w =X

isfit instead. In this model, the coefficients 3 are used in place of the
location estimate a above. Here

~

¢

is estimated from the simple linear regression witha = 0.

C. If theintercept isin the model, then in log-location-scale models
(models 1-8),

~

G=0
and the initial estimate of the intercept is assumed to be G .
In the Weibull model

0=1/¢
and the intercept is assumed to be 4 .

Initial estimates of all parameters 3, other than the intercept, are
assumed to be zero.

If there is no intercept in the model, the scale parameter is estimated as
above, and the estimates

A

B

from Step 2 are used as initial estimates for the 3's.
. Models 0 and 1

For the exponential modelsgdel = 0 or 1), the “average total time on”

test statistic is used to obtain an estimate for the intercept. Specifically, let
T, denote the total number of failures divided by the total time on test. The
initial estimates for the intercept is then I)(Tnitial estimates for the
remaining parametefsare assumed to be zero, anddtfiel = 1, the initial
estimate for the linear hazard paramétes assumed to be a small positive
number. When the intercept is not in the model, the initial estimate for the
parameteB is assumed to be a small positive number, and initial estimates
of the parameteif8 are computed via multiple linear regression as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian

estimate
HKjK| = z I 'icxjia|

wherel’; , is the partial derivative of theth term in the log-likelihood with
respect to the parametey, anda; denotes one of the parameter to be estimated.
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When the relative change in the log-likelihood from one iteration to the next is
0.1 or less, exact second partial derivatives are used for the Hessian so the
Newton-Rapheson iteration is used.

If theinitial step size resultsin anincreasein the log-likelihood, the full stepis
used. If the log-likelihood decreases for the initial step size, the step sizeis
halved, and a check for an increase in the log-likelihood performed. Step-halving
is performed (as asimple line search) until an increase in the log-likelihood is
detected, or until the step size becomes very small (theinitial step sizeis 1.0).

Convergence is assumed when the maximum relative change in any coefficient
update from one iteration to the next is less than eps or when the relative change
in the log-likelihood from one iteration to the next isless than eps/100.
Convergenceis also assumed after maxi t iterations or when step halving leads to
avery small step size with no increase in the log-likelihood.

If requested (see optional argument | MSLS | NFI NI TY_CHECK), then the
methods of Clarkson and Jennrich (1988) are used to check for the existence of
infinite estimatesin

N :XiTB

As an example of asituation in which infinite estimates can occur, suppose that
observation j is right-censored with t; > 15 in anormal distribution model in
which themeanis

_vTa—
My =X;B=n;

wherex; is the observation design vector. If the design vector x; for parameter (3,,
is such that x;,, = 1 and x;,, = 0 for al i # j, then the optimal estimate of 3,, occurs
at

leading to an infinite estimate of both 3, and n;. Ini msl s_f _survi val _gl m
such estimates can be “computed”.

In all models fit byi msl s_f _survi val _gl m infinite estimates can only occur
when the optimal estimated probability associated with the left- or right-censored
observation is 1. If infinity checking is on, left- or right-censored observations
that have estimated probability greater than 0.995 at some point during the
iterations are excluded from the log-likelihood, and the iterations proceed with a
log-likelihood based on the remaining observations. This allows convergence of
the algorithm when the maximum relative change in the estimated coefficients is
small and also allows for a more precise determination of observations with
infinite

N :XiTB

At convergence, linear programming is used to ensure that the eliminated
observations have infinitg,. If some (or all) of the removed observations should
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not have been removed (because their estimated n,’s must be finite), then the
iterations are restarted with a log-likelihood based upon the fipd@bservations.
See Clarkson and Jennrich (1988) for more details.

When infinity checking is turned off (see optional argument

I MSBLS_NO _| NFI NI TY_CHECK), no observations are eliminated during the
iterations. In this case, the infinite estimates occur, some (or all) of the coefficient
estimates

A

B

will become large, and it is likely that the Hessian will become (numerically)
singular prior to convergence.

6. The case statistics are computed as followst; (B denote the log-likelihood of
thei-th observation evaluated & letl’; denote the vector of derivativeslof
with respect to all parametets, ; denote the derivative &f with respect to
n=x B H denote the Hessian, akdlenote expectation. Then the columns of
case_stati stics are:

A. Predicted values are computedeagl/x) according to standard
formulas. If model is 4 or 8, andst 1, then the expected values cannot
be computed because they are infinite.

B. Following Cook and Weisberg (1982), the influence (or leverage) of the
i-th observation is assumed to be

()" H;

This quantity is a one-step approximation of the change in the estimates
when tha-th observation is deleted (ignoring the nuisance parameters).

C. The “residual” is computed &s,,.

D. The cumulative hazard is computed at the observation covariate values
and, for interval observations, the upper endpoint of the failure interval.
The cumulative hazard also can be used as a “residual” estimate. If the
model is correct, the cumulative hazards should follow a standard
exponential distribution. See Cox and Oakes (1984).

Programming Notes

Indicator (dummy) variables are created for the classification variables using
functioni sl s_f _regressors_f or _gl m(Chapter 2using keyword

| MSLS_LEAVE_QUT_LAST as the argument to thé/SLS_DUMWY optional
argument.
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Examples

Example 1

This exampleis taken from Lawless (1982, p. 287) and involves the mortality of
patients suffering from lung cancer. An exponentia distribution isfit for the
model

N=H+a;+y;+ BeXs + BrXy + BsXs

where a; is associated with a classification variable with four levels, and y; is
associated with a classification variable with two levels. Note that because the
computations are performed in single precision, there will be some small
variation in the estimated coefficients across different machine environments.

#i ncl ude <insls. h>

mai n() {
static float x[40][7] = {
1.0, 0.0, 7.0, 64. 0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63. 0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65. 0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69. 0, 10. 0, 92.0, 0.0,
1.0, 0.0, 4.0, 63. 0, 58. 0, 8.0, 0.0,
1.0, 0.0, 7.0, 48. 0, 9.0, 25.0, 1.0,
1.0, 0.0, 7.0, 48. 0, 11. 0, 11. 0, 0.0,
2.0, 0.0, 8.0, 63. 0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63. 0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16. 0, 0.0,
2.0, 0.0, 8.0, 43. 0, 12.0, 56. 0, 0.0,
2.0, 0.0, 4.0, 55. 0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66. 0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10. 0, 0.0,
3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
3.0, 0.0, 5.0, 63. 0, 4.0, 12. 0, 0.0,
4.0, 0.0, 5.0, 66. 0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68. 0, 12. 0, 12. 0, 0.0,
4.0, 0.0, 8.0, 41. 0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52. 0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50. 0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65. 0, 21.0, 1.0, 0.0,
1.0, 1.0, 8.0, 52. 0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70. 0, 13. 0, 44. 0, 0.0,
1.0, 1.0, 5.0, 40. 0, 13.0, 15.0, 0.0,
2.0, 1.0, 7.0, 36. 0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44. 0, 36. 0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
2.0, 1.0, 3.0, 59. 0, 87.0, 51.0, 0.0,
3.0, 1.0, 4.0, 69. 0, 5.0, 18. 0, 0.0,
3.0, 1.0, 6.0, 50. 0, 22.0, 90. 0, 0.0,
3.0, 1.0, 8.0, 62. 0, 4.0, 84.0, 0.0,
4.0, 1.0, 7.0, 68. 0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
4.0 1.0 6.0, 49. 0, 11. 0, 43.0 0.0

474 « survival_glm IMSL C/Stat/Library



4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0. 0};

i nt n_observations = 40;

i nt n_class = 2;

i nt n_conti nuous = 3;

i nt nodel = 0;

i nt n_coef;

i nt icen =6, ilt =-1, irt = 5;

i nt | p_max = 40;

float *coef_stat;

char *fm = "92.4f";

static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

n_coef = inmsls_f_survival _gl n(n_observations, n_class,

n_conti nuous, nodel, &[0][0],

I MBLS X COL_CENSORING icen, ilt, irt,
I MSLS_| NFI NI TY_CHECK, | p_nmax,

| MBLS_COEF_STAT, &coef_stat,

0);

imsls_f_wite_matrix("Coefficient Statistics", n_coef, 4,
coef _stat,
| MSLS_WRI TE_FORMAT, fnt,
| MSLS_NO_ROW LABELS,
| MSLS_COL_LABELS, cl abel s,

0);
}
Output
Coefficient Statistics
coefficient s. e. z p
-1.1027 1.3091 -0. 8423 0. 3998
-0. 3626 0. 4446 -0. 8156 0. 4149
0.1271 0. 4863 0. 2613 0. 7939
0. 8690 0. 5861 1. 4825 0. 1385
0. 2697 0. 3882 0. 6948 0. 4873
- 0. 5400 0. 1081 -4.9946 0. 0000
-0. 0090 0.0197 -0.4594 0. 6460
-0.0034 0. 0117 -0.2912 0.7710
Example 2

This example is the same as Example 1, but more optional arguments are
demonstrated.

#i ncl ude <insls. h>

mai n() {
static float x[40][7] = {
1.0, 0.0, 7.0, 64. 0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63. 0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65. 0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69. 0, 10. 0, 92.0, 0.0,
1.0, 0.0, 4.0, 63. 0, 58. 0, 8.0, 0.0,
1.0, 0.0, 7.0, 48. 0, 9.0, 25. 0, 1.0,
1.0 0.0 7.0, 48. 0, 11.0 11.0 0.0
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2.0, 0.0, 8.0, 63. 0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63. 0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16. 0, 0.0,
2.0, 0.0, 8.0, 43. 0, 12. 0, 56. 0, 0.0,
2.0, 0.0, 4.0, 55. 0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66. 0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10. 0, 0.0,
3.0, 0.0, 2.0, 61.0, 19. 0, 8.0, 0.0,
3.0, 0.0, 5.0, 63. 0, 4.0, 12. 0, 0.0,
4.0, 0.0, 5.0, 66. 0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68. 0, 12. 0, 12. 0, 0.0,
4.0, 0.0, 8.0, 41. 0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50. 0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65. 0, 21.0, 1.0, 0.0,
1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70. 0, 13.0, 44. 0, 0.0,
1.0, 1.0, 5.0, 40. 0, 13. 0, 15. 0, 0.0,
2.0, 1.0, 7.0, 36. 0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44. 0, 36. 0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20. 0, 0.0,
2.0, 1.0, 3.0, 59. 0, 87.0, 51.0, 0.0,
3.0, 1.0, 4.0, 69. 0, 5.0, 18. 0, 0.0,
3.0, 1.0, 6.0, 50. 0, 22.0, 90. 0, 0.0,
3.0, 1.0, 8.0, 62.0, 4.0, 84. 0, 0.0,
4.0, 1.0, 7.0, 68. 0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39. 0, 4.0, 19. 0, 0.0,
4.0, 1.0, 6.0, 49. 0, 11. 0, 43. 0, 0.0,
4.0, 1.0, 8.0, 64. 0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0. 0};

i nt n_observations = 40;

i nt n_class = 2;

i nt n_conti nuous = 3;

i nt nodel = 0;

i nt n_coef;

i nt icen =6, ilt =-1, irt = 5;

i nt | p_max = 40;

i nt n, *ncv, *nrmss, *obs;

float *iterations, *cv, criterion;

float *coef_stat, *casex;

char *fm = "9d2. 4f";

char *fm2 = "%d%d¥%6. 4f 98. 4f 98. 1f ";

static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

static char *clabels2[] = {"", "Method", "lteration", "Step Size",
"Coef Update", "Log-Likelihood"};

n_coef = imsls_f_survival _gl nm(n_observations, n_class,

n_conti nuous, nodel, &[0][0],

| MSLS_X_COL_CENSORING icen, ilt, irt,
| MSLS_I NFI NI TY_CHECK, | p_nax,

| MBLS_COEF_STAT, &coef_stat,

| MSLS_| TERATI ONS, &n, &iterations,

| MSLS_CASE_ANALYSI S, &casex,

| MSLS_CLASS | NFO, &ncv, &cv,

| MSLS_OBS_STATUS, &obs,
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| MSLS_CRI TERI ON, &criterion,
| MSLS_N_ROANS_M SSI NG, &nrni ss,

0);

imsls_f_wite_matrix("Coefficient Statistics",

coef _stat,

| MBLS_WRI TE_FORVAT, fnt,

| MSLS_NO_ROW L

ABELS,

| MBLS_COL_LABELS, cl abels,

0);

L 3
LS_NO ROW L

VRl TE_FORNAT,

ABELS,

fm2,

imsls_f_wite_matrix("lteration Information", n, 5,
I S
I
I

M5
VS
VS

printf("\nLog-Like

|'i hood

LS COL_LABELS, clabels2, 0);

= 9%42.5f\n",

imsls_f_wite_matrix("Case Anal ysis",
| MSLS_WRI TE_FORMAT,

0);

imsls_f_wite_matr

"Di stinct Values for Classification Variable 1",

1, ncv[O0], &cv

imsls_f_wite_matr

"Di stinct Values for Classification Variable 2",

1, ncv[1], &cv[ncv[0]], IMSLS NO CO._LABELS, 0);

i x(

fm,

criterion);

n_coef,

4,

iterations,

1, n_observati ons,

[0], IMBLS NO COL_LABELS, 0);

i x(

casex,

imsls_i _wite_matrix("Cbservation Status", 1, n_observations,

obs, 0);

printf("\nNumber of M ssing Values =

Output

Coefficient Statistics

coefficient
-1.1027
-0. 3626
0.1271
0. 8690
0. 2697
-0. 5400
-0. 0090
-0.0034

[eleolololoNoNoN

S. €.

. 3091
. 4446
. 4863
. 5861
. 3882
. 1081
. 0197
. 0117

z
-0. 8423
-0. 8156
. 2613
. 4825
. 6948
. 9946
. 4594
. 2912

OOM~ORFRO

Iteration Information

Method Iteration Ste

PRRPRRPROO
GORWNRO

p Size

Coef Update

92d\ n", nrmss);

p
. 3998
. 4149
. 7939
. 1385
. 4873
. 0000
. 6460
. 7710

[eleoloololoNoNe)

Log- Li kel i hood

-224.
-213.
-207.
-204.
-204.
-204.

PRPWWHAO
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Log- Li kel i hood = -204. 13916
Case Anal ysis
1 2 3
262. 6884 0. 0450 -0.5646
6 7 8
153. 7777 0. 0042 0. 1806
11 12 13
270. 5347 0. 0482 0. 5638
16 17 18
55. 3168 0. 0844 -0.6631
21 22 23
61. 6845 0. 3765 0.8703
26 27 28
230. 4414 0. 0025 -0.1085
31 32 33
232. 0135 0. 1960 0. 9526
36 37 38
272.8432 0.1677 0. 8021
Di stinct Values for Classification Variable 1
1 2 3
Distinct Values for Classification Variable 2
0 1
Cbservation Status
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
0O 0 0O OO0 0 0O 0 0 O
21 22 23 24 25 26 27 28 29 30 31 32
0O 0 0O OO0 00O O O O0O
Number of M ssing Values = 0
Example 3

4
. 5646

. 8194
14

0. 4362

19
. 6631

24

0.1297

29

0. 1085

34

0. 0474

39

0.1979

20

0O 0 0 0 00 O O O

33 34 35 36 37 38 39 40
0 0 0 0 0 0 O O

. 0008

10
. 0029

15
. 0024

20
. 0034

25
. 0142

30
. 8972

35
. 0041

40
. 0030

In this example, the same data and model as example 1 are used, but
max_iterations isset to zero iterations with model coefficients restricted such
that p = —1.25, 34 = —0.6, and the remaining six coefficients are equal to zero. A
chi-squared statistic, with 8 degrees of freedom for testing the coefficientsis
specified as above (versus the alternative that it is not as specified), can be

computed, based on the output, as

where

X

478 « survival_glm

IMSL C/Stat/Library



~

>

is output in cov. The resulting test statistic, x* = 6.107, based upon no iterations
iscomparableto likelihood ratio test that can be computed from the log-
likelihood output in this example (-206.6835) and the log-likelihood output in
Example 2 (-204.1392).

X2g = 2(206.6835- 204.1392) = 50886

Neither statistic is significant at thea = 0.05 level.

#i ncl ude <insls. h>

mai n() {

static float x[40][7] = {
1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63. 0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65. 0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69. 0, 10. 0, 92.0, 0.0,
1.0, 0.0, 4.0, 63. 0, 58. 0, 8.0, 0.0,
1.0, 0.0, 7.0, 48. 0, 9.0, 25.0, 1.0,
1.0, 0.0, 7.0, 48. 0, 11.0, 11.0, 0.0,
2.0, 0.0, 8.0, 63. 0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63. 0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16. 0, 0.0,
2.0, 0.0, 8.0, 43. 0, 12.0, 56. 0, 0.0,
2.0, 0.0, 4.0, 55. 0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66. 0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10. 0, 0.0,
3.0, 0.0, 2.0, 61.0, 19. 0, 8.0, 0.0,
3.0, 0.0, 5.0, 63. 0, 4.0, 12. 0, 0.0,
4.0, 0.0, 5.0, 66. 0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68. 0, 12.0, 12.0, 0.0,
4.0, 0.0, 8.0, 41. 0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50. 0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65. 0, 21.0, 1.0, 0.0,
1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70.0, 13. 0, 44. 0, 0.0,
1.0, 1.0, 5.0, 40. 0, 13. 0, 15. 0, 0.0,
2.0, 1.0, 7.0, 36. 0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44. 0, 36. 0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20. 0, 0.0,
2.0, 1.0, 3.0, 59. 0, 87. 0, 51.0, 0.0,
3.0, 1.0, 4.0, 69. 0, 5.0, 18. 0, 0.0,
3.0, 1.0, 6.0, 50. 0, 22.0, 90. 0, 0.0,
3.0, 1.0, 8.0, 62.0, 4.0, 84. 0, 0.0,
4.0, 1.0, 7.0, 68. 0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39. 0, 4.0, 19. 0, 0.0,
4.0, 1.0, 6.0, 49. 0, 11.0, 43. 0, 0.0,
4.0, 1.0, 8.0, 64. 0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0. 0};

i nt n_observations = 40;

i nt n_class = 2;
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i nt n_conti nuous = 3;

i nt nodel = 0O;
int icen =6, ilt =-1, irt = 5;
i nt | p_max = 40;

i nt n_coef _i nput = 8;
static float estimates[8] = {-1.25, 0.0, 0.0, 0.0,
0.0, -0.6, 0.0, 0.0};

i nt n_coef;
float *coef_stat, *neans, *cov;
float criterion, *|ast_step;

char *fm = "92.4f";
static char *clabels[] = {"", "coefficient"

s.e.", "z", "p"};

n_coef = inmsls_f_survival _gl n(n_observations, n_class,
n_continuous, nodel, &[0][0],
| MSLS_X_COL_CENSORING icen, ilt, irt,
| MSLS_| NFI NI TY_CHECK, | p_nmx,
I I\/BLS I NI TIAL_ EST I NPUT, n_coef_input, estinates,
| MBLS_MAX_| TERATI ONS, 0,
MBLS_COEF_STAT, &coef _stat,
MBLS_MEANS, &neans,
MSLS_COV, &cov,
MSLS _CRI TERI ON, &criterion,
I\/BLS_LAST_STEP, &l ast _st ep,

I
I
I
I
I
0

~

imsls_f_wite_matrix("Coefficient Statistics", n_coef, 4,
coef _stat,
| MSLS_WRI TE_FORMAT, fnt,
| MBLS_NO_ROWN LABELS,
| MBLS_COL_LABELS, cl abels,
0);

imsls_f_wite_matrix("Covariate Means", 1, n_coef-1, means, 0);
imsls_f_wite_matrix("Hessian", n_coef, n_coef, cov,

| MSLS_WRI TE_FORMAT, fnt,

| MSLS_PRI NT_UPPER,

0);
printf("\nLog-Likelihood = %2.5f\n", criterion);

|m;| fowri te _mat ri x(" Newt on- Raphson Step", 1, n_coef, |ast_step,
LS WRI TE_FORMAT, fnmt, 0);

}
Output

Coefficient Statistics
coefficient s. e. z p
-1. 2500 1.3773 -0.9076 0. 3643
0. 0000 0. 4288 0. 0000 1. 0000
0. 0000 0. 5299 0. 0000 1. 0000
0. 0000 0.7748 0. 0000 1. 0000
0. 0000 0. 4051 0. 0000 1. 0000
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-0. 6000
0. 0000
0. 0000

0.35

15.65

1.8969

GO WNPE

O~NO U WN
e

Log- Li kel i hood =

0.1706

0. 0625

0.1118 -5.3652
0. 0215 0. 0000
0. 0109 0. 0000
Covari ate Means
2 3
0.28 0.12 0.
Hessi an
2 3
-0. 0906 -0. 1641
0. 1839 0. 0996
0. 2808
7 8
-0. 0235 -0.0012
- 0. 0008 0. 0006
0. 0005 -0.0021
-0. 0016 0. 0007
-0. 0040 0. 0017
0. 0000 0. 0003
0. 0005 -0. 0001
0. 0001
-206. 68349

Newt on- Raphson St ep
2 3

- 0. 3365 0. 1333
7 8
-0.0112 -0. 0026

Warning Errors
| MSLS_CONVERGENCE_ASSUMED 1

| MBLS_CONVERGENCE_ASSUVED 2

| MSLS_NO_PREDI CTED 1

| MSLS_NO_PREDI CTED 2

0. 0000
1. 0000
1. 0000
5 6
5.65 56. 58
4 5
-0. 1681 0.0778
0.1191 0. 0358
0.1264 -0. 0226
0. 6003 0. 0460
0.1641
4 5
1. 2967 0. 2985

Too many step halvings.
Convergence is assumed.

Too many step iterations.
Convergence is assumed.

“estimates[0]” > 1.0. The expected
value for the log logistic
distribution (“model” = 4) does

not exist. Predicted values will not
be calculated.

“estimates[0]” > 1.0. The expected
value for the log extreme value
distribution(*model” = 8) does not
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| MSLS_NEG El GENVALUE

| MSLS_| NVALI D_FAI LURE_TI VE_4

Fatal Error
| MSLS_MAX_CLASS TOO SMALL

| MBLS_TOO_FEW COEF

| MSLS_TOO FEW VALI D_OBS

| MBLS_SVGLM 1

| MBLS_| NCREASE_LP_MAX

| MBLS_| NVALI D_DATA 8

exist. Predicted values will not be
calculated.

The Hessian has at least one
negative eigenvalue. An upper
bound on the absolute value of the
minimum eigenvalueis#
corresponding to variable index #.

“X[#H][“ilt"= #]" = # and

“X[#][“irt"= #]" = #. The cen-

soring interval has length 0.0. The
censoring code for this observation
is being set to 0.0.

The number of distinct values of
the classification variables exceeds
“max_class” = #.

| MBLS_I NI TI AL_EST_|I NPUT is
specified, and “n_coef_input” = #.
The model specified requires #
coefficients.

“n_observations” = # and
“n_rows_missing” = #.
“n_observations*
"n_rows_missing” must be greater
than or equal to 2 in order to
estimate the coefficients.

For the exponential model
(“model” = 0) with “n_effects” = #
and no intercept, “n_coef” has
been determined to equal 0. With
no coefficients in the model,
processing cannot continue.

Too many observations are to be
deleted from the model. Either use
a different model or increase the
workspace.

“n_class_values[#]" = #. The
number of distinct values for each
classification variable must be
greater than one.
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survival_estimates

Estimates survival probabilities and hazard rates for the various parametric
models.

Synopsis
#include <i sl . h>

int *i msl s_f_survival _esti mates (Imsls f survival *survival _info,
int n_observations, float xpt[], float time, int npt,
float delta, .., 0)

The type double function isi nsl s_d_survi val _esti nat es.

Required Arguments

Imds f survival *survival _i nfo (Input)
Pointer to structure of type Imgls_f _survival containing the estimated
survival coefficients and other related information. See
imsls_f_survival _glm

int n_observations (Input)
Number of observations for which estimates are to be calcul ated.

float xpt[] (Input)
Array xpt isan array of sizen_observations xx_col _di m
containing the groups of covariates for which estimates are desired,
wherex_col _di misdescribed in the documentation for
i mel s_f _survival _gl m The covariates must be specified exactly as
inthecall toi nsl s_f _survi val _gl mwhich produced
survival _i nfo.

float time (Input)
Beginning of the time grid for which estimates are desired. Survival
probabilities and hazard rates are computed for each covariate vector
over the grid of time pointstime +i *del tafori=0,1, ...,npt -1

int npt (Input)
Number of points on the time grid for which survival probabilities are
desired.

float delta (Input)
Increment between time points on the time grid.

Return Value

Anarray of sizenpt by 2 x n_obser vati ons + 1 containing the estimated
survival probabilities for the covariate groups specified in xpt . Column O
contains the survival time. Columns 1 and 2 contain the estimated survival
probabilities and hazard rates, respectively, for the covariatesin the first row of

Chapter 10: Survival Analysis survival_estimates * 483



xpt . In general, the survival and hazard for row i of xpt iscontained in columns
2i — 1 and 2i, respectively, fori =1, 2, ..., npt .

Synopsis with Optional Arguments
#include <insls. h>

int *i sl s_f_survival _estimtes (Imsls f survival survival _info,
int n_observations, float xpt[], float time, int npt,
float delta,
| MSLS_XBETA, float **xbet a,
| MBLS_XBETA USER, float xbeta[],
| MBLS_RETURN_USER, float sprob[],
0)

Optional Arguments

| MSLS_XBETA, float **xbeta (Output)
Address of a pointer to an array of length n_obser vat i ons containing
the estimated linear response

w+xf3

for each row of xpt .

| MBLS_XBETA_USER, float xbeta[] (Output)
Storage for array xbet a isprovided by the user. See | MSBLS_XBETA.

| MBLS_RETURN_USER, float sprob[] (Output)
User supplied array of size npt by 2 x n_obser vat i ons + 1 containing
the estimated survival probabilities for the covariate groups specified in
xpt . Column O contains the survival time. Columns 1 and 2 contain the
estimated survival probabilities and hazard rates, respectively, for the
covariatesin the first row of xpt . In general, the survival and hazard for
row i of xpt iscontained in columns 2i — 1 and 2i, respectively, for
i=12, ...,npt.

Description

Functioni nmsl s_f _survi val _esti mat es computes estimates of survival
probabilities and hazard rates for the parametric survival/reliability models fit by
functioni nmsl s_f _survival _glm

Letn= xTB be the linear parameterization, where x is the design vector
corresponding to arow of xpt (i msl s_f_survival _esti mat es generatesthe
design vector using functioni nsl s_f _regressors_for_glm,andBisa
vector of parameters associated with the linear model. Let T denote the random
response variable and S(t) denote the probability that T > t. All models considered
also allow afixed parameter w (input in columni fi x of xpt ). Use of the
parameter is discussed in functioni nsl s_f _survi val _gl m There also may be
nuisance parameters 6 > 0 or ¢ > 0. Let ® denote the cumulative normal
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distribution.

The survival models availableininmsl s_f _survival _esti mates

are
model Name S (D
0 Exponential exp [t exp (w; +n)]
1 Linear hazard ot2
exp{—[t +7j exp(w; + r])]
2 Log-normal L q;(ln(t) -n-w, ]
o
3 Normal -n-w
1—q>(t n W'j
o}
4 Log-logistic -n-
g-log {1+exp[ln(t) n w,}_l
o
5 Logistic -n-w
g {1+exp(t r] le]—l
o
6 Log least extreme value In(t) = n—w:
exp{—exp( n(t)-n W']}
7 Least extreme value -n-w
exp{—exp(—t d W')
o}
8 Log extreme value In(t)-n-w
1—exp{—exp(—n() n-w
o
9 Extreme value -n-w
1—exp{—exp(—t n W')}
a
10 Weibull t 8
exp{-| ————| }
exp(w; +1)

Let A(t) denote the hazard rate at time t. Then A(t) and S(t) arerelated at

sty =exp([ M)

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume A(s) = 0
for s < 0), while the remaining models allow arbitrary valuesfor T,

—o0 < T < o0, The computations proceed in function

imsls_f _survival estimatesasfollows:

1 Theinput arguments are checked for consistency and validity.
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2. For each row of xpt , the explanatory variables are generated from the
classification and variables and the covariates using function
imsls_f regressors_for_gl mwith
dummy_met hod =1 MBLS_LEAVE_QUT_LAST. Given the explanatory
variables x, n iscomputed asn = xTB, whereB isinputin
survival _info.

3. For each point requested in the time grid, the survival probabilities and
hazard rates are computed.

Example

This exampleis a continuation of the first example given for function

i msl s_f _survival _gl mPriortocaling survi val _esti nat es,

i msl s_f _survival _gl misinvoked to compute the parameter estimates
(contained in the structure sur vi val _i nf 0). The exampleistaken from Lawless
(1982, p. 287) and involves the mortality of patients suffering from lung cancer.

#i ncl ude <insls. h>

mai n() {
static float x[40][7] = {
1.0, 0.0, 7.0, 64. 0, 5.0, 411.0, 0.0,
1.0, 0.0, 6.0, 63. 0, 9.0, 126.0, 0.0,
1.0, 0.0, 7.0, 65. 0, 11.0, 118.0, 0.0,
1.0, 0.0, 4.0, 69. 0, 10. 0, 92.0, 0.0,
1.0, 0.0, 4.0, 63. 0, 58. 0, 8.0, 0.0,
1.0, 0.0, 7.0, 48. 0, 9.0, 25.0, 1.0,
1.0, 0.0, 7.0, 48. 0, 11. 0, 11. 0, 0.0,
2.0, 0.0, 8.0, 63. 0, 4.0, 54.0, 0.0,
2.0, 0.0, 6.0, 63. 0, 14.0, 153.0, 0.0,
2.0, 0.0, 3.0, 53.0, 4.0, 16. 0, 0.0,
2.0, 0.0, 8.0, 43. 0, 12.0, 56. 0, 0.0,
2.0, 0.0, 4.0, 55. 0, 2.0, 21.0, 0.0,
2.0, 0.0, 6.0, 66. 0, 25.0, 287.0, 0.0,
2.0, 0.0, 4.0, 67.0, 23.0, 10. 0, 0.0,
3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
3.0, 0.0, 5.0, 63. 0, 4.0, 12. 0, 0.0,
4.0, 0.0, 5.0, 66. 0, 16.0, 177.0, 0.0,
4.0, 0.0, 4.0, 68. 0, 12. 0, 12. 0, 0.0,
4.0, 0.0, 8.0, 41. 0, 12.0, 200.0, 0.0,
4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
1.0, 1.0, 5.0, 52. 0, 8.0, 231.0, 1.0,
1.0, 1.0, 7.0, 50. 0, 7.0, 991.0, 0.0,
1.0, 1.0, 2.0, 65. 0, 21. 0, 1.0, 0.0,
1.0, 1.0, 8.0, 52. 0, 28.0, 201.0, 0.0,
1.0, 1.0, 6.0, 70. 0, 13. 0, 44. 0, 0.0,
1.0, 1.0, 5.0, 40. 0, 13.0, 15. 0, 0.0,
2.0, 1.0, 7.0, 36. 0, 22.0, 103.0, 1.0,
2.0, 1.0, 4.0, 44. 0, 36. 0, 2.0, 0.0,
2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
2.0, 1.0, 3.0, 59. 0, 87.0, 51.0, 0.0,
3.0 1.0 4.0, 69. 0, 5.0, 18.0 0.0
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3.0, 1.0, 6.0, 50. 0, 22.0, 90. 0, 0.0,
3.0, 1.0, 8.0, 62.0, 4.0, 84. 0, 0.0,
4.0, 1.0, 7.0, 68. 0, 15.0, 164.0, 0.0,
4.0, 1.0, 3.0, 39. 0, 4.0, 19.0, 0.0,
4.0, 1.0, 6.0, 49. 0, 11.0, 43. 0, 0.0,
4.0, 1.0, 8.0, 64. 0, 10.0, 340.0, 0.0,
4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0. 0};

i nt n_observations = 40;

i nt n_estinmates = 2;

i nt n_class = 2;

i nt n_conti nuous = 3;

i nt nodel = O;

i nt icen =6, ilt =-1, irt = 5;

i nt | p_max = 40;

float time = 10.0;

i nt npt = 10;

float delta = 20.0

i nt n_coef;

float *sprob

I msl s_f _survival *survival _info;

char *fnmt = "942. 2f 9%40. 4f 940. 6f 940. 4f 940. 6f";

char *cl abels[] = {"", "Time", "S1", "HL", "S2", "H2"};

n_coef = imsls_f_survival _gl n(n_observations, n_class,
n_conti nuous,
nodel , &[0][0],
| MSLS_X_COL_CENSORING icen, ilt, irt,
| MSLS_I NFI NI TY_CHECK, | p_nax,
| MSLS_SURVI VAL_I NFO, &survival _info,
0);

sprob = imsls_f_survival _esti mates(survival _info, n_estinates
&[0][0], tine, npt, delta, 0);

imsls_f_wite_matrix("Survival
npt, 2*n_estimtes+1l, sprob
| MSLS_WRI TE_FORMAT, fnt,
| MSLS_COL_LABELS, clabels, 0);

free (survival _info);
free (sprob);

}
Output
Survival and Hazard Esti mates
Ti me S1 H1 S2
10. 00 0. 9626 0. 003807 0. 9370
30. 00 0. 8921 0. 003807 0. 8228
50. 00 0. 8267 0. 003807 0.7224
70. 00 0. 7661 0. 003807 0. 6343
90. 00 0. 7099 0. 003807 0. 5570
110. 00 0. 6579 0. 003807 0. 4890
130. 00 0. 6096 0. 003807 0.4294

| MSLS_NO ROW LABELS,

[elolololojoNe)

and Hazard Esti mat es"

H2
. 006503
. 006503
. 006503
. 006503
. 006503
. 006503
. 006503
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150. 00 0. 5649 0. 003807 0.3770 0. 006503
170. 00 0. 5235 0. 003807 0. 3310 0. 006503
190. 00 0. 4852 0. 003807 0. 2907 0. 006503

Note that the hazard rate is constant over time for the exponential model.

Warning Errors
| MSLS_CONVERGENCE_ASSUMED 1

| MBLS_CONVERGENCE_ASSUVED 2

| MSLS_NO_PREDI CTED 1

| MSLS_NO_PREDI CTED 2

I M5LS_NEG_EI GENVALUE

| MBLS_| NVALI D_FAI LURE_TI ME_4

Fatal Error
| MBLS_MAX_CLASS TOO SMALL

| MBLS_TOO FEW COEF

| MBLS_TOO FEW VALI D_OBS

Too many step halvings.
Convergence is assumed.

Too many step iterations.
Convergence is assumed.

“estimates[0]” > 1.0. The expected
value for the log logistic
distribution (“model” = 4) does

not exist. Predicted values will not
be calculated.

“estimates[0]” > 1.0. The expected
value for the log extreme value
distribution (“model” = 8) does

not exist. Predicted values will not
be calculated.

The Hessian has at least one
negative eigenvalue. An upper
bound on the absolute value of the
minimum eigenvalue is #
corresponding to variable index #.

“X[#][UiIt"= #]" = # and

“X[#][“irt"= #]" = #. The cen-

soring interval has length 0.0. The
censoring code for this observation
is being set to 0.0.

The number of distinct values of
the classification variables exceeds
“max_class” = #.

| MSLS I NI TI AL_EST_| NPUT is
specified, and “n_coef_input” = #.
The model specified requires #
coefficients.

“n_observations” = %(il1) and
“n_rows_missing” = #.
“n_observations*
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| MBLS_SVGLM 1

| MSLS_| NCREASE_LP_MAX

| MSLS_| NVALI D_DATA 8

"n_rows_missing” must be greater
than or equal to 2 in order to
estimate the coefficients.

For the exponential model
(“model” = 0) with “n_effects” = #
and no intercept, “n_coef” has
been determined to equal 0. With
no coefficients in the model,
processing cannot continue.

Too many observations are to be
deleted from the model. Either use
a different model or increase the
workspace.

“n_class_values[#]” = #. The
number of distinct values for each
classification variable must be
greater than one.
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Chapter 11: Probability Distribution
Functions and Inverses

Routines

11.1 Discrete Random Variables

11.2

Distribution Functions

Binomial distribution function............ccccccceeeviiiiiinnennn, binomial_cdf
Hypergeometric distribution function................ hypergeometric_cdf
Poisson distribution function............cccceceeviiiiiiiieneeeen, poisson_cdf

Continuous Random Variables
Distribution Functions and Their Inverses

Beta distribution function............cccccvvvvvieeiiiiiiec e beta_cdf
Inverse beta distribution function.......................... beta_inverse_cdf
Bivariate normal distribution function ............. bivariate_normal_cdf
Chi-squared distribution function.................cc........ chi_squared_cdf
Inverse chi-squared

distribution function .........cccccccoeeeiiiiiiinnenn, chi_squared_inverse_cdf
Noncentral chi-squared

distribution function ...........c.cccecviviie e, non_central_chi_sq
Inverse of the noncentral chi-squared

distribution function .........ccccccooviiiiiieneeenn, non_central_chi_sq_inv
F distribution fUNCLION ........ccoiiiiii e F_cdf
Inverse F distribution function ...........ccccceeeeeeeiiinnnee, F_inverse_cdf
Gamma distribution function ...........ccccocevvveiveeeen e, gamma_cdf
Normal (Gaussian) distribution function ......................... normal_cdf
Inverse normal distribution function ................. normal_inverse_cdf
Student’s t distribution fuNCtion ...........ccccceeee e, t cdf
Inverse Student’s t distribution function...................... t_inverse_cdf
Noncentral Students’s t distribution function ...... non_central_t_cdf
Inverse of the noncentral Student’s t

distribution function ..........ccccccooeiiiinne, non_central_t_inverse_cdf

491
495
497

499
500
502
503

505

506

509
510
513
514
516
518
519
520
522

524
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Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the
specific distributions.

In order to keep the calling sequences simple, whenever possible, the

subprograms described in this chapter are written for standard forms of statistical
distributions. Hence, the number of parameters for any given distribution may be

fewer than the number often associated with the distribution. For example, while
agammadistribution is often characterized by two parameters (or even athird,
“location”), there is only one parameter that is necessary, the “shape”.

The “scale” parameter can be used to scale the variable to the standard gamma
distribution. Also, the functions relating to the normal distribution,

i msl s_f_nornmal _cdf (page 516andi nsl s_f _normal _i nverse_cdf

(page 518)are for a normal distribution with mean equal to zero and variance
equal to one. For other means and variances, it is very easy for the user to
standardize the variables by subtracting the mean and dividing by the square root
of the variance.

Thedistribution function for the (real, single-valued) random variallés the
functionF defined for all reak by

F(X) = ProbX < x)

where Probfl denotes the probability of an event. The distribution function is
often called theumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for
values less than the left endpoint and 1 for values greater than the right endpoint.
The subprograms described in this chapter return the correct values for the
distribution functions when values outside of the range of the random variable are
input, but warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random
variable takes on specific values is calledgi@bability function, defined by

p(x) = ProbK =x)
The “PR’ routines described in this chapter evaluate probability functions.

The CDF for a discrete random variable is
F(x) =% p(k)
A

whereA is the set such thit< x. The ‘DF” routines in this chapter evaluate
cumulative distribution functions. Since the distribution function is a step
function, its inverse does not exist uniquely.
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Continuous Distributions

For continuous distributions, a probability function, as defined above, would not
be useful because the probability of any given point is 0. For such distributions,
the useful analog is the probability density function (PDF). Theintegral of the
PDF isthe probability over theinterval, if the continuous random variable X has
PDF f, then

Prob(a < X <b) :Jgf(x)dx
The relationship between the CDF and the PDF is
F(x):jfwf(t)dt.

The “_cdf " functions described in this chapter evaluate cumulative distribution
functions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines
x within the support of the distribution. Thei‘nhver se_cdf” functions

described in this chapter compute the inverses of the distribution functions, that
is, given F(x) (called “P” for “probability”), a routine such as

inmsl s_f_beta_inverse_cdf (page 500fomputex. The inverses are defined
only over the open interval (0,1).

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function
or is to be input to an inverse function, it is often impossible to achieve good
accuracy because of the nature of the representation of numeric values. In this
case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point
(as the normal distribution, for example) or is reflective about some point (as the
beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, usings| s_f _normal _i nverse_cdf

(page 518Hirectly, the result to six places is 0.999968. Only two of those digits
are really useful, however. A more useful result may be 1.000000 minus this
value, which can be obtained to six significant figures as 3.16713E-05 by
evaluating nsl s_f _normal _i nverse_cdf at—4.0. For the normal

distribution, the two values are related®fx) = 1 - ®(—x), whered(lis the

normal distribution function. Another example is the beta distribution with
parameters 2 and 10. This distribution is skewed to the right, so evaluating
imsls_f beta_cdf (page 499at 0.7, 0.999953 is obtained. A more precise
result is obtained by evaluatings! s_f _bet a_cdf with parameters 10 and 2 at
0.3. This yields 4.72392E-5. (In both of these examples, it is wise not to trust the
last digit.)

Many of the algorithms used by routines in this chapter are discussed by
Abramowitz and Stegun (1964). The algorithms make use of various expansions
and recursive relationships and often use different methods in different regions.
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Cumulative distribution functions are defined for all real arguments, however, if

the input to one of the distribution functions in this chapter is outside the range of

the random variable, an error of Type 1 isissued, and the output is set to zero or

one, as appropriate. A Type 1 error is of lowest severity, a “note”, and, by
default, no printing or stopping of the program occurs. The other common errors
that occur in the routines of this chapter are Type 2, “alert”, for a function value
being set to zero due to underflow, Type 3, “warning”, for considerable loss of
accuracy in the result returned, and Type 5, “terminal”, for incorrect and/or
inconsistent input, complete loss of accuracy in the result returned, or inability to
represent the result (because of overflow). When a Type 5 error occurs, the result
is set to NaN (not a number, also used as a missing value code).

binomial cdf

Evaluates the binomial distribution function.

Synopsis
#include <i nsl's. h>
float i msl s_f _binom al _cdf (int k, int n, float p)

The typedouble function isi msl s_d_bi nomi al _cdf .

Required Arguments

int k (Input)
Argument for which the binomial distribution function is to be
evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value

The probability thak or fewer successes occumiindependent Bernoulli trials,
each of which has a probabilipyof success.

Description

Thei nsl s_f_bi noni al _cdf function evaluates the distribution function of a
binomial random variable with parametarandp. It does this by summing
probabilities of the random variable taking on the specific values in its range.
These probabilities are computed by the recursive relationship:

(n+1-j)p

Pr(X=j)= i

Pr(X=j-1)
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#i ncl ude <insls.

voi d main()

To avoid the possibility of underflow, the probabilities are computed forward
from O if kis not greater than n x p; otherwise, they are computed backward from
n. The smallest positive machine number, €, is used as the starting value for
summing the probabilities, which are rescaled by (1 — p) " if forward
computation is performed and by p”¢ if backward computation is used.

For the special caseof p=0,i nsl s_f _bi noni al _cdf issetto 1; for the case
p=1insls_f_binomal _cdf issettolif k=nandissetto 0 otherwise.
Example

Suppose X isabinomial random variable withn =5 and p = 0.95. In this
example, the function finds the probability that X isless than or equal to 3.

h>

i nt k =3,

i nt n =>5;

fl oat p = 0.95;

fl oat pr;

pr = insls_f_binom al _cdf (k,n,p);

printf("Pr(x <= 3) = 96.4f\n", pr);

Output

Pr(x <= 3) = 0.0226

Informational Errors

| MSLS_LESS THAN ZERO Since “k”= # is less than zero, the
distribution function is set to zero.

| MSLS_GREATER THAN N The input argumenk, is greater than the
number of Bernoulli trials).

hypergeometric_cdf

Evaluates the hypergeometric distribution function.

Synopsis
#include <i nsl's. h>
float i msl s_f _hypergeometric_cdf (int k, int n, int m int I)

The typedouble function isi nsl s_d_hyper geonetri c_cdf.
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#i ncl ude <i sl s.
voi d main()

i nt
i nt

Required Arguments

int k (Input)
Argument for which the hypergeometric distribution function isto be
evaluated.
int n (Input)
Sample size. Argument n must be greater than or equal to k.
int m (Input)
Number of defectivesin the lot.
int I (Input)
Lot size. Argument | must be greater than or equal to n and m

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from
alot of size | that contains m defectives.

Description

Functioni nsl s_f _hyper geonetri c_cdf evaluates the distribution function of
a hypergeometric random variable with parametersn, |, and m. The
hypergeometric random variable x can be thought of as the number of items of a
given type in arandom sample of sizen that is drawn without replacement from a
population of size | containing mitems of thistype. The probability function is

Pr(x=j :M
(x=]) )

wherei = max (0, n -1 + m).

forj=i,i+1..., min(n,m)

If kisgreater than or equal to i and less than or equal to min (n, m),

i msl s_f _hypergeonetri c_cdf sumsthetermsin thisexpression forj going
fromi up to k; otherwise, O or 1 isreturned, as appropriate. To avoid rounding in
the accumulation, i msl s_f _hyper geonet ri c_cdf performsthe summation
differently, depending on whether or not k is greater than the mode of the
distribution, which is the greatest integer less than or equal to

(m+1) (n+ /(1 +2).

Example

Suppose X is a hypergeometric random variable with n = 100, | = 1000, and
m = 70. In this example, evaluate the distribution function at 7.

h>

1000:
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i nt m= 70;
i nt n = 100;
fl oat p;

p = inmsls_f_hypergeonetric_cdf(k,n,ml);
printf("\nPr (x <=7) = 96.4f", p);

Output
Pr (x <= 7) = 0.599

Informational Errors

| MSLS_LESS THAN ZERO Since “k”= # is less than zero, the
distribution function is set to zero.

| MSLS_K_GREATER THAN_N The input argumenk, is greater than the
sample size.

Fatal Errors

I MSLS LOT_SI ZE TOO SMVALL Lot size must be greater than or equai to
andm.

poisson_cdf

Evaluates the Poisson distribution function.

Synopsis
#include <i nsl's. h>
float i msl s_f _poisson_cdf (int k, float t heta)

The typedouble function isi nsl s_d_poi sson_cdf .

Required Arguments

int k (Input)
Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argumehet a must be positive.
Return Value

The probability that a Poisson random variable takes a value less than or equal to
k.
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#i ncl ude <i sl s.

voi d main()

Description

Functioni msl s_f _poi sson_cdf evauatesthe distribution function of a
Poisson random variable with parameter t het a. The mean of the Poisson random
variable, t het a, must be positive. The probability function (with 8 =t het a) is
asfollows:

f(x)=e0*/x!, forx=0,12,...

Theindividual terms are calculated from the tails of the distribution to the mode
of the distribution and summed. Functioni msl s_f _poi sson_cdf usesthe
recursive relationship

f(x+1) = f(x)(0/(x+1)) forx=0,12,....k-1

withf (0) = .
1.0
8
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Figure 11-1 Plot of F, (k, 6)
Example

Suppose X is a Poisson random variable with 8 = 10. In this example, we evaluate
the probability that X islessthan or equal to 7.

h>

k = 7;

theta = 10.0;
p;
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p = insls_f_poisson_cdf(k, theta);
printf("Pr(x <=7) = 96.4f\n", p);

Output
Pr(x <= 7) = 0.2202

Informational Errors

| MSLS_LESS THAN ZERO Since “k”= # is less than zero, the
distribution function is set to zero.

beta cdf

Evaluates the beta probability distribution function.

Synopsis
#include <i nsl's. h>
float i msl s_f _beta_cdf (float x, float pin, float gin)

The typedouble function isi nsl s_d_bet a_cdf .

Required Arguments

float x (Input)
Argument for which the beta probability distribution function is to be
evaluated.

float pi n (Input)

First beta distribution parameter. Argumght must be positive.
float gi n (Input)

Second beta distribution parameter. Argumgnt must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal to
X.

Description

Functioni msl s_f _bet a_cdf evaluates the distribution function of a beta
random variable with parametgrisn andgi n. This function is sometimes called
the incomplete beta ratio and, wjil pi n andq = gi n, is denoted by, (p, g). It
is given by

=T
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where " (Olis the gamma function. The value of the distribution function by
I, (p, ) isthe probability that the random variable takes a value less than or equal
to x.

Theintegral in the expression above is called the incomplete beta function and is
denoted by B,(p, g). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at 1) and is denoted by B(p, q).

Functioni nsl s_f _bet a_cdf usesthe method of Bosten and Battiste (1974).

Example

Suppose X is a betarandom variable with parameters 12 and 12 (X hasa
symmetric distribution). This example finds the probability that X islessthan 0.6
and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it islessthan 0.5is0.5.)

#i ncl ude <insls. h>

mai n()

fl oat p, pin, gin, Xx;

12. 0;

12. 0;

. 6;

p i msl s_f_beta_cdf (x, pin, gin);

printf("The probability that X is less than 0.6 is 9. 4f\n",
p);

x = 0.5;

p -=insls_f_beta_cdf(x, pin, qgin);

printf("The probability that X is between 0.5 and");

printf(" 0.6 is 9%.4f\n", p);

pi
q
X

Inns3s
o

Output

The probability that X is Iless than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

beta inverse cdf

Evaluates the inverse of the beta distribution function.

Synopsis
#include <i nsl's. h>
float i msl s_f_beta_inverse_cdf (float p, float pin, float gin)

The type double functionisi nsl s_d_bet a_i nver se_cdf .
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Required Arguments

float p (Input)
Probability for which the inverse of the beta distribution functionisto be
evaluated. Argument p must be in the openinterval (0.0, 1.0).

float pin (Input)
First beta distribution parameter. Argument pi n must be positive.

float gi n (Input)
Second beta distribution parameter. Argument gi n must be positive.

Return Value
Functioni msl s_f _beta_i nverse_cdf returnsthe inverse distribution function
of abetarandom variable with parameters pi n and gi n.
Description
With P =p, p=pi n, and q = qi n, the beta_inverse_cdf returns x such that

r(p)r x _

— (p) (q)J. tp—l(l_t)q ldt

F(p+q) Jo
where " (Olis the gamma function. The probability that the random variable takes
avalue lessthan or equal to x isP.
Example

Suppose X is a betarandom variable with parameters 12 and 12 (X hasa
symmetric distribution). In this example, we find the valuex such that the
probability that X isless than or equal to x is 0.9.

#i ncl ude <insls. h>

mai n()

fl

pi
qi
p
X

oat

I ns-3s

o

p, pin, gin, Xx;

12. 0;
12. 0;
. 9;

i ms

i s_f_beta_inverse_cdf(p, pin, qgin);

printf(" Xis less than %6.4f with probability 0.9.\n",
X);
Output

Xis less than 0.6299 with probability 0.9.
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bivariate_normal_cdf

Evaluates the bivariate normal distribution function.

Synopsis
#include <i nsls. h>
float i msl s_f _bivariate_normal _cdf (float x, float y, float rho)

The type double functionisi nsl s_d_bi vari at e_nor mal _cdf .

Required Arguments

float x (Input)
The x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float rho (Input)
Correlation coefficient.
Return Value
The probability that a bivariate normal random variable with correlation r ho
takes avalue less than or equal to x and less than or equal to y.
Example

Suppose (X, Y) isabivariate normal random variable with mean (0, 0) and
variance-covariance matrix as follows:

10 09

09 10
In this example, we find the probability that X islessthan —2.0 and Y isless than
0.0.

#i ncl ude <insls. h>

mai n()
fl oat p, rho, x, vy;
X = -2.0;
y = 0.0;
rho = 0.9;
p = inmsls_f _bivariate_nornmal _cdf(x, y, rho);
printf(" The probability that X is less than -2.0\n"

"and Yis less than 0.0 is 9. 4f\n", p);
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Output

The probability that X is less than -2.0
and Y is less than 0.0 is 0.0228

chi_squared_cdf

Evaluates the chi-squared distribution function.

Synopsis
#include <i nsl's. h>
float i msls_f_chi _squared_cdf (float chi _squared, float df)

The type double function isi nsl s_d_chi _squar ed_cdf .

Required Arguments

float chi _squared (Input)
Argument for which the chi-squared distribution function isto be
evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument
df must be greater than or equal to 0.5.

Return Value

The probability that a chi-squared random variable takes a value less than or
equal to chi _squar ed.

Description

Functioni msl s_f _chi _squar ed_cdf evaluatesthe distribution function, F, of
a chi-sguared random variable x = chi _squar ed withv = df . Then,

1 X _ _
E(x) = J o124 vI2-1 4
() 221 (v/2) do

where " (Olis the gamma function. The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

Forv >65,insl s_f_chi_squared_cdf usesthe Wilson-Hilferty
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) to the normal
distribution, and functioni nsl s_f _nor mal _cdf isused to evaluate the normal
distribution function.
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Forv <65,i msl s_f_chi _squared_cdf uses seriesexpansions to evauate the
distribution function. If x<max (v/2,26),i msl s_f _chi _squared_cdf uses
the series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it usesthe
asymptotic expansion 6.5.32 in Abramowitz and Stegun.

Example

Suppose X is a chi-squared random variable with two degrees of freedom. In this
example, we find the probability that X is less than 0.15 and the probability that X

isgreater than 3.0.

#i ncl ude <insls. h>

voi d main()

fl oat chi _squared = 0. 15;
fl oat df = 2.0;
fl oat p;

p = inmsl s_f_chi _squared_cdf (chi _squared, df);
printf("% % 9%.4f\n", "The probability that chi-squared\n",

"with 2 df is less than 0.15 is", p);
chi _squared = 3.0;
p = 1.0 - insls_f_chi_squared_cdf (chi _squared, df);

printf("% % 9%.4f\n", "The probability that chi-squared\n",

"wWith 2 df is greater than 3.0 is",

Output
The probability that chi-squared
with 2 df is less than 0.15 is 0.0723

The probability that chi-squared
with 2 df is greater than 3.0 is 0.2231

Informational Errors
| MBLS_ARG LESS THAN ZERO

Alert Errors
| MSLS_NORMAL_UNDERFLOW

p);

Since “chi_squared= # is less than zero,
the distribution function is zero at
“chi_squared.”

Using the normal distribution for large
degrees of freedom, underflow would have
occurred.
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chi_squared_inverse cdf

Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <i nsls. h>
float i msl s_f _chi _squared_i nverse_cdf (float p, float df)

The type double functionisi nsl s_d_chi _squared_i nverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the chi-squared distribution function
isto be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument
df must be greater than or equal to 0.5.

Return Value

Theinverse at the chi-squared distribution function evaluated at p. The
probability that a chi-squared random variable takes a value less than or equal to
imsls_f _chi_squared_i nverse_cdf isp.

Description

Functioni msl s_f _chi _squared_i nver se_cdf evaluatestheinverse
distribution function of a chi-squared random variable with v = df and with
probability p. That is, it determines

x=insls_f_chi_squared_i nverse_cdf (p,df), suchthat

1 J’X ~t/2,v/2-1
= | et dt
P 221 (v/2)do

wherel ([Jisthe gammafunction. The probability that the random variable takes
avalue less than or equal to xisp.

Forv <40,i msl s_f_chi _squared_i nverse_cdf useshisection (ifv<2or
p > 0.98) or regulafalsi to find the point at which the chi-squared distribution
function is equal to p. The distribution function is evaluated using IMSL function
i msl s_f _chi _squared_cdf.

For 40 < v < 100, a modified Wilson-Hilferty approximation

(Abramowitz and Stegun 1964, Equation 26.4.18) to the normal distribution is
used. IMSL functioni nsl s_f _normal _cdf isused to evaluate the inverse of
the normal distribution function. For v = 100, the ordinary Wilson-Hilferty
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) is used.
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Example

In this example, we find the 99-th percentage point of a chi-squared random
variable with 2 degrees of freedom and of one with 64 degrees of freedom.

#i ncl ude <insls. h>

void main ()

fl oat df, x;

fl oat p = 0.99;

df = 2.0;

x = imsls_f _chi_squared_inverse cdf(p, df);

printf("For p = .99 with 2 df, x = %.3f.\n", Xx);

df = 64.0;
x = imsls_f_chi_squared_i nverse_cdf (p, df);
printf("For p = .99 with 64 df, x = %.3f.\n", Xx);
}
Output
For p = .99 with 2 df, x = 9. 210.
For p = .99 with 64 df, x = 93.217.
Warning Errors
| MSLS_UNABLE_TO BRACKET_VALUE The bounds that enclose “p” could
not be found. An approximation
for

i msl s_f_chi _squared_i nvers
e_cdf is returned.

| MBLS_CHI _2_| NV_CDF_CONVERGENCE The value of the inverse chi-
squared could not be found within
a specified number of iterations.
An approximation for
i msl s_f _chi _squared_i nvers
e_cdf is returned.

non_central _chi_sq

Evaluates the noncentral chi-squared distribution function.

Synopsis
#include <imdgls.h>

floati msl s_f _non_central _chi _sq (float chi _squar ed, float df , float
del t a)

The typedouble function isi nsl s_d_non_central _chi _sq.

506 « non_central_chi_sq IMSL C/Stat/Library



Required Arguments

float chi _squared (Input)
Argument for which the noncentral chi-squared distribution function is
to be evaluated.

float df (Input)
Number of degrees of freedom of the noncentral chi-squared
distribution. Argument df must be greater than or equal to 0.5

float del t a (Input)

The noncentrality parameter. del t a must be nonnegative, and
del ta + df must belessthan or equal to 200,000.

Return Value

The probability that a noncentral chi-sguared random variable takes avalue less
than or equal to chi _squar ed.

Description

Functioni msl s_f _non_central chi _sq evauatesthe distribution function

of anoncentral chi-squared random variable with df degrees of freedom and

noncentrality parameter al am that is, withv=df , A =al am and

X=chi _squared,

o _-\/2 [ (v+2i)/2-1-t/2

non_central _chi _sq(x) = Z e "\ /2) t ©
1=0

il 0 2v+2i ) 2r (2

where I (Jis the gamma function. Thisis aseries of central chi-squared
distribution functions with Poisson weights. The value of the distribution function
at the point x is the probability that the random variable takes a value less than or
equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or aternatively and equivalently, as the sum of squares of
independent normal random variables. If Y; have independent normal
distributions with means ; and variances equal to one and

X=30 Y

then X has anoncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

Zinzluiz

With anoncentrality parameter of zero, the noncentral chi-squared distribution is
the same as the chi-squared distribution.

Functioni nmsl s_f _non_central _chi _sq determinesthe point at which the
Poisson weight is greatest, and then sums forward and backward from that point,
terminating when the additional terms are sufficiently small or when a maximum
of 1000 terms have been accumulated. The recurrence relation 26.4.8 of
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Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-
squared distribution functions.
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Figure 11-2 Noncentral Chi-squared Distribution Function

Example

Inthisexample, i msl s_f _non_central _chi _sq isusedto compute the
probability that a random variable that follows the noncentral chi-squared
distribution with noncentrality parameter of 1 and with 2 degrees of freedom is
less than or equal to 8.642.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

{
float chsq = 8.642;
float df = 2.0;
float alam= 1.0;
float p;
p = inmsls_f_non_central _chi_sq(chsq, df, alam;

printf("The probability that a noncentral chi-squared random n"

"variable with 9. 0f df and noncentrality paraneter %3.1f is less\n"
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"than 9%.3f is 9%.3f.\n", df, alam chsq, p);

Output

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950

non_central _chi_sqg_inv

Evaluates the inverse of the noncentral chi-squared function.

Synopsis

#include <i nsl s. h>

floati msl s_f _non_central _chi _sqg_i nv (float p, float df , float del t a)
The type double function isi nsl s_d_non_central _chi _sqg_i nv.

Required Arguments

floatp (Input)
Probability for which the inverse of the noncentral chi-squared
distribution function is to be evaluated. p must be in the open interval
(0.0, 1.0).

float df (Input)
Number of degrees of freedom of the noncentral chi-squared
distribution. Argument df must be greater than or equal to 0.5

float del t a (Input)
The noncentrality parameter. del t a must be nonnegative, and
delta + df must belessthan or equal to 200,000.

Return Value

The probability that a noncentral chi-squared random variable takes a value less
thanorequal to i nsl s_f_non_central _chi_sq_inv isp.

Description

Functioni msl s_f _non_central _chi _sqg_i nv evaluatestheinverse
distribution function of a noncentral chi-squared random variable with df degrees
of freedom and noncentrality parameter del t a; that is, withP =p, v=df ,and A
=del ta, it determinesc (=i nsl s_f _non_central _chi _sq_inv (p, df,
del t a) ), such that

e—)\/Z()\ / 2)I I X(V+2i )/2—1e—X/2

P= , : —dx
; il 0 2(V+2I)/2 F(LZZI)
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where I' ([is the gamma function. The probability that the random variable takes
avalue lessthan or equal to ¢ isP.

Functioni msl s_f _non_central _chi _sq_i nv uses bisection and modified
regulafals to invert the distribution function, which is evaluated using

routinei nsl s_f _non_central _chi _sq (page506). See

imsls_f _non_central _chi _sq for an aternative definition of the noncentral
chi-squared random variable in terms of normal random variables.

Example

In this example, we find the 95-th percentage point for a noncentral chi-squared
random variable with 2 degrees of freedom and noncentrality parameter 1.

#i ncl ude <imsls. h>
#i ncl ude <stdio. h>
voi d main()
{
float p = .95;
float df = 2;
float delta = 1.0;
float chi _squared;
chi _squared = inmsls_f_non_central _chi_sq_inv(p, df, delta);
printf("The 0.05 noncentral chi-squared critical value is %. 4f.\n",

chi _squared);

Output

The 0.05 noncentral chi-squared critical value is 8.6422.

F cdf

Evaluates the F distribution function.

Synopsis
#include <i nsl's. h>

float i msl s_f _F_cdf (float f, float df _nunerator,
float df _denoni nat or)

The type double functionisi sl s_d_F_cdf .
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Required Arguments

float f (Input)
Point at which the F distribution function is to be evaluated.

float df _nunerator (Input)
The numerator degrees of freedom. Argument df _nuner at or must be
positive.

float df _denomi nat or (Input)
The denominator degrees of freedom. Argument df _denomi nat or
must be positive.

Return Value

The probability that an F random variable takes a value less than or equal to the
input point, f .

Description

Functioni nmsl s_f _F_cdf evaluates the distribution function of a Snededer’s
random variable withif _numer at or anddf _denomi nat or . The function is
evaluated by making a transformation to a beta random variable, then evaluating
the incomplete beta function.Xfis anF variate withv, andv, degrees of

freedom and( = (v; X)/(v, + v, X), thenY is a beta variate with parameters

p =v,/2 andqg = v,/2. Function nsl s_f _F_cdf also uses a relationship between

F random variables that can be expressed as

FF(f, Vl , V2) = 1_ FF(l/f, V2, V])

whereF is the distribution function for @R random variable.
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Figure 11-3 Plot of Fx(f, 1.0, 1.0)
Example

This example finds the probability that an F random variable with one numerator
and one denominator degree of freedom is greater than 648.

#i ncl ude <insls. h>

mai n()
fl oat p;
fl oat F = 648. 0;
fl oat df _nunerator = 1.0;
fl oat df _denom nator = 1.0;
p=10- insls_f_F cdf(F,df _nunerator, df_denom nator);

printf("% % 9%.4f.\n", "The probability that an F(1,1) variate",
"is greater than 648 is", p);

Output
The probability that an F(1,1) variate is greater than 648 is 0.0250.
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F _inverse cdf

Evaluates the inverse of the F distribution function.

Synopsis
#include <i nsl's. h>

float i msl s_f _F_i nverse_cdf (float p, float df _nunerator,
float df _denoni nat or)

The type double function isi nsl s_d_F_i nver se_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the F distribution function isto be
evaluated. Argument p must be in the open interval (0.0, 1.0).

float df _nunerator (Input)
Numerator degrees of freedom. Argument df _nuner at or must be
positive.

float df _denoni nat or (Input)
Denominator degrees of freedom. Argument df _denoni nat or must be
positive.

Return Value

The value of the inverse of the F distribution function evaluated at p. The
probability that an F random variable takes a value less than or equal to
imsl s_f_F_inverse_cdf isp.

Description

Functioni msl s_f _F_i nverse_cdf evaluatestheinverse distribution function

of a Snedecor’'s random variable withv; =df _numer at or numerator degrees

of freedom andv, = df _denoni nat or denominator degrees of freedom. The
function is evaluated by making a transformation to a beta random variable, then
evaluating the inverse of an incomplete beta functioX.i¢fanF variate withv,

andv, degrees of freedom ant= (v; X)/(v, + v, X), thenY is a beta variate with
parameterp =v,/2 andg =v,/2. If p< 0.5,insl s_f _F_ inverse_cdf uses

this relationship directly; otherwise, it also uses a relationship befvesrdom
variables that can be expressed as follows:

FF(f, Vl y V2) = 1_ FF(l/f, Vz, Vl)

Example

This example finds the 99-th percentage point foF aandom variable with 7
and 1 degrees of freedom.
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#i ncl ude <insls. h>

mai n()
fl oat df _denoni nator = 1.0;
fl oat df _nunerator = 7.0;
fl oat f;
fl oat p = 0.99;
f = imsls_f_F_inverse_cdf(p, df_nunerator, df_denoninator);

printf("The F(7,1) 0.01 critical value is %.3f\n", f);

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors

I MSLS_F_| NVERSE_OVERFLOW Functioni msl s_f _F_i nverse_cdf
overflows. Thisisbecause df _numer at or
or df _denoni nat or and p aretoo large.
The return value is set to machine infinity.

gamma_cdf

Evaluates the gamma distribution function.

Synopsis
#include <i nsl's. h>
float i msl s_f _ganma_cdf (float x, float a)

The type double functionisi nsl s_d_ganma_cdf .

Required Arguments

float x (Input)
Argument for which the gamma distribution function is to be evaluated.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be
positive.

Return Value

The probability that a gamma random variable takes a value less than or equal to
X.
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#i ncl ude <i sl s.

T T X

0.

Description

Functioni nsl s_f _gamma_cdf evaluatesthe distribution function, F, of a
gamma random variable with shape parameter a,

1

e 'ta gt
r(a)

F(x) =

O'—;X

where I (Jis the gamma function. (The gamma function is the integral from O to
oo of the same integrand as above.) The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
tox.

The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive) or as athree-parameter distribution in
which the third parameter ¢ is alocation parameter. In the most general case, the
probability density function over (c, ) isasfollows:

If Tisarandom variable with parameters a, b, and c, the probability that T < t,
can be obtained fromi nsl s_f _gamma_cdf by setting x = (t, — c)/b.

If xislessthan a or lessthan or equal to 1.0, i nsl s_f _ganma_cdf usesaseries
expansion; otherwise, a continued fraction expansion is used. (See
Abramowitz and Stegun 1964.)

Example

Let X be agamma random variable with a shape parameter of four. (In this case,
it has an Erlang distribution since the shape parameter isan integer.) This
example finds the probability that X isless than 0.5 and the probability that X is
between 0.5 and 1.0.

h>

pv X:
a = 4.0;

= 5;
= insls_f_gamua_cdf(x, a);
i

rintf("The probability that X is less than 0.5 is 9%.4f\n", p);

1.0;
inmsls_f_gamma_cdf(x,a) - p;

rintf("The probability that X is between 0.5 and 1.0 is %6. 4f\n",

p);
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Output

The probability that Xis Iless than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

Informational Errors

| MSLS_ARG LESS THAN ZERO Since “x"=# is less than zero, the
distribution function is zero at “x.”

Fatal Errors

I MSLS X AND A TOO LARGE Since “xX"=# and “a"= # are so large, the
algorithm would overflow.

normal_cdf

Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <i nsl's. h>
float i msl s_f _normal _cdf (float x)

The typedouble function isi nsl s_d_nor mal _cdf .

Required Arguments
float x (Input)
Point at which the normal distribution function is to be evaluated.
Return Value
The probability that a normal random variable takes a value less than or equal to
X.
Description

Functioni msl s_f _normal _cdf evaluates the distribution functio, of a
standard normal (Gaussian) random variable as follows:

X
CD(X) = % Je—t2/2dt

The value of the distribution function at the poins the probability that the
random variable takes a value less than or equal to

The standard normal distribution (for whichsl s_f _nor mal _cdf is the
distribution function) has mean of 0 and variance of 1. The probability that a
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normal random variable with mean 1 and variance o’ isless than yisgiven by
imsl s_f_normal _cdf evaluated at (y — Ww)/o.
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Figure 11-4 Plot of ®(x)

Example

Suppose X isanormal random variable with mean 100 and variance 225. This
exampl e finds the probability that X isless than 90 and the probability that X is
between 105 and 110.

#i ncl ude <insls. h>

mai n()
f1 oat p, x1, x2
x1 = (90.0-100.0)/15.0;
p = imsl s_f_normal _cdf (x1);
printf("The probability that X is less than 90 is 9. 4f\n\n", p);

x1 = (105.0-100.0)/15.0;
x2 = (110.0-100.0)/15.0;
p = insls_f_normal_cdf(x2) - imsls_f_normal _cdf(x1);
printf("The probability that X is between 105 and 110 is 9. 4f\n",
p);
Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
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normal_inverse_cdf

Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis
#include <i nsls. h>
float i msl s_f _normal _i nverse_cdf (float p)

The type double functionisi nsl s_d_normal _i nverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the normal distribution function isto
be evaluated. Argument p must be in the open interval (0.0, 1.0).

Return Value

Theinverse of the normal distribution function evaluated at p. The probability
that a standard normal random variable takes a value less than or equal to
imsls_f _normal _i nverse_cdf isp.

Description

Functioni nsl s_f _normal _i nver se_cdf evaluatestheinverse of the
distribution function, @, of a standard normal (Gaussian) random variable,
i msl s_f_normal _i nverse_cdf (p) = o (X), where

X
(D(x) = % Je—tZ/Zdt

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x. The standard normal
distribution has a mean of 0 and a variance of 1.

Functioni nmsl s_f _normal _i nver se_cdf (p) isevauated by use of minimax
rational-function approximations for the inverse of the error function. General
descriptions of these approximations are given in Hart et al. (1968) and Strecok
(1968). Therationa functionsusedini msl s_f _nor mal _i nver se_cdf are
described by Kinnucan and Kuki (1968).

Example

This example computes the point such that the probability is 0.9 that a standard
normal random variableisless than or equal to this point.

#i ncl ude <insls. h>

mai n()
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fl oat X;
fl oat p =20.9;
x = imsls_f_normal _i nverse_cdf (p);

printf("The 90th percentile of a standard normal is 9. 4f.\n", x);

Output

The 90th percentile of a standard normal is 1.2816.

t cdf

Evaluates the Studest distribution function.

Synopsis
#include <i nsl's. h>
float i msls_f _t_cdf (float t, float df)

The typedouble function si sl s_d_t _cdf .

Required Arguments

float t (Input)
Argument for which the Studest distribution function is to be
evaluated.

float df (Input)
Degrees of freedom. Argumiadf must be greater than or equal to 1.0.

Return Value

The probability that a Studest random variable takes a value less than or equal
to the input.

Description

Functimi msl s_f _t_cdf evaluates the distribution function of a Student’

random variable witv = df _numer at or degrees of freedom. If the squafé o

is greater than or equal v, the relationship o&t to anF random variable (and
subsequently, to a beta random variatd&xploited, and percentage points

from a beta distribution are used. Otherwise, the method described by Hill (1970)
is used. Ifv is not an integer, is greater than 19, or is greater than 200, a Cornish-
Fisher expansion is used to evaluate the distribution funcfionslless than 20

andlt| is less than 2.0, a trigonometric series is used (see AbranamdiStegun
1964, Equations 26.7.3 and 26.7.4 with some rearrangement). For the remaining
cases, a series given by Hill (1970) that converges well for large valtiess of

used.
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Example

This example finds the probability that at random variable with 6 degrees of
freedom is greater in absolute value than 2.447. The fact that t is symmetric about

Oisused.
#i ncl ude <insls.h>
main ()
fl oat p;
fl oat t = 2.447;
fl oat df = 6.0;
p = 2.0%inmsls_f_t_cdf(-t,df);
printf("Pr(|t(6)| > 2.447) = 96.4f\n", p);
}
Output
Pr(|t(6)] > 2.447) = 0.0500
t inverse cdf

Evaluates the inverse of the Studentisstribution function.

Synopsis
#include <insls. h>
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#i ncl ude <i nsl s.

voi d main()

float imsls_f _t_inverse_cdf (float p, float df)

The type double function isi nsl s_d_t _i nver se_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the Studentiistribution function
is to be evaluated. Argumemimust be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argumaetit must be greater than or equal to 1.0.

Return Value

The inverse of the Studentslistribution function evaluated pt The probability
that a Student’'srandom variable takes a value less than or equal to
inmsls_f_t_inverse_cdf isp.

Description

Functioni msl s_f _t _i nverse_cdf evaluates the inverse distribution function

of a Student’$ random variable witk = df degrees of freedom. ¥fequals 1 or

2, the inverse can be obtained in closed form.iff between 1 and 2, the
relationship of 4 to a beta random variable is exploited and the inverse of the
beta distribution is used to evaluate the inverse; otherwise, the algorithm of Hill
(1970) is used. For small valueswofreater than 2, Hill’s algorithm inverts an
integrated expansion in 1/(1t2¥v) of thet density. For larger values, an

asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Example

This example finds the 0.05 critical value for a two-sitiegbt with 6 degrees of
freedom.

h>

fl oat df = 6.0;

f1 oat p = 0.975;

fl oat t;

t = inmsls_f_t_inverse_cdf(p,df);

printf("The two-sided t(6) 0.05 critical value is %.3f\n", t);

Output

The two-sided t(6) 0.05 critical value is 2.447
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Informational Errors

| MSLS_OVERFLOW Functioni msls_f t_inverse_cdf issetto
machineinfinity since overflow would occur
upon modifying the inverse value for the F
distribution with the result obtained from the
inverse beta distribution.

non_central t cdf

Evaluates the noncentral Studentiistribution function.

Synopsis
#include <imgls.h>
floati nsl s_f _non_central _t_cdf (floatt,intdf ,floatdelta)

The typedouble function Bi nsl s_d_non_central _t_cdf.

Required Arguments
float t (Input)

Argument for which the noncentral Studestttlistribution function is to be
evaluated.

intdf (Input)

Number of degrees of freedom of the noncentral Stustemtistribution.
Argument df must be greater than or equal to 0.0

float del t a (Input)
The noncentrality parameter.

Return Value

The probability that a noncentral Student’s random variable takes a value less
than or equaldt .

Description

Functimi nmsl s_f _non_central _t _cdf evaluates the distribution functié-
of a noncentral random variable witdf degrees of freedom and noncentrality
parametedel t a; that is, wihv=df ,0=del ta, ardt =t,

t Vvlze—52/2
F(tO):J 2\(viD)2

o TiT(V/ 2)(v+x?)
wher T ([lis the gamma function. The value of the distribution function at the

pointt, is the probability that the random variable takes a value less than or equal
tot.

ir((VH +1)/ 2)(%)(\/2+_>;22)i/2dx
1=0
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The noncentral t random variable can be defined by the distribution function
above, or aternatively and equivaently, astheratio of anormal random variable
and an independent chi-squared random variable. If w has anormal distribution
with mean 6 and variance equal to one, u has an independent chi-squared
distribution with v degrees of freedom, and

X=w/+ulv

then x has a noncentral t distribution with degrees of freedom and noncentrality
parameter O.

The distribution function of the noncentral t can also be expressed as a double
integral involving a normal density function (see, for example, Owen 1962, page
108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution
function.

1.0 — —

w1 |

] |

0.2 — /

O0—TTrTrrTrTrTTr T T T T T T T T T

—-4.0 0.0 4.0 8.0 120 16.0 20.0

Figure 11-6 Noncentral Student’s t Distribution Function

Example

Suppose t isanoncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that t isless
than 12.0. (This can be checked using the table on page 111 of Owen 1962, with
n =0.866, which yields A = 1.664.)
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#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

{

float t = 12.0;

float df = 6;

float delta = 6.0;

float p;

p =inmsls_f _non_central t_cdf(t, df, delta);

printf("The probability that t is less than 12 is %.4f.\n", p);
}

Output
The probability that t is less than 12.0 is 0.9501

non_central t inv_cdf

Evaluates the inverse of the noncentral Studéwtistribution function.

Synopsis

#include <imsls.h>

floati msl s_f _non_central _t_inv_cdf (float p, float df , float del t a)
The typedouble function i nsl s_d_non_central _t_i nv_cdf.

Required Arguments

floatp (Input)
A Probability for which the inverse of the noncentral Student's t
distribution function is to be evaluated must be in the open interval
(0.0, 1.0).

float df (Input)
Number of degrees of freedom of the noncentral Stustemtistribution.
Argumentdf must be greater than or equal to 0.0

float del t a (Input)
The noncentrality parameter.
Return Value

The probability that a noncentral Student's t random variable takes a value less
than or equaldt isp.
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Description

Functioni nmsl s_f _non_central _t_i nv_cdf evaluatestheinverse
distribution function of a noncentral t random variable with df degrees of
freedom and noncentrality parameter del t a; that is, with P = p, v=df , and
d=del ta,itdeterminest (=i nmsls_f_non_central _t_inv_cdf (p, df,
del t a)), such that

v/2 —6 12
J.w\/_l'(v/2)(v+x 2y(vsniz £

where I' ([lis the gamma function. The probability that the random variable takes
avaluelessthanor equal to t isP. Seei msl s_f _non_central _t_cdf

(page 522) for an alternative definition in terms of normal and chi-squared
random variables. The function i nsl s_f _non_central _t_inv_cdf uses
bisection and modified regulafalsi to invert the distribution function, which is
evaluated using routinei nsl s_f _non_central _t_cdf.

z F((v+i+1)/2)(% )( 2X )"2dx

Example

In this example, we find the 95-th percentage point for a noncentral t random
variable with 6 degrees of freedom and noncentrality parameter 6.

#i ncl ude <insls. h>

#i ncl ude <stdio. h>

voi d main()

{

float p = .95;

float df = 6;

float delta = 6.0;

float t;

t = insls_f_non_central t_inv_cdf(p, df, delta);

printf("The 0.05 noncentral t critical value is %6.4f.\n", t);

Output

The 0.05 noncentral t critical value is 11.9952.
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Chapter 12: Random Number
Generation

Routines

12.1  Univariate Discrete Distributions
Generate pseudorandom binomial numbers........ random_binomial 530
Generate pseudorandom geometric numbers .. random_geometric 531
Generate pseudorandom

hypergeometric nUmMbers ...........cccoocuveeenne random_hypergeometric 533
Generate pseudorandom

logarithmic numbers..........c.ccoceeiiieii random_logarithmic 535
Generate pseudorandom negative

binomial numbers..........cccooiii random_neg_binomial 537
Generate pseudorandom Poisson numbers ......... random_poisson 539
Generate pseudorandom discrete

uniform NUMDErs ........cccceeviiiiiiiiieee, random_uniform_discrete 540

12.2 Univariate Continuous Distributions

Generate pseudorandom beta numbers..................... random_beta 542
Generate pseudorandom cauchy numbers............ random_cauchy 544
Generate pseudorandom chi_squared

NUMDETS .oeviiiee et random_chi_squared 545
Generate pseudorandom exponential

NUMDETS ©oevieiie et e e random_exponential 547
Generate pseudorandom mixed

exponential numbers.............ccocccvvveeennn. random_exponential_mix 549
Generate pseudorandom gamma numbers........... random_gamma 551
Generate peudorandom lognormal numbers .... random_lognormal 552
Generate pseudorandom normal numbers............. random_normal 554
Generate pseudorandom Student’s t.................. random_student_t 556
Generate pseudorandom triangular numbers .... random_triangular 557
Generate pseudorandom uniform numbers........... random_uniform 559
Generate pseudorandom

Von Mises NUMDBEIS .......ovvveeiiiiiiiiiieeee e, random_von_mises 561
Generate pseudorandom Weibull numbers ........... random_weibull 562
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12.3

12.4

12.5

Multivariate Continuous Distributions
Generate multivariate
NOrmMal VECIOrS .......ccoeviviiiviiiiiieeeeee random_normal_multivariate 564

Stochastic Processes
Generate pseudorandom ARMA
ProCeSsS NUMDEIS ...ooiiiiiiiiiieee et random_arma 566

Utility Functions

Select the uniform (0, 1) generator...............cccuvveeee. random_option 566
Retrieve the current value of the seed................ random_seed_get 571
Initialize a random seed............oocviviiiiiieeenninns random_seed_set 573

Usage Notes

Overview of Random Number Generation

Sections 12.1 through 12.5 describe functions for the generation of random
numbers that are useful for applicationsin Monte Carlo or simulation studies.
Before using any of the random number generators, the generator must be
initialized by selecting a seed or starting value. The user can do this by calling the
functioni msl s_r andom seed_set . If the user does not select aseed, oneis
generated using the system clock. A seed needsto be selected only once in a
program, unless two or more separate streams of random numbers are maintai ned.
Other utility functions in this chapter can be used to select the form of the basic
generator to restart simulations and to maintain separate simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates,”
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom”
is sometimes used to emphasize that the numbers generated are really not
“random” since they result from a deterministic process. The usefulness of
pseudorandom numbers is derived from the similarity, in a statistical sense, of
samples of the pseudorandom numbers to samples of observations from the
specified distributions. In short, while the pseudorandom numbers are completely
deterministic and repeatable, they simulate the realizations of independent and
identically distributed random variables.

Basic Uniform Generator

The random number generators in this chapter use a multiplicative congruential
method. The form of the generator is as follows:

X; = ¢cX;_ymod (fl -1)

Eachy; is then scaled into the unit interval (0,1). If the multiplgeis a primitive
root modulo 2' - 1 (which is a prime), then the generator will have a maximal
period of 3' - 2. There are several other considerations, however. See Knuth
(1981) for a good general discussion. The possible valuesifidihe generators

528 « Usage Notes

IMSL C/Stat/Library



are 16807, 397204094, and 950706376. The selection is made by the function

i msl s_random opt i on. The choice of 16807 will result in the fastest execution
time, but other evidence suggests that the performance of 950706376 is best
among these three choices (Fishman and Moore 1982). If no selection is made
explicitly, the functions use the multiplier 16807, which has been in use for some
time (Lewis et a. 1969).

The generation of uniform (0,1) numbersis done by the function

i msl s_f_random uni f or m Thisfunction is portable in the sense that, given
the same seed, it produces the same sequencein all computer/compiler
environments.

Shuffled Generators

The user also can select a shuffled version of these generators using

i msl s_random opt i on. The shuffled generators use a scheme due to
Learmonth and Lewis (1973). In this scheme, atable isfilled with the first 128
uniform (0,1) numbers resulting from the simple multiplicative congruential
generator. Then, for each x; from the simple generator, the low-order bits of x; are
used to select arandom integer, j, from 1 to 128. The j-th entry in the table is then
delivered as the random number; and x;, after being scaled into the unit interval, is
inserted into the j-th position in the table. This schemeis similar to that of

Bays and Durham (1976), and their analysis is applicable to this scheme as well.

Setting the Seed

The seed of the generator can be setini nsl s_random seed_set and can be
retrieved by i nsl s_random seed_get . Prior to invoking any generator in this
section, the user cancall i sl s_random seed_set toinitialize the seed, which
isan integer variable with a value between 1 and 2147483647. If it is not
initialized by i msl s_r andom seed_set , arandom seed is obtained from the
system clock. Onceit isinitialized, the seed need not be set again.

If the user wants to restart asimulation, i nsl s_r andom seed_get can be used
to obtain the final seed value of one run to be used as the starting valuein a
subsequent run. Also, if two simultaneous random number streams are desired in
onerun,i nsl s_random seed_set andi msl s_random seed_get canbe
used before and after the invocations of the generators in each stream.
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random_binomial

Generates pseudorandom numbers from a binomial distribution.

Synopsis
#include <i nsls. h>
int *i msl s_f_random bi noni al (int n_random int n, float p, ..., 0)

The type double functionisi nsl s_d_r andom bi noni al .

Required Arguments

int n_random (Input)
Number of random numbersto generate.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial. Parameter p must be greater than 0.0
and lessthan 1.0.

Return Value

An integer array of length n_r andomcontaining the random binomial deviates.

Synopsis with Optional Arguments

#include <i nsl's. h>
int *i nsl s_f_random bi nonmi al (int n_random int n, float p,
| MBLS_RETURN_USER, int ir[],
0)
Optional Arguments
| MBLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_r andomcontaining the random
binomial deviates.
Description

Functioni nsl s_f _random bi noni al generates pseudorandom numbers from
abinomial distribution with parametersn and p. Parameters n and p must be
positive, and p must less than 1. The probability function (withn=n and p=p) is

() =(2)p*@- )™

forx=0,1,2,...,n.
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The algorithm used depends on the values of nand p. If np <10 or pislessthan

machine epsilon (seei nsl s_f _nmachi

ne, Chapter 14), the inverse CDF

technique is used; otherwise, the BTPE agorithm of Kachitvichyanukul and
Schmeiser (see Kachitvichyanukul 1982) is used. Thisis an acceptance /rejection
method using a composition of four regions. (TPE=Triangle, Parallelogram,

Exponential, left and right.)

Example

Inthisexample, i msl s_f _random bi noni al generates five pseudorandom
binomial deviates from abinomial distribution with parameters 20 and 0.5.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d main()

i nt n_random = 5;
i nt n = 20;

float p = 0.5;

i nt *ir;

i msl s_random seed_set (123457);
ir i msl s_f_random bi noni al (n_random n,
imsls_i _wite_matrix("Binomal (20, 0.5)

1, n_random ir, IMSLS_NO COL_LABELS,
}
Output
Bi nom al (20, 0.5) random devi ates:
14 9 12 10 12

p. 0);
random devi ates: ",
0);

random_geometric

Generates pseudorandom numbers from a geometric distribution.

Synopsis

#include <i nsls. h>

int *i msl s_f_random geonetric (int n_random float p, ..

,0)

The type double functionisi nsl s_d_r andom geonetri c.

Required Arguments

int n_random (Input)

Number of random numbers to generate.

float p (Input)

Probability of succes on each trial.. Parameter p must be positive and

less than 1.0.
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Return Value

Aninteger array of length n_r andomcontaining the random geometric deviates.

Synopsis with Optional Arguments

#include <insls. h>

int *i msl s_f_random geonetric (int n_random float p,
| MBLS_RETURN_USER, int ir[],
0)

Optional Arguments

I MSLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_r andomcontaining the random
geometric deviates.

Description

Functioni nmsl s_f _random geonet ri c generates pseudorandom numbers from
ageometric distribution with parameter P, where P is the probability of getting a
success on any trial. A geometric deviate can be interpreted as the number of
trials until the first success (including the trial in which the first successis
obtained). The probability functionis

f(x) = P(1 - P)*"
forx=1,2,...and0O<P<1.
The geometric distribution as defined above has mean 1/P.
The i-th geometric deviate is generated as the smallest integer not less than

(log (U,))/(log (1 - P)), where the U; are independent uniform(0, 1) random
numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 — P)/P.
Such deviates can be obtained by subtracting 1 from each element of i r (the
returned vector of random deviates).

Example

Inthisexample, i msl s_f _random geonet ri ¢ generates five pseudorandom
geometric deviates from a geometric distribution with parameter an equal to 0.3.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d nain()

n_random = 5;
float p = 0. 3;
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i msl s_random seed_set (123457);

ir = insls_f_random geonetric(n_random p, 0);

imsls_i _wite_matrix("Geonetric(0.3) random devi ates: ",
1, n_random ir, IMSLS NO COL_LABELS, 0);

Output

Geonetric(0.3) random devi at es:
1 4 1 2 1

random_hypergeometric

Generates pseudorandom numbers from a hypergeometric distribution.

Synopsis
#include <i nsls. h>

int *i nsl s_f_random hypergeonetric (int n_random int n, int m int
[, .., 0)

The type double functionisi nsl s_d_r andom hyper geonetri c.

Required Arguments

int n_random (Input)
Number of random numbersto generate.

int n (Input)
Number of items in the sample. Parameter n must be positive.

int m (Input)
Number of specia itemsin the population, or lot. Parameter mmust be
positive.

int I (Input)
Number of itemsin the lot. Parameter | must be greater than both n and
m

Return Value

An integer array of length n_r andomcontaining the random hypergeometric
deviates.
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Synopsis with Optional Arguments

#include <i nsls. h>

int *i nsl s_f_random hypergeonetric (int n_random int n, int m int
I,
| MBLS_RETURN_USER, int ir[],
0)

Optional Arguments

| MSLS_RETURN_USER,int i r[] (Output)
User-supplied integer array of length n_r andomcontaining the random
hypergeometric deviates.

Description

Functioni nmsl s_f _random hyper geonet ri c generates pseudorandom
numbers from a hypergeometric distribution with parameters N, M, and L. The
hypergeometric random variable X can be thought of as the number of items of a
given type in arandom sample of size N that is drawn without replacement from a
population of size L containing M items of thistype. The probability function is

M\ L-M
f(X):(X )(N'X)
(%)
forx=max (O, N-L+ M), 1,2, ...,min (N, M)

If the hypergeometric probability function with parametersN, M, and L evaluated
aN-L+M  (orat Oif thisis negative) is greater than the machine epsilon (see

i msl s_f _machi ne, Chapter 14), and less than 1.0 minus the machine epsilon,
theni nsl s_f _random hyper geonet ri ¢ usestheinverse CDF technique. The
routine recursively computes the hypergeometric probabilities, starting at
x=max (0, N - L + M) and using the ratio

f(X=x+1)
f(X=x)

(see Fishman 1978, p. 475).

If the hypergeometric probability function istoo small or too closeto 1.0, the

i msl s_f_random hyper geonet ri c generates integer deviates uniformly in
theinterval [1, L —i] fori =0, 1, ..., and at the i-th step, if the generated deviate is
less than or equal to the number of special items remaining in the lot, the
occurence of one special item istallied and the number of remaining special items
is decreased by one. This process continues until the sample size of the number of
special itemsin the lot is reached, whichever comes first. This method can be
much slower than the inverse CDF technique. The timing dependsonN. If N is
more than half of L (which in practical examplesisrarely the case), the user may
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wish to modify the problem, replacing N by L — N, and to consider the generated
deviates to be the number of special items not included in the sample.

Example

Inthisexample, i msl s_f _random hyper geonet ri c generatesfive
pseudorandom hypergeometric deviates from a hypergeometric distribution to
simulate taking random samples of size 4 from alot containing 20 items, of which
12 are defective. The resulting hypergeometric deviates represent the numbers of
defectivesin each of the five samples of size 4.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

{
int n_random = 5;
int n=4;
int m= 12;
int | = 20;
int *ir;
i msl s_random seed_set (123457);
ir = insls_f_random hypergeonetric(n_random n, m |, 0);
imsls_i _wite_matrix("Hypergeonetric random devi ates: ",
1, n_random ir, | MSLS_NO COL_LABELS, 0);
}

Output

Hyper geonmetri c random devi at es:

4

2

3 3 3

Fatal Errors

I MSLS _LOT_SI ZE_TOO SMALL Thelot size must be greater than the sample
size and the number of defectivesin thelot.
Lot size=#. Sample
size = #. Number of defectivesin the
lot = #.

random_logarithmic

Generates pseudorandom numbers from a logarithmic distribution.

Synopsis
#include <insls. h>
int *i msl s_f_random | ogarithmic (int n_random float a, ..., 0)

The type double functionisi nsl s_d_random | ogari t hni c.
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Required Arguments

int n_random (Input)
Number of random numbersto generate.

float a (Input)
Parameter of the logarithmic distribution. Parameter a must be positive
and lessthan 1.0.

Return Value

An integer array of length n_r andomcontaining the random logarithmic deviates.

Synopsis with Optional Arguments

#include <i nsl's. h>
int *i nsl s_f_random | ogarithnic (int n_random float a,
| MBLS_RETURN_USER, int ir[],
0)
Optional Arguments
| MBLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_r andomcontaining the random
logarithmic deviates.
Description

Functioni nmsl s_f _random | ogari t hni ¢ generates pseudorandom numbers
from alogarithmic distribution with parameter a. The probability function is

f(x)=-

abX

xIn(1-a)
forx=1,23,...,and0<a<1

The methods used are described by Kemp (1981) and depend on the value of a. If
ais less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an
inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives
special treatment to the highly probable values of 1 and 2 is used.

Example

In this examplei, msl s_f _random | ogari t hnmi ¢ generates five pseudorandom
logarithmic deviates from a logarithmic distribution with parameter a equal to 0.3.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d nain()

i nt n_random = 5;
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float a = 0. 3;
i nt *ir;

i msl s_random seed_set (123457);

ir = insls_f_random.| ogarithnic(n_random a, 0);

imsls_i _wite_matrix("logarithm c random devi ates:",
1, n_random ir, IMSLS NO COL_LABELS, 0);

Output

| ogarithm c random devi at es:
2 1 1 1 2

random_neg_binomial

Generates pseudorandom numbers from a negative binomial distribution.

Synopsis
#include <i nsls. h>

int *i nsl s_f_random neg_bi noni al (int n_random float rk, float p,
oy 0)

The type double functionisi nsl s_d_r andom neg_bi noni al .

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float rk (Input)
Negative binomial parameter. Parameter r k must bepositive. If rk isan
integer, the generated deviates can be thought of as the number of
failuresin a sequence of Bernoulli trials before r k successes occur.

float p (Input)
Probability of success on each trial.Parameter p must be greater than
machine epsilon (seei nsl s_f _nachi ne, Chapter 14) and less than 1.0.

Return Value
Aninteger array of length n_r andomcontaining the random negative binomial
deviates.

Synopsis with Optional Arguments

#include <i nsls. h>

int *i msl s_f_random neg_bi nomi al (int n_random float rk, float p,
| MBLS_RETURN_USER, int ir[],
0)
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Optional Arguments

| MBLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_r andomcontaining the random
negative binomial deviates.

Description

Functioni nmsl s_f _random neg_bi noni al generates pseudorandom numbers
from a negative binomial distribution with parametersr k and p. Parametersr k
and p must be positive and p must be less than 1. The probability function (with
r=rkandp=p)is

() =("%")a-p) p*

forx=0,1,2, ...

If risaninteger, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r
successes are obtained, where p is the probability of getting a success on any trial.
In thisform, the random variable takesvaluesr, r + 1, r + 2, ... and can be
obtained from the negative binomial random variable defined above by adding r
to the negative binomial variable. Thislatter form is also equivalent to the sum of
r geometric random variables defined astaking values 1, 2, 3, ...

If rp/(1 - p) islessthan 100 and (1 — p)” is greater than the machine epsilon,

i msl s_f _random neg_bi nomi al usesthe inverse CDF technique; otherwise,
for each negative binomial deviate, i nsl s_f _random neg_bi noni al
generatesagamma(r, p/(1 — p)) deviate Y and then generates a Poisson deviate
with parameter Y.

Example

Inthisexample, i msl s_f _random neg_bi nom al generatesfive
pseudorandom negative binomial deviates from a negative binomial (Pascal)
distribution with parametersr equal to 4 and p equal to 0.3.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

i nt n_random = 5;
float rk = 4.0;
float p = 0. 3;

i nt *ir;

i nsl s_random seed_set (123457) ;
ir = insls_f_random neg_bi nom al (n_random rk, p, 0);
inmsls_ i _wite_matrix(

"Negative Binomal (4.0, 0.3) random devi at es:

1, n_random ir, IMSLS NO COL_LABELS, 0);
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Output

Negative Binomial (4.0, 0.3) random devi at es:
5 1 3 2 3

random_poisson

Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <insls. h>

int *i sl s_random poi sson (int n_random float theta, ..., 0)

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. Argument t het a must be positive.
Return Value

An array of length n_r andomcontaining the random Poisson deviates.

Synopsis with Optional Arguments
#include <insls. h>

int *i msl s_random poi sson (int n_random float t het a,
| MBLS_RETURN_USER, int r[],
0)

Optional Arguments

| MSLS_RETURN_USER, int r[] (Output)
User-supplied array of length n_r andomcontaining the random Poisson
deviates.

Description

Functioni msl s_r andom poi sson generates pseudorandom numbers from a
Poisson distribution with positive meant het a. The probability function (with
O=theta)is

f(x)=(e%0%)/xt forx=0,12,...

If t het aislessthan 15,i nsl s_r andom poi sson uses an inverse CDF method,;
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see
also Schmeiser 1983) is used. The PTPE method uses a composition of four
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regions, atriangle, a parallelogram, and two negative exponentials. In each
except the triangle, acceptance/rgjection is used. The execution time of the
method is essentially insensitive to the mean of the Poisson.

region

Functioni msl s_random seed_set can be used to initialize the seed of the
random number generator; functioni nsl s_r andom opt i on can be used to

select the form of the generator.

Example

Inthisexample, i msl s_r andom poi sson is used to generate five
pseudorandom deviates from a Poisson distribution with mean equal to 0.5.

#i ncl ude <insls. h>

#defi ne N_RANDOM 5

voi d main()

Poi sson( 0. 5)

*r;
seed = 123457;
theta = 0.5;

i msl s_random seed_set (seed);
i msl s_random poi sson (N_RANDOM theta, 0);
imsls_i _wite_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM r

Output

random devi at es

4 5
0 1

random_uniform_discrete

Generates pseudorandom numbers from a discrete uniform distribution.

Synopsis

#include <i nsls. h>

int *i msl s_f_random uni formdiscrete (int n_random int k,
The type double function is i msl s_d_r andom uni f or m di screte.

Required Arguments

int n_random (Input)
Number of random numbersto generate.

. 0)
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int k (Input)
Parameter of the discrete uniform distribution. Theintegers 1, 2, ..., k
occur with equal probability. Parameter k must be positive.

Return Value

Aninteger array of length n_r andomcontaining the random discrete uniform
deviates.

Synopsis with Optional Arguments

#include <insls. h>

int *i msl s_f_random uni formdiscrete (int n_random int kK,
| MBLS_RETURN_USER, int ir[],
0)

Optional Arguments

| MBLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_r andomcontaining the random
discrete uniform deviates.

Description

Functioni nsl s_f _random uni f or m di scr et e generates pseudorandom
numbers from a uniform discrete distribution over theintegers 1, 2, ..k. A
random integer is generated by multiplying k by a uniform (0, 1) random number,
adding 1.0, and truncating the result to an integer. This, of course, is equivalent to
sampling with replacement from afinite population of sizek

Example

Inthisexample, i msl s_f _random uni f or m di scr et e generates five
pseudorandom discrete uniform deviates from a discrete uniform distribution over
theintegers 1to 6.

#i ncl ude <stdio. h>

#i nc
voi d
{

ude <insls.h>
mai n()

nt n_random = 5;
nt k = 6;
nt *ir;

nmsl s_random seed_set (123457) ;

r = insls_f_random uni formdi screte(n_random k, 0);

msls_i _wite_matrix("Discrete uniform (1, 6) random devi ates:" ,
1, n_random ir, | MSLS_NO COL_LABELS, 0);
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Output

Di screte uniform (1, 6) random devi at es:
6 2 5 4 6

random_beta

Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <insls. h>
float *insl s_f_random beta (int n_random float pin, float gin, ..., 0)

The type double function isi nsl s_d_r andom bet a.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float pi n (Input)
First beta distribution parameter. Argument pi n must be positive.

float gi n (Input)
Second beta distribution parameter. Argument gi n must be positive.
Return Value

If no optional arguments are used, i msl s_f _random bet a returns an array of
length n_r andomcontaining the random standard beta deviates. To release this
space, usefr ee.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _random beta (int n_random float pin, float qin,
| MBLS_RETURN USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
Array of length n_r andomcontaining the random standard beta
deviates.
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Description

Functioni nmsl s_f _random bet a generates pseudorandom numbers from a beta
distribution with parameterspi n and gi n, both of which must be positive. With
p = pi n and g =qi n, the probability density function is

X:—F(p+q) xP(1- %) or 0 x<
9= Froyrig 0 for 0= x<1

where " (Olis the gamma function.

The algorithm used depends on the values of p and g. Except for the trivial cases

of p=1or =1, inwhichtheinverse CDF method is used, all of the methods use
acceptance/rejection. If p and g are both less than 1, the method of Jéhnk (1964)
is used. If eithep or g is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If bothandq are greater than 1, algorithm BB (Cheng
1978), which requires very little setup time, is used ifandomis less than 4;

and algorithm B4PE of Schmeiser and Babu (1980) is used #ndomis

greater than or equal to 4. Note thatiaandq both greater than 1, calling

i msl s_f _random bet a in a loop getting less than four variates on each call will
not yield the same set of deviates as callimgl s_f _random bet a once and
getting all the deviates at once because two different algorithms are used.

The values returned inare less than 1.0 and greater thawheres is the
smallest positive number such that £.9is less than 1.0.

Functioni msl s_random seed_set can be used to initialize the seed of the
random number generator; functioms! s_r andom opt i on can be used to
select the form of the generator.

Example

In this examplei, sl s_f _r andom bet a generates five pseudorandom beta
(3, 2) variates.

#i ncl ude <insls. h>

mai n()
i nt n_random = 5;
i nt seed = 123457;
fl oat pin = 3.0;
fl oat gin = 2.0;
fl oat *r;

i msl s_random seed_set (seed);

r = imsls_f_randombeta (n_random pin, qgin, 0);
imsls_f_wite_matrix("Beta (3,2) random devi ates", 1, n_random
r, 0);
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Output

Beta (3,2) random devi ates
1 2 3 4 5
0.2814 0. 9483 0. 3984 0. 3103 0. 8296

random_cauchy

Generates pseudorandom numbers from a cauchy distribution.

Synopsis
#include <insls. h>
float *i nsl s_f _random cauchy (int n_random ..., 0)

The type double function isi nsl s_d_r andom cauchy.

Required Arguments
int n_random (Input)

Number of random numbersto generate.
Return Value

An array of length n_r andomcontaining the random cauchy deviates.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _random cauchy (int n_random
| MBLS_RETURN USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random cauchy deviates.
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Description

Functioni msl s_f _random cauchy generates pseudorandom numbers from a
cauchy distribution. The probability density function is

B S
i )_TI[SZ+(x—T)2]

where Tisthe median and T — Sisthefirst quartile. This function first generates
standard Cauchy random numbers (T = 0 and S= 1) using the technique described
below, and then scalesthe valuesusing T and S.

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform
(0, 1) deviate, u, astan [1t(u — 0.5)]. Rather than evaluating a tangent directly,
however, r andom cauchy generates two uniform (=1, 1) deviates, x, and x,.
These values can be thought of as sine and cosine values. If

2 2

islessthan or equal to 1, then x, /x, is delivered as the unscaled Cauchy deviate;
otherwise, x; and x, are rejected and two new uniform (-1, 1) deviates are
generated. This method is also equivalent to taking the ration of two independent
normal deviates.

Example

Inthisexample, i msl s_f _random cauchy generates five pseudorandom
cauchy numbers. The generator used is a simple multiplicative congruential with
amultiplier of 16807.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

int n_random = 5;
float *r;

i msl s_random seed_set (123457);
r = imsls_f_random cauchy(n_random 0);

printf("Cauchy random devi ates: 8. 4f 98. 4f 9B. 4f UB. 4f 9B. 4f\ n",
r(ol, rfa], r[2], r[3], r[4]);

Output
Cauchy random devi at es: 3.5765 0.9353 15.5797 2.0815 -0.1333

random_chi_squared

Generates pseudorandom numbers from a chi-squared distribution.
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Synopsis
#include <i nsl's. h>
float *insl s_f_random chi _squared (int n_random float df, ..., 0)

The type double function isi nsl s_d_r andom chi _squar ed.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value

An array of length n_r andomcontaining the random chi-squared deviates.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _random chi _squared (int n_random float df,
| MBLS_RETURN USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random chi-
squared deviates.

Description

Functioni msl s_f _random chi _squar ed generates pseudorandom numbers
from a chi-squared distribution with df degrees of freedom. If df isan even
integer less than 17, the chi-squared deviate r is generated as

where n = df /2 and the u; are independent random deviates from auniform (0, 1)
distribution. If df isan odd integer lessthan 17, the chi-squared deviate is
generated in the same way, except the square of anormal deviate is added to the
expression above. If df isisgreater than 16 or is not an integer, and if it is not too
large to cause overflow in the gamma random number generator, the chi-squared
deviateis generated as a special case of agamma deviate, using function

i msl s_f _random gamma (page 551). If overflow would occur in

i msl s_f _random ganmms, the chi-squared deviate is generated in the manner

546 « random_chi_squared IMSL C/Stat/Library



described above, using the logarithm of the product of uniforms, but scaling the
guantities to prevent underflow and overflow.
Example

Inthisexample, i msl s_f _random chi _squar ed generates five pseudorandom
chi-sguared deviates with five degrees of freedom.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

i nt n_random = 5;
float df = 5.0;
float *r;

i msl s_random seed_set (123457);

r = imsls_f_random chi _squared(n_random df, 0);

imsls_f_wite_matrix("Chi-Squared random devi ates: ",
1, n_random r, | MSLS_NO COL_LABELS, 0);

Output

Chi - Squar ed random devi at es:
12. 09 0. 48 1.80 14. 87 1.75

random_exponential

Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <insls. h>

float *i nsl s_f_random exponential (int n_random ..., 0)

The type double function isi nsl s_d_r andom exponenti al .

Required Arguments
int n_random (Input)
Number of random numbers to generate.
Return Value
An array of length n_r andomcontaining the random standard exponential
deviates.

Synopsis with Optional Arguments
#include <insls. h>
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float *i msl s_f _random exponential (int n_random
| MSLS_RETURN_USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random standard
exponential deviates.

Description

Functioni nsl s_f _random exponenti al generates pseudorandom numbers
from a standard exponential distribution. The probability density function is
f(x)=e ", for x>0. Functioni msl s_f random exponenti al usesan
antithetic inverse CDF technique; that is, auniform random deviate U is
generated, and the inverse of the exponential cumulative distribution function is
evaluated at 1.0 — U to yield the exponential deviate.

Deviates from the exponential distribution with mean 6 can be generated by using
i msl s_f_random exponenti al and then multiplying each entry inr by 6.
Example

Inthisexample, i msl s_f _random exponenti al generates five pseudorandom
deviates from a standard exponential distribution.

#i ncl ude <insls. h>

#def i ne N_RANDOM 5

mai n()
{ .
i nt seed = 123457,
i nt n_random = N_RANDOM
fl oat *r;
i msl s_random seed_set (seed);
r = inmsls_f_random exponential (n_random 0);
printf("%: 98.4f%8. 4f 98. 4f 8. 4f\ n",
"Exponential random devi at es",
} rfor, rf1], rf2], r[(3], r[4]);

Output
Exponenti al random devi at es: 0.0344 1.3443 0.2662 0.5633
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random_exponential _mix

Generates pseudorandom numbers from a mixture of two exponential
distributions.

Synopsis
#include <insls. h>

float *i nsl s_f _random exponential _nmix (int n_random float t het al,
float t heta2, float p, ..., 0)

The type double functionisi nsl s_d_r andom exponenti al _ni x.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float thetal (Input)
Mean of the exponentia distribution which has the larger mean.

float theta2 (Input)
Mean of the exponentia distribution which has the smaller mean.
Parameter t het a2 must be positive and less than or equal tot het al.

float p (Input)
Mixing parameter. Parameter p must be non-negative and less than or
equal tot het al/(t het al —t het a2).

Return Value

An array of length n_r andomcontaining the random deviates of a mixture of two
exponential distributions.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _random exponential _nmix (int n_random floatt het a1,
float t het a2, float p,
| MBLS_RETURN_USER, float r[],
0)

Optional Arguments

| MBLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random
deviates.
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Description

Functioni nmsl s_f _random exponent i al _ni x generates pseudorandom
numbers from a mixture of two exponential distributions. The probability density
functionis

£(x)= P o 1-p o X/,
0, 0,

for x>0, wherep=p, 6, =t hetal, and 6, =t het a2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p
isinterpretable as a probability; and i msl s_f _random exponenti al _m xed
with probability p generates an exponential deviate with mean 6,, and with
probability 1 — p generates an exponential with mean 8,. When p is greater than
1, but less than 6,/(6, — 6,), then either an exponential deviate with mean 6, or
the sum of two exponentials with means6, and 6, is generated. The probabilities
aeq=p-(p—-1)(6,/6,) and 1 — q, respectively, for the single exponential and
the sum of the two exponentials.

Example

Inthisexample, i msl s_f _random exponenti al _m x isused to generate five
pseudorandom deviates from a mixture of exponentials with means 2 and 1,
respecctively, and with mixing parameter 0.5.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d main()

i nsl s_random seed_set (123457);
r = inmsls_f_random exponential _m x(n_random thetal, theta2, p, 0);
inmsls f wite_matrix("M xed exponential random devi ates:

1, n_random r, IMSLS NO COL_LABELS, 0);

Output

M xed exponential random devi at es:
0. 070 1. 302 0. 630 1.976 0.372
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random_gamma

Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <i nsls. h>
float *i nsl s_f _random ganma (int n_random float a, ..., 0)

The type double functionisi nsl s_d_r andom gamm.

Required Arguments

int n_random (Input)
Number of random numbersto generate.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be
positive.

Return Value

An array of length n_r andomcontaining the random standard gamma deviates.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i msl s_f_random ganma (int n_random float a,
| MSLS_RETURN_USER, float r[],
0)

Optional Arguments

I MSLS_USER RETURN, float r[] (Output)
User-supplied array of length n_r andomcontaining the random standard
gamma deviates.

Description

Functioni nmsl s_f _random gamma generates pseudorandom numbers from a
gamma distribution with shape parameter a and unit scale parameter. The
probability density function is

1 a1
f(x) = ——x*"Te™ forx=0
(x) I'(a)x e or X

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates
are used; for the special case of a = 1.0, exponential deviates are generated.
Otherwise, if aislessthan 1.0, an acceptance-rejection method due to Ahrens,
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described in Ahrens and Dieter (1974), isused. If aisgreater than 1.0, aten-
region rejection procedure developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and
scale parameter b can be generated by usingi nsl s_f _random gamma and then
multiplying each entry inr by b. The following statements (in single precision)
would yield random deviates from a gamma (a, b) distribution.

float *r;

r = imsls_f_random ganma(n_random a, 0);

for (i=0; i<n_random i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter
having avalue equal to a positive integer; hence, i nsl s_f _random ganma
generates pseudorandom deviates from an Erlang distribution with no
modifications required.

Functioni nmsl s_r andom seed_set can be used to initialize the seed of the
random number generator; functioni nsl s_r andom opt i on can be used to
select the form of the generator.

Example

Inthisexample, i msl s_f _random gamma generates five pseudorandom
deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0.

#i ncl ude <insls. h>

voi d main()

i nt seed = 123457,
i nt n_random = 5;
fl oat a = 3.0;

fl oat *r;

i n6l s_random seed_set (seed);
r = imsls_f_random ganmma(n_random a, 0);
inmsls f wite matrix("Gamma(3) random devi ates”, 1, n_random r, 0);

}
Output
Gamma(3) random devi at es
1 2 3 4 5
6. 843 3. 445 1. 853 3.999 0.779

random_lognormal

Generates pseudorandom numbers from alognormal distribution.

Synopsis

#include <i nsls. h>
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float *i nsl s_f_random | ognormal (int n_random float nean,
float std, ..., 0)

The type double function isi sl s_d_r andom | ognor nmal .

Required Arguments

int n_random (Input)
Number of random numbersto generate.

float mean (Input)
Mean of the underlying normal distribution.

float std (Input)
Standard deviation of the underlying normal distribution.

Return Value

An array of length n_r andomcontaining the random deviates of alognormal
distribution. The log of each element of the vector has a normal distribution with
mean mean and standard deviation st d.

Synopsis with Optional Arguments

#include <i nsls. h>

float *insl s_f_random | ognormal (int n_random float nean,
float std,
| MSBLS_RETURN USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random
lognormal deviates.

Description

Functioni nmsl s_f _random | ognor mal generates pseudorandom numbers from
alognormal distribution with parametersmean and st d. The scale parameter in
the underlying normal distribution, st d, must be positive. The method isto
generate normal deviates with mean nean and standard deviation st d and then to
exponentiate the normal deviates.

With u = mean and o = st d, the probability density function for the lognormal
distributionis
1

f(x)= exp[— Ziz (Inx—p)z}

OXA/2TT

for x > 0. The mean and variance of the lognormal distribution are exp (i + 02/2)
and exp (24 + 20%) — exp (2u + 0%, respectively.
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Example

Inthisexample, i msl s_f _random | ognor mal isused to generate five
pseudorandom lognormal deviates with a mean of 0 and standard deviation of 1.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d main()

t n_random = 5;
oat nean = 0.0;

oat std = 1.0;
o]

n
|
|
| oat *r;

i
f
f
f

i msl s_random seed_set (123457);
r = inmsls_f_random.| ognornmal (n_random nmnean, std, 0);
imsls_f_wite_matrix("lognornal random devi ates:",

1, n_random r, | MSLS_NO COL_LABELS, 0);

Output

| ognornal random devi at es:
7.780 2.954 1.086 3.588 0. 293

random_normal

Generates pseudorandom numbers from anormal, N (1, 6°), distribution.

Synopsis
#include <i nsls. h>
float *i nsl s_f_random normal (int n_random ..., 0)

The type double function isi nsl s_d_r andom nor nal .

Required Arguments
int n_random (Input)

Number of random numbersto generate.
Return Value

An array of length n_r andomcontaining the random normal deviates.

Synopsis with Optional Arguments
#include <insls. h>

float *i nsl s_f_random normal (int n_random
| MSLS MEAN, float mean,
I MSLS VARI ANCE, float vari ance,
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| MBLS_ACCEPT_REJECT METHOD,
| MBLS_RETURN_USER, float r[],
0)

Optional Arguments

| MBLS_MEAN, float mean (Input)
Parameter mean contains the mean, 1, of the N(p, 6°) from which
random normal deviates are to be generated.
Default: mean = 0.0

I MSLS_VARI ANCE, float variance (Input)
Parameter variance contains the variance of the N (i, 6%) from which
random normal deviates are to be generated.
Default: vari ance = 1.0

| MSLS_ACCEPT_REJECT _METHOD
By default, random numbers are generated using an inverse CDF
technique. When optional argument | MSLS_ACCEPT_REJECT_METHOD
is specified, an acceptance/ rejection method is used instead. See the
“Description” section for details about each method.

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length r andomcontaining the generated
random standard normal deviates.

Description

By default, function nsl s_f _random nor mal generates pseudorandom
numbers from a normal (Gaussian) distribution using an inverse CDF technique.
In this method, a uniform (0, 1) random deviate is generated. The inverse of the
normal distribution function is then evaluated at that point, using the function
imsl s_f_normal _i nverse_cdf (Chapter 11)

If optional argument MSLS_ACCEPT REJECT METHOD is specified, function

i msl s_f_random nor mal generates pseudorandom numbers using an
acceptance/rejection technique due to Kinderman and Ramage (1976). In this
method, the normal density is represented as a mixture of densities over which a
variety of acceptance/rejection method due to Marsaglia (1964), Marsaglia and
Bray (1964), and Marsaglia et §1964) are applied. This method is faster than

the inverse CDF technique.

Remarks

Functioni nsl s_r andom seed_set can be used to initialize the seed of the
random number generator; functioms! s_r andom opt i on can be used to
select the form of the generator.
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Example

Inthisexample, i msl s_f _random nor mal generates five pseudorandom

deviates from a standard normal distribution.

#i ncl ude <insls. h>
#defi ne N_RANDOM 5

voi d main()

int seed = 123457,
i nt n_random = N_RANDOM
fl oat *r;

i msl s_random seed_set (seed);

r = imsls_f_random nornal (n_random O0);

printf("%:\ny8. 4f 98. 4f U8. 4f ¥B. 4f 8. 4f\ n",
"Standard normal random devi ates",
rfor, rf1], r[2], r[(3], r[4]);

Output

St andard normal random devi at es:
1.8279 -0.6412 0.7266 0.1747 1.0145

random_student t

Generates pseudorandom numbers from a Studatiggibution.

Synopsis

#include <i nsls. h>

float *i nsl s_f _random student _t (int n_random float df, ..

The typedouble function isi msl s_d_r andom st udent _t .

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parametiérmust be positive.

Return Value

)

An array of lengtin_r andomcontaining the random deviates of a Student’s

distribution.
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Synopsis with Optional Arguments
#include <i nsl's. h>

float *insl s_f_random student t (int n_random float df,
| MBLS_RETURN_USER, float r[],
| MSLS MEAN, float mean,
| MSLS_VARI ANCE, float vari ance,
0)

Optional Arguments

| MBLS_MEAN, float mean (Input)
Mean of the Studentisdistribution.
Default:mean = 0.0

I MSLS_VARI ANCE, float variance (Input)
Variance of the Studenttdistribution.
Default:vari ance = 1.0

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length r andomcontaining the random
Student's deviates.

Description

Functioni nsl s_f _random st udent _t generates pseudorandom numbers from
a Student's distribution withdf degrees of freedom, using a method suggested
by Kinderman et al1977). The method (“TMX” in the reference) involves a
representation of thiedensity as the sum of a triangular density ov&r 2) and

the difference of this and thelensity. The mixing probabilities depend on the
degrees of freedom of thelistribution. If the triangular density is chosen, the
variate is generated as the sum of two uniforms; otherwise, an
acceptance/rejection method is used to generate the difference density.

random_triangular

Generates pseudorandom numbers from a triangular distribution on the interval
0, 1).

Synopsis

#include <i nsls. h>

float *i nsl s_f _random triangul ar (int n_random ..., 0)

The typedouble function isi nsl s_d_r andom t ri angul ar.
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Required Arguments
int n_random (Input)

Number of random numbersto generate.
Return Value

An array of length n_r andomcontaining the random deviates of atriangular
distribution.

Synopsis with Optional Arguments

#include <i nsls. h>

float *insl s_f_random triangul ar (int n_random
| MBLS_RETURN_USER, float r[],
0)

Optional Arguments

| MBLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random
triangular deviates.

Description

Functioni nsl s_f _random tri angul ar generates pseudorandom numbers
from atriangular distribution over the unit interval. The probability density
functionisf (x) =4x,for0<x< 0.5, and f (X) =4 (1 - x),for 0.5 <x< 1. An
inverse CDF technique is used.

Example

Inthisexample, i msl s_f _random tri angul ar isused to generate five
pseudorandom deviates from atriangular distribution.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d main()

i nt n_random = 5;
float *r;

i msl s_random seed_set (123457);

r = inmsls_f_randomtriangul ar(n_random 0);

imsls_f_wite_matrix("Triangular random devi ates:",
1, n_random r, | MSLS_NO COL_LABELS, 0);

Output

Triangul ar random devi at es:
0. 8700 0. 3610 0. 6581 0. 5360 0.7215
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random_uniform

Generates pseudorandom numbers from a uniform (0, 1) distribution.

Synopsis
#include <i nsl's. h>
float *insl s_f_random uni form (int n_random ..., 0)

The type double function isi nsl s_d_r andom uni f orm

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value

An array of length n_r andomcontaining the random uniform (0, 1) deviates.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _random uni form (int n_random
| MBLS_RETURN USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random uniform
(0, 1) deviates.

Description

Functioni nmsl s_f _r andom uni f or mgenerates pseudorandom numbers from a
uniform (O, 1) distribution using a multiplicative congruential method. The form
of the generator isasfollows:

X, = cx, mod (2 - 1)

Each x; isthen scaled into the unit interval (O, 1). The possible valuesfor cin the
generators are 16807, 397204094, and 950706376. The selection is made by the
functioni nmsl s_r andom opt i on. The choice of 16807 will result in the fastest
execution time. If no selection is made explicitly, the functions use the multiplier
16807.

Functioni msl s_random seed_set can be used to initialize the seed of the
random number generator; functioni nsl s_r andom opt i on can be used to
select the form of the generator.
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#i ncl ude <i sl s.
#i ncl ude <stdi o.

The user can select a shuffled version of these generators. In this scheme, atable
isfilled with the first 128 uniform (0, 1) numbers resulting from the simple
multiplicative congruential generator. Then, for each x; from the simple generator,
the low-order bits of x; are used to select arandom integer, j, from 1to 128. The
j-th entry in the table is then delivered as the random number, and x;, after being
scaled into the unit interval, isinserted into the j-th position in the table.

Thevaluesreturned by i nsl s_f _random uni f or mare positive and less than
1.0. However, some values returned may be smaller than the smallest relative
spacing; hence, it may be the case that some value, for exampler [i ], is such that
10-r[i]=10.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output fromi nsl s_f _random uni f or m The following
statements (in single precision) would yield random deviates from auniform (a,
b) distribution.

float *r;
r = imsls_f_random uniform (n_random 0);
for (i=0; i<n_randony i++) r[i] =r[i]*(b-a) + a

Example

Inthisexample, i msl s_f _random uni f or mgenerates five pseudorandom
uniform numbers. Since functioni nsl s_r andom opt i on isnot caled, the
generator used is a simple multiplicative congruential one with amultiplier of
16807.

h>
h>

#defi ne N_RANDOM 5

voi d main()

fl oat *r;

i nsl s_random seed_set (123457);

r = inmsls_f_
printf("Unif
rpol

random uni f or { N_RANDOM 0) ;

orm random devi at es: 98. 4f 8. 4f 8. 4f 8. 4f 98. 4f\ n",
, r[1], rf2], r[3], r[4]);

Output

Uni f orm random devi at es: 0.9662 0.2607 0.7663 0.5693 0.8448
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random_von_mises

Generates pseudorandom numbers from a von mises distribution.

Synopsis
#include <insls. h>
float *insl s_f_random von_nises (int n_random float c, ..., 0)

The type double function isi sl s_d_r andom von_ni ses.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float ¢ (Input)
Parameter of the von Mises distribution. This parameter must be greater
than one-half of machine epsilon (On many machines, the lower bound
for ¢ is10™).

Return Value
An array of length n_r andomcontaining the random deviates of avon Mises
distribution.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _random von_ni ses (int n_random float c,
| MBLS_RETURN USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random von
mises deviates.

Description

Functioni nmsl s_f _random von_ni ses generates pseudorandom numbers from

avon Mises distribution with parameter ¢, which must be positive. Withc =c,

the probability density functionis
f(x)= exp[ cos(x)]

for —-t< x < 1, where |, (¢) is the modified Bessel function of the first kind of

order 0. The probability density is equal to O outside the interval (-Tt, ).

2T[|
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The algorithm is an acceptance/re ection method using a wrapped Cauchy
distribution as the majorizing distribution. It is due to Nest and Fisher (1979).

Example

Inthisexample, i msl s_f _random von_ni ses isused to generate five
pseudorandom von Mises variates with ¢ = 1.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d main()

i nt n_random = 5;
float ¢ = 1.0;
float *r;

i msl s_random seed_set (123457);

r = imsls_f_randomvon_m ses(n_random c, 0);
imsls_f_wite_matrix("Von Mses random devi ates:",
1, n_random r, |MSLS_NO COL_LABELS, 0);

Output

Von M ses random devi at es:
0. 247 -2.433 -1.022 -2.172 -0.503

random_weibull

Generates pseudorandom numbers from a Weibull distribution.

Synopsis
#include <i nsls. h>

float *i nsl s_f _random wei bul | (int n_random float a, ..., 0)
The type double function isi nsl s_d_r andom wei bul | .

Required Arguments

int n_random (Input)
Number of random numbersto generate.

float a (Input)
Shape parameter of the Weibull distribution. This parameter must be
positive.

Return Value

An array of length n_r andomcontaining the random deviates of a Weibull
distribution.
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Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f_random wei bul | (int n_random float a,
I MSLS B, float b,
| MSBLS_RETURN USER, float r[],
0)

Optional Arguments

I MSLS B, float b (Input)
Scale parameter of the two parameter Weibull distribution.
Default: b = 1.0

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the random Weibull
deviates.

Description

Functioni nmsl s_f _random wei bul | generates pseudorandom numbers from a
Weibull distribution with shape parameter a and scale parameter b. The
probability density function is

f(x) = abx?™* exp(—bxa)

forx=0,a>0,and b>0. Functioni nsl s_f _random wei bul | usesan
antithetic inverse CDF technique to generate aWeibull variate; that is, auniform
random deviate U is generated and the inverse of the Weibull cumulative
distribution function is evaluated at 1.0 — U to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function
L ()

rX)=—Xxe
(9=

for x = O isthe same as a Weibull distribution with shape parameter a equal to 2
and scale parameter b equal to

V2a

Example

Inthisexample, i msl s_f _random wei bul | isused to generate five

pseudorandom deviates from atwo-parameter Weibull distribution with shape
parameter equal to 2.0 and scale parameter equal to 6.0—a Rayleigh distribution
with the following parameter:

a=3/2

#i ncl ude <stdio. h>
#i ncl ude <insls. h>
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voi d main()

t n_random = 5;
oat a = 3.0;
0]

in
fl
float *r;

i msl s_random seed_set (123457);

r = imsls_f_randomweibull (n_random a, 0);

imsls_f_wite_matrix("Weibull random deviates:",
1, n_random r, | MSLS_NO COL_LABELS, 0);

Output
Wei bul | random devi at es:
0. 325 1.104 0. 643 0. 826 0. 552
Warning Errors

| MSLS SMALL_A The shape parameter is so small that arelatively
large proportion of the values of deviates from
the Weibull cannot be represented.

random_normal_multivariate

Generates pseudorandom numbers from amultivariate normal distribution.

Synopsis
#include <i nsl's. h>

float *i nsl s_f_random normal _nultivariate (int n_vectors,
int | engt h, float *covari ances, ..., 0)

The type double functionisi nsl s_d_random nornal _nul tivari at e.

Required Arguments

int n_vectors (Input)

Number of random multivariate normal vectorsto generate.
int 1 ength (Input)

Length of the multivariate normal vectors.
float *covari ances (Input)

Array of sizel engt h X | engt h containing the variance-covariance
matrix.

Return Value

An array of lengthn_vect ors x | engt h containing the random multivariate
normal vectors stored consecutively.
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Synopsis with Optional Arguments

#include <i nsls. h>

float *imsl s_f _random normal _nultivariate (int n_vectors,
int | ength, float *covari ances,
| MSBLS_RETURN_USER, float r[],
0)

Optional Arguments

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of lengthn_vect ors x | engt h containing the
random multivariate normal vectors stored consecutively.

Description

Functioni msl s_f _random nor nal _mul ti vari at e generates pseudorandom
numbers from a multivariate normal distribution with mean vector consisting of
all zeros and variance-covariance matrix i nsl s_f _covari ances. First, the
Cholesky factor of the variance-covariance matrix is computed. Then,
independent random normal deviates with mean 0 and variance 1 are generated,
and the matrix containing these deviatesis postmultiplied by the Cholesky factor.
Because the Cholesky factorization is performed in each invocation, it is best to
generate as many random vectors as needed at once.

Deviates from amultivariate normal distribution with means other than 0 can be
generated by usingi nsl s_f _random normal _nul ti vari at e and then by
adding the vectors of means to each row of the result.

Example

Inthisexample, i msl s_f _random normal _nul tivari at e generatesfive
pseudorandom normal vectors of length 2 with variance-covariance matrix equal
to the following:

0500 0.375
0375 0500

#i ncl ude <insls. h>
voi d main()

int n_vectors = 5;

int length = 2;

float covariances[] = {.5, .375, .375, .5};
float *random

i msl s_random seed_set (123457);
random = inmsls_f_random normal _nmul tivariate (n_vectors, |ength,
covariances, 0);

imsls_f_wite_matrix ("nultivariate normal random devi ates"”,
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n_vectors, length, random 0);

}
Output
mul tivariate normal random devi at es
1 2
1 1.451 1. 246
2 0. 766 -0.043
3 0. 058 -0.669
4 0.903 0. 463
5 -0. 867 -0.933

random_arma

Generates atime series from a specific ARMA model.

Synopsis
#include <insls. h>

float *i nsl s_f_random arma (int n_observations, int p, float ar[],
int g, float ma[], ..., 0)

The type double function isi nsl s_d_r andom ar na.

Required Arguments

int n_observations (Input)
Number of observationsto be generated. Parameter n_obser vat i ons
must be greater than or equal to one.

int p (Input)
Number of autoregressive parameters. Paramater p must be greater than
or equal to zero.

float ar[] (Input)
Array of length p containing the autoregressive parameters.

int g (Input)
Number of moving average parameters. Parameter g must be greater
than or equal to zero.

float ma[] (Input)
Array of length g containing the moving average parameters.

Return Value
An array of lengthn_obser vat i ons containing the generated time series.

Synopsis with Optional Arguments
#include <insls. h>
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float *insl s_f_random arma (int n_random float a,
| MSLS_ARMA CONSTANT, float constant,
I MSLS VAR NO SE, float *a_vari ance,
| MBLS_| NPUT_NO SE, float *a_i nput,
I MSLS OUTPUT_NO SE, float **a_return,
I MSBLS_OUTPUT_NO SE_USER, float a_return[],
| MSLS NONZERO ARLAGS, int *| agar,
| MBLS_NONZERO MALAGS, int *| agna,
I MBLS I NI TIAL_W float *w_ initial,
| MBLS_ACCEPT_REJECT_METHOD,
| MBLS_RETURN_USER, float w{],
0)

Optional Arguments

| MBLS_ARMA CONSTANT, float constant (Input)
Overadl constant. See “Description”.
Default:const ant =0

I MSBLS VAR NO SE, float a_variance (Input)
If I VSLS VAR NQ SE is specified (and MSLS | NPUT_NO SE is not
specified) the noisa, will be generated from a normal distribution with
mean 0 and varianee vari ance.
Default:a_vari ance = 1.0

I MSLS | NPUT_NO SE, float *a_i nput (Input)
If I MVBLS_ | NPUT_NO SE is specified, the user will provide an array of
lengthn_obser vat i ons + max ( agma[i]) containing the random
noises. If this option is specified, therSLS VAR NO SE should not be
specified (a warning message will be issued and the option
I MSLS VAR NO SE will be ignored).

I MSBLS OUTPUT_NO SE, float **a_return (Output)
An address of a pointer to an internally allocated array of length
n_observati ons + max ( agna[i]) containing the random noises.

I MSBLS OUTPUT_NO SE_USER, float a_return[] (Output)
Storage for arrag_r et ur n is provided by user. See
| MBLS_OUTPUT_NO SE.

| MBLS NONZERO ARLAGS, int ar_|ags[] (Input)
An array of lengtlp containing the order of the nonzero autoregressive
parameters.
Default:ar _| ags =11, 2, ...,p]

I MSBLS NONZERO MALAGS, int ma_| ags (Input)
An array of lengthy containing the order of the nonzero moving average
parameters.
Default:ma_| ags =11, 2, ...,q]
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IMSLS INITIAL W float winitial[] (Input)
Array of length max (I agma[i]) containing the initial values of the time

series.
Default: all theelementsinw i nitial =constant/(1-ar [0] -
ar [1] - ... —ar [p—1])

| MSLS_ACCEPT_REJECT_METHOD (Input)
If | MSBLS ACCEPT_ REJECT_METHODIis specified, the random noises
will be generated from anormal distribution using an
acceptance/rejection method. If | MSBLS_ACCEPT_REJECT_METHODIs
not specified, the random noises will be generated using an inverse
normal CDF method. This argument will be ignored if
I MSLS | NPUT_NO SE is specified.

| MSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_r andomcontaining the generated time
series.

Description

Functioni nsl s_f _r andom ar ma simulates an ARMA(p, q) process, { W}, for t
=12, .., n(withn=n_observations, p=p,andq=q). Themodel is

@(B)W =8, +6(B)A t0z
@B)=1-¢,B-@,B° - ... —,B"
6(B)=1-6,B-6,B* - ... -6,B

Let p be the mean of the time series{W}. The overall constant 6, (const ant ) is
| p=0

o -y Ba) p>0

Time series whose innovations have a nonnormal distribution may be simulated

by providing the appropriate innovationsin a_i nput and start valuesin
winitial.

Thetime seriesis generated according to the followng model:
X[i] =constant +ar[0] OX[i—lagar[0] ]+...+
ar[p-1] OX[i-lagar[p—1]]+
Ali]—-ma[0] OA[i-lagma[0] ]-... -
ma[q-1] OAli-lagma[q-1] ]
where the constant is related to the mean of the series,
w

asfollows:
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constant =W ((1-ar[0] - ... —ar[q-1])

and where
X[t] = W], t=0,1,...,n_observations—-1

and

Wt] =w_initial [t+p], t=-p,-p+1,..,-2-1
and Aiseither a_i nput (if | MBLS_ | NPUT_NO SE is specified) or a_r et urn
(otherwise).
Examples
Example 1

Inthisexample, i msl s_f _random ar ma is used to generate a time series of
length five, using an ARMA model with three autoregressive parameters and two
moving average parameters. The start values are 0.1000, 0.0500, and 0.0375.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d main()

i nt n_random = 5;

i nt np = 3;

float phi[3] = {0.5, 0.25, 0.125};
i nt ng = 2;

float theta[2] = {-0.5, -0.25};
float *r;

i nsl s_random seed_set (123457);
r = imsls_f_random arnma(n_random np, phi, ng, theta, 0);
inmsls f wite_matrix("ARVA random devi ates: ",

1, n_random r, IMSLS NO COL_LABELS, 0);

}
Output
ARMA random devi at es:
0. 863 0. 809 1.904 0. 110 2.266
Example 2

In this example, atime series of length 5 is generated using an ARMA model with
4 autoregressive parameters and 2 moving average parameters. The start values
are 0.1, 0.05 and 0.0375.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

voi d nain()

i nt n_random = 5;
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i nt np = 3;

float phi[3] = {0.5, 0.25, 0.125};
i nt ng = 2;

float thetal2]
float wi[3] = {
float thetaO
fl oat avar

float *r;

-0.5, -0.25};
, 0.05, 0.0375};

i msl s_random seed_set (123457);
r = imsls_f_random arnma(n_random np, phi, ng, theta,
| MSLS_ACCEPT_REJECT_METHOD,
I MSLS_INITIAL_W wi,
| MSLS_ARMA_CONSTANT, thet a0,
| MSLS_VAR NO SE, avar,
0);
imsls_f_wite_matrix("ARMA random devi ates: ",
1, n_random r, | MSLS_NO COL_LABELS, 0);

Output

ARMA random devi at es:
1. 403 2.220 2.286 2.888 2.832

Warning Errors

| MSLS_RNARM NEG VAR VAR(a) = “a_variance” = #, VAR(a) must be
greater than 0. The absolute value of # is used for
VAR(a).

I MSLS_RNARM | O_NO SE Both| M5LS_| NPUT_NO SE and
I MSLS_RETURN_NO SE are specified.
I MSLS_ | NPUT_NO SE is used.

random_option

Selects the uniform (0, 1) multiplicative congruential pseudorandom number
generator.

Synopsis

#include <i nsl's. h>

void i nsl s_random option (int generator _opti on)

Required Arguments

int generator_option (Input)
Indicator of the generator. The random number generator is a
multiplicative congruential generator with modulgl's—z 1. Argument
gener at or _opti on is used to choose the multiplier and whether or not
shuffling is done.
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gener at or _option | Generator

The multiplier 16807 is used.

The multiplier 16807 is used with shuffling.

The multiplier 397204094 is used.

The multiplier 397204094 is used with shuffling.
The multiplier 950706376 is used.

The multiplier 950706376 is used with shuffling.

o 01 A W N

Description

The uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not
to use shuffling are determined by i msl s_r andom opt i on. The description of
functioni nmsl s_f_random uni f or mmay provide some guidance in the choice
of the form of the generator. If no selection is made explicitly, the generators use
the multiplier 16807 without shuffling. Thisform of the generator has been in use
for sometime (see Lewis et al. 1969).

Example

The C function call i msl s_r andom opt i on(1) selects the simple multiplicative
congruential generator with multiplier 16807. Since thisis the same as the
default, this statement has no effect unlessi nsl s_r andom opt i on had
previously been called in the same program to select a different generator.

random_seed get

Retrieves the current value of the seed used in the random number generators.

Synopsis
#include <i nsl's. h>

int i msl s_random seed_get ()

Return Value
The value of the seed.

Description

Functioni msl s_random seed_get retrieves the current value of the “seed”
used in the random number generators. A reason for doing this would be to restart
a simulation, using functiams! s_r andom seed_set to reset the seed.
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Example

This exampleillustrates the statements required to restart a simulation using

i msl s_random seed_get andi nsl s_random seed_set . The example
shows that restarting the sequence of random numbers at the value of the seed last
generated is the same as generating the random numbers all at once.

#i ncl ude <insls. h>

#def i ne N_RANDOM 5

mai n()
int seed = 123457,
fl oat *rl, *r2, *r;

i msl s_random seed_set (seed);

r1 = insls_f_random uniform N_RANDOM O);

imsls_f_wite_matrix ("First Goup of Random Numbers", 1,
N_RANDOM r1, 0);

seed = inmsls_random seed_get ();

i msl s_random seed_set (seed);

r2 = insls_f_random uni f or m{ N_RANDOM O0);

imsls_f_wite_matrix ("Second G oup of Random Nunbers", 1,
N_RANDOM r2, 0):

i msl s_random seed_set (123457);

r = imsls_f_random uni form 2*N_RANDOM 0);

imsls_f_wite_matrix ("Both G oups of Random Numbers", 1,
2*N_RANDOM r, 0);

}
Output
First Group of Random Nunbers
1 2 3 4 5
0. 9662 0. 2607 0. 7663 0. 5693 0. 8448
Second Group of Random Numnbers
1 2 3 4 5
0. 0443 0.9872 0.6014 0. 8964 0. 3809
Bot h Groups of Random Nunbers
1 2 3 4 5 6
0. 9662 0. 2607 0. 7663 0. 5693 0. 8448 0. 0443
7 8 9 10
0.9872 0.6014 0. 8964 0. 3809
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random_seed_set

Initializes arandom seed for use in the random number generators.

Synopsis
#include <i nsl's. h>

void i nsl s_random seed_set (int seed)

Required Arguments

int seed (Input)
The seed of the random number generator. The argument seed must be
in the range (0, 2147483646). If seed is0, avaueis computed using
the system clock; hence, the results of programs using the random
number generators will be different at various times.

Description

Functioni msl s_random seed_set isused to initialize the seed used in the
random number generators. The form of the generatorsis as follows:

X; = ¢X;_; mod (231 -1)

The value of x, isthe seed. If the seed is not initialized prior to invocation of any
of the functions for random number generation by calling

i msl s_random seed_set , the seed isinitialized by the system clock. The seed
can be reinitialized to a clock-dependent value by calling

i msl s_random seed_set withseed settoO.

The effect of i msl s_random seed_set isto set some global values used by the
random number generators. A common use of i msl s_r andom seed_set isin
conjunction with functioni sl s_r andom seed_get to restart asimulation.
Example

Seefunctioni nsl s_random seed_get (page 571).
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write_matrix

Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis

#include <i nsls. h>

void insls_f_wite_matrix (char *title, int nra, int nca, float a[],
.y 0)

Forint a[], use insls_i _wite matrix.
For double a[],use insls_d wite matrix.

Required Arguments

char *title (Input)
Matrix title. Use\ n within atitle to create anew line. Long titles are
automatically wrapped.

int nra (Input)
Number of rows in the matrix.

int nca (Input)
Number of columnsin the matrix.

float a[] (Input)
Array of sizenr a X nca containing the matrix to be printed.

Chapter 13: Printing Functions Routines ¢ 575



Synopsis with Optional Arguments

#include <i nsls. h>

void insls_f_ wite matrix (char *title, int nra, int nca, float a[],
| MSLS_TRANSPOSE,
IMSLS A COL_DIM int a_col _dim
| MBLS PRI NT_ALL, or
| MSLS_PRI NT_LOVER, or
| MSLS_PRI NT_UPPER, or
| MBLS_PRI NT_LOWER NO DI AG, or
| MSLS_PRI NT_UPPER NO DI AG,
| MSBLS_WRI TE_FORMAT, char *fnt,
| MBLS_NO_ROW LABELS, or
| MSLS_ROW NUMBER, or
| M5SLS_ROW NUMBER_ZERQO, or
| MBLS_ROW LABELS, char *rlabel [],
| MBLS_NO COL_LABELS, or
| MSLS_COL_NUMBER, or
| MBLS_COL_NUVBER ZERO, or
| MBLS_COL_LABELS, char *cl abel [],
0)

Optional Arguments

| MBLS TRANSPOSE
Printa’.

IMSLS A COL_DIM int a_col _di m (Input)
Column dimension of a.
Default: a_col _di m=nca

| MBLS_PRI NT_ALL, or

| MSLS_PRI NT_LOVWER, or

| MSLS_PRI NT_UPPER, or

| MSLS_PRI NT_LOWER NO DI AG, or

| MSBLS_PRI NT_UPPER_NO DI AG
Exactly one of these optional arguments can be specified to
indicate that either atriangular part of the matrix or the entire
matrix isto be printed. If omitted, the entire matrix is printed.

Keyword Action

I MSLS PRI NT_ALL Entire matrix is printed (the
default).

| MSLS PRI NT_LOVER Lower triangle of the matrix is
printed, including the diagonal .

I MSLS PRI NT_UPPER Upper triangle of the matrix is
printed, including the diagonal .
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Keyword Action

I MSLS PRI NT_LOWER NO DI AG | Lower triangle of the matrix is
printed, without the diagonal.

I MSLS PRI NT_UPPER NO DI AG | Upper triangle of the matrix is
printed, without the diagonal.

| MSBLS_WRI TE_FORMAT, char *fnt (Input)
Character string containing alist of C conversion specifications
(formats) to be used when printing the matrix. Any list of C conversion
specifications suitable for the data type can be given. For example,
fmt ="940. 3f" specifiesthe conversion character f for the entire
matrix. For the conversion character f , the matrix must be of typefloat
or double. Alternatively,
fnmt ="9%0. 3e%40. 3e%d0. 3f %4.0. 3f 9%40. 3f " specifiesthe
conversion character e for columns 1 and 2 and the conversion character
f for columns 3, 4, and 5. If the end of f nt isencountered and if some
columns of the matrix remain, format control continues with the first
conversion specification in f nt .

Aside from restarting the format from the beginning, other exceptions to
the usual C formatting rules are as follows:

1. Characters not associated with a conversion specification are not
allowed. For example, intheformat f nt =" 1%12%d" , the characters 1
and 2 are not allowed and result in an error.

2. A conversion character d can be used for floating-point values (matrices
of typefloat or double). The integer part of the floating-point value is
printed.

3. For printing numbers whose magnitudes are unknown, the conversion

character g is useful; however, the decimal points will generally not be
aligned when printing a column of numbers. Thew (or W conversion
character is a specia conversion character used by this function to select

a conversion specification so that the decimal pointswill be aligned. The
conversion specification ending with wis specified as " %m. dw' . Here, n
isthe field width and d is the number of significant digits generally

printed. Valid valuesfor n are 3, 4, ..., 40. Valid values fdrare 1, 2,
...,n—=2.Iffnt specifies one conversion specification ending wjth

all elements o& are examined to determine one conversion specification
for printing. Iff nt specifies more than one conversion specification,
separate conversion specifications are generated for each conversion
specification ending with.. Setf nt =" 10. 4w' for a single conversion
specification selected automatically with field width 10 and with four
significant digits.

| MSLS_NO ROW LABELS, or
| MSLS_ROW NUVBER, or

Chapter 13: Printing Functions write_matrix « 577



| MSLS_ROW NUMBER ZERO, or

| MSLS ROW LABELS, char *rlabel [] (Input)
If | MSLS ROW LABELS is specified, r | abel isavector of length nra
containing pointers to the character strings comprising the row labels.
Here, nr a isthe number of rowsin the printed matrix. Use\ n within a
label to create anew line. Long labels are automatically wrapped. If no
row labels are desired, usethe | MSBLS_NO_ROW LABELS optional
argument. If the numbers 1, 2, nr,a are desired, use the
I MSLS_ROW NUMBER optional argument. If the numbers 0, 1, 2, ...,
nra — 1 are desired, use th&BLS ROW NUVBER ZERO optional
argument. If none of these optional arguments is used, the numbers 1, 2,
3, ...,nr a are used for the row labels by default whenever> 1. If
nra = 1, the default is no row labels.

| MSBLS_NO COL_LABELS, or

| MBLS_COL_NUMBER, or

| MBLS_COL_NUMBER ZERO, or

I MBLS COL_LABELS, char *cl abel [] (Input)
If | VBLS COL_LABELS is specifiedcl abel is a vector of length
nca + 1 containing pointers to the character strings comprising the
column headings. The heading for the row labets &ébel [0];
cl abel [i], i =1, ...,nca, is the heading for thieth column. Usé n
within a label to create a new line. Long labels are automatically
wrapped. If no column labels are desired, use the
I MSBLS _NO _COL_LABELS optional argument. If the numbers 1, 2, ...,
nca, are desired, use thé/BLS COL_NUMBER optional argument. If the
numbers 0, 1, ..nca — 1 are desired, use the
I MSBLS_COL_NUMBER ZEROoptional argument. If none of these optional
arguments is used, the numbers 1, 2, 3,nca are used for the column
labels by default wheneveta > 1. Ifnca = 1, the default is no column
labels.

Description

Functioni msl s_wri t e_mat ri x prints a real rectangular matrix (storeda)n

with optional row and column labels (szpecifiedrh)yibel andcl abel ,

respectively, regardless of whetlaeor a” is printed). An optional format,nt ,

can be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the
upper or lower triangles of a matrix by using thSLS_PRI NT_UPPER,

| MBLS_PRI NT_LOVWER, | MSLS_PRI NT_UPPER_NO DI AG, and

I MSLS_PRI NT_LOWER _NO DI AG options. Generally, these options are used with
symmetric matrices, but this is not required. Vectors can be printed by specifying
a row or column dimension of 1.

Output is written to the file specified by the functiors| s_out put _file
(Chapter 14) The default output file is standard output (corresponding to the file
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pointer st dout ). A page width of 78 charactersis used. Page width and page
length can be reset by invoking functioni nsl s_page (page 581).

Horizontal centering, the method for printing large matrices, paging, the method
for printing NaN (Not a Number), and whether or not atitle is printed on each
page can be selected by invoking functioni nsl s_wri te_opti ons (page 582).

Examples

Example 1

This example is representative of the most common situation in which no optional
arguments are given.

#i ncl ude <insls. h>

#define NRA 3
#defi ne NCA 4

mai n()

i nt i, i;
fl oat a[ NRA] [ NCA] ;
for (i =0; i < NRA i++) {

for (j =0; j < NCA j++) {
afil[j] = (i+1+(j+1)*0.1);

}
/* Wite matrix */
inmsls f wite matrix ("matrix\na", NRA, NCA (float*) a, 0);

}
Output
mat ri x
a
1 2 3 4
1 1.1 1.2 1.3 1.4
2 2.1 2.2 2.3 2.4
3 3.1 3.2 3.3 3.4
Example 2

In this example, some of the optional arguments availablein the
imsl s_write_matrix functions are demonstrated.

#i ncl ude <insls. h>

#defi ne NRA 3
#defi ne NCA 4
mai n()

i nt i, j;
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fl oat a[ NRA] [ NCA] ;

char *fnmt = "9%0. 6W;
char *rlabel[] = {"row 1", "row 2", "row 3"};
char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

for (i =0; i < NRA i++)
for (j =0; j < NCA j++)
afi]lj] = (i+1+(j+1)*0.1);

}
/* Wite matrix */
imsls_f_wite_matrix ("matrix\na", NRA NCA (float *)a,
| MSLS_WRI TE_FORMAT, fnt,
| MSLS_ROW LABELS, rl abel,
| MBLS_COL_LABELS, cl abel,
| MSLS_PRI NT_UPPER_NO_DI AG

0);

}

Output

mat ri x
a
col 2 col 3 col 4

row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4

Example 3

In this example, arow vector of length four is printed.

#i ncl ude <insls. h>

#define NRA 1
#define NCA 4

mai n()
i nt i;
f1 oat a[ NCA] ;
char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};
for (i =0; i < NCA i++) {
a[i] =i + 1;
}

/* Wite matrix */
imsls_f_wite_matrix ("matrix\na", NRA, NCA a,
| MSBLS_COL_LABELS, cl abel,
0);

Output

mat ri x
a

580 « write_matrix IMSL C/Stat/Library



col 1 col 2 col 3 col

D

Sets or retrieves the page width or length.

Synopsis
#include <i nsl's. h>
void i nsl s_page (Imsls page options option, int *page_attri bute)

Required Arguments

Imsls page options opti on (Input)
Option giving which page attribute is to be set or retrieved. The possible
values are shown in the table below.

Keyword Description

| MSLS SET_PAGE_W DTH Sets the page width.

| MSLS GET_PAGE_W DTH Retrieves the page width.
| MSBLS SET_PAGE_LENGTH Sets the page length.

| MSBLS GET_PAGE_LENGTH Retrieves the page length.

int *page_attribute (Input,if theattributeis set; Output, otherwise.)
The value of the page attribute to be set or retrieved. The page width is
the number of characters per line of output (default 78), and the page
length is the number of lines of output per page (default 60). Ten or
more characters per line and 10 or more lines per page are required.

Example

The following exampleillustrates the use of i nsl s_page to set the page width to
40 characters. Functioni nsl s_f_write_matrix isthen usedto print a
3 x 4 matrix A, where a;; =i +j/10.

#i ncl ude <insls. h>

#define NRA 3

#define NCA 4

mai n()

t o .
i nt i, j, page_attribute;
fl oat a[ NRA] [ NCA] ;

for (i =0; i < NRA i++) {
for (j =0; j < NCA j++) {
alillj] = (i+1) + (j+1)/10.0;
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WN -

WN -

page_attribute =

40;

i msl s_page(| MSLS_SET_PAGE_W DTH, &page_attribute);

imsls_f wite_matrix("a", NRA, NCA (float *)a, 0);
Output
a

1 2 3
1.1 1.2 1.3
2.1 2.2 2.3
3.1 3.2 3.3

4
1.4
2.4
3.4

write_options

Sets or retrieves an option for printing a matrix.

Synopsis

#include <i nsls. h>

void i nsl s_write_options (Imsls write options opti on,
int *option_val ue)

Required Arguments

Imsls write options opti on (Input)
Option giving the type of the printing attribute to set or retrieve.

Keyword for Setting

Keyword for Retrieving

Attribute Description

| MBLS_SET_DEFAULTS

| MSLS_SET_CENTERI NG
| MSLS_SET_ROW V\RAP

I MSLS_SET_PAG NG

I MBLS_SET_NAN CHAR

I MSLS_SET TI TLE_PAGE

| MBLS_SET_FORMAT

| MSLS_GET_CENTERI NG
| MSLS_GET_ROW WRAP

| MSLS_GET_PAG NG

| MSLS_GET_NAN CHAR

| MSLS GET_TI TLE_PAGE

| MBLS_GET_FORMAT

uses the default settings
for all parameters

horizontal centering
row wrapping

paging

method for printing NaN

whether or not titles
appear on each page

default format for real
and complex numbers

int *option_val ue (Input, if opti on isto be set; Output, otherwise)
Value of the option attribute selected by opt i on. The values to be used
when setting attributes are described in atable in the description section.
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Description

Functioni nmsl s_wri t e_opt i ons alowsthe user to set or retrieve an option for
printing a matrix. Options controlled by i msl s_wri t e_opt i ons are horizontal
centering, method for printing large matrices, paging, method for printing NaN,
method for printing titles, and the default format for real and complex numbers.
(NaN can be retrieved by functionsi nsl s_f _machi ne andi nsl s_d_nachi ne
(Chapter 14).

The following values can be used for the attributes.

Keyword Value |Meaning
CENTERI NG 0 Matrix isleft justified.
1 Matrix is centered.

ROW WRAP 0 Complete row is printed before the next
row is printed. Wrapping is used if
necessary.

m

Here, misapositive integer. Let n; be
the maximum number of columns that fit
across the page, as determined by the
widths in the conversion specifications
starting with column 1. First, columns 1
through n; are printed for rows 1 through
m. Let n, be the maximum number of
columns that fit across the page, starting
with column n; +1. Second, columns n; +1
through n, +n, are printed for rows 1
through m. This continues until the last
columns are printed for rows 1 through
m. Printing continues in this fashion for
the next mrows, etc.
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Keyword Value |[Meaning

PAQ NG -2 No paging occurs.

-1 Paging is on. Every invocation of an
functioni msl s_write_matrix begins
on anew page, and paging occurs within
each invocation as is needed.

Paging is on. Thefirst invocation of an
imsls f wite f _matrix function
begins on anew page, and subsequent
paging occurs as is needed. Paging
occursin the second and all subsequent
k calstoaninsls_f wite matrix
function only as needed.

Turn paging on and set the number of
lines printed on the current page to k
lines. If kis greater than or equal to the
page length, then the first invocation of
aninmsls_wite_matrix function
begins on anew page. In any case,
subsequent paging occurs as is needed.

NAN CHAR 0O |.......... isprinted for NaN.
1 A blank field is printed for NaN.

Keyword Value |Meaning

TI TLE_PAGE 0 Title appears only on first page.

1 Title appears on the first page and all
continuation pages.

FORMAT 0 Formatis" 94.0. 4x" .
Formatis" %d2. 6wW'.

Formatis" 922. 5e".

The w conversion character used by the FORMAT option is a special conversion
character that can be used to automatically select a pretty C conversion
specification ending in either e, f , or d. The conversion specification ending with
wis specified as" 9. dw' . Here, n isthe field width, and d is the number of
significant digits generally printed.

Functioni nmsl s_wri te_opti ons can beinvoked repeatedly before using a
functioni msl s_f_write_matrix to print amatrix. The matrix printing
functionsretrievethevaluesset by i nsl s_writ e_opti ons to determine the
printing options. It isnot necessary tocall i nsl s_wri te_opti ons if adefault
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value of aprinting option is desired. The defaults are as follows:

Keyword Default Value | Meaning

CENTERI NG 0 left justified

ROW V\RAP 1000 lines before wrapping

PAGQ NG -2 no paging

NAN_CHAR 0 |

TI TLE_PACE 0 title appears only on the
first page

FORVAT 0 %10.4w

Example

The following exampleillustrates the effect of i nsl s_wri t e_opt i ons when
printing a3 x 4 real matrix A with functioni msls_f_write_matri x, where
a; =1 +]j/10. Thefirstcal toi msl s_f _wri te_opti ons setshorizontal
centering so that the matrix is printed centered horizontally on the page. In the
next invocation of i nsl s_f_write_matri x, the left-justification option has
been set by functioni msl s_wri t e_opti ons sothe matrix isleft justified when
printed.

#i ncl ude <insls. h>

#define NRA 4
#define NCA 3

i, j, option_value;
a[ NRA] [ NCA] ;

i < NRA i++) {
=0; | < NCA j++) {

alil[j] = (i+1) + (j+1)/10.0;

mai n()
i nt
fl oat
for (i = 0;
for (j
}

/* Activate centering option */

option_value = 1;

inmsls_wite options (I MSLS SET _CENTERI NG, &option_val ue);
/* Wite a matrix */
inmsls f wite matrix ("a", NRA, NCA (float*) a, 0);
/* Activate left justification */
option_value = 0;
insls_wite options (I MSLS SET _CENTERI NG, &option_val ue);
inmsls f wite matrix ("a", NRA, NCA (float*) a, 0);
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Output

Mmmmmm
N ™

NNNNN
"N M

oA
AN M

—ANM<

mmmmm
—Nm<

NN NN N
AN ™

oA
AN o<

—ANM<
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output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments
#include <insls. h>

void i nsl s_output_file (
| MSLS_SET_OUTPUT FI LE, FILE *ofil e,
| MSLS_GET_OUTPUT_FI LE, FILE **pofil e,
| MBLS_SET_ERROR FI LE, FILE *efil e,
| MSLS_GET_ERROR _FI LE, FILE **pefile,
0)

Optional Arguments

| MBLS_SET_OUTPUT_FI LE, FILE *ofile (Input)
Setsthe output fileto of i | e.
Default: of i | e = st dout

| MBLS_GET_QUTPUT_FI LE, FILE **pofile (Output)
Setsthe FILE pointed to by pof i | e to the current output file.

| MBLS_SET_ERROR FI LE, FILE *efile (Input)
Sets the error message output filetoef i | e.
Default: efil e = stderr

| MBLS_GET_ERROR FI LE, FILE **pefile (Output)
Sets the FILE pointed to by pefi | e to the error message output file.

Description
This function allows the file used for printing by IMSL functions to be changed.
Example

This example opens the file myfile and sets the output file to this new file.
Functioni msl s_f _write_matrix thenwritesto thisfile.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()
FI LE *of il e;
fl oat x[] = {3.0, 2.0, 1.0};

imsls_f_wite_matrix ("x (default file)", 1, 3, x, 0);

ofile = fopen("myfile", "wW');

i msl s_output _file(l MSLS_SET_OUTPUT_FI LE, ofile,
0);

imsls_f_wite_matrix ("x (nyfile)", 1, 3, x, 0);
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Output

X (default file)

1 2 3
3 2 1
version

Returns integer information describing the version of the library, serial number,
operating system, and compiler.

Synopsis

#include <i nsl's. h>

char *insls_version (Imss keyword code)

Required Arguments

Imsls keyword code (Input)

Index indicating which valueis to be returned. It must be

| MSLS_LI BRARY_VERSI ON, | MSLS_OS_VERSI ON,

| MSLS_COVPI LER VERSI ON, or | MSLS_ LI CENSE_NUMBER.
Return Value
The requested valueis returned. If code isout of range, then NULL is returned.
Usefr ee to release the returned string.
Description

Functioni nsl s_ver si on returns information describing the version of the
library, the version of the operating system under which it was compiled, the
compiler used, and the IMSL serial number.

Example

This example prints al the valuesreturned by i nsl s_ver si on on aparticular
machine. The output is omitted because the results are system dependent.

#i ncl ude <insls. h>

mai n()
char *|ibrary_version, *os_version;
char *conpi |l er _version, *license_nunber;

l'i brary_version
os_version

conpi |l er _version
I i cense_nunber

i msl s_version(l MSLS_LI BRARY_VERSI ON) ;
i msl s_version(l MSLS_OS_VERSI ON) ;

i msl s_version(l MSLS_COWPI LER_VERSI ON) ;
i msl s_version(l MSLS_LI CENSE_NUMBER) ;

printf("Library version = %\n", library_version);
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printf("CS version = %\n", os_version);
printf("Conpiler version = %\n", conpiler_version);
printf("Serial number = %\n", |icense_nunber);

error_options

Sets various error handling options.

Synopsis with Optional Arguments
#include <i nsl's. h>

void i nsl s_error_options (
| MSBLS_SET_PRI NT, Imgls_error type, int setting,
| MBLS_SET_STOP, Imdls error type, int setting,
| MSBLS_SET_TRACEBACK, Imsls error type, int setting,
| MSLS FULL_TRACEBACK, int setti ng,
| MSBLS_GET_PRI NT, Imsls_error type, int *psetti ng,
| MSBLS_GET_STOP, Imdls error type, int *psetting,
| MSBLS_GET_TRACEBACK, Imsls error type, int *psetti ng,
| MBLS_SET_ERROR _FI LE, FILE *fil e,
| MBLS _GET_ERROR FI LE, FILE **pfile,
| MBLS_ERROR_MSG_PATH, char *path,
| MSLS_ERROR _MBG _NAME, char *nane,
I MSBLS_ERROR PRI NT_PROC, Imdls error_print_proc print _proc,
0)

Optional Arguments

I MSBLS SET_ PRI NT, Imsls error type, int setting (Output)
Printing of typet ype error messagesisturned off if setti ngisQ;
otherwise, printing is turned on.
Default: Printing turned on for | MSLS_WARNI NG, | MSLS_FATAL, | MSLS_TERM NAL,
| MSLS_FATAL_| MVEDI ATE, and | MSLS_WARNI NG_| MVEDI ATE messages

I MBLS SET_STOP, Imdls error type, int setting (Input)
Stopping on typet ype error messagesisturned off if setti ng isO;
otherwise, stopping is turned on.
Default: Stopping turned on for | MSLS_FATAL, | MSLS TERM NAL
and | MSLS_FATAL_| MVEDI ATE messages

I MBLS SET TRACEBACK, Imsls error type, int setting (Input)
Printing of atraceback on typet ype error messages is turned off if
set ti ng is0; otherwise, printing of the traceback turned on.
Default: Traceback turned off for all message types

I MSBLS FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if set ti ng is0;
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otherwise, internal function names also are listed.
Default: Full traceback turned off

I MBLS GET_PRI NT, Imsls error type, int *psetting (Output)
Setsthe integer pointed to by pset t i ng to the current setting for
printing of type type error messages.

I MBLS GET_STOP, Imds error type, int *psetting (Output)
Setsthe integer pointed to by pset t i ng to the current setting for
stopping on type type error messages.

I MBLS GET_TRACEBACK, Imsls error type, int *psetting (Output)
Setsthe integer pointed to by pset ti ng to the current setting for
printing of atraceback for typet ype error messages.

| MSLS_SET_ERROR FILE, FILE *file (Input)
Sets the error output file.
Default: fil e =stderr

| MSLS_GET_ERROR FI LE, FILE **pfile (Output)
Setsthe FILE * pointed to by pfi | e to the error output file.

I MBLS ERROR MSG PATH, char *path (Input)
Sets the error message file path. On UNIX systems, thisis acolon-

separated list of directories to be searched for the file containing the

€rror messages.
Default: system dependent

| MSBLS ERROR MSG NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file="i nmsl error. bin"

I MSBLS_ERROR PRI NT_PROC, Imdls error_print_proc print_proc (Input)
Sets the error printing function. The procedure pri nt _pr oc hasthe

formvoid print_proc (Imsls error type, long code,
char *function_name, char *nmessage).

Inthis case, t ype isthe error message type number (I MSLS_FATAL,
etc.), codeis the error message code number

(I MBLS_MAJOR VI OLATI ON, €tc.), f unct i on_name isthe name of the
function setting the error, and message is the error message to be printed.
If print_proc isNULL, then the default error printing function is used.

Return Value

The return value is void.

Description

This function allows the error handling system to be customized.
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Examples

Example 1

In this example, thel MSLS_TERM NAL print setting is retrieved. Next, stopping
on| MBLS_TERM NAL errorsis turned off, output to standard output is redirected,
and an error is deliberately caused by callingi nsl s_error_opti ons withan
illegal vaue.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

mai n()

i nt setting;
/* Turn off stopping on | MSLS TERM NAL */
/* error nmessages and write error */
/* messages to standard output */
insls_error_options(IMSLS SET_STOP, | MSLS TERM NAL, O,
| MSLS_SET_ERROR FI LE, stdout,
0);
/* Call inmsls_error_options() with */
/* an illegal value */
insls_error_options(-1);
/* Get setting for | MSLS TERM NAL */
insls_error_options(IMSLS GET_PRINT, | MSLS TERM NAL, &setting,
0);
printf("IMSLS TERM NAL error print setting = %\n", setting);

Output
*** TERM NAL Error frominsls_error_options. There is an error with
*** argunent nunber 1. This may be caused by an incorrect nunber of
*** yalues following a previous optional argunent nane.

| MSLS _TERM NAL error print setting =1

Example 2

In this example, IMSL’s own error printing function has been substituted for the
standard function. Only the first four lines are printed below.

#i ncl ude <insls. h>
#i ncl ude <stdio. h>

voi d print_proc(lmsls_error, long, char*, char*);
mai n()

/* Turn off tracebacks on | MSLS_TERM NAL */
/* error messages and use a custom */
/* print function */
i msl s_error_options(l MSLS_ERROR PRI NT_PRCC, print_proc,
0);
/* Call insls_error_options() with an */
/* illegal value */
i msls_error_options(-1);
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}

void print_proc(lnsls_error type, |ong code, char *function_nane,

{

char *message)

printf("Error nessage type %\ n", type);
printf("Error code %\ n", code);
printf("Fromfunction %\n", function_nane);
printf("%\n", message);

Output

Error nessage type 5

Error code 103

From function inmsls_error_options
There is an error with argument number 1. This may be caused by an
i ncorrect nunmber of values follow ng a previous optional argunment name.

error_code

#i ncl ude <i sl s.
#i ncl ude <stdi o.

mai n()

| ong

i msls_error_

Gets the code corresponding to the error message from the last function called.

Synopsis
#include <i nsls. h>

long i nsls_error_code ()

Return Value

This function returns the error message code from the last function called. The
include fileimsls.h defines a name for each error code.

Example

In this example, stopping on | MSLS_TERM NAL error messagesis turned off and
an error isthen generated by calling functioni sl s_error _opt i ons with an
illegal valuefor | MSLS_SET_PRI NT. The error message code humber is then
retrieved and printed. In imsis.h, | MSLS_| NTEGER _OUT_OF_RANGE is defined to
be 132.

h>
h>

code;
/* Turn off stopping | MSLS_TERM NAL */
/* messages and print error nmessages */
/* on standard output */
options(l MSLS _SET_STOP, | MSLS TERM NAL, O,
| MSLS_SET_ERROR FI LE, stdout,
0);
/* Call insls_error_options() with */
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/[* an illegal value */
i msl s_error_options(l MSLS_SET_PRI NT, 100, O,

0);
/* Get the error message code */

code = imsls_error_code();

printf("error code = %\ n", code);
}

Output

*** TERM NAL error frominmsls_error_options. "type" nust be between 1 and
>k 5, but "type" = 100.

error code = 132

machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis
#include <insls. h>
int i msl s_i _machi ne (int n)

Required Arguments

int n (Input)
Index indicating which value is to be returned. It must be between 0 and
12.

Return Value

The requested value is returnedn s out of range, NaN is returned.

Description

Functioni nsl s_i _machi ne returns information describing the computer’'s
arithmetic. This can be used to make programs machine independent.

i msl s_i _machi ne(0) = Number of bits per byte
Assume that integers are representad-digit, baseA form as
M

sz X, A
=4

wherea is the sign and 8 x, <Afork=0,..., M. Then,
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Definition

C, bits per character
A, the base
M, the number of base-A digitsin ashort int

w N » OS5

AMs -1 thelargest short int

M, the number of base-A digitsin along int

[S2 N

AM —1 thelargest longint

Assume that floating-point numbers are represented in N-digit, base B form as
N

oBF Z x B
-1

whereo isthesignand0< x, <Bfork=1,...,Nand E;, < E<E, ... Then

n Definition

6 B, the base

7 Ny the number of base-B digitsin float
8 Epmin, » the smallest float exponent

9 Emax, » thelargest float exponent

10 N, the number of base-B digitsin double
11 Emin, » thelargest long int

12 Ermax, » the number of base- B digitsin double

Example

In this example, al the valuesreturned by i nsl s_i _machi ne on a machine with
|EEE (Institute for Electrical and Electronics Engineer) arithmetic are printed.

#i ncl ude <insls. h>
mai n()
i nt n, ans;
for (n =0, n <=12; n++) {

ans = insls_i_machine(n);
printf("imsls_i_machine(%) = %\n", n, ans);
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nmsl s_i _machi ne(0)
msl s_i _machi ne(1)
msl s_i _machi ne(2)
nmsl s_i _machi ne(3)
msl s_i _machi ne(4)
nmsl s_i _machi ne(5)
nmsl s_i _machi ne(6)
msl s_i _machi ne(7)
nmsl s_i _machi ne(8)
nmsl s_i _machi ne(9)
msl s_i _machi ne(10)
msl s_i _machi ne(11)
msl s_i _machi ne(12)

Output

8
2
15
32767
31
2147483647
2
24
-125
128
53
-1021
1024

machine (float)

Returns information describing the computer’s floating-point arithmetic.

Synopsis
#include <i nsl's. h>
float i msl s_f _machine (int n)

The typedouble function isi nsl s_d_machi ne.

Required Arguments

int n (Input)
Index indicating which value is to be returned. The index must be
between 1 and 8.

Return Value

The requested value is returnedn lis out of range, NaN is returned.

Description

Functioni sl s_f _machi ne returns information describing the computer’s
floating-point arithmetic. This can be used to make programs machine
independent. In addition, some of the functions are also important in setting
missing values (see below).

Assume thalloat numbers are representedNpdigit, baseB form as

N

oBF Z x B
=1

whereo is the sign; & x;, <Bfork=1, 2,...,N; and
E., <E<E

ming maX ¢
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Notethat B=i msl s_i _machi ne(6); Ny=i msl s_i _machi ne(7);

Emin, =i msl s_i _machi ne(8)

and

Emax, =i msl s_i _machi ne(9)

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result
of various otherwise illegal operations, such as computing 0/0. On computers that
do not support NaN, avalue larger thani sl s_d_machi ne(2) isreturned for

i msl s_f _machi ne(6). On computers that do not have a special representation
for infinity, i nsl s_f _machi ne(2) returns the same value as

i msl s_f_machi ne(7).

Functioni nsl s_f _machi ne is defined by the following table:

n Definition
1 Emin -1 sy
B ™" °, thesmallest positive number
2 g (1-B™V"), the largest number
3 BN, the smallest relative spacing
4 BN | thelargest relative spacing
S) log, o(B)
6 NaN
7 positive machine infinity
8 negative machine infinity

Functioni nsl s_d_machi ne retrieves machine constants that define the
computer’s double arithmetic. Note that flmuble B =i nsl s_i _machi ne(6),
N; =i nsl s_i _machi ne(10),

Epin, =i msl s_i _machi ne(11)

and

Emax, =i msl s_i _machi ne(12)
Missing values in functions are always indicated by NaN. This is
i msl s_f _machi ne(6) in single precision anidvs! s_d_nachi ne(6) in double
precision. There is no missing-value indicator for integers. Users will almost
always have to convert from their missing value indicators to NaN.
Example

In this example, all eight values returned logl s_f _nmachi ne and by
i msl s_d_machi ne on a machine with IEEE arithmetic are printed.
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#i ncl ude <insls. h>

mai n()
i nt n;
fl oat f ans;
doubl e dans;

for (n =1, n <=8; n++) {
fans = imsls_f_machi ne(n);
printf("imsls_f_machine(%l) = %\n", n, fans);

for (n =1, n <=8; n++) {
dans = inmsls_d_machine(n);
printf("imsls_d_machine(%l) = %\n", n, dans);

}

Output
i msl s_f_machine(1l) = 1.17549e-38
i msl s_f_machine(2) = 3.40282e+38
i msl s_f_machine(3) = 5.96046e-08
i msl s_f_machi ne(4) = 1.19209e-07
i msl s_f _machi ne(5) = 0.30103
i msl s_f_machi ne(6) = NaN
i msl s_f_machine(7) = Inf
i msl s_f_machine(8) = -Inf
i msl s_d_nachine(1) = 2.22507e-308
i msl s_d_nachine(2) = 1.79769e+308
i msl s_d_machine(3) = 1.11022e-16
i msl s_d_machi ne(4) = 2.22045e-16
i msl s_d_machi ne(5) = 0.30103
i msl s_d_machi ne(6) = NaN
i msl s_d_machi ne(7) = Inf
i msl s_d_machine(8) = -Inf

data_sets

Retrieves acommonly analyzed data set.

Synopsis
#include <i nsl's. h>
float *insl s_f_data_sets (int data_set_choice, ..., 0)

The type double functionisi nsl s_d_dat a_set s.

Required Arguments

int data_set _choi ce (Input)
Data set indicator. Set dat a_set _choi ce = 0 to print a description of
all nine data sets. In this case, any optional arguments are ignored.
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data_set_choice | n_observations | n_variables | Description of

Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisheriris

4 144 1 Box and Jenkins
Series G

5 13 5 Draper and Smith
Appendix B

6 197 1 Box and Jenkins
Series A

7 296 2 Box and Jenkins
SeriesJ

8 100 4 Robinson
Multichannel
Time Series

9 113 34 Afifi and Azen
Data Set A

Return Value

If dat a_set _choi ce # 0, the requested data set is returned. If
dat a_set _choi ce =0 or an error occurs, NULL isreturned.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _data_sets (int data_set_choi ce,
IMSLS X COL_DIM int x_col _dim
I MSLS_N_OBSERVATI ONS, int *n_observati ons,
I MSLS N VARI ABLES, int *n_vari abl es,
| MSLS_PRI NT_NONE,
| MSLS_PRI NT_BRI EF,
| MSLS_ PRI NT_ALL,
| MSBLS_RETURN USER, float x[],
0)

Optional Arguments

IMSLS X COL_DI'M int x_col _di m (Input)
Column dimension of user allocated space.

I MSBLS N _OBSERVATI ONS, int *n_observati ons (Output)
Number of observations or rows in the output matrix.
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I MSBLS N VARI ABLES, int *n_vari abl es (Output)
Number of variables or columnsin the output matrix.

| MSLS_PRI NT_NONE
No printing is performed. This option is the defaullt.

| MSLS_PRI NT_BRI EF
Rows 1 through 10 of the data set are printed.

| MSLS_ PRI NT_ALL
All rows of the data set are printed.

| MSLS_RETURN_USER, float x[] (Output)
User-supplied array containing the data set.
Description

Functioni nsl s_f _dat a_set s retrieves a standard data set frequently cited in
statistics text books or in this manual. The following tables gives the references

for each data set:
data_set_choi ce | Reference

1 Longley (1967)
2 Anderson (1971, p.660)
3 Fisher (1936); Mardiaet al. (1979, Table 1.2.2)
4 Box and Jenkins (1976, p. 531)
5 Draper and Smith (1981, pp. 629-630)
6 Box and Jenkins (1976, p. 525)
7 Box and Jenkins (1976, pp. 532-533)
8 Robinson (1976, p. 204)
9 Afifi and Azen (1979, pp. 16-22)

Example

Inthisexample, i msl s_f _dat a_set s isused to copy the Draper and Smith
(1981, Appendix B) data set into x.

#i ncl ude <insls. h>

mai n()
float *x;
x = imsls_f_data_sets (5, 0);

imsls_f_wite_matrix("Draper and Smith, Appendix B', 13, 5, x, 0);
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Output
Draper and Smith, Appendix B

1 2 3 4 5
1 7.0 26.0 6.0 60.0 78.5
2 1.0 29.0 15.0 52.0 74.3
3 11.0 56.0 8.0 20.0 104. 3
4 11.0 31.0 8.0 47.0 87.6
5 7.0 52.0 6.0 33.0 95.9
6 11.0 55.0 9.0 22.0 109.2
7 3.0 71.0 17.0 6.0 102.7
8 1.0 31.0 22.0 44.0 72.5
9 2.0 54.0 18.0 22.0 93.1
10 21.0 47.0 4.0 26.0 115.9
11 1.0 40.0 23.0 34.0 83.8
12 11.0 66.0 9.0 12.0 113.3
13 10.0 68.0 8.0 12.0 109.4

mat_mul_rect

Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix
product, a bilinear form, or any triple product.

Synopsis
#include <i nsl's. h>
float *i nsl s_f _mat _mul _rect (char *string,...,0)

The type double functionisi nsl s_d_mat _mul _rect.

Required Arguments

char *string (Input)
String indicating operation to be performed. See “Description.”

Return Value

The result of the operation. This is always a pointerftoa, even if the result is
a single number. If no answer was compuietl)l is returned.

Synopsis with Optional Arguments

#include <i nsls. h>

float *i nsl s_f _mat _mul _rect (char *string,
I MSLS A MATRI X, int nrowa, int ncol a, float a[],
IMSLS A COL_DIM int a_col _dim
| MSLS B_MATRI X, int nrowb, int ncol b, float b[],
IMSLS B COL_DIM int b_col _dim
| MSLS X VECTOR, int nx, float *x,
| MBLS_Y_VECTOR, int ny, float *y,
| MBLS_RETURN_USER, float ans[],
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I MSLS RETURN COL_DIM int return_col _dim
0)

Optional Arguments

I MSBLS A MATRI X, int nrowa, int ncol a, float a[] (Input)
Thenr owa x ncol a matrix A.

IMSLS A COL_DIM int a_col _di m (Input)
Column dimension of A.
Default: a_col _di m=ncol a

I MSBLS B _MATRI X, int nrowb, int ncol b, float b[] (Input)
Thenr owb X ncol b matrix A.

IMSLS B COL_DIM int b_col _di m (Input)
Column dimension of B.
Default: b_col _dim = ncol b

I MBLS X VECTOR, int nx, float *x (Input)
Vector x of size nx.

I MSBLS Y _VECTOR, int ny, float *y (Input)
Vector y of sizeny.

| MSLS_RETURN_USER, float ans[] (Output)
User-allocated array containing the result.

I MSBLS RETURN COL_ DI M int return_col _di m (Input)
Column dimension of the answer.
Default: return_col _di m=the number of columnsin the answer

Description

This function computes a matrix-vector product, a matrix-matrix product, a
bilinear form of amatrix, or atriple product according to the specification given
by stri ng. For example, if “A*x” is given,Ax is computed. It ri ng, the
matricesA andB and the vectors andy can be used. Any of these four names
can be used withr ans, indicating transpose. The vectarandy are treated as
n x 1 matrices.

If st ri ng contains only one item, such as or “t rans( A) ", then a copy of the
array, or its transpose, is returnedstlif i ng contains one multiplication, such as
“A*x” or “B* A", then the indicated product is returned. Some other legal values
forstringare‘trans(y)*A", “A*trans(B)”, “x*trans(y)”, or
“trans(x)*y”.

The matrices and/or vectors referred taimi ng must be given as optional
arguments. 1§t ri ng is “B*x”, thenl MSLS_B_MATRI X andl M5LS_X_VECTOR
must be given.

Example

Let A, B, x, andy equal the following matrices:
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3 2 7 3
1209
= B=|7 4| x=|2| y=|4
54 7
9 1 1 2

The arrays AT ax, x"AT, aB, B7AT, xTy, xyT and xTAy are computed and

printed.
#i ncl ude <insls. h>

mai n()

fl oat

-
1]

fl oat

o)
I

fl oat X[ 1]
fl oat
fl oat

LWNoOoNwapR

I
~———

ans = insls_f_mat_mul

0);

inmsls f wite matrix("

ans = insls_f_mat_mul

0);

imsls f wite matrix("

ans = insls_f_mat_mul
| MSLS A MATRI X, 2,
| MBLS_X_VECTOR, 3,
0);

inmsls f wite matrix("

ans = insls_f_mat_mul
| MVSLS A MATRI X, 2,
| MSLS B MATRI X, 3
0);

inmsls f wite matrix("

ans = insls_f_mat_mul
| MSLS A MATRI X, 2,
II\/SLS B _MATRI X, 3,
0);

imsls f wite matrix("

ans = insls_f_mat_mul
I MSLS_X_VECTCR, 3,
| MSBLS_Y_VECTOR, 3,
0);

inmsls f wite matrix("

ans = insls_f_mat_mul

| MSBLS_X_VECTOR, 3,

NeERARNMED
~N ©

I
1};
4, 2%};

_rect("trans(A)"
| MSLS_A MATRI X, 2,

3, A

trans(A)", 3, 2, ans, 0);

f _rect ("A*x"
| MSLS_A MATRI X, 2,
I MBLS X VECTOR, 3,

3, A
X,

A*x", 1, 2, ans, 0);

_rect("trans(x)*trans(A)"

3, A
X,
trans(x)*trans(A", 1, 2,

ans, 0);

_rect("A*B",

2, 2, ans, 0);

trans(B)*trans(A", 2, 2, ans, 0);
_rect("trans(x)*y",
X,

Y,

trans(x)*y", 1, 1, ans, 0);
_rect("x*trans(y)",

X,
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imsls_f_wite_matrix("x*trans(y)", 3, 3, ans, 0);

ans = imsls_f_mat_nul _rect("trans(x)*A*y",

A,

/* use only the first 2 conponents of x */

imsls_f_wite_matrix("trans(x)*A*y", 1, 1, ans, 0);

| MSLS_Y_VECTOR, 3, v,
0);
| MSLS_A_MATRI X, 2, 3,
| MSLS_X_VECTOR, 2, X,
| MSLS_Y_VECTOR, 3, v,
0);
}
Output
trans(A)
1 2
1 1 5
2 2 4
3 9 7
A* X
1 2
20 50
trans(x)*trans(A)
1 2
20 50
A*B
1 2
1 98 19
2 106 33
trans(B)*trans(A)
1
1 98 106
2 19 33
trans(x)*y
31
x*trans(y)
1 21 28
2 6 8
3 3 4

trans(x)*Ary

293

Iy
NADW
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permute_vector

Rearranges the elements of a vector as specified by a permutation.

Synopsis
#include <insls. h>

float *insls_f_permute_vector (int n_el enents, float x[],
int pernutation[], Imsls permute per mute, ..., 0)

The type double function isi nsl s_d_per nut e_vect or.

Required Arguments

int n_el ements (Input)
Number of elementsin the input vector x.

float x[] (Input)
Array of length n_el ermrent s to be permuted.

int pernutation[] (Input)
Array of lengthn_el ement s containing the permutation.

Imds permute per nut e (Input)
Keyword of type Imsls_permute. Argument per mut e must be either
| MSLS_FORWARD_PERMUTATI ONor | MSLS_BACKWARD PERMUTATI ON.
If | MSLS_FORWARD PERMUTATI ONis specified, then aforward
permutation is performed, i.e.,, x(pernut ati on[i]) ismovedto
location i in the return vector. If | MBLS_BACKWARD_PERMUTATI ONis
specified, then abackward permutation is performed, i.e., x[i] is
moved to location per mut at i on[i ] inthereturn vector.

Return Value

An array of lengthn_el ement s containing the input vector x permuted.

Synopsis with Optional Arguments

#include <i nsls. h>

float *insl s_f_permute_vector (int n_el enents, float x[],
int pernutation[],mss permute permnute,
| MSLS RETURN USER, float pernuted result[],
0)

Optional Arguments

I MSBLS RETURN_USER, float per nut ed_resul t[] (Output)
User-allocated array containing the result of the permutation.
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Description

Functioni nsl s_f _per nut e_vect or rearranges the elements of a vector
according to a permutation vector. The function can perform both forward and
backward permutation.

Example

This example rearranges the vector x using per nut at i on. A forward
permutation is performed.

#i ncl ude <insls. h>

voi d main()

float x[] = {5.0, 6.0, 1.0, 4.0};

int permutation[] = {2, 0, 3, 1};

fl oat *out put ;

i nt n_el enents = 4;

output = insls_f_pernute_vector (n_elenents, x, pernutation,

| MSLS_FORWARD PERMUTATI ON, 0);

insls f wite matrix ("pernuted result”, 1, n_el enents, output,
| MSLS_COL_NUMBER ZERO, 0);

}
Output
pernuted result
0 1 2 3
1 5 4 6

permute_matrix

Permutes the rows or columns of a matrix.

Synopsis
#include <insls. h>

float *insls_f_permute_matrix (int n_rows, int n_col ums, float a[],
int pernutation[], Imss permute permte, ..., 0)

The type double functionisi nsl s_d_pernute_matri x.

Required Arguments

int n_rows (Input)
Number of rows in the input matrix a.

int n_col ums (Input)
Number of columns in the input matrix a.
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float a[] (Input)
Matrix of sizen_r ows x n_col unms to be permuted.

int pernutation[] (Input)
Array of lengthn_el ement s containing the permutation.

Imsls permute pernute (Input)
Keyword of type Imsls_permute. Argument per nut e must be either
I MSLS PERMUTE_ROWS, if the rows of a are to be interchanged, or
I MSBLS_PERMUTE_COLUMNS, if the columns of a are to be interchanged.

Return Value

Array of sizen_r ows X n_col umms containing the permuted input matrix a.

Synopsis with Optional Arguments
#include <insls. h>

float *insl s_f_permute_matrix (int n_rows, int n_col ums,
float a[],
int pernutation[], Imds permute permute,
| MSLS RETURN USER, float pernuted result[],
0)

Optional Arguments

I MSBLS RETURN_USER, float pernuted_resul t[] (Output)
User-allocated array of sizen_r ows X n_col umms containing the result
of the permutation.

Description

Functioni nmsl s_f _per nut e_mat ri x interchanges the rows or columns of a
matrix using a permutation vector. The function permutes a column (row) at a
time using functioni sl s_f _per nut e_vect or. This processis continued until
all the columns (rows) are permuted. On completion, let B = result and

p; = permutation [i], then B;; = A, for dl i, J.

Example

This example permutes the columns of amatrix a.

#i ncl ude <insls. h>

voi d main()

float a[] = {3.0, 5.0, 1.0, 2.0, 4.0,
3.0, 5.0, 1.0, 2.0, 4.0,
3.0, 5.0, 1.0, 2.0, 4.0};

int permutation[] = {2, 3, 0, 4, 1};

fl oat *out put ;

i nt n_rows = 3;

i nt n_colums = 5;
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NEF,O

output = inmsls_f_pernmute_matrix (n_rows, n_colums, a, permutation,
| MSLS_PERMUTE_COLUMNS,
0);

imsls_f_wite_matrix ("pernmuted matrix", n_rows, n_colums, output,

MBLS_ROW NUMBER_ZERQ,
MVBLS_COL_NUMBER ZERO,

Output

pernmuted matrix

PR PO

NNN P
WwWwN
AW
oo b

binomial _coefficient

Evaluates the binomial coefficient.

Synopsis
#include <i nsls. h>
int i msl s_f_binoni al _coefficient (int n, int m

The type double procedureisi msl s_d_bi nomi al _coeffici ent.

Required Arguments

int n (Input)
First parameter of the binomial coefficient. Argument n must be
nonnegative.

int m (Input)
Second parameter of the binomial coefficient. Argument mmust be
nonnegative.

Return Value

The binomial coefficient

is returned.

Description
The binomial function is defined to be
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T

withn=m= 0. Also, n must not be so large that the function overflows.
Example
In this example, (g) is computed and printed.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()
i nt n =29
i nt m = 5;
i nt ans;
ans = imsls_f_binonial_coefficient(n, m;

printf("binomal coefficient = %\ n", ans);

Output

bi nom al coefficient = 126

beta

Evaluates the complete beta function.

Synopsis
#include <i nsls. h>
float i msl s_f_beta (float a, float b)

The type double procedureisi nsl s_d_bet a.

Required Arguments

float a (Input)
First beta parameter. It must be positive.

float b (Input)
Second beta parameter. It must be positive.
Return Value

The value of the beta function (a, b). If no result can be computed, then NaN is
returned.
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Description
The beta function, B(a, b), is defined to be

p(ag) <A

1
= [t Y(a-1)" Mt
I (a+b) Io -9

Example

Evaluate the beta function (3(0.5, 0.2).

#i ncl ude <insls. h>

mai n()
fl oat x = 0.5;
fl oat y = 0.2;
fl oat ans;
ans = inmsls_f_beta(x, y);
printf("beta(%,%) = %\n", X, y, ans);
}
Output
bet a( 0. 500000, 0. 200000) = 6.268653
O ! Key
i \ \ — 1 +0.00
_ w‘ 1 — 2 4+1.00
_ A — 3 +2.00
o8 \ A 4 +3.00
\ A — 5 +4.00
| \ A — 6 +5.00
B \‘ 2 — 7/ +6OO
067 \ AN 8 +7.00
_ — 9 +8.00
| \ — 10 +9.00
0.4 4 |
0.2 S
= ‘ T3 |
e
0.0 P~ T "\ N
0.0 0.2 0.4 0.6 0.8 1.0

x

Figure 14-1 Plot of B (x, b)

The beta function requiresthat a > 0 and b > 0. It underflows for large arguments.
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Alert Errors

| MBLS_BETA_UNDERFLOW The arguments must not be so large that the
result underflows.

Fatal Errors

| MSLS ZERO ARG OVERFLOW One of the argumentsis so close to zero
that the result overflows.

beta incomplete

Evaluates the real incomplete beta function |, = 3, (a, b)/B(a, b).

Synopsis
#include <i nsls. h>
float i msl s_f _beta_i nconpl ete (float x, float a, float b)

The type double procedureisi nsl s_d_bet a_i nconpl et e.

Required Arguments

float x (Input)
Point at which the incomplete beta function is to be evaluated.

float a (Input)
Point at which the incomplete beta function is to be evaluated.

float b (Input)
Point at which the incomplete beta function is to be evaluated.
Return Value

The value of the incomplete beta function.

Description
Theincomplete beta function is defined to be

l(ab)= Bg(:l’bt;) = B(; 5 joxta‘l(l—t)b‘ldt

The incomplete beta function requiresthat 0 < x<1,a>0,and b > 0. It
underflows for sufficiently small x and large a. This underflow is not reported as
an error. Instead, the value zero is returned.

Example
Evaluate the log of the incomplete beta function 1 41 =B (2.2,3.7)/3(2.2,3.7).
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#i ncl ude <insls. h>

mai n()
fl oat x = 0.61;
fl oat a = 2.2
fl oat b = 3.7;
fl oat ans;
ans = inmsls_f_beta_inconplete(x, y);

printf("beta inconplete = %\n", ans);

}
beta inconmplete = 0.8822;

log_beta

Evaluates the logarithm of the real beta function In (X, y).

Synopsis
#include <i nsl's. h>
float i msl s_f _| og_beta (float x, float y)

The type double procedureisi nsl s_d_| og_bet a.

Required Arguments

float x (Input)
Point at which the logarithm of the beta function is to be evaluated. It
must be positive.

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It
must be positive.

Return Value

The value of the logarithm of the beta function B(x, y).

Description
The beta function, (X, y), is defined to be
FOITY) _ froxeagq gyt
JWY)=——""-F=|t 1-t dt
B(x.y) r(x+y) Jo -y
andi nsl s_f _| og_bet a returnsin B(x, y).

The logarithm of the beta function requiresthat x > 0 and y > 0. It can overflow
for very large arguments.
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Warning Errors

I MSLS X IS TOO CLOSE_TO NEG 1 Theresult is accurate to less than
one precision because the
expression —x/(x + ) istoo close
to -1.

Example

Evaluate the log of the beta function In (0.5, 0.2).
#i ncl ude <insls. h>

mai n()
fl oat x = 0.5;
fl oat y = 0.2;
fl oat ans;
ans = inmsls_f_|log_beta(x, y);

printf("log beta(%,%) = %\n", x, y, ans);

Output

| og beta(0.500000, 0. 200000) 1. 835562

gamma
Evaluates the real gamma function.
Synopsis
#include <i nsl's. h>

float i msl s_f _ganmma (float x)

The type double procedureisi nsl s_d_ganmma.

Required Arguments

float x (Input)
Point at which the gamma function isto be evaluated.

Return Value

The value of the gamma function " (x).

Description

The gamma function, I'(x), is defined to be
r(x)=[ %ot
(=[]t

For x < O, the above definition is extended by analytic continuation.
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The gamma function is not defined for integers less than or equal to zero. It
underflows for x << 0 and overflows for large x. It also overflows for values near
negative integers.
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Figure 14-2 Plot of I'(x) and 1/T" (x)
Alert Errors
| MSLS SMALL_ ARG UNDERFLOW The argument x must be large

enough that " (x) does not
underflow. The underflow limit
occurs first for arguments close to
large negative half integers. Even
though other arguments away from
these half integers may yield
machine-representable values of
I"(x), such arguments are
considered illegal.

Warning Errors

| MSLS_NEAR _NEG | NT_WARN Theresult is accurate to less than
one-half precision because x istoo
close to anegative integer.
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Example

In this example, I'(1.5) is computed and printed.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()

fl oat x = 1.5;

fl oat ans;

ans = imsls_f_gamma(Xx);

printf("Gamma(%) = %\n", x, ans);
}

Output

Gamma( 1. 500000) = 0.886227

Fatal Errors
| MSLS_ZERO ARG _OVERFLOW

| MBLS_NEAR NEG | NT_FATAL

| M5LS_LARGE_ARG _OVERFLOW

| MSLS_CANNOT_FI ND_XM N

| MSLS_CANNOT_FI ND_XMAX

The argument for the gamma function istoo
close to zero.

The argument for the function istoo close
to a negative integer.

The function overflows because x is too
large.

The algorithm used to find x,,;,, failed. This
error should never occur.

The algorithm used to find x,,,, failed. This
error should never occur.

gamma_incomplete

Evaluates the incomplete gamma function y(a, x).

Synopsis

#include <i nsls. h>

float i msl s_f _ganma_i nconpl ete (float a, float x)

The type double procedureisi nsl s_d_ganmma_i nconpl et e.
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Required Arguments

float a (Input)

Parameter of the incomplete gamma function isto be evaluated. It must

be positive.

float x (Input)

Point at which the incomplete gamma function is to be evaluated. It must

be nonnegative.

Return Value

The value of the incomplete gamma functiony(a, x).

Description

The incomplete gamma function, y(a, X), is defined to be

y(a,x) = J.Oxta'le't dt

for x > 0. The incomplete gamma function is defined only for a > 0. Although
v(a, X) iswell defined for x > —oo, this algorithm does not calculate y(a, x) for

negative x. For large a and sufficiently large x, y(a, X) may overflow. y(a, x) is
bounded by I"(a), and users may find this bound a useful guide in determining

legal valuesfor a.
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Figure 14-3 Contour Plot of y(a, x)
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Example
Evaluates the incomplete gamma functionata =1 and x = 3.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()
fl oat x = 3.0;
fl oat a =1.0;
fl oat ans;
ans = inmsls_f_gamma_i nconpl ete(a, Xx);

printf("inconplete ganma(% ,%) = %\n", a, X, ans);

Output
i nconpl ete ganma( 1. 000000, 3. 000000) = 0.950213

Fatal Errors

| MSLS NO CONV_200_TS TERMS The function did not convergein
200 terms of Taylor series.
| MSLS NO CONV_200_CF TERMS The function did not convergein
200 terms of the continued
fraction.
log_gamma

Evaluates the logarithm of the absolute value of the gamma function log | (X)|.

Synopsis
#include <i nsl's. h>
float i msl s_f _| og_gamma (float x)

The type double procedureisi nsl s_d_| og_ganma.

Required Arguments

float x (Input)
Point at which the logarithm of the absolute value of the gamma function
isto be evaluated.

Return Value

The value of the logarithm of gamma function log | (X)].

Description

The logarithm of the absolute value of the gamma function log |I"(X)| is computed.
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Example
In this example, log | (3.5)| is computed and printed.

#i ncl ude <stdio. h>
#i ncl ude <insls. h>

mai n()
fl oat x = 3.5;
fl oat ans;
ans = inmsls_f_|og_ganma(Xx);

printf("log ganma(%) = %\n", X, ans);

Output
| og gamma(3.500000) = 1.200974

Warning Errors

| MSLS_NEAR _NEG | NT_WARN Theresult is accurate to less than
one-half precision because x istoo
close to anegative integer.
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Fatal Errors

| MBLS_NEGATI VE_I NTEGER The argument for the function
cannot be anegative integer.

| MSLS_NEAR_NEG | NT_FATAL The argument for the function is
too close to a negative integer.

| MBLS_LARGE_ABS_ARG OVERFLOW [x| must not be so large that the
result overflows.

ctime

Returns the number of CPU seconds used.

Synopsis
#include <insls. h>

double imsl's_ctime ()

Return Value

The number of CPU seconds used by the program.

Example
The CPU time needed to compute

1,000,000

; k

is obtained and printed. The time needed is machine dependent. The CPU time
needed will varies dlightly from run to run on the same machine.

#i ncl ude <insls. h>
mai n()

i nt K;
double sum tineg;
/* Sum 1l mllion values */
for (sumr0, k=1; k<=1000000; k++)
sum += k;
/* Get ampbunt of CPU tine used */
time = insls_ctine();
printf("sum= %\n", sum;
printf("tine = %\n", tine);

Output

sum = 500000500000. 000000
time = 0.820000
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Reference Material

User Errors

IMSL functions attempt to detect user errors and handle them in away that
provides as much information to the user as possible. To do this, various levels of
severity of errors are recognized, and the extent of the error in the context of the
purpose of the function also is considered; atrivial error in one situation can be
serious in another. IMSL attempts to report as many errors as can reasonably be
detected. Multiple errors present a difficult problem in error detection because
input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible
to compute an answer accurately. In this case, the assessed degree of accuracy
determines the severity of the error. In cases where the function computes several
output quantities, some are not computable but most are, an error condition exists.
The severity of the error depends on an assessment of the overall impact of the
error.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in IMSL C/Stat/Library. Each level
has an associated PRINT attribute and a STOP attribute. These attributes have
default settings (YES or NO), but they may also be set by the user. The purpose
of having multiple error types is to provide independent control of actions to be
taken for errors of different levels of severity. Upon return from an IMSL
function, exactly one error state exists. (A code 0 “error” is no error.) Even if
more than one informational error occurs, only one message is printed (if the
PRINT attribute is YES). Multiple errors for which no corrective action within

the calling program is reasonable or necessary result in the printing of multiple
messages (if the PRINT attribute for their severity level is YES). Errors of any of
the severity levels excepsLS TERM NAL may be informational errors. The
include file,imdls.h, defines each dfMsLS_NOTE, | MSLS_ALERT,

| MSLS WARNI NG, | MSLS_FATAL, | MSLS_TERM NAL,
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| MSLS_WARNI NG_| MVEDI ATE, and | MSLS_FATAL_| MVEDI ATE as enumerated
datatype Imsls _error.

I MSLS_NOTE. A note isissued to indicate the possibility of atrivial error or
simply to provide information about the computations.
Default attributes: PRINT=NO, STOP=NO

| MSLS_ALERT. An alert indicates that a function value has been set to 0 due to
underflow.
Default attributes: PRINT=NO, STOP=NO

I MSLS_WARNI NG. A warning indicates the existence of a condition that may
require corrective action by the user or caling function. A warning error may be
issued because the results are accurate to only afew decimal places; because
some of the output may be erroneous, but most of the output is correct; or because
some assumptions underlying the analysis technique are violated. Usually no
corrective action is necessary, and the condition can be ignored.

Default attributes: PRINT=Y ES, STOP=NO

| MSLS_FATAL. A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling function must take corrective action to
recover.

Default attributes: PRINT=YES, STOP=YES

| MSLS_TERM NAL. A terminal error is serious. It usualy isthe result of an
incorrect specification, such as specifying a negative number as the number of
equations. These errors can a so be caused by various programming errors
impossible to diagnose correctly in C. The resulting error message may be
perplexing to the user. In such cases, the user is advised to compare carefully the
actual arguments passed to the function with the dummy argument descriptions
given in the documentation. Special attention should be given to checking
argument order and data types.

A terminal error is not an informational error, because corrective action within
the program is generally not reasonable. In normal use, execution is terminated
immediately when aterminal error occurs. Messages relating to more than one
terminal error are printed if they occur.

Default attributes: PRINT=YES, STOP=YES

I MSLS_WARNI NG_| MVEDI ATE. An immediate warning error isidentical to a
warning error, except it is printed immediately.
Default attributes: PRINT=Y ES, STOP=NO

| MSLS_FATAL_I MVEDI ATE. Animmediate fatal error isidentical to afatal error,
except it is printed immediately.
Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling function
i msl s_error_options asdescribed in Chapter 14.
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Errors in Lower-level Functions

It is possible that a user's program may call an IMSL function that in turn calls a
nested sequence of lower-level IMSL functions. If an error occurs at a lower level
in such a nest of functions and if the lower-level function cannot pass the
information up to the original user-called function, then a traceback of the
functions is produced. The only common situation in which this can occur is
when an IMSL function calls a user-supplied routine that in turn calls another
IMSL function.

Functions for Error Handling

The user may interact in two ways with the IMSL error handling system: (1) to
change the default actions and (2) to determine the code of an informational error
S0 as to take corrective action. The IMSL functions to use are

imsl s_error_options andi nsl s_error_code. Function

i msl s_error_options sets the actions to be taken when errors occur. Function

i msl s_error_code retrieves the integer code for an informational error. These
functions are documented on pages 482 and 485.

Use of Informational Error to Determine Program Action

In the program segment below, a factor analysis is to be performed on the matrix
covariances. If it is determined that the matrix is singular (and often this is not
immediately obvious), the program is to take a different branch.

x = imsls_f_factor_analysis (nobs, covariances,
n_factors, 0);
if (insls_error_code() == IMSLS_COV_IS_SI NGULAR) {

/* Handle a singular matrix */

}

Additional Examples

See functionsnsl s_error_options andi msl s_error_code in Chapter 14
for additional examples.
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Appendix B:
of Routines

Alphabetical Summary

Function

Purpose Statement

Page

anova_bal anced

anova_nest ed

anova_factoria
anova_oneway

arna

arma_f or ecast

aut ocorrel ation

bet a

bet a_i nconpl ete

bet a_cdf

bet a_i nver se_cdf

bi nom al _cdf

bi nom al _coefficient
bi vari at e_nor nal _cdf
box_cox_transform

categorical _glm

chi _squar ed_cdf

chi _squared_i nverse_cdf

Analyzes a balanced complete experimental design fora 245

fixed, random, or mixed model.

Analyzes a completely nested random model with 237
possibly unegual numbers in the subgroups.

Analyzes a balanced factorial design with fixed effects. 225

Analyzes a one-way classification model. 216
Computes least-square estimates of parameters for an 371
ARMA model.

Computes forecasts and their associated probability 381
limits for an ARMA model.

Computes the sample autocorrelation function of a 395
stationary time series.

Evaluates the complete beta function. 605
Evaluates the real incomplete beta function. 609
Evaluates the beta probability distribution function. 499

Evaluates the inverse of the beta distribution function. 500

Evaluates the binomial distribution function. 494
Evaluates the binomial coefficient. 608
Evaluates the bivariate normal distribution function. 502
Performs a Box-Cox transformation. 390

Analyzes categorical data using logistic, Probit, Poisson, 281

and other generalized linear models.

Evaluates the chi-squared distribution function. 503
Evaluates the inverse of the chi-squared distribution 505
function
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chi _squared_test
cluster_k_neans
cochran_qg_test

contingency_tabl e

covari ances

cox_stuart _trends_test

ctime
data_sets

di fference

di scrim nant_anal ysi s

error_code

error_options

exact _enumeration

exact _networ k

F _cdf
F _inverse_cdf

factor_anal ysis

friedmans_t est

gamme
gama_cdf
gama_i nconpl ete

garch

hyper geonetri c_cdf
hypot hesi s_partia
hypot hesi s_scph
hypot hesi s_t est

k_trends_test

Performs a chi-squared goodness-of -fit test. 336

Performs a K-means (centroid) cluster analysis. 412
Performs a Cochran Q test for related observations. 326
Performs a chi-squared analysis of atwo-way 260

contingency table.

Computes the sample variance-covariance or correlation 185
matrix.

Performs the Cox and Stuart’ sign test for trends in 306
location and dispersion.

Returns the number of CPU seconds used. 618
Retrieves a commonly analyzed data set. 598
Differences a seasonal or nonseasonal time series. 386
Performs discriminant function analysis. 434

Gets the code corresponding to the error message frof®3
the last function called.

Sets various error handling options. 590

Computes exact probabilities in a two-way contingenc®73
table, using the total enumeration method.

Computes exact probabilities in a two-way contingenc®75
table using the network algorithm.

Evaluates th& distribution function. 510
Evaluates the inverse ofak distribution function. 513
Extracts initial factor-loading estimates in factor 423
analysis.

Performs Friedman’s test for a randomized complete 322
block design.

Evaluates the real gamma functions. 613
Evaluates the gamma distribution function. 514
Evaluates the incomplete gamma function. 615
Computes estimates of the parameters of 405

a GARCH§@,q) model
Evaluates the hypergeometric distribution function. 495

Constructs a completely testable hypothesis. 96
Sums of cross products for a multivariate hypothesis.101
Tests for the multivariate linear hypothesis. 106
Performs k-sample trends test against ordered 329
alternatives.
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kol nmogor ov_one

kol nmogor ov_t wo

kruskal wallis_test

| ack_of fit

| norm regression

| og_beta

| og_ganma

machine (float)

machi ne (integer)

mat _nmul _rect

mul ti pl e_conpari sons

mul tivar_normality test

noet her _cyclical _trend

non_central _chi _sq_cdf

non_central _chi _sq_inv

non_central _t_ cdf

non_central _t_inv_cdf

nonl i near _optim zation

nonl i near _regression

nor mal _cdf

normal _i nverse_cdf

Performs a Kolmogorov_Smirnov’s one-sample test fo348
continuos distributions.

Performs a Kolmogorov_Smirnov’s two-sample test 351

Performs a Kruskal-Wallis's test for identical populati@i8
medians.

Performs lack-of-fit test for an univariate time series ot02
transfer function given the appropriate correlation
function.

Fits a multiple linear regression model using criteria 167
other than least squares.

Evaluates the log of the real beta function. 612

Evaluates the logarithm of the absolute value of the 617
gamma function.

Returns information describing the computer's floating-96
point arithmetic.

Returns integer information describing the computer'ss94
arithmetic.

Computes the transpose of a matrix, a matrix-vector 301
product, a matrix-matrix product, a bilinear form, or any
triple product.

Performs Student-Newman-Keuls multiple comparisof84
test.

Computes Mardia’s multivariate measures of skewne§$4
and kurtosis and tests for multivariate normality.

Performs the Noether’s test for cyclical trend. 303

Evaluates the noncentral chi-squared distribution 502
function.

Evaluates the inverse of the noncentral chi-squared 506
function.

Evaluates the noncentral Studentiistribution 522
function.

Evaluates the inverse of the noncentral Student’s 524
t distribution function.

Fits a nonlinear regression model using Powell's 158
algorithm.

Fits a nonlinear regression model. 149

Evaluates the standard normal (Gaussian) distributiorb16
function.

Evaluates the inverse of the standard normal (Gaussiah$
distribution function.
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nor mal _one_sanpl e Computes statistics for mean and variance inferences 7
using a sample from anormal population.

normal _two_sanpl e Computes statistics for mean and variance inferences 11
using samples from two normal population.

normal ity test Performs atest for normality. 344

output _file Sets the output file or the error message outpuit file. 588

page Sets or retrieves the page width or length. 581

partial _autocorrelation Computes the sample partial autocorrelation function of 399
a stationary time series.

partial covariances Computes partial covariances or partial correlations 193
from the covariance or correlation matrix.

pernmute_matrix Permutes the rows or columns of a matrix. 606

per nut e_vect or Rearranges the elements of a vector as specified by a 605
permutation.

poi sson_cdf Evaluates the Poisson distribution function. 497

pool ed_covari ances Computes a pooled variance-covariance from the 198
observations.

poly prediction Computes predicted values, confidence intervals, and 140
diagnostics after fitting a polynomial regression model.

pol y_regression Performs a polynomial |east-squares regression. 132

princi pal _conponents Computes principal components. 417

random ar ma Generates pseudorandom ARMA process numbers. 566

random bet a Generates pseudorandom numbers from a beta 542
distribution.

random bi noni al Generates pseudorandom binomial numbers. 530

random cauchy Generates pseudorandom cauchy numbers. 544

random chi _squar ed Generates pseudorandom chi-squared numbers. 545

random exponenti al Generates pseudorandom numbers from a standard 547
exponential distribution.

random exponential _m x Generates pseudorandom mixed numbers from a 549
standard exponential distribution.

random gamma Generates pseudorandom numbers from a standard 551
gamma distribution.

random geonetric Generates pseudorandom numbers from a geometric 531
distribution.

random hyper geonetric Generates pseudorandom numbers from a 533

hypergeometric distribution.
random | ognor nmal Generates pseudorandom lognormal numbers. 552
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random | ogrithnc Generates pseudorandom numbers from alogarithmic 535

distribution.

random neg_bi nomi al Generates pseudorandom numbers from a negative 537
binomial distribution.

random nor nal Generates pseudorandom numbers from a standard 552
normal distribution using an inverse CDF method.

random normal _nul tivariate Generates pseudorandom numbers from amultivariate 564
normal distribution.

random opti on Selects the uniform (0, 1) multiplicative congruential 566
pseudorandom number generator.

random poi sson Generates pseudorandom numbers from a Poisson 539
distribution.

random seed_get Retrieves the current value of the seed used inthe IMSL 571
random number generators.

random seed_set Initializes arandom seed for use in the IMSL random 573
number generators.

random st udent _t Generates pseudorandom Student’ st. 556

random tri angul ar Generates pseudorandom triangular numbers. 557

random uni form Generates pseudorandom numbers from auniform (0, 1) 559
distribution.

random uni form di screte Generates pseudorandom numbers from a discrete 540
uniform distribution.

random von_ni ses Generates pseudorandom Von Mises numbers. 561

random wei bul | Generates pseudorandom Weibull numbers. 562

randommess_t est Performs a test for randomness. 359

ranks Computes the ranks, normal scores, or exponential 36
scores for avector of observations.

regression Fits amultiple linear regression model using least 64
squares.

regressi on_prediction Computes predicted values, confidence intervals, and 85
diagnostics after fitting a regression model.

regression_sel ection Selects the best multiple linear regression models. 112

regressi on_stepw se Builds multiple linear regression models using forward 123
selection, backward selection or stepwise selection.

regressi on_sunmary Produces summary statistics for a regression model 77
given the information from the fit.

regressors_for_glm Generates regressors for ageneral linear model. 56

robust _covari ances Computes arobust estimate of acovariance matrix and 204
mean vector.
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sign_test
sinple_statistics

sort_data

survival _glm
survival _estinmates
t_cdf

t _inverse_cdf

t abl e_oneway
t abl e_t woway
tie_statistcs

versi on

wi | coxon_si gn_rank
wi | coxon_rank_sum

wite matrix

write_ options

Performs asign test. 296
Computes basic univariate statistics. 2

Sorts observations by specified keys, with optionto tally 27
cases into a multi-way frequency table.

Analyzes survival datausing ageneralized linear model. 459

Estimates using various parametric models. 483
Evaluates the Student’ st distribution function. 519
Evaluates the inverse of the Student’ st distribution 520
function.

Tallies observations into one-way frequency table. 18
Tallies observations into a two-way frequency table. 22
Computestie statistics for a sample of observations. 312

Returns integer information describing the version of the 589
library, license number, operating system, and compiler.

Performs a Wilcoxon sign rank test. 299
Performs a Wilcoxon rank sum test. 314
Prints arectangular matrix (or vector) stored in 571

contiguous memory locations.
Sets or retrieves an option for printing a matrix. 578
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Index

A

alphafactor analysis 429
ANOVA
balanced 245
factorial 225
multiple comparisons 234
nested 237
oneway 216
ANSI Cvii
ARIMA models
forecasts 381
|east-square estimates 371
association, measures of 266
Autoregressive Moving Average Model
370

B

backward selection 123

balanced 245

balanced experimental design 245

beta distribution function 499
inverse 500

beta distribution, simulation 542

beta functions 609, 611, 612

binomial coefficient 608

binomial distribution function 494

binomial distributions 530, 537

bivariate normal distribution function

502
Bonferroni method 220
Box-Cox transformation 390

C

cauchy distributions 544

chi-squared analysis 260

chi-squared distribution function 503,
505

chi-squared distributions 545

chi-squared goodness-of -fit test 336
chi-squared statistics 259, 264
chi-squared test 335
classification model
one-way 216
cluster analysis 411, 412
Cochran Q test 326
coefficient
excess (kurtosis) 2
skewness 2
variation 6
compiler 589
computer constants 594, 596
confidence intervals 140
mean 3
constants 594, 596
contingency coefficient 264
contingency tables 273, 275
two-way 260
correlation matrix 185
correlations 193
counts 2, 27
covariances 204
Cox and Stuart sign test 306
CPU 618
Cramer's V 264

D

data sets 598
deviation, standard 2
diagnostic checking 370
diagnostics 140
discrete uniform distributions 540
discriminant function analysis 434
distribution functions
beta 499
inverse 500
binomial 494
bivariate normal 502
chi-squared 503
inverse 505
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chi-squared, noncentral 506, 509
inverse 509

F _cdf 510
inverse 513

gammab514

Gaussian 516

hypergeometric 495

inverse 518

normal 516

Poisson 497

Student’'s t 519
inverse 520

Student’s t, noncentral 522
inverse 524

Dunn-Sidak method 220

E

eigensystem analysis 412
error handling xii, 590, 593, 621
error messages 588
estimate of scale
simple robust 6
excess 5
exponential distribution, simulation
547
exponential scores 36

F

F distribution function 510
inverse 513
F statistic 16
factor analysis 412, 423
factorial 225
factorial design
analysis 225
finite difference gradient 158
Fisher's LSD 221
forecasting 370
forecasts
ARMA models 381
GARCH 405
forward selection 123
frequency tables 18, 22
multi-way 27
Friedman’s test 321

G

GARCH (Generalized Autoregressive
Conditional Heteroskedastic) 405
gamma distribution function 514

gamma distribution, simulation 551

gamma functions 613, 615, 617

Gaussian distribution functions 516
inverse 518

general distributions 335

general linear models 56

generalized linear models 259

geometric distributions 531

goodness-of-fit tests 335

H

hypergeometric distribution function
495

hypergeometric distributions 533

hypothesis 96, 101, 106

image analysis 429

K

Kappa analysis 259

K-means analysis 412
Kolmogorov one-sample test 348
Kolmogorov two-sample test 351
Kruskal-Wallis test 318

k-sample trends test 329
kurtosis 2, 5

L

lack-of-fit test 52, 402
Least Absolute Value 55, 167, 171,
179
Least Maximum Value 55, 167, 183
Least Squares
Alternatives
Least Absolute Value 55
Least Maximum Value 55
Lp Norm 55
least-squares fit 64, 167, 237, 245, 299,
303, 306, 311, 321, 348, 351, 399
library version 589
linear dependence 48
linear discriminant function
analysis 434
linear regression
multiple 44
simple 44
logarithmic distributions 535
Lp Norm 55, 172
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M

MAD (Median Absolute Deviation) 6
Mardia’s multivariate measures 356
Mardia’s multivariate tests 354
matrices 601
matrix storage modes Vviii
maximum 2, 5
mean 2, 5, 6, 8
for two normal populations 11
normal population 6
measures of association 259, 265
measures of prediction 266
measures of uncertainty 266
median 6
absolute deviation 6
memory allocation ix
minimum 2, 5
missing values 55
models 149
general linear 56
multiple linear regression 112
nonlinear regression 50
polynomial 45
polynomial regression 140
multiple comparisons 234
multiple comparisons test
Student-Newman-Keuls 234
multiple linear regression models 64,
112, 123, 167, 237, 245, 299, 303,
306, 311, 321, 348, 351, 399
multiplying matrices 601
multivariate general linear hypothesis
101, 106
multivariate normal distribution,
simulation 564

N

nested 237
nested random model 215, 237, 241
Noether test 303
non-ANSI C vii
noncentral chi-squared distribution
function 506
inverse 509
noncentral Student’s t distribution
function 522, 524
nonlinear model 158
nonlinear regression 149
nonlinear regression models 50, 149
normal distribution function 518
normal distribution, simulation 554

normal populations
mean 6
variance 6
normal scores 36
normality test 344

0]

observations
number of 2
oneway 216
one-way classification model 216
one-way frequency table 18
operating system 589
output files 588
overflow xii

P

parameter estimation 370
partial correlations 193
partial covariances 193
partially tested hypothesis 96
permutations 605, 606
phi 264
Poisson distribution function 497
Poisson distribution, simulation 539
polynomial models 45
polynomial regression 132
polynomial regression models 140
pooled variance-covariance 198
predicted values 140
prediction coefficient 266
principal components 417
printing

matrices 575

options 582

retrieving page size 581

setting paper size 581

vectors 575
probability limits

ARMA models 381
pseudorandom number generators 335
pseudorandom numbers 552, 556, 561,

562

p-values 265

Q

quadratic discriminant function
analysis 434
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R

random numbers
beta distribution 542
exponential distribution 547
gamma distribution 551
Poisson distribution 539
seed
current value 571
initializing 573
selecting generator 570
random numbers generators 554
randomness test 358
range 2, 6
ranks 36
regression models 44, 77, 85
regressors 56
robust covariances 204

S

sample autocorrelation function 395
sample correlation function 369
sample partia autocorrelation function
399
Scheffé method 220
scores
exponential 36
normal 36
serial number 589
sign test 296
simulation of random variables 528
skewness 2, 5
standard deviation 2, 8
standard errors 265
stepwise selection 123
Student’s t distribution function 519
inverse 520
Student-Newman-Keuls multiple
comparisons test 234
summary statistics 50

T

t statistic 15

tests for randomness 335

tie statistics 311

time domain methodology 370

time series 369, 370, 566
difference 386

transformation 369

transformations 54

transposing matrices 601

triangular distributions 557
Tukey method 219
Tukey-Kramer method 220
two-way frequency tables 22

U

uncertainty, measures of 266

underflow xii

uniform distribution, simulation 559

univariate statistics 2, 281, 459, 483,
549

user-supplied gradient 158

\%

variable selection 45
variance 2, 5, 6
for two normal populations 11
normal population 6
variance-covariance matrix 185
variation, coefficient of 6

W

weighted least squares 50
Wilcoxon rank sum test 314
Wilcoxon signed rank test 299
Wilcoxon two-sample test 320

viii » Index

IMSL C/Stat/Library



Product Support

Contacting Visual Numerics Support

Users within support warranty may contact Visual Numerics regarding the use of
the IMSL C Numerical Libraries. Visual Numerics can consult on the following
topics:

e Clarity of documentation
¢ Possible Visual Numerics-related programming problems
¢ Choiceof IMSL Librariesfunctions or procedures for a particular problem

* Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation

Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

e for PC support, pcsupport @oust on. vni . com

e for non-PC support, suppor t @oust on. vni . com

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variationsto occur; contact your E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics:

1. Includeyour seria (or license) number

IMSL C/Stat/Library
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2. Include the product name and version number: IMSL C/Stat/Library
Version 3.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a
description of the problem

vi « Product Support IMSL C/Stat/Library



	C/Stat/Library
	Quick Tips on How to Use this Online Manual
	Copyright
	Contents
	Introduction
	Chapter 1: Basic Statistics
	Chapter 2: Regression
	Chapter 3: Correlation and Covariance
	Chapter 4: Analysis of Variance
	Chapter 5: Categorical and Discrete Data Analysis
	Chapter 6: Nonparametric Statistics
	Chapter 7: Tests of Goodness of Fit
	Chapter 8: Time Series and Forecasting
	Chapter 9: Multivariate Analysis
	Chapter 10: Survival Analysis
	Chapter 11: Probability Distribution Functions and Inverses
	Chapter 12: Random Number Generation
	Chapter 13: Printing Functions
	Chapter 14: Utilities
	Reference Material
	Appendix A: References
	Appendix B: Alphabetical Summary of Routines
	Index
	Product Support



