

INSL

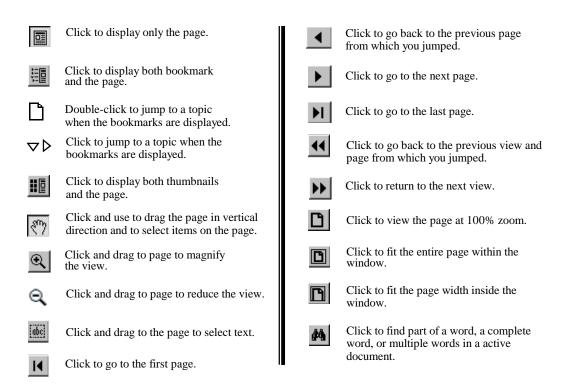
C functions for mathematical applications

C/Math/Library 3.0

User's Guide

Click here to go to C/Stat/Library

Quick Tips on How to Use this Online Manual



Printing an online file: Select **Print** from the **File** menu to print an online file. The dialog box that opens allows you to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been deleted from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for instance, Chapter 4 in the on-line documentation ends on page 279 and Chapter 5 begins on page 281.

Numbering Pages. When you refer to a page number in the PDF online documentation, be aware that the page number in the PDF online documentation will not match the page number in the original document. A PDF publication always starts on page 1, and supports only one page-numbering sequence per file.

Copying text. Click the **button** and drag to select and copy text.

Viewing Multiple Online Manuals: Select **Open** from the **File** menu, and open the .PDF file you need. Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area in Windows: Drag the double-headed arrow that appears on the area's border as you pass over it.

Resizing the Bookmark Area in UNIX: Click and drag the button that appears on the area's border at the bottom of the vertical bar.

Jumping to Topics: Throughout the text of this manual, links to chapters and other sections appear in green color text to indicate that you can jump to them. To return to the page from which you jumped, click the return back icon for the toolbar. *Note: If you zoomed in or out after jumping to a topic, you will return to the previous zoom view(s) before returning to the page from which you jumped.*

Let's try it, click on the following green color text: Chapter 1: Linear Systems

If you clicked on the green color in the example above, Chapter 1: Linear Systems opened. To return to this page, click the on the toolbar.

Visual Numerics, Inc.

Corporate Headquarters 1300 W Sam Houston Pkwy., Ste 150 Houston, Texas 77042-4548 USA

PHONE: 713-784-3131 FAX: 713-781-9260 e-mail: marketing@houston.vni.com

Visual Numerics S. A. de C.V.

Cerrada de Berna #3 Tercer Piso Col. Juarez Mexico D. F. C. P. 06000 MEXICO PHONE: +52-5-514-9730 or 9628 FAX: +52-5-514-4873

Visual Numerics, Inc.

7/F, #510, Sect. 5 Chung Hsiao E. Road Taipei, Taiwan 110 ROC

PHONE: (886) 2-727-2255 FAX: (886) 2-727-6798 e-mail: info@vni.com.tw

Visual Numerics

International Ltd. Centennial Court Suite 1, North Wing Easthampstead Road BRACKNELL BERSHIRE RG12 IYQ UNITED KINGDOM, THE

PHONE: 011 01344 458700 FAX: 011 01344 453743 e-mail: info@vniuk.co.uk

Visual Numerics International GmbH Zettachring 10, D-70567 Stuttgart GERMANY

PHONE: +49-711-13287-0 FAX: +49-711-13287-99 e-mail: vni@visual-numerics.de

Visual Numerics Korea, Inc. HANSHIN BLDG. Room 801 136-MAPO-DONG, MAPO-GU Seoul 121-050 Republic of South Korea

PHONE:011 82 2 3273 2632 or 2633 FAX: 011 82 2 3273 2634 e-mail: leevni@chollian.dacom.co.kr Visual Numerics SARL Tour Europe 33 Place des Corolles F-92049 PARIS LA DEFENSE, Cedex FRANCE

PHONE: +33-1-46-93-94-20 FAX: +33-1-46-93-94-39 e-mail: info@vni.paris.fr

Visual Numerics Japan, Inc GOBANCHO HIKARI Building 4th Floor 14 GOBANCHO CIYODA-KU Tokyo, 113 JAPAN

PHONE: +81-3-5211-7760 FAX: +81-3-5211-7769 e-mail: vnijapan@po.iijnet.or.jp

World Wide Web site: http://www.vni.com

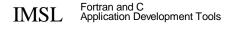
COPYRIGHT NOTICE: Copyright 1990-1999, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library, IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual Numerics, Inc., in the U.S. and other countries. Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems, Inc. SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc. Silicon Graphics is aregistered trademark of Silicon Graphics, Inc. IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business Machines Corporation. HP is a trademark of Hewlett-Packard. Silicon Graphics and IRIX are registered trademarks or trademarks of Silicon Graphics, Inc. DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and proprietary information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(1)(1) of the Rights in Technical Data and Computer Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual Numerics, Inc., 1300 W Sam Houston Pkwy., Ste 150, Houston, Texas 77042.



Contents

Volume I

Introduction	iii
Chapter 1: Linear Systems	1
Chapter 2: Eigensystem Analysis	113
Chapter 3: Interpolation and Approximation	137
Chapter 4: Quadrature	231
Chapter 5: Differential Equations	281
Chapter 6: Transforms	317
Chapter 7: Nonlinear Equations	363
Chapter 8: Optimization	377
Chapter 9: Special Functions	431
Chapter 10: Statistics and Random Number Generation	517
Chapter 11: Printing Functions	577
Chapter 12: Utilities	589
Reference Material	673
Appendix A: References	A-1
Appendix B: Alphabetical Summary of Routines	B-1
Index	i

Introduction

Getting Started

The IMSL C/Math/Library is a library of C functions useful in scientific programming. Each function is designed and documented to be used in research activities as well as by technical specialists. A number of the example programs also show graphs of resulting output.

To use any of the IMSL C/Math/Library functions, you first must write a program in C to call the function. Each function conforms to established conventions in programming and documentation. We give first priority in development to efficient algorithms, clear documentation, and accurate results. The uniform design of the functions makes it easy to use more than one function in a given application. Also, you will find that the design consistency enables you to apply your experience with one IMSL C/Math/Library function to all other IMSL functions that you use.

ANSI C vs. Non-ANSI C

All of the examples in this user's manual conform to ANSI C. If you are not using ANSI C, you will need to modify your examples in which functions are declared or in which arrays are initialized as the type *float*.

The following is an ANSI C program in which a function is declared. The program estimates the value of the following:

$$\int_0^1 \ln(x) x^{-1/2} dx = -4$$

```
1 #include <math.h>
2 #include <imsl.h>
3
4 float
                  fcn(float x);
5
6 main()
7
 {
8
      float
                  q, exact;
9
                      /* evaluate the integral */
      q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0);
10
11
                       /* print the result and the exact answer */
12
      exact = -4.0;
```

```
13
      printf("integral = %10.3f\nexact
                                                  = %10.3f\n", q, exact);
14 }
15
16 float fcn(float x)
17 {
18
      return log(x)/sqrt(x);
19 }
             If using non-ANSI C, you would need to modify lines 4 and 16 as follows:
                      fcn(); /* function is not prototyped */
4
    float
      .
16 float fcn(x)
                              /*Only variable of function defined here */
16a float x;
                             /* Type of variable declared here */
             Non-ANSI C does not allow for automatic aggregate initialization, and thus, all auto
             arrays that are initialized as type float in ANSI C must be initialized as type static float
             in non-ANSI C. The next program contains arrays that are initialized as type float.
1 #include <imsl.h>
2
3 main()
4
  {
5
       int
                     n = 3;
6
       float
                      *x;
7
       float
                      a[] = \{1.0, 3.0, 3.0,
8
                             1.0, 3.0, 4.0,
9
                             1.0, 4.0, 3.0;
10
11
       float
                      b[] = \{1.0, 4.0, -1.0\};
                                 /* Solve Ax = b for x */
12
      x = imsl_f_lin_sol_gen (n, a, b, 0);
13
14
                                 /* Print x */
15
      imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
16 }
             If using non-ANSI C, you would need to modify lines 7 and 11 as follows:
7
                            a[] = \{1.0, 3.0, 3.0,
       static float
                            b[] = \{1.0, 4.0, -1.0\};
11
      static float
```

The imsl.h File

The include file <imsl.h> is used in all of the examples in this manual. This file contains prototypes for all IMSL-defined functions; the spline structures, *Imsl_f_ppoly*, *Imsl_d_ppoly*, *Imsl_f_spline*, and *Imsl_d_spline*; enumerated data types, *Imsl_quad*, *Imsl_write_options*, *Imsl_page_options*, *Imsl_ode*, and *Imsl_error*; and the IMSL-defined data types *f_complex* (which is the type *float* complex) and *d_complex* (which is the type *double* complex).

iv • Getting Started

Matrix Storage Modes

In this section, the word *matrix* is used to refer to a mathematical object and the word *array* is used to refer to its representation as a C data structure. In the following list of array types, the IMSL C/Math/Library functions require input consisting of matrix dimension values and all values for the matrix entries. These values are stored in row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a "result." For example, in solving linear algebraic systems, the pointer is to the solution. For general, real eigenvalue problems, the pointer is to the eigenvalues. Normally, the input array values are not changed by the functions.

In the IMSL C/Math/Library, an array is a pointer to a contiguous block of data. They are *not* pointers to pointers to the rows of the matrix. Typical declarations are:

```
float *a = {1, 2, 3, 4};
float b[2][2] = {1, 2, 3, 4};
float c[] = {1, 2, 3, 4};
```

Note that if you are using non-ANSI C and the variables are of type *auto*, then the above declarations would need to be declared as type *static float*.

General Mode

A *general* matrix is a square $n \times n$ matrix. The data type of a general array can be *float*, *double*, *f_complex*, or *d_complex*.

Rectangular Mode

A *rectangular* matrix is an $m \times n$ matrix. The data type of a rectangular array can be *float, double, f_complex,* or *d_complex.*

Symmetric Mode

A symmetric matrix is a square $n \times n$ matrix A, such that $A^T = A$. (The matrix A^T is the transpose of A.) The data type of a symmetric array can be *float* or *double*.

Hermitian Mode

A *Hermitian* matrix is a square $n \times n$ matrix A, such that

$$A^H = \overline{A}^T = A$$

The matrix \overline{A} is the complex conjugate of A, and

 $A^H \equiv \overline{A}^T$

is the conjugate transpose of *A*. For Hermitian matrices $A^{H} = A$. The data type of a Hermitian array can be *f_complex* or *d_complex*.

Sparse Coordinate Storage Format

Only the nonzero elements of a sparse matrix need to be communicated to a function. Sparse coordinate storage format stores the value of each matrix entry along with that entry's row and column index. The following four non-homogeneous data structures are defined to support this concept:

```
typedef struct {
        int row;
        int col;
        float val;
} Imsl_f_sparse_elem;
typedef struct {
        int row;
        int col;
        double val;
} Imsl_d_sparse_elem;
typedef struct {
        int row;
        int col;
        f_complex val;
} Imsl_c_sparse_elem;
typedef struct {
        int row;
        int col;
        d_complex val;
} Imsl_z_sparse_elem;
```

See the Reference Material for a discussion of the complex data types $f_complex$ and $d_complex$. Note that the only difference in these structures involves changes in underlying data types. A sparse matrix is passed to functions that accept sparse coordinate format by forming an array of one of these data types. The number of elements in that array will be equal to the number of nonzeros in the sparse matrix.

As an example consider the 6×6 matrix:

	2	0	0	0	0	0
	0	9	-3	-1	0	0
4 —	0	0 9 0 0 0 0 -2	5	0	0	0
A =	-2	0	0	-7	-1	0
	-1	0	0	-5	1	-3
	-1	-2	0	0	0	6

The matrix A has 15 nonzero elements, and the sparse coordinate representation would be

row	0	1	1	1	2	3	3	3	4	4	4	4	5	5	5
col	0	1	2	3	2	0	3	4	0	3	4	5	0	1	5
val	2	9	-3	-1	5	-2	-7	-1	-1	-5	1	-3	-1	-2	6

vi • Matrix Storage Modes

Since this rep	presentation	does not rel	lv on order.	an equivale	ent form	would be
Since this re	presentation	aces not re	ij on oraci,	un equivare	me rorm	moula oc

row	5	4	3	0	5	1	2	1	4	3	1	4	3	5	4
col	0	0	0	0	1	1	2	2	3	3	3	4	4	5	5
val	-1	-1	-2	2	-2	9	5	-3	-5	-7	-1	1	-1	6	-3

There are different ways this data could be used to initialize an array of type, for example, *Imsl_f_sparse_elem*. Consider the following program fragment:

```
#include <imsl.h>
main()
{
Imsl_f_sparse_elem a[] = {
       \{0, 0, 2.0\},\
        \{1, 1, 9.0\},\
        {1, 2, -3.0},
        {1, 3, -1.0},
{2, 2, 5.0},
        3, 0, -2.0},
        {3, 3, -7.0},
        3, 4, -1.0},
        4, 0, -1.0},
        4, 3, -5.0},
        4, 4, 1.0},
        4, 5, -3.0},
        5, 0, -1.0},
       {5, 1, -2.0},
{5, 5, 6.0} };
Imsl_f_sparse_elem b[15];
       b[0].row = b[0].col = 0;
                                           b[0].val = 2.0;
       b[1].row = b[1].col = 1;
                                           b[1].val = 9.0;
                                           b[2].val = -3.0;
       b[2].row = 1; b[2].col = 2;
                                           b[3].val = -1.0;
       b[3].row = 1; b[3].col = 3;
       b[4].row = b[4].col = 2;
                                           b[4].val = 5.0;
       b[5].row = 3; b[5].col = 0;
                                           b[5].val = -2.0;
       b[6].row = b[6].col = 3;
                                           b[6].val = -7.0;
                                           b[7].val = -1;
       b[7].row = 3; b[7].col = 4;
       b[8].row = 4; b[8].col = 0;
                                           b[8].val = -1.0;
                                           b[9].val = -5.0;
       b[9].row = 4; b[9].col = 3;
       b[10].row = b[10].col = 4;
                                           b[10].val = 1.0;
       b[11].row = 4; b[11].col = 5;
                                           b[11].val = -3.0;
       b[12].row = 5; b[12].col = 0;
                                           b[12].val = -1.0;
       b[13].row = 5; b[13] = 1;
                                           b[13].val = -2.0;
       b[14].row = b[14].col = 5;
                                           b[14].val = 6.0;
```

```
}
```

Both a and b represent the sparse matrix *A*, and the functions in this module would produce identical results regardless of which identifier was sent through the argument list.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to store the diagonal and either the upper or lower triangle. As an example, consider the 5×5 linear system:

	(4,0)	(1,-1)	0	0
<i>11</i> _	(1,1)	(4,0)	(1,-1)	0
Н =	0	(1,1)	(4,0)	(1,-1)
	0	0	(1,1)	$ \begin{array}{c} 0 \\ 0 \\ (1,-1) \\ (4,0) \end{array} $

The Hermitian and symmetric positive definite system solvers in this library expect the diagonal and lower triangle to be specified. The sparse coordinate form for the lower triangle is given by

row	0	1	2	3	1	2	3
col	0	1	2	3	0	1	2
val	(4,0)	(4,0)	(4,0)	(4,0)	(1,1)	(1,1)	(1,1)

As before, an equivalent form would be

row	0	1	1	2	2	3	3
col	0	0	1	1	2	2	3
val	(4,0)	(1,1)	(4,0)	(1,1)	(4,0)	(1,1)	(4,0)

The following program fragment will initialize both a and b to H.

```
#include <imsl.h>
main()
{
       Imsl_c_sparse_elem a[] =
                 \{0, 0, \{4.0, 0.0\}\}, \{1, 1, \{4.0, 0.0\}\},
                 \{2, 2, \{4.0, 0.0\}\},\
                 {3, 3, {4.0, 0.0}},
                 \{1, 0, \{1.0, 1.0\}\},
                 \left\{ 2, 1, \left\{ 1.0, 1.0 \right\} \right\}
\left\{ 3, 2, \left\{ 1.0, 1.0 \right\} \right\}
       Imsl_c_sparse_elem b[7];
                b[0].row = b[0].col = 0;
                        b[0].val = imsl_cf_convert (4.0, 0.0);
                b[1].row = 1; b[1].col = 0;
                        b[1].val = imsl_cf_convert (1.0, 1.0);
                b[2].row = b[2].col = 1;
                        b[2].val = imsl_cf_convert (4.0, 0.0);
                b[3].row = 2; b[3].col = 1;
                        b[3].val = imsl_cf_convert (1.0, 1.0);
                b[4].row = b[4].col = 2;
                        b[4].val = imsl_cf_convert (4.0, 0.0);
                b[5].row = 3; b[5].col = 2;
                        b[5].val = imsl_cf_convert (1.0, 1.0);
                b[6].row = b[6].col = 3;
                        b[6].val = imsl_cf_convert (4.0, 0.0);
}
```

There are some important points to note here. H is not symmetric, but rather Hermitian. The functions that accept Hermitian data understand this and operate assuming that

$$h_{ij} = \overline{h_{ij}}$$

The IMSL C/Math/Library cannot take advantage of the symmetry in matrices that are not positive definite. The implication here is that a symmetric matrix that happens to be indefinite cannot be stored in this compact symmetric form. Rather, both upper and lower triangles must be specified and the sparse general solver called.

Band Storage Format

A band matrix is an $M \times N$ matrix with all of its nonzero elements "close" to the main diagonal. Specifically, values $A_{ij} = 0$ if i - j > nlca or j - i > nuca. The integer m = nlca + nuca + 1 is the total band width. The diagonals, other than the main diagonal, are called codiagonals. While any $M \times N$ matrix is a band matrix, band storage format is only useful when the number of nonzero codiagonals is much less than N.

In band storage format, the nlca lower codiagonals and the nuca upper codiagonals are stored in the rows of an array of size $m \times N$. The elements are stored in the same column of the array as they are in the matrix. The values A_{ij} inside the band width are stored in the linear array in positions [(i - j + nuca + 1) * n + j]. This results in a row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5×5 matrix *A* with 1 lower and 2 upper codiagonals:

$$A = \begin{bmatrix} A_{0,0} & A_{0,1} & A_{0,2} & 0 & 0 \\ A_{1,0} & A_{1,1} & A_{1,2} & A_{1,3} & 0 \\ 0 & A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ 0 & 0 & A_{3,2} & A_{3,3} & A_{3,4} \\ 0 & 0 & 0 & A_{4,3} & A_{4,4} \end{bmatrix}$$

In band storage format, the data would be arranged as

$$\begin{bmatrix} 0 & 0 & A_{0,2} & A_{1,3} & A_{2,4} \\ 0 & A_{0,1} & A_{1,2} & A_{2,3} & A_{3,4} \\ A_{0,0} & A_{1,1} & A_{2,2} & A_{3,3} & A_{4,4} \\ A_{1,0} & A_{2,1} & A_{3,2} & A_{4,3} & 0 \end{bmatrix}$$

This data would then be stored contiguously, row-major order, in an array of length 20.

As an example, consider the following tridiagonal matrix:

	10	1	0	0	0
	5	20	2	0	0
A =	0	6	0 2 30 7	3	0
	0	0	7	40	4
	0	0	0	8	50

The following declaration will store this matrix in band storage format:

float a[] = {
 0.0, 1.0, 2.0, 3.0, 4.0,
 10.0, 20.0, 30.0, 40.0, 50.0,
 5.0, 6.0, 7.0, 8.0, 0.0};

As in the sparse coordinate representation, there is a space saving symmetric version of band storage. As an example, look at the following 5×5 symmetric problem:

$$A = \begin{bmatrix} A_{0,0} & A_{0,1} & A_{0,2} & 0 & 0 \\ A_{0,1} & A_{1,1} & A_{1,2} & A_{1,3} & 0 \\ A_{0,2} & A_{1,2} & A_{2,2} & A_{2,3} & A_{2,4} \\ 0 & A_{1,3} & A_{2,3} & A_{3,3} & A_{3,4} \\ 0 & 0 & A_{2,4} & A_{3,4} & A_{4,4} \end{bmatrix}$$

In band symmetric storage format, the data would be arranged as

$$\begin{bmatrix} 0 & 0 & A_{0,2} & A_{1,3} & A_{2,4} \\ 0 & A_{0,1} & A_{1,2} & A_{2,3} & A_{3,4} \\ A_{0,0} & A_{1,1} & A_{2,2} & A_{3,3} & A_{4,4} \end{bmatrix}$$

_

The following Hermitian example illustrates the procedure:

-

$$H = \begin{bmatrix} (8,0) & (1,1) & (1,1) & 0 & 0 \\ (1,-1) & (8,0) & (1,1) & (1,1) & 0 \\ (1,-1) & (1,-1) & (8,0) & (1,1) & (1,1) \\ 0 & (1,-1) & (1,-1) & (8,0) & (1,1) \\ 0 & 0 & (1,-1) & (1,-1) & (8,0) \end{bmatrix}$$

The following program fragments would store H in h, using band symmetric storage format.

```
f_complex h[] = {
        {0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0},
```

x • Matrix Storage Modes

Choosing Between Banded and Coordinate Forms

It is clear that any matrix can be stored in either sparse coordinate or band format. The choice depends on the sparsity pattern of the matrix. A matrix with all nonzero data stored in bands close to the main diagonal would probably be a good candidate for band format. If nonzero information is scattered more or less uniformly through the matrix, sparse coordinate format is the best choice. As extreme examples, consider the following two cases: (1) an $n \times n$ matrix with all elements on the main diagonal and the (0, n-1) and (n-1, 0) entries nonzero. The sparse coordinate vector would be n+2units long. An array of length n(2n-1) would be required to store the band representation, nearly twice as much storage as a dense solver might require. Secondly, a tridiagonal matrix with all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an array of length 3n is needed. In sparse coordinate, format a vector of length 3n - 2 is required. But the problem is that, for example, float precision on a 32-bit machine, each of those 3n - 2 units in coordinate format requires three times as much storage as any of the 3n units needed for band representation. This is due to carrying the row and column indices in coordinate form. Band storage evades this requirement by being essentially an ordered list, and defining location in the original matrix by position in the list.

Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in the format described in the *Users' Guide for the Harwell-Boeing Sparse Matrix Collection*. The scheme is column oriented, with each column held as a sparse vector, represented by a list of the row indices of the entries in an integer array and a list of the corresponding values in a separate *float (double, f_complex, d_complex)* array. Data for each column are stored consecutively and in order. A separate integer array holds the location of the first entry of each column and the first free location. Only entries in the lower triangle and diagonal are stored for symmetric and Hermitian matrices. All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite's one-based arrays.

As in the *Harwell-Boeing Users' Guide*, the storage scheme is illustrated with the following example: The 5×5 matrix

1	-3	0	-1	0	
0	0	-2	0	3	
2 0	0	0	0	0	
	4	0	-4	0	
5	0	-5	0	6	

would be stored in the arrays colptr (location of first entry), rowind (row indices), and values (nonzero entries) as follows.

Subscripts	0	1	2	3	4	5	6	7	8	9	10
colptr	0	3	5	7	9	11					
rowind	0	4	2	3	0	1	4	0	3	4	1
values	1	5	2	4	-3	-2	-5	-1	-4	6	3

The following program fragment shows the relation between CSC storage format and coordinate representation:

```
k = 0;
for (i=0; i<n; i++) {
    start = colptr[i];
    stop = colptr[i+1];
    for (j=start; j<stop; j++) {
        a[k].row = rowind[j];
        a[k].col = i;
        a[k++].val = values[j];
    }
nz =k;
```

Memory Allocation for Output Arrays

Many functions return a pointer to an array containing the computed answers. If the function invocation uses the optional arguments

```
IMSL_RETURN_USER, float a[]
```

then the computed answers are stored in the user-provided array a, and the pointer returned by the function is set to point to the user-provided array a. If an invocation does not use IMSL_RETURN_USER, then the function initializes the pointer (through a memory allocation request to malloc) and stores the answers there. (To release this space, free can be used. Both malloc and free are standard C library functions declared in the header <stdlib.h>.) In this way, the allocation of space for the computed answers can be made either by the user or internally by the function.

Similarly, other optional arguments specify whether additional computed output arrays are allocated by the user or are to be allocated internally by the function. For example, in many functions in "Linear Systems," the optional arguments

```
IMSL_INVERSE_USER, float inva[] (Output)
IMSL_INVERSE, float **p_inva (Output)
```

specify two mutually exclusive optional arguments. If the first option is chosen, the inverse of the matrix is stored in the user-provided array inva. In the second option, *float* **p_inva refers to the address of a pointer to the inverse. If the second option is chosen, on return, the pointer is initialized (through a memory allocation request to malloc), and the inverse of the matrix is stored there. Typically, *float* *p_inva is

declared, &p_inva is used as an argument to this function, and free(p_inva) is used to release the space.

Finding the Right Routine

The IMSL C/Math/Library is organized into chapters; each chapter contains functions with similar computational or analytical capabilities. To locate the right function for a given problem, you may use either the table of contents located in each chapter introduction, or the alphabetical "Summary of Functions" at the end of this manual.

Often the quickest way to use the IMSL C/Math/Library is to find an example similar to your problem and then mimic the example. Each function in the document has at least one example demonstrating its application.

Organization of the Documentation

This manual contains a concise description of each function, with at least one demonstrated example of each function, including sample input and results. You will find all information pertaining to the IMSL C/Math/Library in this manual. Moreover, all information pertaining to a particular function is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents listing the functions included in the chapter. Documentation of the functions consists of the following information:

- Section Name: Usually, the common root for the type *float* and type *double* versions of the function is given.
- **Purpose:** A statement of the purpose of the function.
- Synopsis: The form for referencing the subprogram with required arguments listed.
- **Required Arguments:** A description of the required arguments in the order of their occurrence, as follows:

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output through this argument. The argument cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant or an expression; the function returns output through this argument.

- **Return Value:** The value returned by the function.
- **Synopsis with Optional Arguments:** The form for referencing the function with both required and optional arguments listed.
- **Optional Arguments:** A description of the optional arguments in the order of their occurrence.

- **Description:** A description of the algorithm and references to detailed information. In many cases, other IMSL functions with similar or complementary functions are noted.
- **Examples:** At least one application of this function showing input and optional arguments.
- Errors: Listing of any errors that may occur with a particular function. A discussion on error types is given in the "User Errors" section of the Reference Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the function.

Alert Errors: List of alert errors that may occur with the function.

Warning Errors: List of warning errors that may occur with the function.

Fatal Errors: List of fatal errors that may occur with the function.

Naming Conventions

Most functions are available in both a type *float* and a type *double* version, with names of the two versions sharing a common root. Some functions also are available in type *int*, or the IMSL-defined types $f_{complex}$ or $d_{complex}$ versions. A list of each type and the corresponding prefix of the function name in which multiple type versions exist follows:

Туре	Prefix
float	imsl_f_
double	imsl_d_
int	imsl_i_
f_complex	imsl_c_
d_complex	imsl_z_

The section names for the functions only contain the common root to make finding the functions easier. For example, the functions imsl_f_lin_sol_gen and imsl_d_lin_sol_gen can be found in section lin_sol_gen in Chapter 1.

Where appropriate, the same variable name is used consistently throughout a chapter in the IMSL C/Math/Library. For example, in the functions for eigensystem analysis, eval denotes the vector of eigenvalues and n_eval denotes the number of eigenvalues computed or to be computed.

When writing programs accessing the IMSL C/Math/Library, the user should choose C names that do not conflict with IMSL external names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the following rule is observed:

• Do not choose a name beginning with "imsl_" in any combination of uppercase or lowercase characters.

Error Handling, Underflow, Overflow, and Document Examples

The functions in the IMSL C/Math/Library attempt to detect and report errors and invalid input. This error-handling capability provides automatic protection for the user without requiring the user to make any specific provisions for the treatment of error conditions. Errors are classified according to severity and are assigned a code number. By default, errors of moderate or higher severity result in messages being automatically printed by the function. Moreover, errors of highest severity cause program execution to stop. The severity level, as well as the general nature of the error, is designated by an "error type" with symbolic names IMSL_FATAL, IMSL_WARNING, etc. See the "User Errors" section in the Reference Material for further details.

In general, the IMSL C/Math/Library codes are written so that computations are not affected by underflow, provided the system (hardware or software) replaces an underflow with the value zero. Normally, system error messages indicating underflow can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages indicating overflow should be examined for programming errors such as incorrect input data, mismatch of argument types, or improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can lead to failure of the algorithm.

Output from document examples can be system dependent and the user's results may vary depending upon the system used.

Printing Results

Most functions in the IMSL C/Math/Library do not print any of the results; the output is returned in C variables. You can print the results yourself.

The IMSL C/Math/Library contains some special functions just for printing arrays. For example, imsl_f_write_matrix is a convenient function for printing matrices of type *float*. See Chapter 11, "Printing Functions," for detailed descriptions of these functions.

Complex Arithmetic

Users can perform computations with complex arithmetic by using IMSL predefined data types. These types are available in two floating-point precisions:

• f_complex for single-precision complex values

• d_complex for double-precision complex values

A description of complex data types and functions is given in the Reference Material.

Missing Values

Some of the functions in the IMSL C/Math/Library allow the data to contain missing values. These functions recognize as a missing value the special value referred to as "not a number," or NaN. The actual value is different on different computers, but it can be obtained by reference to the IMSL function imsl_f_machine, described in Chapter 12, "Utilities."

The way that missing values are treated depends on the individual function and is described in the documentation for the function.

Chapter 1: Linear Systems

Routines

1.1	Linear Equations with Full Matrices						
	Factor, Solve, and Inverse for General Matrices Real matriceslin_sol_gen Complex matriceslin_sol_gen (complex)	4 11					
	Factor, Solve, and Inverse for Positive Definite Matrices Real matriceslin_sol_posdef Complex matriceslin_sol_posdef (complex)	17 22					
1.2	Linear Equations with Band Matrices						
	Factor and Solve for Band Matrices Real matriceslin_sol_gen_band Complex matriceslin_sol_gen_band (complex)	26 31					
	Factor and Solve for Positive Definite Matrices Symmetric Real matriceslin_sol_posdef_band Complex matriceslin_sol_posdef_band (complex)	35 39					
1.3	Linear Equations with General Sparse Matrices						
	Factor and Solve for Sparse Matrices Real matriceslin_sol_gen_coordinate Complex matriceslin_sol_gen_coordinate (complex) Factor and Solve for Positive Definite Matrices Real matriceslin_sol_posdef_coordinate	44 54 62					
	Complex matriceslin_sol_posdef_coordinate (complex)	68					
1.4	Iterative Methods Restarted generalized minimum residual (GMRES) methodlin_sol_gen_min_residual	73					
	Conjugate gradient methodlin_sol_def_cg	78					

1.5 Linear Least-squares with Full Matrices

Least-squares and QR decomposition Least-squares solve, QR decompositionlin_least_squares_gen Linear constraintslin_lsq_lin_constraints	84 91
Singular Value Decompositions (SVD) and Generalized Inverse Real matrixlin_svd_gen Complex matrixlin_svd_gen (complex)	96 101
Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices Real matriceslin_sol_nonnegdef	106

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified $n \times n$ matrix, b is a given right-hand side n vector, and x is the solution n vector. Each entry of A and b must be specified by the user. The entire vector x is returned as output.

When *A* is invertible, a unique solution to Ax = b exists. The most commonly used direct method for solving Ax = b factors the matrix *A* into a product of triangular matrices and solves the resulting triangular systems of linear equations. Functions that use direct methods for solving systems of linear equations all compute the solution to Ax = b. Thus, if a function with the prefix "imsl_f_lin_sol" is called with the required arguments, a pointer to *x* is returned by default. Additional tasks, such as only factoring the matrix *A* into a product of triangular matrices, can be done using keywords.

Matrix Factorizations

In some applications, it is desirable to just factor the $n \times n$ matrix A into a product of two triangular matrices. This can be done by calling the appropriate function for solving the system of linear equations Ax = b. Suppose that in addition to the solution x of a linear system of equations Ax = b, the *LU* factorization of A is desired. Use the keyword IMSL_FACTOR in the function imsl_f_lin_sol_gen to obtain access to the factorization. If only the factorization is desired, use the keywords IMSL_FACTOR_ONLY and IMSL_FACTOR.

Besides the basic matrix factorizations, such as LU and LL^T , additional matrix factorizations also are provided. For a real matrix A, its QR factorization can be computed by the function imsl_f_lin_least_squares_gen. Functions for computing the singular value decomposition (SVD) of a matrix are discussed in a later section.

Matrix Inversions

The inverse of an $n \times n$ nonsingular matrix can be obtained by using the keyword IMSL_INVERSE in functions for solving systems of linear equations. The inverse of a

matrix need not be computed if the purpose is to *solve* one or more systems of linear equations. Even with multiple right-hand sides, solving a system of linear equations by computing the inverse and performing matrix multiplication is usually more expensive than the method discussed in the next section.

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector. It is most economical to find the solution vectors by first factoring the coefficient matrix *A* into products of triangular matrices. Then, the resulting triangular systems of linear equations are solved for each right-hand side. When *A* is a real general matrix, access to the *LU* factorization of *A* is computed by using the keywords IMSL_FACTOR and IMSL_FACTOR_ONLY in function $imsl_f_lin_sol_gen$. The solution x_k for the *k*-th right-hand side vector b_k is then found by two triangular solves, $Ly_k = b_k$ and $Ux_k = y_k$. The keyword IMSL_SOLVE_ONLY in the function $imsl_f_lin_sol_gen$ is used to solve each right-hand side. These arguments are found in other functions for solving systems of linear equations.

Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations $A_{m \times n} x = b$, where m > n. A least-squares solution x minimizes the Euclidean length of the residual vector r = Ax - b. The function $imsl_flin_least_squares_gen$ computes a unique least-squares solution for x when A has full column rank. If A is rank-deficient, then the *base* solution for some variables is computed. These variables consist of the resulting columns after the interchanges. The QR decomposition, with column interchanges or pivoting, is computed such that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreasing in magnitude, and P is the permutation matrix determined by the pivoting. The base solution x_B is obtained by solving $R(P^T)x = Q^Tb$ for the base variables. For details, see "Description" in $imsl_flin_least_squares_gen$. The QR factorization of a matrix A such that AP = QR with P specified by the user can be computed using keywords.

Singular Value Decompositions and Generalized Inverses

The SVD of an $m \times n$ matrix A is a matrix decomposition $A = USV^T$. With $q = \min(m, n)$, the factors $U_{m \times q}$ and $V_{n \times q}$ are orthogonal matrices, and $S_{q \times q}$ is a nonnegative diagonal matrix with nonincreasing diagonal terms. The function $imsl_flin_{svd}gen$ computes the singular values of A by default. Using keywords, part or all of the U and V matrices, an estimate of the rank of A, and the generalized inverse of A, also can be obtained.

Ill-Conditioning and Singularity

An $m \times n$ matrix A is mathematically singular if there is an $x \neq 0$ such that Ax = 0. In this case, the system of linear equations Ax = b does not have a unique solution. On the other hand, a matrix A is *numerically* singular if it is "close" to a mathematically singular matrix. Such problems are called *ill-conditioned*. If the numerical results with

an ill-conditioned problem are unacceptable, users can either use more accuracy if it is available (for type *float* accuracy switch to *double*) or they can obtain an *approximate* solution to the system. One form of approximation can be obtained using the SVD of *A*: If $q = \min(m, n)$ and

$$A = \sum_{i=1}^{q} s_{i,i} u_i v_i^T$$

then the approximate solution is given by the following:

$$x_k = \sum_{i=1}^k t_{i,i} \left(b^T u_i \right) v_i$$

The scalars $t_{i,i}$ are defined below.

$$t_{i,i} = \begin{cases} s_{i,i}^{-1} & \text{if } s_{i,i} \ge tol > 0\\ 0 & \text{otherwise} \end{cases}$$

The user specifies the value of *tol*. This value determines how "close" the given matrix is to a singular matrix. Further restrictions may apply to the number of terms in the sum, $k \le q$. For example, there may be a value of $k \le q$ such that the scalars $|(b^T u_i)|, i > k$ are smaller than the average uncertainty in the right-hand side *b*. This means that these scalars can be replaced by zero; and hence, *b* is replaced by a vector that is within the stated uncertainty of the problem.

lin_sol_gen

Solves a real general system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the *LU* factorization of *A* using partial pivoting, computing the inverse matrix A^{-1} , solving $A^{T}x = b$, or computing the solution of Ax = b given the *LU* factorization of *A*.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_gen (int n, float a[], float b[], ..., 0)

The type *double* procedure is imsl_d_lin_sol_gen.

Required Arguments

```
int n (Input)
```

Number of rows and columns in the matrix.

float a[] (Input)

Array of size $n \times n$ containing the matrix.

float b[] (Input)

Array of size *n* containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_A_COL_DIM, *int* a_col_dim (Input) The column dimension of the array a. Default: a_col_dim = n

IMSL_TRANSPOSE Solve $A^T x = b$. Default: Solve Ax = b

- IMSL_RETURN_USER, *float* x[] (Output) A user-allocated array of length *n* containing the solution *x*.
- IMSL_FACTOR, int **p_pvt, float **p_factor (Output)

p_pvt: The address of a pointer to an array of length *n* containing the pivot sequence for the factorization. On return, the necessary space is allocated by imsl_f_lin_sol_gen. Typically, *int* *p_pvt is declared, and &p_pvt is used as an argument.

p_factor: The address of a pointer to an array of size $n \times n$ containing the LU factorization of A with column pivoting. On return, the necessary space is allocated by $imsl_flin_sol_gen$. The lower-triangular part of this array contains information necessary to construct L, and the upper-triangular part contains U. Typically, *float* *p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

pvt[]: A user-allocated array of size *n* containing the pivot sequence for the factorization.

factor[]: A user-allocated array of size $n \times n$ containing the LU factorization of A. The strictly lower-triangular part of this array contains information necessary to construct L, and the upper-triangular part contains U. If A is not needed, factor and a can share the same storage.

These parameters are *input* if IMSL_SOLVE is specified. They are *output* otherwise.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)

The column dimension of the array containing the LU factorization of A. Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)

The address of a pointer to an array of size $n \times n$ containing the inverse of the matrix A. On return, the necessary space is allocated by $imsl_f_lin_sol_gen$. Typically, *float* *p_inva is declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, *float* inva[] (Output)

A user-allocated array of size $n \times n$ containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)

The column dimension of the array containing the inverse of *A*. Default: $inva_col_dim = n$

IMSL_CONDITION, *float* *cond (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix A. This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the *LU* factorization of *A* with partial pivoting. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_f_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the *LU* factorization previously computed by imsl_f_lin_sol_gen. By default, the solution to Ax = b is pointed to by imsl_f_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required, and the argument a is ignored.

IMSL_INVERSE_ONLY

Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then ignored, and the returned value of imsl_f_lin_sol_gen is NULL.

Description

The function $imsl_f_lin_sol_gen$ solves a system of linear algebraic equations with a real coefficient matrix A. It first computes the LU factorization of A with partial pivoting such that $L^{-1}A = U$. The matrix U is upper triangular, while $L^{-1}A \equiv P_n L_{n-1}P_{n-1} \dots L_1P_1A \equiv U$. The factors P_i and L_i are defined by the partial pivoting. Each P_i is an interchange of row i with row $j \ge i$. Thus, P_i is defined by that value of j. Every

$$L_i = I + m_i e_i^T$$

is an elementary elimination matrix. The vector m_i is zero in entries 1, ..., *i*. This vector is stored as column *i* in the strictly lower-triangular part of the working array containing the decomposition information.

The factorization efficiency is based on a technique of "loop unrolling and jamming" by Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. The solution of the linear system is then found by solving two simpler systems, $y = L^{-1}b$ and $x = U^{-1}y$. When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L_1 condition number of A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than $1/\varepsilon$ (where ε is the machine precision), a warning message is issued. This indicates that very small changes in A may produce large changes in the solution x. The function $imsl_f_lin_sol_gen$ fails if U, the upper triangular part of the factorization, has a zero diagonal element.

Examples

Example 1

This example solves a system of three linear equations. This is the simplest use of the function. The equations follow below:

```
x_1 + 3x_2 + 3x_3 = 1x_1 + 3x_2 + 4x_3 = 4x_1 + 4x_2 + 3x_3 = -1
```

#include <imsl.h>

```
imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
}
```

Output

Solution, x, of Ax = b 1 2 3 -2 -2 3

Example 2

This example solves the transpose problem $A^T x = b$ and returns the *LU* factorization of *A* with partial pivoting. The same data as the initial example is used, except the solution $x = A^{-T}b$ is returned in an array allocated in the main program. The *L* matrix is returned in implicit form.

```
#include <imsl.h>
```

```
main()
{
    int
                  n = 3, pvt[3];
    float
                  factor[9];
    float
                  x[3];
                           \{1.0, 3.0, 3.0,
    float
                  a[] =
                             1.0, 3.0, 4.0,
1.0, 4.0, 3.0};
    float
                  b[] = \{1.0, 4.0, -1.0\};
                                      /* Solve trans(A) *x = b for x */
    imsl_f_lin_sol_gen (n, a, b,
                            IMSL_TRANSPOSE,
                            IMSL_RETURN_USER, x,
                            IMSL_FACTOR_USER, pvt, factor,
                            0);
                                      /* Print x */
    imsl_f_write_matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);
                                      /* Print factors and pivot sequence */
    imsl_f_write_matrix ("LU factors of A", n, n, factor, 0);
imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}
```

Output

Solution, 1	x, of t	rans(A)x = 2	: b 3
4	-	4	1
	LU fac	tors of A	
1	1	3	
2	-1	1	
3	-1	0	

```
Pivot sequence
```

 $\begin{array}{ccc}1&2&3\\1&3&3\end{array}$

Example 3

This example computes the inverse of the 3×3 matrix A of the initial example and solves the same linear system. The matrix product $C = A^{-1}A$ is computed and printed. The function imsl_f_mat_mul_rect is used to compute C. The approximate result C = I is obtained.

```
#include <imsl.h>
```

```
float
         a[] = \{1.0, 3.0, 3.0,
                  1.0, 3.0, 4.0,
1.0, 4.0, 3.0};
float
         b[] = \{1.0, 4.0, -1.0\};
main()
{
                 n = 3;
    int
    float
                  *x;
                  *p_inva;
    float
    float
                  *C;
                                      /* Solve Ax = b */
    x = imsl_f_lin_sol_gen (n, a, b,
        IMSL_INVERSE, &p_inva,
        0);
                                      /* Print solution */
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
                                      /* Print input and inverse matrices */
    imsl_f_write_matrix ("Input A", n, n, a, 0);
    imsl_f_write_matrix ("Inverse of A", n, n, p_inva, 0);
                                      /* Check result and print */
    C = imsl_f_mat_mul_rect("A*B",
        IMSL_A_MATRIX, n, n, p_inva,
        IMSL_B_MATRIX, n, n, a,
        0);
    imsl_f_write_matrix ("Product matrix, inv(A)*A",n,n,C,0);
}
```

Output

Solution, x, of Ax = b3 1 2 -2 -2 3 Input A 1 2 3 1 3 1 3 2 4 3 1 3 1 4 3

	Inverse	e of A	
	1	2	3
1	7	-3	-3
2	-1	0	1
3	-1	1	0
	Product matri	x, inv(A)*A	
	Product matri 1	.x, inv(A)*A 2	3
1	Product matri 1 1		3 0
1 2	Product matri 1 1 0		3 0 0
1 2 3	Product matri 1 1 0 0		3 0 0 1

Example 4

This example computes the solution of two systems. Only the right-hand sides differ. The matrix and first right-hand side are given in the initial example. The second righthand side is the vector $c = [0.5, 0.3, 0.4]^T$. The factorization information is computed with the first solution and is used to compute the second solution. The factorization work done in the first step is avoided in computing the second solution.

#include <imsl.h>

```
main()
{
                n = 3, pvt[3];
    int
    float
                factor[9];
                 *x,*y;
    float
                 a[] = \{1.0, 3.0, 3.0,
    float
                         1.0, 3.0, 4.0,
1.0, 4.0, 3.0};
    float
                b[] = \{1.0, 4.0, -1.0\};
                 c[] = \{0.5, 0.3, 0.4\};
    float
                                 /* Solve A*x = b for x */
    x = imsl_f_lin_sol_gen (n, a, b,
                         IMSL_FACTOR_USER, pvt, factor,
                         0);
                                  /* Print x */
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
                                /* Solve for A*y = c for y */
    y = imsl_f_lin_sol_gen (n, a, c,
                         IMSL_SOLVE_ONLY,
                         IMSL_FACTOR_USER, pvt, factor,
                         0);
    imsl_f_write_matrix ("Solution, y, of Ay = c", 1, n, y, 0);
}
            Output
Solution, x, of Ax = b
```

3 1 2 -2 -2 3

Solution,	y, of $Ay = c$	
1	2	3
1.4	-0.1	-0.2

Warning Errors

IMSL_ILL_CONDITIONED	The input matrix is too ill-conditioned. An estimate of
	the reciprocal of its L_1 condition number is
	"rcond" = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX

The input matrix is singular.

lin_sol_gen (complex)

Solves a complex general system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the *LU* factorization of *A* using partial pivoting, computing the inverse matrix A^{-1} , solving $A^{H}x = b$, or computing the solution of Ax = b given the *LU* factorization of *A*.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[], ...,
0)

The type *d_complex* procedure is imsl_z_lin_sol_gen.

Required Arguments

int n (Input)

Number of rows and columns in the matrix.

 $f_complex$ a[] (Input) Array of size $n \times n$ containing the matrix.

 $f_complex$ b[] (Input) Array of length *n* containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[], IMSL_A_COL_DIM, int a_col_dim,

```
IMSL_TRANSPOSE,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, f_complex **p_inva,
IMSL_INVERSE_USER, f_complex inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)
```

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE

Solve $A^{H}x = b$ Default: Solve Ax = b

IMSL_RETURN_USER, f_complex x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)

p_pvt: The address of a pointer to an array of length *n* containing the pivot sequence for the factorization. On return, the necessary space is allocated by imsl_c_lin_sol_gen. Typically, *int* *p_pvt is declared, and &p_pvt is used as an argument.

p_factor: The address of a pointer to an array of size $n \times n$ containing the *LU* factorization of *A* with column pivoting. On return, the necessary space is allocated by imsl_c_lin_sol_gen. The lower-triangular part of this array contains information necessary to construct *L*, and the upper-triangular part contains *U*. Typically, *f_complex* *p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)

pvt[]: A user-allocated array of size *n* containing the pivot sequence for the factorization.

factor[]: A user-allocated array of size $n \times n$ containing the *LU* factorization of *A*. The lower-triangular part of this array contains information necessary to construct *L*, and the upper-triangular part contains *U*.

These parameters are *input* if IMSL_SOLVE is specified. They are *output* otherwise. If A is not needed, factor and a can share the same storage.

```
IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col_dim = n
```

IMSL_INVERSE, f_complex **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_c_lin_sol_gen. Typically, f_complex *p_inva is declared, and
&p_inva is used as an argument.

IMSL_INVERSE_USER, $f_complex$ inva[] (Output) A user-allocated array of size $n \times n$ containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, *float* *cond (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the *LU* factorization of *A* with partial pivoting. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_c_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the *LU* factorization previously computed by imsl_c_lin_sol_gen. By default, the solution to Ax = b is pointed to by imsl_c_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and argument a is ignored.

IMSL_INVERSE_ONLY

Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either IMSL_INVERSE or IMSL_INVERSE_USER is required. Argument b is then ignored, and the returned value of imsl_c_lin_sol_gen is NULL.

Description

The function $imsl_c_lin_sol_gen$ solves a system of linear algebraic equations with a complex coefficient matrix A. It first computes the LU factorization of A with partial pivoting such that $L^{-1}A = U$. The matrix U is upper-triangular, while $L^{-1}A \equiv P_nL_{n-1}P_{n-1}...L_1P_1A \equiv U$. The factors P_i and L_i are defined by the partial pivoting. Each P_i is an interchange of row i with row $j \ge i$. Thus, P_i is defined by that value of j. Every

$$L_i = I + m_i e_i^T$$

is an elementary elimination matrix. The vector m_i is zero in entries 1, ..., i. This vector is stored in the strictly lower-triangular part of column *i* of the working array containing the decomposition information.

The solution of the linear system is then found by solving two simpler systems, $y = L^{-1}b$ and $x = U^{-1}y$. When the solution to the linear system or the inverse of the matrix is computed, an estimate of the L_1 condition number of A is computed using the algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than $1/\epsilon$ (where ϵ is the machine precision), a warning message is issued. This indicates that very small changes in A may produce large changes in the solution x. The function imsl c lin sol gen fails if U, the upper-triangular part of the factorization, has a zero diagonal element.

Examples

Example 1

This example solves a system of three linear equations. The equations are:

 $(1 + i) x_1 + (2 + 3i) x_2 + (3 - 3i) x_3 = 3 + 5i$ $(2 + i) x_1 + (5 + 3i) x_2 + (7 - 5i) x_3 = 22 + 10i$ $(-2 + i) x_1 + (-4 + 4i) x_2 + (5 + 3i) x_3 = -10 + 4i$ #include <imsl.h> f complex $b[] = \{\{3.0, 5.0\}, \{22.0, 10.0\}, \{-10.0, 4.0\}\};$ f_complex int n = 3;*x; f_complex /* Solve Ax = b for x */ x = imsl_c_lin_sol_gen (n, a, b, 0);

/* Print x */ imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

Output

			Solution,	x, of	Ax = b			
		1			2			3
(1,	-1)	(2,	4)	(3,	-0)

main() {

}

Example 2

This example solves the conjugate transpose problem $A^{H}x = b$ and returns the *LU* factorization of *A* using partial pivoting. This example differs from the first example in that the solution array is allocated in the main program.

#include <imsl.h>

```
\{3.0, -3.0\},\
                     \{\{1.0, 1.0\}, \{2.0, 3.0\},\
f_complex
              a[] =
                      \{2.0, 1.0\},\
                                    \{5.0, 3.0\},\
                                                   \{7.0, -5.0\},\
                      \{-2.0, 1.0\}, \{-4.0, 4.0\},
                                                   \{5.0, 3.0\}\};
              b[] = \{\{3.0, 5.0\}, \{22.0, 10.0\}, \{-10.0, 4.0\}\};
f_complex
main()
{
    int
                   n = 3, pvt[3];
    f_complex
                   factor[9];
    f_complex
                   x[3];
                                      /* Solve ctrans(A)*x = b for x */
    imsl_c_lin_sol_gen (n, a, b,
                 IMSL_TRANSPOSE,
                 IMSL_RETURN_USER, x,
                 IMSL_FACTOR_USER, pvt, factor,
                 0);
                                      /* Print x */
    imsl_c_write_matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);
                                      /* Print factors and pivot sequence */
    imsl_c_write_matrix ("LU factors of A", n, n, factor, 0);
    imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}
```

Output

Solution, x, of ctrans(A)x = b2 1 3 -9.79, 11.23) 2.96, 1.85, 2.47) ((-3.13) (LU factors of A 2 1 3 1.000) -4.000, 4.000) 5.000, 1 -2.000,((3.000) (2 (0.600, 0.800) (-1.200,1.400) (2.200, 0.600)3 0.200, 0.600) -1.118, 0.529) 4.824, 1.294) (((Pivot sequence 1 2 3 3 3 3

Example 3

This example computes the inverse of the 3×3 matrix *A* in the first example and also solves the linear system. The product matrix $C = A^{-1}A$ is computed as a check. The approximate result is C = I.

#include <imsl.h>

Chapter 1: Linear Systems

```
\{-2.0, 1.0\}, \{-4.0, 4.0\}, \{5.0, 3.0\}\};
f_complex
            b[] = \{\{3.0, 5.0\}, \{22.0, 10.0\}, \{-10.0, 4.0\}\};
main()
{
    int
                  n = 3;
    f_complex
                  *x;
    f_complex
                  *p_inva;
    f_complex
                  *C;
                                     /* Solve Ax = b for x */
    x = imsl_c_lin_sol_gen (n, a, b,
                    IMSL_INVERSE, &p_inva,
                    0);
                                     /* Print solution */
    imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
                                     /* Print input and inverse matrices */
    imsl_c_write_matrix ("Input A", n, n, a, 0);
    imsl_c_write_matrix ("Inverse of A", n, n, p_inva, 0);
                                     /* Check and print result */
    C = imsl_c_mat_mul_rect ("A*B",
                   IMSL_A_MATRIX, n,n, p_inva,
                   IMSL_B_MATRIX, n,n, a,
                   0);
    imsl_c_write_matrix ("Product, inv(A)*A", n, n, C, 0);
}
```

Output

Solution, x, of $Ax = b$								
(1,	-1) (2,	4) (3,	-0)
				Input A				
		1			2			3
1 (1,	1)	(2,	3)	(3,	-3)
2 (2,	1)	(5,	3)	(7,	-5)
3 (-2,	1)	(-4,	4)	(5,	3)
				Inverse of	A			
		1			2			3
1 (1.330,	0.594)	(-0.151,	0.028)	(-0.604,	0.613)
2 (-0.632,	-0.538)	(0.160,	0.189)	(0.142,	-0.245)
3 (-0.189,	0.160)	(0.193,	-0.052)	(0.024,	0.042)
	Product, inv(A)*A							
		1		FIGUREC, IIIV	2			3
1 (1,	-0)	(-0,	-0)	(-0,	0)
2 (0,	0)		, ,	0)	ì	_0, 0,	-0)
∠ (3 (-0,	-0)	(-0,	0)	ì	0, 1,	-0)
5 (-0,	-0)	(-0,	0)	(⊥,	0)

Warning Errors

IMSL_SINGULAR_MATRIX

IMSL_ILL_CONDITIONED	The input matrix is too ill-conditioned. An estimate of
	the reciprocal of the L_1 condition number is "rcond" = #.
	The solution might not be accurate.
Fatal Errors	

The input matrix is singular.

lin_sol_posdef

Solves a real symmetric positive definite system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the Cholesky factor, *L*, of *A* such that $A = LL^{T}$, computing the inverse matrix A^{-1} , or computing the solution of Ax = b given the Cholesky factor, *L*.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_posdef (int n, float a[], float b[], ..., 0)

The type *double* procedure is imsl_d_lin_sol_posdef.

Required Arguments

```
int n (Input)
Number of rows and columns in the matrix.
float a[] (Input)
Array of size n \times n containing the matrix.
```

float b[] (Input) Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the symmetric positive definite linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_lin_sol_posdef (int n, float a[], float b[],
    IMSL_A_COL_DIM, int a_col_dim,
    IMSL_RETURN_USER, float x[],
    IMSL_FACTOR, float **p_factor,
    IMSL_FACTOR_USER, float factor[],
    IMSL_FAC_COL_DIM, int fac_col_dim,
    IMSL_INVERSE, float **p_inva,
```

```
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)
```

Optional Arguments

- IMSL_A_COL_DIM, *int* a_col_dim (Input) The column dimension of the array a. Default: a_col_dim = n
- IMSL_RETURN_USER, *float* x[] (Output) A user-allocated array of length *n* containing the solution *x*.

IMSL_FACTOR, float **p_factor (Output)

The address of a pointer to an array of size $n \times n$ containing the LL^T factorization of A. On return, the necessary space is allocated by $imsl_f_lin_sol_posdef$. The lower-triangular part of this array contains L and the upper-triangular part contains L^T . Typically, *float* *p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, *float* factor[] (Input/Output) A user-allocated array of size $n \times n$ containing the LL^T factorization of A. The lower-triangular part of this array contains L, and the upper-triangular part contains L^T . If A is not needed, a and factor can share the same storage. If IMSL_SOLVE is specified, it is *input*; otherwise, it is *output*.

IMSL_FAC_COL_DIM, *int* fac_col_dim (Input) The column dimension of the array containing the LL^T factorization of A. Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_f_lin_sol_posdef. Typically, float *p_inva is declared, and
&p_inva is used as an argument.

IMSL_INVERSE_USER, *float* inva[] (Output) A user-allocated array of size $n \times n$ containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, *float* *cond (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the Cholesky factorization LL^T of A. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_f_lin_sol_posdef is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LL^T factorization previously computed by imsl_f_lin_sol_posdef. By default, the solution to Ax = b is pointed to by imsl_f_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument a is ignored.

IMSL_INVERSE_ONLY

Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then ignored, and the returned value of imsl_f_lin_sol_posdef is NULL.

Description

The function $imsl_f_lin_sol_posdef$ solves a system of linear algebraic equations having a symmetric positive definite coefficient matrix A. The function first computes the Cholesky factorization LL^T of A. The solution of the linear system is then found by solving the two simpler systems, $y = L^{-1}b$ and $x = L^{-T}y$. When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L_1 condition number of A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than $1/\varepsilon$ (where ε is the machine precision), a warning message is issued. This indicates that very small changes in A may produce large changes in the solution x.

The function imsl_f_lin_sol_posdef fails if *L*, the lower-triangular matrix in the factorization, has a zero diagonal element.

Examples

Example 1

A system of three linear equations with a symmetric positive definite coefficient matrix is solved in this example. The equations are listed below:

$$x_1 - 3x_2 + 2x_3 = 27$$

-3x₁ + 10x₂ - 5x₃ = -78
$$2x_1 - 5x_2 + 6x_3 = 64$$

#include <imsl.h>

main()
{

Chapter 1: Linear Systems

```
int
                 n = 3;
    float
                 *x;
                         \{1.0, -3.0, 2.0, \\ -3.0, 10.0, -5.0, 
                 a[] =
    float
                           2.0, -5.0, 6.0};
                        {27.0, -78.0, 64.0};
    float
                 b[] =
                                   /* Solve Ax = b for x */
    x = imsl_f_lin_sol_posdef (n, a, b, 0);
                                   /* Print x */
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}
```

3 7

Output

Solution, x, of Ax = b 1 2 1 -4

Example 2

This example solves the same system of three linear equations as in the initial example, but this time returns the LL^T factorization of A. The solution x is returned in an array allocated in the main program.

```
#include <imsl.h>
```

```
main()
{
                 n = 3;
    int
    float
                 x[3], *p_factor;
                        \{1.0, -3.0,
    float
                 a[] =
                                      2.0,
                          -3.0, 10.0, -5.0,
                2.0, -5.0, 6.0};
b[] = {27.0, -78.0, 64.0};
    float
                                  /* Solve Ax = b for x */
    imsl_f_lin_sol_posdef (n, a, b,
                 IMSL_RETURN_USER, x,
                 IMSL_FACTOR, &p_factor,
                 0);
                                  /* Print x */
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
                                  /* Print Cholesky factor of A */
    imsl_f_write_matrix ("Cholesky factor L, and trans(L), of A",
                          n, n, p_factor, 0);
}
```

Output

Solution, x, of Ax = b 1 2 3 1 -4 7

Cholesky factor L, and trans(L), of A

20 • lin_sol_posdef

	1	2	3
1	1	-3	2
2	-3	1	1
3	2	1	1

Example 3

This example solves the same system as in the initial example, but given the Cholesky factors of *A*.

```
#include <imsl.h>
```

main()

```
{
   int
               n = 3;
   float
               *x, *a;
               factor[] = \{1.0, -3.0, 2.0, -3.0, 1.0, 1.0, 2.0, 1.0, 1.0\};
   float
   float
               b[] = \{27.0, -78.0, 64.0\};
                               /* Solve Ax = b for x */
   IMSL_SOLVE_ONLY,
                   0);
                               /* Print x */
   imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}
```

Output

Solution, x, of Ax = b 1 2 3 1 -4 7

Warning Errors

IMSL_ILL_CONDITIONED	The input matrix is too ill-conditioned. An estimate of the reciprocal of its L_1 condition number is "rcond" = #. The solution might not be accurate.
Fatal Errors	
IMSL_NONPOSITIVE_MATRIX	The leading # by # submatrix of the input matrix is not positive definite.
IMSL_SINGULAR_MATRIX	The input matrix is singular.
IMSL_SINGULAR_TRI_MATRIX	The input triangular matrix is singular. The index of

the first zero diagonal element is #.

lin_sol_posdef (complex)

Solves a complex Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the Cholesky factor, *L*, of *A* such that $A = LL^H$ or computing the solution to Ax = b given the Cholesky factor, *L*.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[], ..., 0)

The type *d_complex* procedure is imsl_z_lin_sol_posdef.

Required Arguments

int n (Input) Number of rows and columns in the matrix.

 $f_complex \ a[] \ (Input)$ Array of size $n \times n$ containing the matrix.

 $f_complex b[]$ (Input) Array of size *n* containing the right-hand side.

Return Value

A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_A_COL_DIM, *int* a_col_dim (Input) The column dimension of the array a. Default: a_col_dim = n

22 • lin_sol_posdef (complex)

```
IMSL_RETURN_USER, f\_complex x[] (Output)
A user-allocated array of size n containing the solution x.
```

IMSL_FACTOR, f_complex **p_factor (Output)

The address of a pointer to an array of size $n \times n$ containing the LL^H factorization of A. On return, the necessary space is allocated by $imsl_c_lin_sol_posdef$. The lower- triangular part of this array contains L, and the upper-triangular part contains L^H . Typically, $f_complex *p_factor$ is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)

A user-allocated array of size $n \times n$ containing the LL^H factorization of A. The lower- triangular part of this array contains L, and the upper-triangular part contains L^H . If A is not needed, a and factor can share the same storage. If IMSL_SOLVE is specified, Factor is *input*. Otherwise, it is *output*.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)

The column dimension of the array containing the LL^H factorization of A.

Default: fac_col_dim = n

IMSL_CONDITION, float *cond (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the Cholesky factorization LL^H of A. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_c_lin_sol_posdef is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LL^H factorization previously computed by imsl_c_lin_sol_posdef. By default, the solution to Ax = b is pointed to by imsl_c_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and argument a is ignored.

Description

The function $imsl_c_lin_sol_posdef$ solves a system of linear algebraic equations having a Hermitian positive definite coefficient matrix *A*. The function first computes the LL^H factorization of *A*. The solution of the linear system is then found by solving the two simpler systems, $y = L^{-1}b$ and $x = L^{-H}y$. When the solution to the linear system is required, an estimate of the L_1 condition number of *A* is computed using the algorithm in Dongarra et al. (1979). If the estimated condition number is greater than $1/\varepsilon$ (where ε is the machine precision), a warning message is issued. This indicates that very small changes in *A* may produce large changes in the solution *x*. The function $imsl_c_lin_sol_posdef$ fails if *L*, the lower-triangular matrix in the factorization, has a zero diagonal element.

Examples

Example 1

A system of five linear equations with a Hermitian positive definite coefficient matrix is solved in this example. The equations are as follows:

$$2x_{1} + (-1 + i)x_{2} = 1 + 5i$$

$$(-1 - i)x_{1} + 4x_{2} + (1 + 2i)x_{3} = 12 - 6i$$

$$(1 - 2i)x_{2} + 10x_{3} + 4ix_{4} = 1 - 16i$$

$$-4ix_{3} + 6x_{4} + (1 + i)x_{5} = -3 - 3i$$

$$(1 - i)x_{4} + 9x_{5} = 25 + 16i$$

#include <imsl.h>

```
main()
{
                                       n = 5;
         int
                                       *x;
         f_complex
                       \begin{array}{l} \text{plex} & \text{a}_{\text{x}}, \\ \text{aplex} & \text{a}_{\text{x}} \end{bmatrix} = \{ \\ \{2.0, 0.0\}, & \{-1.0, 1.0\}, \{0.0, 0.0\}, \{0.0, 0.0\}, \{0.0, 0.0\}, \\ \{-1.0, -1.0\}, \{4.0, 0.0\}, \{1.0, 2.0\}, \{0.0, 0.0\}, \{0.0, 0.0\}, \\ \{0.0, 0.0\}, & \{1.0, -2.0\}, \{10.0, 0.0\}, \{0.0, 4.0\}, \{0.0, 0.0\}, \\ \{0.0, 0.0\}, & \{0.0, 0.0\}, \{0.0, -4.0\}, \{6.0, 0.0\}, \{1.0, 1.0\}, \\ \{0.0, 0.0\}, & \{0.0, 0.0\}, \{0.0, 0.0\}, \{1.0, -1.0\}, \{9.0, 0.0\} \\ \\ \end{array} 
         f_complex
                                                       };
         f_complex b[] = {
                      \{1.0, 5.0\}, \{12.0, -6.0\}, \{1.0, -16.0\}, \{-3.0, -3.0\}, \{25.0, 16.0\}
                                                      };
                                                                               /* Solve Ax = b for x */
         x = imsl_c_lin_sol_posdef(n, a, b, 0);
                                                                               /* Print x */
         imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}
```

Output

		1	Solution,	x, of Ax	= b			2
(2,	1)	(3,	-0)	(-1,	-1)
(Ο,	4 -2)	(3,	5 2)			

Example 2

This example solves the same system of five linear equations as in the first example. This time, the LL^H factorization of A and the solution x is returned in an array allocated in the main program.

#include <imsl.h>

main()

24 • lin_sol_posdef (complex)

{ n = 5; int x[5], *p_factor; a[] = { f_complex f_complex $\begin{cases} 2.0, 0.0 \\ 1.0, -1.0 \\ 1.0, -1.0 \\ 1.0, -2.0 \\ 1.0, -2.0 \\ 1.0, -2.0 \\ 1.0, -4.0 \\ 1.0, -2.0 \\ 1.0, -4.0 \\ 1.0, -4.0 \\ 1.0, -1.0 \\ 1.0, -2.0 \\ 1.0, -4.0 \\ 1.0, -4.0 \\ 1.0, -1.0 \\ 1.$ }; f_complex b[] = { $\{1.0, 5.0\}, \{12.0, -6.0\}, \{1.0, -16.0\}, \{-3.0, -3.0\}, \{25.0, 16.0\}$ }; /* Solve Ax = b for x */ imsl_c_lin_sol_posdef(n, a, b, IMSL_RETURN_USER, x, IMSL_FACTOR, &p_factor, 0); /* Print x */ imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0); /* Print Cholesky factor of A */ imsl_c_write_matrix("Cholesky factor L, and ctrans(L), of A", n, n, p_factor, 0);

}

			Soluti	on, x, of	Ax = b		
		1			2		3
(2,	1)	(3,	-0) (-1,	-1)
		4			5		
(Ο,	-2)	(3,	2)		
(0,	2)	(5,	2)		

		Cholesk	y fa	actor L, and	ctrans(L)	, of	А	
		1			2			3
1 (1.414,	0.000)	(-0.707,	0.707)	(0.000,	-0.000)
2 (-0.707,	-0.707)	(1.732,	0.000)	(0.577,	1.155)
3 (0.000,	0.000)	(0.577,	-1.155)	(2.887,	0.000)
4 (0.000,	0.000)	(0.000,	0.000)	(0.000,	-1.386)
5 (0.000,	0.000)	(0.000,	0.000)	(0.000,	0.000)
		4			5			
1 (0.000,	-0.000)	(0.000,	-0.000)			
2 (0.000,	-0.000)	(0.000,	-0.000)			
3 (0.000,	1.386)	(0.000,	-0.000)			
4 (2.020,	0.000)	(0.495,	0.495)			
5 (0.495,	-0.495)	(2.917,	0.000)			

Warning Errors

IMSL_HERMITIAN_DIAG_REAL_1	The diagonal of a Hermitian matrix must be real. Its imaginary part is set to zero.
IMSL_HERMITIAN_DIAG_REAL_2	The diagonal of a Hermitian matrix must be real. The imaginary part will be used as zero in the algorithm.
IMSL_ILL_CONDITIONED	The input matrix is too ill-conditioned. An estimate of the reciprocal of its L_1 condition number is "rcond" = #. The solution might not be accurate.
Fatal Errors	
IMSL_NONPOSITIVE_MATRIX	The leading # by # minor matrix of the input matrix is not positive definite.
IMSL_HERMITIAN_DIAG_REAL	During the factorization the matrix has a large imaginary component on the diagonal. Thus, it cannot be positive definite.
IMSL_SINGULAR_TRI_MATRIX	The triangular matrix is singular. The index of the first zero diagonal term is #.

lin_sol_gen_band

Solves a real general band system of linear equations, Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the *LU* factorization of *A* using partial pivoting, solving $A^T x = b$, or computing the solution of Ax = b given the *LU* factorization of *A*.

Synopsis

#include <imsl.h>

The type *double* procedure is imsl_d_lin_sol_gen_band.

Required Arguments

int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)

Array of size (nlca + nuca + 1) containing the $n \times n$ banded coefficient matrix in band storage mode.

Array of size *n* containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

Optional Arguments

```
IMSL_TRANSPOSE
Solve A^T x = b.
Default: Solve Ax = b.
IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.
IMSL_FACTOR, int **p_pvt, float **p_factor (Output)
p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_f_lin_sol_gen_band. Typically, int *p_pvt is declared and
&p_pvt is used as an argument.
p_factor: The address of a pointer to an array of size
(2nlca + nuca + 1) × n containing the LU factorization of A with column
pivoting. On return, the necessary space is allocated by
imsl_f_lin_sol_gen_band. Typically, float *p_factor is declared and
&p_factor is used as an argument.
```

IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

pvt[]: A user-allocated array of size*n*containing the pivot sequence for the factorization.

factor[]: A user-allocated array of size $(2nlca + nuca + 1) \times n$ containing the *LU* factorization of *A*. The strictly lower triangular part of this array contains information necessary to construct *L*, and the upper triangular part contains *U*. If *A* is not needed, factor and a can share the first $(nlca + nuca + 1) \times n$ locations.

These parameters are "Input" if IMSL_SOLVE_ONLY is specified. They are "Output" otherwise.

IMSL_CONDITION, float *condition (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix A. This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the *LU* factorization of *A* with partial pivoting. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_f_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the *LU* factorization previously computed by imsl_f_lin_sol_gen_band. By default, the solution to Ax = b is pointed to by imsl_f_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument a is ignored.

IMSL_BLOCKING_FACTOR, *int* block_factor (Input)

The blocking factor. block_factor must be set no larger than 32. Default: block_factor = 1

Description

The function $imsl_f_lin_sol_gen_band$ solves a system of linear algebraic equations with a real band matrix A. It first computes the LU factorization of A based on the blocked LU factorization algorithm given in Du Croz et al. (1990). Level-3 BLAS invocations are replaced with inline loops. The blocking factor block_factor has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems, $y = L^{-1}b$ and $x = U^{-1}y$. When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L_1 condition number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition number is greater than $1/\varepsilon$ (where ε is the machine precision), a warning message is issued. This indicates that very small changes in A may produce large changes in the solution x. The function $imsl_flin_sol_gen_band$ fails if U, the upper triangular part of the factorization, has a zero diagonal element.

Examples

Example 1

This example demonstrates the simplest use of this function by solving a system of four linear equations. This is the simplest usage of the function. The equations are as follows:

```
2x_{1} - x_{2} = 3-3x_{1} + x_{2} - 2x_{3} = 1-x_{3} + 2x_{4} = 112x_{3} + x_{4} = -2
```

```
#include <imsl.h>
```

```
void main ()
{
                       n = 4;
         int
                        nuca = 1;
         int
         int
                        nlca = 1;
         float
                       *x;
                             /* Note that a is in band storage mode */
         float a[] = {0.0, -1.0, -2.0, 2.0,
        2.0, 1.0, -1.0, 1.0,
        -3.0, 0.0, 2.0, 0.0};
         float b[] = \{3.0, 1.0, 11.0, -2.0\};
         x = imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b, 0);
         imsl_f_write_matrix ("Solution x, of Ax = b", 1, n, x, 0);
}
```

Output

Solution x, of Ax = b 1 2 3 2 1 -3

Example 2

In this example, the problem Ax = b is solved using the data from the first example. This time, the factorizations are returned and the problem $A^{T}x = b$ is solved without recomputing *LU*.

4

4

#include <imsl.h>

void main ()
{

Chapter 1: Linear Systems

```
int
             n = 4;
             nuca = 1;
int
            nlca = 1;
int
            *pivot;
int
float
            x[4];
float
            *factor;
                  /* Note that a is in band storage mode */
float a[] = \{0.0, -1.0, -2.0, 2.0,
2.0, 1.0, -1.0, 1.0,
-3.0, 0.0, 2.0, 0.0};
float b[] = {3.0, 1.0, 11.0, -2.0};
                  /* Solve Ax = b and return LU */
imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b,
         IMSL_FACTOR, &pivot, &factor,
         IMSL_RETURN_USER, x,
         0);
imsl_f_write_matrix ("Solution of Ax = b", 1, n, x, 0);
                  /* Use precomputed LU to solve trans(A)x = b */
                  /* The original matrix A is not needed */
imsl_f_lin_sol_gen_band (n, (float*) 0, nlca, nuca, b,
         IMSL_FACTOR_USER, pivot, factor,
         IMSL_SOLVE_ONLY,
         IMSL_TRANSPOSE,
         IMSL_RETURN_USER, x,
         0);
imsl_f_write_matrix ("Solution of trans(A)x = b", 1, n, x, 0);
    Output
      Solution of Ax = b
              2 3
 1
                                         4
 2
              1
                          -3
                                         4
   Solution of trans(A)x = b
 1
             2
                          3
                                         4
             -5
-6
                          -1
                                        -0
    Warning Errors
    IMSL_ILL_CONDITIONED
                               The input matrix is too ill-conditioned. An estimate of
                               the reciprocal of its L_1 condition number is
                               "rcond" = #. The solution might not be accurate.
    Fatal Errors
    IMSL_SINGULAR_MATRIX
                               The input matrix is singular.
```

}

lin_sol_gen_band (complex)

Solves a complex general band system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the LU factorization of A using partial pivoting, solving $A^{H}x = b$, or computing the solution of Ax = b given the LU factorization of A.

Synopsis

#include <imsl.h>

```
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[], int nlca,
        int nuca, f_{complex} b[], ..., 0)
```

The type *double* procedure is imsl_z_lin_sol_gen_band.

Required Arguments

```
int n (Input)
        Number of rows and columns in the matrix.
```

- f_complex a[] (Input) Array of size $(nlca + nuca + 1) \times n$ containing the $n \times n$ banded coefficient matrix in band storage mode.
- int nlca (Input) Number of lower codiagonals in a.
- *int* nuca (Input) Number of upper codiagonals in a.
- f_complex b[] (Input) Array of size *n* containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free. If no solution was computed, NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[],
       int nlca, int nuca, f_complex b[],
       IMSL_TRANSPOSE,
       IMSL_RETURN_USER, f_complex x[],
       IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
       IMSL_FACTOR_USER, int pvt[], f_complex factor[],
       IMSL_CONDITION, float *condition,
       IMSL_FACTOR_ONLY,
       IMSL_SOLVE_ONLY,
       0)
```

Optional Arguments

IMSL_TRANSPOSE Solve $A^{H}x = b$ Default: Solve Ax = b.

IMSL_RETURN_USER, $f_complex \ge [$] (Output) A user-allocated array of length *n* containing the solution *x*.

IMSL_FACTOR, *int* **p_pvt, *f_complex* **p_factor (Output)

p_pvt: The address of a pointer to an array of length *n* containing the pivot sequence for the factorization. On return, the necessary space is allocated by imsl_c_lin_sol_gen_band. Typically, *int* *p_pvt is declared and &p_pvt is used as an argument.

p_factor: The address of a pointer to an array of size

 $(2nlca + nuca + 1) \times n$ containing the *LU* factorization of *A* with column pivoting. On return, the necessary space is allocated by

imsl_c_lin_sol_gen_band. Typically, f_complex *p_factor is declared
and &p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)

pvt[]: A user-allocated array of size*n*containing the pivot sequence for the factorization.

factor[]: A user-allocated array of size $(2nlca + nuca + 1) \times n$ containing the *LU* factorization of *A*. If *A* is not needed, factor and a can share the first $(nlca + nuca + 1) \times n$ locations.

These parameters are "Input" if IMSL_SOLVE_ONLY is specified. They are "Output" otherwise.

IMSL_CONDITION, float *condition (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix *A*. This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the *LU* factorization of *A* with partial pivoting. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_c_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the *LU* factorization previously computed by imsl_c_lin_sol_gen_band. By default, the solution to Ax = b is pointed to by imsl_c_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and argument a is ignored.

Description

The function imsl_c_lin_sol_gen_band solves a system of linear algebraic equations with a complex band matrix *A*. It first computes the *LU* factorization of *A*

using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if each row were scaled to have the same L_{∞} norm. The factorization fails if *U* has a zero diagonal element. This can occur only if *A* is singular or very close to a singular matrix.

The solution of the linear system is then found by solving two simpler systems, $y = L^{-1}b$ and $x = U^{-1}y$. When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L_1 condition number of A is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition number is greater than $1/\varepsilon$ (where ε is the machine precision), a warning message is issued. This indicates that very small changes in A may produce large changes in the solution x. The function $imsl_c_lin_sol_gen_band$ fails if U, the upper triangular part of the factorization, has a zero diagonal element. The function $imsl_c_lin_sol_gen_band$ is based on the LINPACK subroutine CGBFA; see Dongarra et al. (1979). CGBFA uses unscaled partial pivoting.

Examples

Example 1

The following linear system is solved:

[-2-3i]	4	0	0]	x_0		-10-5i]
6+i	-0.5 + 3i	-2 + 2i	0	x_1		9.5 + 5.5 <i>i</i>	
0	1+i	3 - 3i	-4 - 1	<i>x</i> ₂	=	12–12 <i>i</i>	
0	$4 \\ -0.5 + 3i \\ 1+i \\ 0$	2i	1-i	<i>x</i> ₃		8 <i>i</i>	

```
#include <imsl.h>
```

```
void main()
           int
                            n = 4;
           int
                            nlca = 1;
                            nuca = 1;
           int
           f complex
                             *x;
                             /* Note that a is in band storage mode */
           f_complex
                             a[] =
                       \{ \{0.0, 0.0\}, \{4.0, 0.0\}, \{-2.0, 2.0\}, \{-4.0, -1.0\}, \\ \{-2.0, -3.0\}, \{-0.5, 3.0\}, \{3.0, -3.0\}, \{1.0, -1.0\}, \\ \{6.0, 1.0\}, \{1.0, 1.0\}, \{0.0, 2.0\}, \{0.0, 0.0\}\}; 
           f_complex
                          b[] =
                      \{\{-10.0, -5.0\}, \{9.5, 5.5\}, \{12.0, -12.0\}, \{0.0, 8.0\}\};
           x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 0);
           imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x,
```

Output

```
Solution, x, of Ax = b
1
   (
               3,
                           -0)
2
              -1,
                            1)
   (
               3,
                            0)
3
   (
4
              -1,
                            1)
   (
```

#include <imsl.h>

Example 2

This example solves the problem Ax = b using the data from the first example. This time, the factorizations are returned and then the problem $A^{H}x = b$ is solved without recomputing *LU*.

```
void main()
ł
         int
                            n = 4;
                            nlca = 1;
          int
          int
                            nuca = 1;
          int
                           *pivot;
          f_complex
                           *x;
          f_complex
                           *factor;
                              /* Note that a is in band storage mode */
          f_complex
                            a[] =
                    \{ \{0.0, 0.0\}, \{4.0, 0.0\}, \{-2.0, 2.0\}, \{-4.0, -1.0\}, \\ \{-2.0, -3.0\}, \{-0.5, 3.0\}, \{3.0, -3.0\}, \{1.0, -1.0\}, \\ \{6.0, 1.0\}, \{1.0, 1.0\}, \{0.0, 2.0\}, \{0.0, 0.0\}\}; 
          f_complex
                           b[] =
                    \{\{-10.0, -5.0\}, \{9.5, 5.5\}, \{12.0, -12.0\}, \{0.0, 8.0\}\};
                              /* Solve Ax = b and return LU */
          x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
                   IMSL_FACTOR, &pivot, &factor,
                   0);
          imsl_c_write_matrix ("solution of Ax = b", n, 1, x, 0);
          free (x);
                              /* Use precomputed LU to solve ctrans(A)x = b */
          x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
                   IMSL_FACTOR_USER, pivot, factor,
                   IMSL_TRANSPOSE,
                   0);
          imsl_c_write_matrix ("solution of ctrans(A)x = b", n, 1, x, 0);
}
              Output
     solution of Ax = b
                            -0)
1
               3,
    (
               -1,
                             1)
2
   (
3
                3,
                              0)
    (
```

34 • lin_sol_gen_band (complex)

IMSL C/Math/Library

4	(-1,	1)
so:	(of ctrans	s(A)x = b
1		5.58,	-2.91)
2		-0.48,	-4.67)
3		-6.19,	7.15)
4		12.60,	30.20)

Warning Errors

IMSL_ILL_CONDITIONED

The input matrix is too ill-conditioned. An estimate of the reciprocal of its L_1 condition number is "rcond" = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX

The input matrix is singular.

lin_sol_posdef_band

Solves a real symmetric positive definite system of linear equations Ax = b in band symmetric storage mode. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the $R^T R$ Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A, or estimating the L_1 condition number of A.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[], ..., 0)

The type *double* procedure is imsl_d_lin_sol_posdef_band.

Required Arguments

```
int n (Input)
```

Number of rows and columns in the matrix.

float a[] (Input)

Array of size $(ncoda + 1) \times n$ containing the $n \times n$ positive definite band coefficient matrix in band symmetric storage mode.

int ncoda (Input) Number of upper codiagonals of the matrix.

float b[] (Input)

Array of size *n* containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_RETURN_USER, float x[] (Output) A user-allocated array of length *n* containing the solution *x*. IMSL_FACTOR, float **p_factor (Output) The address of a pointer to an array of size $(ncoda + 1) \times n$ containing the LL^T factorization of *A*. On return, the necessary space is allocated by

imsl_f_lin_sol_posdef_band. Typically, *float* *p_factor is declared and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)

A user-allocated array of size $(ncoda + 1) \times n$ containing the LL^T factorization of A in band symmetric form. If A is not needed, factor and a can share the same storage.

These parameters are "Input" if IMSL_SOLVE is specified. They are "Output" otherwise.

IMSL_CONDITION, *float* *cond (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix *A*. This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the LL^T factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_f_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LL^T factorization previously computed by imsl_f_lin_sol_posdef_band. By default, the solution to Ax = b is pointed to by imsl_f_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument a is ignored.

Description

The function imsl_f_lin_sol_posdef_band solves a system of linear algebraic equations with a real symmetric positive definite band coefficient matrix A. It computes the $R^T R$ Cholesky factorization of A. R is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L_1 condition number of *A* is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition number is greater than $1/\epsilon$ (where ϵ is the machine precision), a warning message is issued. This indicates that very small changes in *A* may produce large changes in the solution *x*.

The function $imsl_f_lin_sol_posdef_band$ fails if any submatrix of R is not positive definite or if R has a zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not positive definite.

The function imsl_f_lin_sol_posdef_band is partially based on the LINPACK subroutines CPBFA and SPBSL; see Dongarra et al. (1979).

Example 1

Solves a system of linear equations Ax = b, where

_

	2	0	-1	0		6
4 -	0	4	2	1	h _	-11
A =	-1	2	7	-1	<i>v</i> =	-11
	0	1	-1	3		6 -11 -11 19

```
#include <imsl.h>
void main()
{
                    n = 4;
        int
        int
                    ncoda = 2;
        float
                   *x;
                         /* Note that a is in band storage mode */
        float
                    a[] = \{0.0, 0.0, -1.0, 1.0,
                            0.0, 0.0, 2.0, -1.0,
                            2.0, 4.0, 7.0, 3.0};
        float
                    b[] = \{6.0, -11.0, -11.0, 19.0\};
        x = imsl_f_lin_sol_posdef_band (n, a, ncoda, b, 0);
        imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}
```

Output

	Solution, x,	of	Ax	= b	
1	2			3	4
4	-б			2	9

Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated space and an estimate of $\kappa_1(A)$ is computed. Additionally, the $R^T R$ factorization is returned. Then, knowing that $\kappa_1(A) = ||A|| ||A^{-1}||$, the condition number is computed directly and compared to the estimate from Higham's method.

#include <imsl.h>

```
void main()
{
                     n = 4;
        int
        int
                     ncoda = 2i
        float
                     a[] = \{0.0, 0.0, -1.0, 1.0,
                             0.0, 0.0, 2.0, -1.0,
2.0, 4.0, 7.0, 3.0};
                     b[] = \{6.0, -11.0, -11.0, 19.0\};
        float
        float
                     x[4];
        float
                     e_i[4];
                    *factor;
        float
        float
                     condition;
        float
                     column_norm;
        float
                     inverse_norm;
        int
                     i;
        int
                     j;
                     index;
        int
        imsl_f_lin_sol_posdef_band (n, a, ncoda, b,
                 IMSL_FACTOR, & factor,
                 IMSL_CONDITION, & condition,
                 IMSL_RETURN_USER, x,
                 0);
        imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
                          /* find one norm of inverse */
        inverse_norm = 0.0;
        for (i=0; i<n; i++) {
                 for (j=0; j<n; j++) e_i[j] = 0.0;</pre>
                 e i[i] = 1.0;
                          /* determine one norm of each column of inverse */
                 imsl_f_lin_sol_posdef_band (n, a, ncoda, e_i,
                          IMSL_FACTOR_USER, factor,
                          IMSL_SOLVE_ONLY,
                          IMSL_RETURN_USER, x,
                          0);
                 column_norm = imsl_f_vector_norm (n, x,
                          IMSL_ONE_NORM,
                          0);
```

38 • lin_sol_posdef_band

```
/*
                               the max of the column norms is the norm of
                               inv(A) */
                 if (inverse_norm < column_norm)</pre>
                          inverse_norm = column_norm;
         }
                               by observation, one norm of A is 11 */
                           /*
        printf ("\nHigham's condition estimate = %f\n", condition);
        printf ("Direct condition estimate = %f\n",
                 11.0*inverse_norm);
}
             Output
             Solution, x, of Ax = b
2 3
          1
                                    3
                                                  4
          4
                      -6
                                                  9
Higham's condition estimate = 8.650485
Direct condition estimate = 8.650485
             Warning Errors
             IMSL_ILL_CONDITIONED
                                         The input matrix is too ill-conditioned. An estimate of
                                         the reciprocal of its L_1 condition number is
                                         "rcond" = #. The solution might not be accurate.
```

Fatal Errors

IMSL_NONPOSITIVE_MATRIX	The leading # by # submatrix of the input matrix is not positive definite.
IMSL_SINGULAR_MATRIX	The input matrix is singular.

lin_sol_posdef_band (complex)

Solves a complex Hermitian positive definite system of linear equations Ax = b in band symmetric storage mode. Using optional arguments, any of several related computations can be performed. These extra tasks include computing the $R^{H}R$ Cholesky factorization of A, computing the solution of Ax = b given the Cholesky factorization of A, or estimating the L_1 condition number of A.

Synopsis

#include <imsl.h>

The type *double* procedure is imsl_z_lin_sol_posdef_band.

Chapter 1: Linear Systems

Required Arguments

```
int n (Input)
```

Number of rows and columns in the matrix.

f_complex a[] (Input)

Array of size $(ncoda + 1) \times n$ containing the $n \times n$ positive definite band coefficient matrix in band symmetric storage mode.

int ncoda (Input)

Number of upper codiagonals of the matrix.

```
f_complex b[] (Input)
```

Array of size *n* containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

IMSL_SOLVE_ONLY,

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda, f_complex b[], IMSL_RETURN_USER, f_complex x[], IMSL_FACTOR, f_complex **p_factor, IMSL_FACTOR_USER, f_complex factor[], IMSL_CONDITION, float *condition, IMSL_FACTOR_ONLY,

Optional Arguments

0)

IMSL_RETURN_USER, $f_complex x[]$ (Output) A user-allocated array of length *n* containing the solution *x*.

IMSL_FACTOR, f_complex **p_factor (Output)

The address of a pointer to an array of size $(ncoda + 1) \times n$ containing the $R^{H}R$ factorization of A. On return, the necessary space is allocated by imsl_c_lin_sol_posdef_band. Typically, $f_{complex} *_{p_{factor}}$ is declared and $\&_{p_{factor}}$ is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)

A user-allocated array of size $(ncoda + 1) \times n$ containing the $R^H R$ factorization of A in band symmetric form. If A is not needed, factor and a can share the same storage. These parameters are "Input" if IMSL_SOLVE is specified. They are "Output"

These parameters are "Input" if IMSL_SOLVE is specified. They are "Output" otherwise.

IMSL_CONDITION, *float* *condition (Output)

A pointer to a scalar containing an estimate of the L_1 norm condition number of the matrix *A*. This option cannot be used with the option IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the $R^H R$ factorization of A. If IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then ignored, and the returned value of imsl_c_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the $R^H R$ factorization previously computed by imsl_c_lin_sol_posdef_band. By default, the solution to Ax = b is pointed to by imsl_c_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is used, argument IMSL_FACTOR_USER is required and the argument a is ignored.

Description

The function imsl_c_lin_sol_posdef_band solves a system of linear algebraic equations with a real symmetric positive definite band coefficient matrix A. It computes the $R^H R$ Cholesky factorization of A. Argument R is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an estimate of the L_1 condition number of *A* is computed using Higham's modifications to Hager's method, as given in Higham (1988). If the estimated condition number is greater than $1/\epsilon$ (where ϵ is the machine precision), a warning message is issued. This indicates that very small changes in *A* may produce large changes in the solution *x*.

The function $imsl_c_lin_sol_posdef_band$ fails if any submatrix of *R* is not positive definite or if *R* has a zero diagonal element. These errors occur only if *A* is very close to a singular matrix or to a matrix which is not positive definite.

The function imsl_c_lin_sol_posdef_band is based partially on the LINPACK subroutines SPBFA and CPBSL; see Dongarra et al. (1979).

Examples

Example 1

Solve a linear system Ax = b where

	2	-1+i	0	0	0
	-1 - i	4	1+2i	0	0
A =	0	1-2i	10	4i	0
	0	0	-4i	6	$0\\1+i$
	0	-1+i 4 $1-2i$ 0 0	0	1-i	9

#include <imsl.h>

```
void main()
{
                      n = 5;
         int
                      ncoda = 1;
         int
         f_complex *x;
                          /* Note that a is in band storage mode */
        f_complex
                      a[] =
                      \{\{0.0, 0.0\}, \{-1.0, 1.0\}, \{1.0, 2.0\}, \{0.0, 4.0\},
                          \{1.0, 1.0\},\
                      \{2.0, 0.0\}, \{4.0, 0.0\}, \{10.0, 0.0\}, \{6.0, 0.0\},
                          \{9.0, 0.0\}\};
         f_complex
                     b[] =
                      \{\{1.0, 5.0\}, \{12.0, -6.0\}, \{1.0, -16.0\}, \{-3.0, -3.0\},
                          \{25.0, 16.0\}\};
        x = imsl_c_lin_sol_posdef_band (n, a, ncoda, b, 0);
        imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
}
```

	Solution,	Output x, of Ax =	b
1	(2,	1)
2	(3,	-0)
3	(-1,	-1)
4	(0,	-2)
5	(3,	2)

Example 2

This example solves the same problem Ax = b given in the first example. The solution is returned in user-allocated space and an estimate of $\kappa_1(A)$ is computed. Additionally,

```
the R^{H}R factorization is returned. Then, knowing that \kappa_{I}(A) = ||A|| ||A^{-1}||, the condition
            number is computed directly and compared to the estimate from Higham's method.
#include <imsl.h>
#include <math.h>
void main()
{
        int
                     n = 5;
                     ncoda = 1;
        int
                          /* Note that a is in band storage mode */
        f_complex
                      a[] =
                      \{\{0.0, 0.0\}, \{-1.0, 1.0\}, \{1.0, 2.0\}, \{0.0, 4.0\},
                          \{1.0, 1.0\},\
                      \{2.0, 0.0\}, \{4.0, 0.0\}, \{10.0, 0.0\}, \{6.0, 0.0\},
                          \{9.0, 0.0\}\};
        f_complex
                      b[] =
                      \{\{1.0, 5.0\}, \{12.0, -6.0\}, \{1.0, -16.0\}, \{-3.0, -3.0\},\
                          \{25.0, 16.0\}\};
                      x[5];
        f_complex
        f_complex
                     e_i[5];
                     *factor;
        f_complex
        float
                     condition;
        float
                      column_norm;
        float
                      inverse_norm;
        int
                      i;
                      j;
        int
        int
                      index;
        imsl_c_lin_sol_posdef_band (n, a, ncoda, b,
                 IMSL_FACTOR, & factor,
                 IMSL_CONDITION, & condition,
                 IMSL_RETURN_USER, x,
                 0);
        imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
                          /* Find one norm of inverse */
        inverse_norm = 0.0;
        for (i=0; i<n; i++) {</pre>
                 for (j=0; j<n; j++) e_i[j] = imsl_cf_convert (0.0, 0.0);</pre>
                 e_i[i] = imsl_cf_convert (1.0, 0.0);
                          /* Determine one norm of each column of inverse */
                 imsl_c_lin_sol_posdef_band (n, a, ncoda, e_i,
                          IMSL_FACTOR_USER, factor,
                          IMSL_SOLVE_ONLY,
                          IMSL_RETURN_USER, x,
                          0);
                 column_norm = imsl_c_vector_norm (n, x,
                          IMSL_ONE_NORM,
                          0);
                          /* The max of the column norms is the
```

Output

			Solut	ion, x, of	Ax = b			
		1			2			3
(2,	1)	(3,	-0)	(-1,	-1)
		4			5			
(Ο,	-2)	(3,	2)			
Higham'	s conditior	ı estim	ate =	19.3777				

Direct condition estimate = 19.3777

Warning Errors

IMSL_ILL_CONDITIONED	The input matrix is too ill-conditioned. An estimate of the reciprocal of its L_1 condition number is "rcond" = #.
	The solution might not be accurate. The solution might not be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX	The leading # by # submatrix of the input matrix is not positive definite.
IMSL_SINGULAR_MATRIX	The input matrix is singular.

lin_sol_gen_coordinate

Solves a sparse system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include returning the *LU* factorization of *A* computing the solution of Ax = b given an *LU* factorization setting drop tolerances, and controlling iterative refinement.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_lin_sol_gen_coordinate.

44 • lin_sol_gen_coordinate

Required Arguments

```
int n (Input)
```

Number of rows in the matrix.

- *int* nz (Input) Number of nonzeros in the matrix.
- Imsl_f_sparse_elem *a (Input)

Vector of length nz containing the location and value of each nonzero entry in the matrix.

```
float *b (Input)
```

Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem
       *a, float *b,
       IMSL_RETURN_SPARSE_LU_FACTOR,
                   Imsl_f_sparse_lu_factor *lu_factor,
       IMSL_SUPPLY_SPARSE_LU_FACTOR,
                   Imsl_f_sparse_lu_factor *lu_factor,
       IMSL FREE SPARSE LU FACTOR.
       IMSL_RETURN_SPARSE_LU_IN_COORD,
                   Imsl_f_sparse_elem **lu_coordinate,
                   int **row_pivots, int **col_pivots,
       IMSL_SUPPLY_SPARSE_LU_IN_COORD,
                   Imsl_f_sparse_elem *lu_coordinate, int *row_pivots,
                   int *col_pivots,
       IMSL_FACTOR_ONLY,
       IMSL_SOLVE_ONLY,
       IMSL_RETURN_USER, float x[],
       IMSL_TRANSPOSE,
       IMSL_CONDITION, float *condition,
       IMSL_PIVOTING_STRATEGY, Imsl_pivot method,
       IMSL_NUM_OF_SEARCH_ROWS, int num_search_row,
       IMSL_ITERATIVE_REFINEMENT,
       IMSL_DROP_TOLERANCE, float tolerance,
       IMSL_HYBRID_FACTORIZATION, float density,
                   int order_bound,
       IMSL_STABILITY_FACTOR, float s_factor,
       IMSL_GROWTH_FACTOR_LIMIT, float gf_limit,
```

Optional Arguments

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor (Output) The address of a structure of type Imsl_f_sparse_lu_factor. The pointers within the structure are initialized to point to the LU factorization by imsl_f_lin_sol_gen_coordinate.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor (Input)
The address of a structure of type Imsl_f_sparse_lu_factor. This structure
contains the LU factorization of the input matrix computed by
imsl_f_lin_sol_gen_coordinate with the
IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,

Before returning, free the linked list data structure containing the *LU* factorization of *A*. Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD,

Imsl_f_sparse_elem **lu_coordinate, int **row_pivots, int **col_pivots (Output)

The *LU* factorization is returned in coordinate form. This is more compact than the internal representation encapsulated in Imsl_f_sparse_lu. The disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be reconstructed. If however, the factor is to be stored after the program exits, and loaded again at some subsequent run, the combination of IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably the best choice, since the factors are in a format that is simple to store and read.

IMSL_SUPPLY_SPARSE_LU_IN_COORD,

Imsl_f_sparse_elem *lu_coordinate, int *row_pivots, int *col_pivots (Output) Supply the LU factorization in coordinate form. See IMSL_RETURN_SPARSE_LU_IN_COORD for a description.

IMSL_FACTOR_ONLY,

Compute the *LU* factorization of the input matrix and return. The argument b is ignored.

```
IMSL_SOLVE_ONLY,
```

Solve Ax = b given the LU factorization of A. This option requires the use of

option IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD.

IMSL_RETURN_USER, *float* x[] (Output) A user-allocated array of length *n* containing the solution *x*.

IMSL_TRANSPOSE,

Solve the problem $A^{T}x = b$. This option can be used in conjunction with either of the options that supply the factorization.

IMSL_CONDITION, *float* *condition, Estimate the L_1 condition number of A and return in the variable condition.

IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
 Select the pivoting strategy by setting method to one of the following:
 IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or
 IMSL_SYMMETRIC_MARKOWITZ.
 Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that
will be searched for a pivot element.
Default: num_search_row = 3

IMSL_ITERATIVE_REFINEMENT,

Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new
element is less than tolerance, it will be discarded.
Default: tolerance = 0.0

IMSL_HYBRID_FACTORIZATION, *float* density, *int* order_bound, Enable the function to switch to a dense factorization method when the density of the active submatrix reaches $0.0 \le \text{density} \le 1.0$ and the order of the active submatrix is less than or equal to order_bound.

IMSL_STABILITY_FACTOR, float s_factor (Input)
The absolute value of the pivot element must be bigger than the largest
element in absolute value in its row divided by s_factor.
Default: s_factor = 10.0

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.0e16

IMSL_GROWTH_FACTOR, *float* *gf (Output) Argument gf is calculated as the largest element in absolute value at any stage of the Gaussian elimination divided by the largest element in absolute value in A.

- IMSL_NUM_NONZEROS_IN_FACTOR, *int* *num_nonzeros (Output) A pointer to a scalar containing the total number of nonzeros in the factor.
- IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
 Accept the coefficient matrix in compressed sparse column (CSC) format.
 See the "Introduction" for a discussion of this storage scheme.
- IMSL_MEMORY_BLOCKSIZE, *int* blocksize (Input)

If space must be allocated for fill-in, allocate enough space for blocksize new nonzero elements. Default: blocksize = nz

Description

The function $imsl_f_lin_sol_gen_coordinate$ solves a system of linear equations Ax = b, where A is sparse. In its default use, it solves the so-called *one off* problem, by first performing an LU factorization of A using the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the saxpy operations performed during the elimination are extended to the right-hand side, along with any row interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case, the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then solves the two triangular systems

Ly = b and Ux = y. The user specifies either the IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to retrieve the factorization, then calls the function subsequently with different right-hand sides, passing the factorization back in using either IMSL_SUPPLY_SPARSE_LU_FACTOR or

IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunction with IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to

imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR to release the heap used to store L and U.

If the solution to $A^T x = b$ is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward elimination and back substitution so that the operations $U^T y = b$ and $L^T x = y$ are performed to obtain the solution. So, with one call to produce the factorization, solutions to both Ax = b and $A^T x = b$ can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the L_1 condition number of A. The algorithm used is due to Higham. Specification of IMSL_CONDITION causes a complete L to be computed and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solution to problems of the form Az = r and $A^T z = r$.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there may be some reduction in fill-in by selecting either IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default number is three, but this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by preventing any new fill element which has magnitude less than the specified drop tolerance from being added to the factorization. Since this can introduce substantial error into the factorization, it is recommended that IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final solution. The trade-off is between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for refinement.

The function $imsl_f_lin_sol_gen_coordinate$ provides the option of switching to a dense factorization method at some point during the decomposition. This option is enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two parameters required by this option, density, specifies a minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete fill-in. The other parameter, order_bound, places an upper bound of the order of the active submatrix which will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the $O(n^3)$ nature of the dense factorization will cause performance degradation. Note that this option can significantly increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

	10	0	0	0	0	0
	0	10	-3	-1	0	0
4 —	0	0	15	0	0	0
A =	-2	0	0	10	-1	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -3 \\ 6 \end{bmatrix}$
	-1	0	0	-5	1	-3
	-1	-2	0	0	0	6

Let $x^T = (1, 2, 3, 4, 5, 6)$ so that $Ax = (10, 7, 45, 33, -34, 31)^T$. The number of nonzeros in A is nz = 15.

```
3, 0, -2.0,
3, 3, 10.0,
                         3, 4, -1.0,
                         4, 0, -1.0,
                         4, 3, -5.0,
                         4, 4, 1.0,
                          4, 5, -3.0,
                          5, 0, -1.0,
                          5, 1, -2.0,
                          5, 5, 6.0};
float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
int n = 6;
int nz = 15;
float *x;
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b, 0);
imsl_f_write_matrix ("solution", 1, n, x, 0);
free (x);
   Output
```

		solution			
1	2	3	4	5	6
1	2	3	4	5	6

i;

nz; index;

Example 2

}

This examples sets A = E(1000, 10). A linear system is solved and the *LU* factorization returned. Then a second linear system is solved, using the same coefficient matrix *A* just factored. Maximum absolute errors and execution time ratios are printed, showing that forward and back solves take approximately 10 percent of the computation time of a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial number of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that timing results are highly machine dependent.

```
#include <imsl.h>
main()
{
        Imsl_f_sparse_elem
                                      *a;
        Imsl_f_sparse_lu_factor
                                       lu_factor;
                                      *b;
        float
        float
                                      *x;
        float
                                      *mod_five;
        float
                                      *mod_ten;
        float
                                       error_factor_solve;
        float
                                       error_solve;
        double
                                       time_factor_solve;
        double
                                       time_solve;
                                       n = 1000;
        int
        int
                                       c = 10;
```

50 • lin_sol_gen_coordinate

int

int

int.

```
/* Get the coefficient matrix */
a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
                /* Set two different predetermined solutions */
mod_five = (float*) malloc (n*sizeof(*mod_five));
mod_ten = (float*) malloc (n*sizeof(*mod_ten));
for (i=0; i<n; i++) {</pre>
        mod_five[i] = (float) (i % 5);
        mod_ten[i] = (float) (i % 10);
}
                /* Choose b so that x will approximate mod_five */
b = imsl_f_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, nz, a,
IMSL_X_VECTOR, n, mod_five,
        0);
                /* Time the factor/solve */
time_factor_solve = imsl_ctime();
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
                IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
                0);
time_factor_solve = imsl_ctime() - time_factor_solve;
                /* Compute max abolute error */
error_factor_solve = imsl_f_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_five,
        IMSL_INF_NORM, &index,
        0);
free (mod_five);
free (b);
free (x);
                /* Get new right hand side -- b = A * mod_ten */
b = imsl_f_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, nz, a,
        IMSL_X_VECTOR, n, mod_ten,
        0);
                /* Use the previously computed factorization
                     to solve Ax = b */
time_solve = imsl_ctime();
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
        IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
        IMSL_SOLVE_ONLY,
        0);
time_solve = imsl_ctime() - time_solve;
error_solve = imsl_f_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_ten,
        IMSL_INF_NORM, &index,
        0);
```

Chapter 1: Linear Systems

Output

```
absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04
time_solve/time_factor_solve = 0.093750
```

Example 3

This example solves a system Ax = b, where A = E (500, 50). Then, the same system is solved using a large drop tolerance. Finally, using the factorization just computed, the same linear system is solved with iterative refinement. Be aware that timing results are highly machine dependent.

```
#include <imsl.h>
main()
{
        Imsl_f_sparse_elem
                                 *a;
        Imsl_f_sparse_lu_factor lu_factor;
        float
                                 *b;
        float
                                 *x;
        float
                                 *mod_five;
        float
                                  error_zero_drop_tol;
        float
                                  error_nonzero_drop_tol;
        float
                                  error_nonzero_drop_tol_IR;
        double
                                  time_zero_drop_tol;
        double
                                  time_nonzero_drop_tol;
        double
                                  time_nonzero_drop_tol_IR;
        int
                                  nz_nonzero_drop_tol;
        int
                                  nz_zero_drop_tol;
        int
                                  n = 500;
                                  c = 50;
        int
        int
                                  i;
        int
                                  nz;
        int
                                  index;
                         /* Get the coefficient matrix */
        a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
        for (i=0; i<nz; i++) a[i].val *= 0.05;
                         /* Set a predetermined solution */
        mod_five = (float*) malloc (n*sizeof(*mod_five));
        for (i=0; i<n; i++)
                mod_five[i] = (float) (i % 5);
```

52 • lin_sol_gen_coordinate

```
/*
                   Choose b so that x will approximate mod_five */
b = imsl_f_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, nz, a,
        IMSL_X_VECTOR, n, mod_five,
        0);
                /* Time the factor/solve */
time_zero_drop_tol = imsl_ctime();
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
        IMSL_NUM_NONZEROS_IN_FACTOR, &nz_zero_drop_tol,
        ();
time_zero_drop_tol = imsl_ctime() - time_zero_drop_tol;
                /* Compute max abolute error */
error_zero_drop_tol = imsl_f_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_five,
        IMSL_INF_NORM, &index,
        0);
free (x);
                /* Solve the same problem, with drop
                   tolerance = 0.005 * /
time_nonzero_drop_tol = imsl_ctime();
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
        IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
        IMSL_DROP_TOLERANCE, 0.005,
        IMSL_NUM_NONZEROS_IN_FACTOR, &nz_nonzero_drop_tol,
        0);
time_nonzero_drop_tol = imsl_ctime() - time_nonzero_drop_tol;
                /* Compute max abolute error */
error_nonzero_drop_tol = imsl_f_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_five,
        IMSL_INF_NORM, & index,
        0);
free (x);
                /* Solve the same problem with IR, use last
                   factorization */
time_nonzero_drop_tol_IR = imsl_ctime();
x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
        IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
        IMSL_SOLVE_ONLY,
        IMSL_ITERATIVE_REFINEMENT,
        0);
time_nonzero_drop_tol_IR = imsl_ctime() - time_nonzero_drop_tol_IR;
                /* Compute max abolute error */
error_nonzero_drop_tol_IR = imsl_f_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_five,
        IMSL_INF_NORM, & index,
```

Chapter 1: Linear Systems

```
0);
free (x);
free (b);
                /* Print errors and ratio of execution times */
printf ("drop tolerance = 0.0\n");
printf ("\tabsolute error = %e\n", error_zero_drop_tol);
printf ("\tfillin
                        = %d\n\n", nz_zero_drop_tol);
printf ("drop tolerance = 0.005\n");
printf ("\tabsolute error = %e\n", error_nonzero_drop_tol);
printf ("\tfillin
                          = %d\n\n", nz_nonzero_drop_tol);
printf ("drop tolerance = 0.005 (with IR)\n");
printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR);
printf ("\tfillin
                         = %d\n\n", nz_nonzero_drop_tol);
printf ("time_nonzero_drop_tol/time_zero_drop_tol = %f\n",
        time_nonzero_drop_tol/time_zero_drop_tol);
printf ("time_nonzero_drop_tol_IR/time_zero_drop_tol = %f\n",
        time_nonzero_drop_tol_IR/time_zero_drop_tol);
```

Output

}

```
drop tolerance = 0.0
    absolute error = 3.814697e-06
    fillin = 9530
drop tolerance = 0.005
    absolute error = 2.699481e+00
    fillin = 8656
drop tolerance = 0.005 (with IR)
    absolute error = 1.907349e-06
    fillin = 8656
time_nonzero_drop_tol/time_zero_drop_tol = 1.086957
time_nonzero_drop_tol_IR/time_zero_drop_tol = 0.840580
```

Notice the absolute error when iterative refinement is not used. Also note that iterative refinement itself can be quite expensive. In this case, for example, the IR solve took approximately as much time as the factorization. For this problem the use of a drop high drop tolerance and iterative refinement was able to reduce fill-in by 10 percent at a time cost double that of the default usage. In tight memory situations, such a trade-off may be acceptable. Users should be aware that a drop tolerance can be chosen large enough, introducing large errors into *LU*, to prevent convergence of iterative refinement.

lin_sol_gen_coordinate (complex)

Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A. Using optional arguments, any of several related computations can be performed. These extra tasks include returning the *LU* factorization of A, computing the solution of Ax = b given an *LU* factorization, setting drop tolerances, and controlling iterative refinement.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz, Imsl_c_sparse_elem *a, f_complex *b, ..., 0)

The type *double* function is imsl_z_lin_sol_gen_coordinate.

Required Arguments

int n (Input)

Number of rows in the matrix.

int nz (Input) Number of nonzeros in the matrix.

Imsl_c_sparse_elem *a (Input)

Vector of length nz containing the location and value of each nonzero entry in the matrix.

f_complex *b (Input) Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz,
       Imsl_c_sparse_elem *a, f_complex *b,
       IMSL_RETURN_SPARSE_LU_FACTOR,
                   Imsl_c_sparse_lu_factor *lu_factor,
       IMSL_SUPPLY_SPARSE_LU_FACTOR,
                   Imsl_c_sparse_lu_factor *lu_factor,
       IMSL_FREE_SPARSE_LU_FACTOR,
       IMSL_RETURN_SPARSE_LU_IN_COORD,
                   Imsl_c_sparse_elem **lu_coordinate,
                   int **row_pivots, int **col_pivots,
       IMSL_SUPPLY_SPARSE_LU_IN_COORD,
                   Imsl_c_sparse_elem *lu_coordinate, int *row_pivots,
                   int *col_pivots,
       IMSL_FACTOR_ONLY,
       IMSL_SOLVE_ONLY,
       IMSL_RETURN_USER, f_complex \ge [],
       IMSL_TRANSPOSE,
```

Optional Arguments

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor (Output) The address of a structure of type Imsl_c_sparse_lu_factor. The pointers within the structure are initialized to point to the LU factorization by imsl_c_lin_sol_gen_coordinate.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor
 (Input)

The address of a structure of type *Imsl_c_sparse_lu_factor*. This structure contains the *LU* factorization of the input matrix computed by imsl_c_lin_sol_gen_coordinate with the IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,

Before returning, free the linked list data structure containing the LU factorization of A. Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD,

Imsl_c_sparse_elem **lu_coordinate, int **row_pivots, int **col_pivots (Output)

The *LU* factorization is returned in coordinate form. This is more compact than the internal representation encapsulated in Imsl_c_sparse_lu. The disadvantage is that during a SOLVE_ONLY call, the internal representation of the factor must be reconstructed. If however, the factor is to be stored after the program exits, and loaded again at some subsequent run, the combination of IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably the best choice, since the factors are in a format that is simple to store and read.

Supply the *LU* factorization in coordinate form. See IMSL_RETURN_SPARSE_LU_IN_COORD for a description.

IMSL_FACTOR_ONLY,

Compute the *LU* factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,

Solve Ax = b given the *LU* factorization of *A*. This option requires the use of option IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD.

IMSL_RETURN_USER, $f_complex x[]$ (Output) A user-allocated array of length *n* containing the solution *x*.

IMSL_TRANSPOSE,

Solve the problem $A^{T}x = b$. This option can be used in conjunction with either of the options that supply the factorization.

IMSL_CONDITION, *float* *condition, Estimate the L_1 condition number of A and return in the variable condition.

IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
 Select the pivoting strategy by setting method to one of the following:
 IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or
 IMSL_SYMMETRIC_MARKOWITZ.
 Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that
will be searched for a pivot element.
Default: num_search_row = 3

IMSL_ITERATIVE_REFINEMENT, Select this option if iterative refinement is desired.

- IMSL_DROP_TOLERANCE, float tolerance (Input)
 Possible fill-in is checked against tolerance. If the absolute value of the new
 element is less than tolerance, it will be discarded.
 Default: tolerance = 0.0
- IMSL_HYBRID_FACTORIZATION, *float* density, *int* order_bound, Enable the code to switch to a dense factorization method when the density of the active submatrix reaches $0.0 \le \text{density} \le 1.0$ and the order of the active submatrix is less than or equal to order_bound.
- IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
 The computation stops if the growth factor exceeds gf_limit.
 Default: gf_limit = 1.e16
- IMSL_GROWTH_FACTOR, *float* *gf (Output) gf is calculated as the largest element in absolute value at any stage of the Gaussian elimination divided by the largest element in absolute value in A.

- IMSL_SMALLEST_PIVOT, *float* *small_pivot (Output) A pointer to the value of the pivot element of smallest magnitude.
- IMSL_NUM_NONZEROS_IN_FACTOR, *int* *num_nonzeros (Output) A pointer to a scalar containing the total number of nonzeros in the factor.
- IMSL_CSC_FORMAT, *int* *col_ptr, *int* *row_ind, *f_complex* *values (Input) Accept the coefficient matrix in compressed sparse column (CSC) format. See the introduction for a discussion of this storage scheme.
- IMSL_FACTOR_RESIZE_INCREMENT, int increment (Input)
 Supply the number of nonzeros which will be added to the factor if current
 allocations are inadequate.
 Default: increment = nz

Description

The function $imsl_c_lin_sol_gen_coordinate$ solves a system of linear equations Ax = b, where A is sparse. In its default use, it solves the so-called *one off* problem, by first performing an LU factorization of A using the improved generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the saxpy operations performed during the elimination are extended to the right-hand side, along with any row interchanges. Thus, the system Ly = b is solved implicitly. The factor U is then passed to a triangular solver which computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually more efficient to compute the factorization once, and perform multiple forward and back solves with the various right-hand sides. In this case the factor L is explicitly stored and a record of all row as well as column interchanges is made. The solve step then solves the two triangular systems

Ly = b and Ux = y. The user specifies either the IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to retrieve the factorization, then calls the function subsequently with different right-hand sides, passing the factorization back in using either IMSL_SUPPLY_SPARSE_LU_FACTOR or

IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunction with IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to

imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR to release the heap used to store L and U.

If the solution to $A^T x = b$ is required, specify the option IMSL_TRANSPOSE. This keyword only alters the forward elimination and back substitution so that the operations $U^T y = b$ and $L^T x = y$ are performed to obtain the solution. So, with one call to produce the factorization, solutions to both Ax = b and $A^T x = b$ can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the L_1 condition number of A. The algorithm used is due to Higham. Specification of IMSL_CONDITION causes a complete L to be computed and stored, even if a one off problem is being solved. This is due to the fact that Higham's method requires solution to problems of the form Az = r and $A^T z = r$.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented problem is encountered, there may be some reduction in fill-in by selecting either IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will search a pre-elected number of row or columns for pivot candidates. The default number is three, by this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce fill-in. This works by preventing any new fill element which has magnitude less than the specified drop tolerance from being added to the factorization. Since this can introduce substantial error into the factorization, it is recommended that IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final solution. The trade-off is between space savings from the drop tolerance and the extra time needed in repeated solve steps needed for refinement.

The function $imsl_c_lin_sol_gen_coordinate$ provides the option of switching to a dense factorization method at some point during the decomposition. This option is enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two parameters required by this option, density, specifies a minimum density for the active submatrix before a format switch will occur. A density of 1.0 indicates complete fill-in. The other parameter, order_bound, places an upper bound of the order of the active submatrix which will be converted to dense format. This is used to prevent a switch from occurring too early, possibly when the $O(n^3)$ nature of the dense factorization will cause performance degradation. Note that this option can significantly increase heap storage requirements.

Examples

Example 1

As an example, consider the following matrix:

$$A = \begin{bmatrix} 10+7i & 0 & 0 & 0 & 0 & 0 \\ 0 & 3+2i & -3 & -1+2i & 0 & 0 \\ 0 & 0 & 4+2i & 0 & 0 & 0 \\ -2-4i & 0 & 0 & 1+6i & -1+3i & 0 \\ -5+4i & 0 & 0 & -5 & 12+2i & -7+7i \\ -1+12i & -2+8i & 0 & 0 & 0 & 3+7i \end{bmatrix}$$

Let

$$x^{T} = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)$$

so that

$$Ax = (3 + 17i, -19 + 5i, 6 + 18i, -38 + 32i, -63 + 49i, -57 + 83i)^{T}$$

#include <imsl.h>

```
main()
{
         static Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
                                      1, 1, {3.0, 2.0},
                                      1, 2,
                                              \{-3.0, 0.0\},\
                                             \{-1.0, 2.0\},\
\{4.0, 2.0\},\
\{-2.0, -4.0\},\
\{1.0, 6.0\},\
                                      1, 3,
                                      2, 2,
                                      3, 0,
                                      3, 3,
                                      3, 4,
                                              \{-1.0, 3.0\},\
                                      4, 0,
                                              {-5.0, 4.0},
                                              [-5.0, 0.0],
                                      4, 3,
                                              \{12.0, 2.0\},\
                                      4, 4,
                                      4, 5,
                                              {-7.0, 7.0},
                                      5, 0,
                                              \{-1.0, 12.0\},\
                                      5, 1, {-2.0, 8.0},
5, 5, {3.0, 7.0}};
         static f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
                   {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0};
         int
                             n = 6;
                             nz = 15;
         int.
         f_complex
                             *x;
         x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b, 0);
         imsl_c_write_matrix ("solution", n, 1, x, 0);
         free (x);
}
```

		solution	
1	(1,	1)
2	(2,	2)
3	(3,	3)
4	(4,	4)
5	(5,	5)
6	(б,	6)

Example 2

This examples sets A = E (1000, 10). A linear system is solved and the *LU* factorization returned. Then a second linear system is solved using the same coefficient matrix *A* just factored. Maximum absolute errors and execution time ratios are printed showing that forward and back solves take a small percentage of the computation time of a factor and solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the initial number of nonzeros, and especially on the amount of fill-in produced during the elimination. Be aware that timing results are highly machine dependent.

```
#include <imsl.h>
main()
{
    Imsl_c_sparse_elem *a;
    Imsl_c_sparse_lu_factor lu_factor;
    f_complex *b;
```

```
f_complex
                          *x;
                          *mod_five;
f_complex
f_complex
                          *mod_ten;
float
                          error_factor_solve;
float
                          error_solve;
double
                          time_factor_solve;
double
                          time_solve;
                          n = 1000;
int
                          c = 10;
int
int
                          i;
int
                          nz;
int
                           index;
                 /* Get the coefficient matrix */
a = imsl_c_generate_test_coordinate (n, c, &nz, 0);
                 /* Set two different predetermined solutions */
mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
for (i=0; i<n; i++) {
        mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
}
                 /* Choose b so that x will approximate mod_five */
b = imsl_c_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, nz, a,
        IMSL_X_VECTOR, n, mod_five,
        0);
                 /* Time the factor/solve */
time_factor_solve = imsl_ctime();
x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
                 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
                 0);
time_factor_solve = imsl_ctime() - time_factor_solve;
                 /* Compute max abolute error */
error_factor_solve = imsl_c_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_five,
        IMSL_INF_NORM, &index,
        0);
free (b);
free (x);
                 /* Get new right hand side -- b = A * mod_ten */
b = imsl_c_mat_mul_rect_coordinate ("A*x",
        IMSL_A_MATRIX, n, nz, a,
        IMSL_X_VECTOR, n, mod_ten,
        0);
                 ^{\prime \star} Use the previously computed factorization
                     to solve Ax = b */
```

```
time_solve = imsl_ctime();
x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
        IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
        IMSL_SOLVE_ONLY,
        0);
time_solve = imsl_ctime() - time_solve;
error_solve = imsl_c_vector_norm (n, x,
        IMSL_SECOND_VECTOR, mod_ten,
        IMSL_INF_NORM, &index,
        0);
free (b);
free (x);
                /* Print errors and ratio of execution times */
printf ("absolute error (factor/solve) = %e\n",
        error_factor_solve);
printf ("absolute error (solve)
                                       = %e\n", error_solve);
printf ("time_solve/time_factor_solve = %f\n",
        time_solve/time_factor_solve);
```

}

absolute error (factor/solve) = 2.389053e-06 absolute error (solve) = 7.656095e-06 time_solve/time_factor_solve = 0.070313

lin_sol_posdef_coordinate

Solves a sparse real symmetric positive definite system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include returning the symbolic factorization of *A*, returning the numeric factorization of *A*, and computing the solution of Ax = b given either the symbolic or numeric factorizations.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_lin_sol_posdef_coordinate.

Required Arguments

int n (Input)

Number of rows in the matrix.

int nz (Input)

Number of nonzeros in lower triangle of the matrix.

62 • lin_sol_posdef_coordinate

Imsl_f_sparse_elem *a (Input)

Vector of length nz containing the location and value of each nonzero entry in the lower triangle of the matrix.

float *b (Input)

Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

Optional Arguments

- IMSL_RETURN_SYMBOLIC_FACTOR, *Imsl_symbolic_factor* *sym_factor (Output) A pointer to a structure of type *Imsl_symbolic_factor* containing, on return, the symbolic factorization of the input matrix.
- IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
 A pointer to a structure of type Imsl_symbolic_factor. This structure contains
 the symbolic factorization of the input matrix computed by
 imsl_f_lin_sol_posdef_coordinate with the
 IMSL_RETURN_SYMBOLIC_FACTOR option.

IMSL_SYMBOLIC_FACTOR_ONLY,

Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

- IMSL_RETURN_NUMERIC_FACTOR, *Imsl_f_numeric_factor* *num_factor (Output) A pointer to a structure of type *Imsl_f_numeric_factor* containing, on return, the numeric factorization of the input matrix.
- IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Input)
 A pointer to a structure of type Imsl_f_numeric_factor. This structure contains
 the numeric factorization of the input matrix computed by
 imsl_f_lin_sol_posdef_coordinate with the
 IMSL_RETURN_NUMERIC_FACTOR option.
- IMSL_NUMERIC_FACTOR_ONLY,

Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,

Perform the numeric factorization using a multifrontal technique. By default, a standard factorization is computed based on a sparse compressed storage scheme.

- IMSL_RETURN_USER, *float* x[] (Output) A user-allocated array of length *n* containing the solution *x*.

- IMSL_NUM_NONZEROS_IN_FACTOR, *int* *num_nonzeros (Output) A pointer to a scalar containing the total number of nonzeros in the factor.
- IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
 Accept the coefficient matrix in compressed sparse column (CSC) format.
 See the "Introduction" for a discussion of this storage scheme.

Description

The function imsl_f_lin_sol_posdef_coordinate solves a system of linear algebraic equations having a sparse symmetric positive definite coefficient matrix *A*. In this function's default usage, a symbolic factorization of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then setting up a sparse data structure for the Cholesky factor, *L*. This step only requires the "pattern" of the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the val field in the Imsl_f_sparse_elem structure is ignored. If an application generates different sparse symmetric positive definite coefficient matrices that all have the same sparsity pattern, then by using IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factorization produces the entries in L so that

$$PAP^{T} = LL^{T}$$

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is performed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981). Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to

efficiently solve all subsequent systems.

Given the numeric factorization, the solution *x* is obtained by the following calculations:

$$Ly_1 = Pb$$
$$L^T y_2 = y_1$$
$$x = P^T y_2$$

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As an example consider the 5×5 coefficient matrix:

	10 0	0	1	0	2
	0	20	0	0	3
<i>a</i> =	1	0	30	4	0
	0	0	4	40	5
	2	3	0	0 0 4 40 5	50

Let $x^{T} = (5, 4, 3, 2, 1)$ so that $Ax = (55, 83, 103, 97, 82)^{T}$. The number of nonzeros in the lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle is given by the following:

row	0	1	2	2	3	3	4	4	4	4
col	0	1	0	2	2	3	0	1	3	4
val	10	20	1	30	4	40	2	3	5	50

Since this representation is not unique, an equivalent form would be as follows:

row	3	4	4	4	0	1	2	2	3	4
col	3	0	1	3	0	1	0	2	2	4
val	40	2	3	5	10	20	1	30	4	50

```
#include <imsl.h>
main()
```

```
{
```

}

```
2, 0, 1.0,
                      2, 2, 30.0,
3, 2, 4.0,
3, 3, 40.0,
                       4, 0, 2.0,
                       4, 1, 3.0,
                       4, 3, 5.0,
                       4, 4, 50.0};
float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
      n = 5;
int
int
      nz = 10;
float *x;
x = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b, 0);
imsl_f_write_matrix ("solution", 1, n, x, 0);
free (x);
```

66 • lin_sol_posdef_coordinate

	SO.	lution		
1	2	3	4	5
5	4	3	2	1

Example 2

In this example, set A = E(2500, 50). Then solve the system $Ax = b_1$ and return the numeric factorization resulting from that call. Then solve the system $Ax = b_2$ using the numeric factorization just computed. The ratio of execution time is printed. Be aware that timing results are highly machine dependent.

```
#include <imsl.h>
```

```
main()
```

{

```
Imsl_f_sparse_elem
                       *a;
Imsl_f_sparse_elem
                       *c;
Imsl_f_numeric_factor
                        numeric_factor;
                       *b_1;
float
float
                       *b_2;
float
                       *x_1;
float
                       *x_2;
int
                        n;
int
                        ic;
int
                        nz;
int
                        i;
int
                        index;
double
                        time_1;
double
                        time_2;
float
                        error_1;
float
                        error_2;
ic = 50;
n = ic*ic;
                /* Generate two right hand sides */
b_1 = imsl_f_random_uniform (n*sizeof(*b_1));
b_2 = imsl_f_random_uniform (n*sizeof(*b_2));
                /* Build coefficient matrix a */
a = imsl_f_generate_test_coordinate (n, ic, &nz,
        IMSL_SYMMETRIC_STORAGE,
        0);
                /* Now solve Ax_1 = b_1 and return the numeric
                    factorization */
time_1 = imsl_ctime ();
x_1 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_1,
        IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
        0);
time_1 = imsl_ctime () - time_1;
                /* Now solve Ax_2 = b_2 given the numeric
```

```
time_2/time_1 = 0.037037
```

}

lin_sol_posdef_coordinate (complex)

Solves a sparse Hermitian positive definite system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include returning the symbolic factorization of *A*, returning the numeric factorization of *A*, and computing the solution of Ax = b given either the symbolic or numeric factorizations.

Synopsis

#include <imsl.h>

The type *d_complex* function is imsl_z_lin_sol_posdef_coordinate.

Required Arguments

- *int* n (Input) Number of rows in the matrix.
- int nz (Input)

Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem *a (Input)

Vector of length nz containing the location and value of each nonzero entry in lower triangle of the matrix.

```
f_complex *b (Input)
```

Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_coordinate (int n, int nz, Imsl_c_sparse_elem *a, f_complex *b, IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor, IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor, IMSL_SYMBOLIC_FACTOR_ONLY, IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor, IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor, IMSL_NUMERIC_FACTOR_ONLY, IMSL SOLVE ONLY, IMSL_MULTIFRONTAL_FACTORIZATION, IMSL_RETURN_USER, $f_complex \ge []$, IMSL_SMALLEST_DIAGONAL_ELEMENT, *float* *small_element, IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element, IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros, IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values, 0)

Optional Arguments

- IMSL_RETURN_SYMBOLIC_FACTOR, *Imsl_symbolic_factor* *sym_factor (Output) A pointer to a structure of type *Imsl_symbolic_factor* containing, on return, the symbolic factorization of the input matrix.
- IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
 A pointer to a structure of type Imsl_symbolic_factor. This structure contains
 the symbolic factorization of the input matrix computed by
 imsl_c_lin_sol_posdef_coordinate with the
 IMSL_RETURN_SYMBOLIC_FACTOR option.
- IMSL_SYMBOLIC_FACTOR_ONLY, Compute the symbolic factorization of the input matrix and return. The argument b is ignored.
- IMSL_RETURN_NUMERIC_FACTOR, *Imsl_c_numeric_factor* *num_factor (Output) A pointer to a structure of type *Imsl_c_numeric_factor* containing, on return, the numeric factorization of the input matrix.
- IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Input)
 A pointer to a structure of type Imsl_c_numeric_factor. This structure contains
 the numeric factorization of the input matrix computed by
 imsl_c_lin_sol_posdef_coordinate with the
 IMSL_RETURN_NUMERIC_FACTOR option.

IMSL_NUMERIC_FACTOR_ONLY,

Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,

Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,

Perform the numeric factorization using a multifrontal technique. By default a standard factorization is computed based on a sparse compressed storage scheme.

IMSL_RETURN_USER, $f_complex \ge [$] (Output) A user-allocated array of length *n* containing the solution *x*.

- IMSL_NUM_NONZEROS_IN_FACTOR, *int* *num_nonzeros (Output) A pointer to a scalar containing the total number of nonzeros in the factor.
- IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
 Accept the coefficient matrix in compressed sparse column (CSC) format.
 See the introduction for a discussion of this storage scheme.

Description

The function imsl_c_lin_sol_posdef_coordinate solves a system of linear algebraic equations having a sparse Hermitian positive definite coefficient matrix *A*. In this function's default use, a symbolic factorization of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then setting up a sparse data structure for the Cholesky factor, *L*. This step only requires the "pattern" of the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the val field in the Imsl_c_sparse_elem structure is ignored. If an application generates different sparse Hermitian positive definite coefficient matrices that all have the same sparsity pattern, then by using IMSL_RETURN_SYMBOLIC_FACTOR and

IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factorization produces the entries in L so that

$$PAP^{T} = LL^{T}$$

Here *P* is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard factorization is performed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981). Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution *x* is obtained by the following calculations:

$$Ly_1 = Pb$$
$$L^T y_2 = y_1$$
$$x = P^T y_2$$

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite matrix

 $A = \begin{bmatrix} 2 & -1+i & 0\\ -1-i & 4 & 1+2i\\ 0 & 1-2i & 10 \end{bmatrix}$

```
Let x^{T} = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (-2 + 2i, 5 + 15i, 36 + 28i)^{T}. The number of
                nonzeros in the lower triangle is nz = 5.
#include <imsl.h>
main()
{
          Imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0},
    1, 1, {4.0, 0.0},
    2, 2, {10.0, 0.0},
    1, 0, {-1.0, -1.0},
    2, 1, {1.0, -2.0};
           f_complex
                           b[] = \{\{-2.0, 2.0\}, \{5.0, 15.0\}, \{36.0, 28.0\}\};
                           n = 3;
           int
           int
                           nz = 5;
           f_complex
                          *x;
           x = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b, 0);
           imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
           free (x);
}
                Output
```

Solution, x, of Ax = b 1 (1, 1) 2 (2, 2) 3 (3, 3)

Example 2

Set A = E(2500, 50). Then solve the system $Ax = b_1$ and return the numeric factorization resulting from that call. Then solve the system $Ax = b_2$ using the numeric factorization just computed. Absolute errors and execution time are printed.

```
#include <imsl.h>
```

```
main()
{
        Imsl_c_sparse_elem
                                *a;
        Imsl_c_numeric_factor
                                numeric_factor;
                                 b_1[2500];
        f_complex
        f_complex
                                 b_2[2500];
        f_complex
                                 *x_1;
                                 *x_2;
        f_complex
        int
                                 n;
        int
                                 ic;
        int
                                 nz;
        int
                                 i;
                                 index;
        int
        double
                                 time_1;
        double
                                 time_2;
                                *rand_vec;
        float
        ic = 50;
        n = ic*ic;
```

72 • lin_sol_posdef_coordinate (complex)

```
index = 0;
                  /* Generate two right hand sides */
rand_vec = imsl_f_random_uniform (4*n*sizeof(*rand_vec), 0);
  for (i=0; i<n; i++) {</pre>
          b_1[i].re = rand_vec[index++];
          b_1[i].im = rand_vec[index++];
          b_2[i].re = rand_vec[index++];
          b_2[i].im = rand_vec[index++];
  }
                  /* Build coefficient matrix a */
  a = imsl_c_generate_test_coordinate (n, ic,
          &nz,
          IMSL_SYMMETRIC_STORAGE,
          0);
                  /* Now solve Ax_1 = b_1 and return the numeric
                      factorization */
  time_1 = imsl_ctime ();
  x_1 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_1,
          IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
          ();
  time_1 = imsl_ctime () - time_1;
                  /* Now solve Ax_2 = b_2 given the numeric
                      factorization */
  time_2 = imsl_ctime ();
  x_2 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_2,
          IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
          IMSL_SOLVE_ONLY,
          0);
  time_2 = imsl_ctime () - time_2;
  printf("time_2/time_1 = %lf\n", time_2/time_1);
```

 $time_2/time_1 = 0.096386$

}

lin_sol_gen_min_residual

Solves a linear system Ax = b using the restarted generalized minimum residual (GMRES) method.

Synopsis

```
#include <imsl.h>
```

The type *double* function is imsl_d_lin_sol_gen_min_residual.

Required Arguments

int n (Input)
 Number of rows in the matrix.
void amultp (float *p, float *z)
 User-supplied function which computes z = Ap.

```
float *b (Input)
```

Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (float *p,
      float *z), float *b,
      IMSL_RETURN_USER, float x[],
      IMSL_MAX_ITER, int *maxit,
      IMSL_REL_ERR, float tolerance,
      IMSL_PRECOND, void precond (float *r, float *z),
      IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax,
      IMSL_HOUSEHOLDER_REORTHOG,
      0)
```

Optional Arguments

$$\begin{split} & \text{IMSL}_{\text{RETURN}_\text{USER}, \ float \ x[] \ (\text{Output}) \\ & \text{A user-allocated array of length n containing the solution x.} \\ & \text{IMSL}_\text{MAX}_\text{ITER, \ int \ *maxit \ (Input/Output)} \\ & \text{A pointer to an integer, initially set to the maximum number of GMRES} \\ & \text{iterations allowed. On exit, the number of iterations used is returned.} \\ & \text{Default: maxit = 1000} \\ & \text{IMSL}_\text{REL}_\text{ERR, \ float \ tolerance \ (Input)} \\ & \text{The algorithm attempts to generate x such that $\|b - Ax\|_2 \le \tau \|b\|_2$, where $\tau = tolerance$.} \\ & \text{Default: tolerance} = \texttt{sqrt}(\texttt{imsl}_f_machine(4)) \\ & \text{IMSL}_\text{PRECOND, \ void \ precond \ (float \ *r, \ float \ *z) \ (Input)} \\ & \text{User supplied function which sets $z = M^{-1}r$, where M is the preconditioning matrix.} \\ & \text{IMSL}_\text{MAX}_\text{KRYLOV}_\text{SUBSPACE}_\text{DIM, \ int \ kdmax, \ (Input)} \\ & \text{The maximum Krylov subspace dimension, i.e., the maximum allowable} \\ \end{split}$$

74 • lin_sol_gen_min_residual

number of GMRES iterations allowed before restarting. Default: kdmax = imsl_i_min(n, 20)

IMSL_HOUSEHOLDER_REORTHOG,

Perform orthogonalization by Householder transformations, replacing the Gram-Schmidt process.

Description

The function imsl_f_lin_sol_gen_min_residual, based on the FORTRAN subroutine GMRES by H.F. Walker, solves the linear system Ax = b using the GMRES method. This method is described in detail by Saad and Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution x_0 and an initial residual $r_0 = b - Ax_0$. At iteration *m*, a correction z_m is determined in the Krylov subspace

$$\kappa_m(v) = \operatorname{span}(v, Av, \dots, A^{m-1}v)$$

 $v = r_0$ which solves the least-squares problem

$$\min_{\substack{(z \in \kappa_m(r_0))}} \|b - A(x_0 + z)\|_2$$

Then at iteration m, $x_m = x_0 + z_m$.

Orthogonalization by Householder transformations requires less storage but more arithmetic than Gram-Schmidt. However, Walker (1988) reports numerical experiments which suggest the Householder approach is more stable, especially as the limits of residual reduction are reached.

Examples

Example 1

As an example, consider the following matrix:

	10	0	0	0	0	0
	0	10	-3	-1	0	0
4 _	0	0	15	0	0	0
A =	-2	0	0	10	-1	0
	-1	0	0	-5	1	-3
	1	0 10 0 0 0 -2	0	0	0	6

Let $x^{T} = (1, 2, 3, 4, 5, 6)$ so that $Ax = (10, 7, 45, 33, -34, 31)^{T}$. The function imsl_f_mat_mul_rect_coordinate is used to form the product Ax.

#include <imsl.h>

void amultp (float*, float*);

```
main()
{
        float b[] = \{10.0, 7.0, 45.0, 33.0, -34.0, 31.0\};
        int n = 6;
        float *x;
        x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
                 0);
        imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
}
void amultp (float *p, float *z)
{
        Imsl_f_sparse_elem a[] = {0, 0, 10.0,
                                  1, 1, 10.0,
                                  1, 2, -3.0,
1, 3, -1.0,
                                  2, 2, 15.0,
                                  3, 0, -2.0,
                                  3, 3, 10.0,
                                  4, 3, -5.0,
                                  4, 4, 1.0,
                                  4, 5, -3.0,
                                  5, 0, -1.0,
                                  5, 1, -2.0,
5, 5, 6.0};
        int n = 6;
        int nz = 15;
        imsl_f_mat_mul_rect_coordinate ("A*x",
                IMSL_A_MATRIX, n, nz, a,
                IMSL_X_VECTOR, n, p,
                IMSL_RETURN_USER_VECTOR, z,
                 0);
}
            Output
                         Solution, x, to Ax = b
                      2
                                   3
                                                4
                                                             5
         1
         1
                      2
                                   3
                                                4
                                                             5
```

Example 2

In this example, the same system given in the first example is solved. This time a preconditioner is provided. The preconditioned matrix is chosen as the diagonal of *A*.

```
#include <imsl.h>
void amultp (float*, float*);
void precond (float*, float*);
main()
{
     float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
```

76 • lin_sol_gen_min_residual

б

б

```
int n = 6;
        float *x;
        int maxit = 1000;
        x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
                 IMSL_MAX_ITER, &maxit,
                 IMSL_PRECOND, precond,
                 0);
        imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
        printf ("\nNumber of iterations taken = %d\n", maxit);
}
                         /* Set z = Ap */
void amultp (float *p, float *z)
{
        static Imsl_f_sparse_elem a[] = {0, 0, 10.0,
                                  1, 1, 10.0,
                                  1, 2, -3.0,
                                  1, 3, -1.0,
                                  2, 2, 15.0,
                                  3, 0, -2.0,
3, 3, 10.0,
                                  3, 4, -1.0,
                                  4, 0, -1.0,
                                  4, 3, -5.0,
                                  4, 4, 1.0,
4, 5, -3.0,
                                  5, 0, -1.0,
                                  5, 1, -2.0,
                                  5, 5, 6.0};
        int n = 6;
        int nz = 15;
        imsl_f_mat_mul_rect_coordinate ("A*x",
                 IMSL_A_MATRIX, n, nz, a,
                 IMSL_X_VECTOR, n, p,
                 IMSL_RETURN_USER_VECTOR, z,
                 0);
}
                         /* Solve Mz = r */
void precond (float *r, float *z)
{
        static float diagonal_inverse[] =
                         \{0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0\};
        int n = 6;
        int i;
        for (i=0; i<n; i++)</pre>
                 z[i] = diagonal_inverse[i]*r[i];
}
            Output
                         Solution, x, to Ax = b
                                   3
         1
                      2
                                                4
                                                             5
                                                                          6
                                                             5
         1
                      2
                                   3
                                                4
                                                                          6
```

Chapter 1: Linear Systems

lin_sol_gen_min_residual • 77

Number of iterations taken = 5

lin_sol_def_cg

Solves a real symmetric definite linear system using a conjugate gradient method. Using optional arguments, a preconditioner can be supplied.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_def_cg (int n, void amultp (), float *b, ..., 0)

The type *double* function is imsl_d_lin_sol_def_cg.

Required Arguments

int n (Input) Number of rows in the matrix.

void amultp (*float* *p, *float* *z) User-supplied function which computes z = Ap.

float *b (Input)

Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

Optional Arguments

<pre>IMSL_REL_ERR, float relative_error (Input) The relative error desired. Default: relative_error = sqrt(imsl_f_machine(4))</pre>
IMSL_PRECOND, void precond (float *r, float *z) (Input) User supplied function which sets $z = M^{-1}r$, where M is the preconditioning matrix.
IMSL_JACOBI, <i>float</i> diagonal[] (Input) Use the Jacobi preconditioner, i.e. $M = \text{diag}(A)$. The user-supplied vector diagonal should be set so that diagonal[i] = $A_{i,i}$.

Description

The function $imsl_f_lin_sol_def_cg$ solves the symmetric definite linear system Ax = b using the conjugate gradient method with optional preconditioning. This method is described in detail by Golub and Van Loan (1983, Chapter 10), and in Hageman and Young (1981, Chapter 7).

The preconditioning matrix *M* is a matrix that approximates *A*, and for which the linear system Mz = r is easy to solve. These two properties are in conflict; balancing them is a topic of much current research. In the default use of imsl_f_lin_sol_def_cg, M = I. If the option IMSL_JACOBI is selected, *M* is set to the diagonal of *A*.

The number of iterations needed depends on the matrix and the error tolerance. As a rough guide,

$$itmax = \sqrt{n} \text{ for } n >> 1$$

See the references mentioned above for details.

Let *M* be the preconditioning matrix, let *b*, *p*, *r*, *x*, and *z* be vectors and let τ be the desired relative error. Then the algorithm used is as follows:

$$\begin{split} \lambda &= -1 \\ p_0 &= x_0 \\ r_1 &= b - Ap \\ \text{for } k &= 1, \dots, \text{itmax} \\ &z_k &= M^{-1} r_k \\ &\text{if } k &= 1 \text{ then} \\ &\beta_k &= 1 \\ &p_k &= z_k \\ &\text{else} \\ &\beta_k &= \left(z_k^T r_k \right) / \left(z_{k-1}^T r_{k-1} \right) \\ &p_k &= z_k + \beta_k p_k \\ &\text{endif} \\ &z_k &= Ap \\ &\alpha_k &= \left(z_{k-1}^T z_{k-1} \right) / \left(z_k^T p_k \right) \\ &x_k &= x_k + \alpha_k p_k \\ &r_k &= r_k - \alpha_k z_k \\ &\text{if } \left(|/z_k|/_2 &\leq \tau (1 - \lambda) |/x_k|/_2 \right) \text{ then} \\ &\text{ recompute } \lambda \\ &\text{ if } \left(|/z_k|/_2 &\leq \tau (1 - \lambda) |/x_k|/_2 \right) \text{ exit} \end{split}$$

endif

endfor

 p_0

Here λ is an estimate of $\lambda_{\max}(G)$, the largest eigenvalue of the iteration matrix $G = I - M^{-1} A$. The stopping criterion is based on the result (Hageman and Young 1981, pp. 148-151)

$$\frac{\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\|_{M}}{\left\|\boldsymbol{x}\right\|_{M}} \leq \left(\frac{1}{1-\lambda_{max}(G)}\right) \left(\frac{\left\|\boldsymbol{z}_{k}\right\|_{M}}{\left\|\boldsymbol{x}_{k}\right\|_{M}}\right)$$

where

$$\left\|x\right\|_{M}^{2} = x^{T} M x$$

It is also known that

$$\lambda_{max}(T_1) \le \lambda_{max}(T_2) \le \dots \le \lambda_{max}(G) < 1$$

where the T_n are the symmetric, tridiagonal matrices

80 • lin_sol_def_cg

$$T_{n} = \begin{bmatrix} \mu_{1} & \omega_{2} & & \\ \omega_{2} & \mu_{2} & \omega_{3} & \\ & \omega_{3} & \mu_{3} & \ddots \\ & & \ddots & \ddots \end{bmatrix}$$

with
$$\mu_k = 1 - \beta_k / \alpha_{k-1} - 1 / \alpha_k$$
, $\mu_l = 1 - 1 / \alpha_l$ and
 $\omega_k = \sqrt{B_k} / \alpha_{k-1}$

Usually the eigenvalue computation is needed for only a few of the iterations.

Example 1

In this example, the solution to a linear system is found. The coefficient matrix is stored as a full matrix.

```
#include <imsl.h>
static void amultp (float*, float*);
void main()
{
        int n = 3;
        float b[] = \{27.0, -78.0, 64.0\};
        float *x;
        x = imsl_f_lin_sol_def_cg (n, amultp, b, 0);
        imsl_f_write_matrix ("x", 1, n, x, 0);
}
static void amultp (float *p, float *z)
{
        static float a[] = \{1.0, -3.0, 2.0,
                        -3.0, 10.0, -5.0,
                        2.0, -5.0, 6.0;
        int n = 3;
        imsl_f_mat_mul_rect ("A*x",
                IMSL_A_MATRIX, n, n, a,
                IMSL_X_VECTOR, n, p,
                IMSL_RETURN_USER, z,
                0);
}
            Output
                 х
                                  3
7
         1
                     2
         1
                    -4
```

Example 2

In this example, two different preconditioners are used to find the solution of a linear system which occurs in a finite difference solution of Laplace's equation on a regular

 $c \times c$ grid, c = 100. The matrix is $A = E(c^2, c)$. For the first solution, select Jacobi preconditioning and supply the diagonal, so M = diag(A). The number of iterations performed and the maximum absolute error are printed. Next, use a more complicated preconditioning matrix, M, consisting of the symmetric tridiagonal part of A.

Notice that the symmetric positive definite band solver is used to factor M once, and subsequently just perform forward and back solves. Again, the number of iterations performed and the maximum absolute error are printed. Note the substantial reduction in iterations.

```
#include <imsl.h>
```

```
static void amultp (float*, float*);
static void precond (float*, float*);
static Imsl_f_sparse_elem *a;
static int n = 2500;
static int c = 50;
static int nz;
void main()
{
        int maxit = 1000;
        int i;
        int index;
        float *b;
        float *x;
        float *mod_five;
        float *diagonal;
        float norm;
        n = c*c;
        mod_five = (float*) malloc (n*sizeof(*mod_five));
        diagonal = (float*) malloc (n*sizeof(*diagonal));
        b = (float*) malloc (n*sizeof(*b));
                      /* Generate coefficient matrix */
        a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
                     /* Set a predetermined answer and diagonal */
        for (i=0; i<n; i++) {</pre>
                mod_five[i] = (float) (i % 5);
                diagonal[i] = 4.0;
        }
                     /* Get right hand side */
        amultp (mod_five, b);
                     /* Solve with jacobi preconditioning */
        x = imsl_f_lin_sol_def_cg (n, amultp, b,
```

```
IMSL_MAX_ITER, &maxit,
                IMSL_JACOBI, diagonal,
                0);
                     /* Find max absolute error, print results */
        norm = imsl_f_vector_norm (n, x,
                IMSL_SECOND_VECTOR, mod_five,
                IMSL_INF_NORM, &index,
                0);
        printf ("iterations = %d, norm = %e\n", maxit, norm);
        free (x);
                     /* Solve same system, with different preconditioner */
        x = imsl_f_lin_sol_def_cg (n, amultp, b,
                IMSL_MAX_ITER, &maxit,
                IMSL_PRECOND, precond,
                0);
        norm = imsl_f_vector_norm (n, x,
                IMSL_SECOND_VECTOR, mod_five,
                IMSL_INF_NORM, &index,
                0);
        printf ("iterations = %d, norm = %e\n", maxit, norm);
}
                     /* Set z = Ap */
static void amultp (float *p, float *z)
{
        imsl_f_mat_mul_rect_coordinate ("A*x",
                IMSL_A_MATRIX, n, nz, a,
                IMSL_X_VECTOR, n, p,
                IMSL_RETURN_USER_VECTOR, z,
                0);
}
                    /* Solve Mz = r */
static void precond (float *r, float *z)
{
        static float *m;
        static float *factor;
        static int first = 1;
        float *null = (float*) 0;
        if (first) {
                     /* Factor the first time through */
                m = imsl_f_generate_test_band (n, 1, &nz, 0);
                imsl_f_lin_sol_posdef_band (n, m, 1, null,
                        IMSL_FACTOR, &factor,
                        IMSL_FACTOR_ONLY,
                        0);
                first = 1;
        }
```

```
/* Perform the forward and back solves */
imsl_f_lin_sol_posdef_band (n, m, 1, r,
    IMSL_FACTOR_USER, factor,
    IMSL_SOLVE_ONLY,
    IMSL_RETURN_USER, z,
    0);
```

}

```
iterations = 115, norm = 1.382828e-05
iterations = 75, norm = 7.319450e-05
```

lin_least_squares_gen

Solves a linear least-squares problem Ax = b. Using optional arguments, the *QR* factorization of *A*, AP = QR, and the solve step based on this factorization can be computed.

Synopsis

#include <imsl.h>

float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[], ..., 0)

The type *double* procedure is imsl_d_lin_least_squares_gen.

Required Arguments

int m (Input) Number of rows in the matrix.

- *int* n (Input) Number of columns in the matrix.
- float a[] (Input)

Array of size $m \times n$ containing the matrix.

float b[] (Input)

Array of size m containing the right-hand side.

Return Value

If no optional arguments are used, function $imsl_f_lin_least_squares_gen$ returns a pointer to the solution x of the linear least-squares problem Ax = b. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[], IMSL_A_COL_DIM, int a_col_dim, IMSL_RETURN_USER, float x[], IMSL_BASIS, *float* tol, *int* *kbasis, IMSL_RESIDUAL, *float* **p_res, IMSL_RESIDUAL_USER, float res[], IMSL_FACTOR, *float* **p_qraux, *float* **p_qr, IMSL_FACTOR_USER, float qraux[], float qr[], IMSL_FAC_COL_DIM, *int* qr_col_dim, IMSL_Q, *float* **p_q, IMSL_Q_USER, float q[], IMSL_Q_COL_DIM, *int* q_col_dim, IMSL_PIVOT, int pvt[], IMSL_FACTOR_ONLY, IMSL_SOLVE_ONLY, 0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, *float* x[] (Output)

A user-allocated array of size *n* containing the least-squares solution *x*. If $IMSL_RETURN_USER$ is used, the return value of the function is a pointer to the array x.

IMSL_BASIS, float tol, int *kbasis (Input, Input/Output)

tol: Nonnegative tolerance used to determine the subset of columns of A to be included in the solution.

Default: tol = sqrt (imsl_amach(4))

kbasis: Integer containing the number of columns used in the solution.

kbasis = k if $|r_{k+1}, k+1| < |tol| * |r_{1,1}|$ and $|r_{i,i}| \ge tol * |r_{1,1}|$ for i = 1, 2, ..., k. For more information on the use of this option, see "Description" on page 87.

Default: kbasis = min (m, n)

- IMSL_RESIDUAL, *float* **p_res (Output) The address of a pointer to an array of size *m* containing the residual vector b - Ax. On return, the necessary space is allocated by the function. Typically, *float* *p_res is declared, and &p_res is used as an argument.
- IMSL_RESIDUAL_USER, *float* res[] (Output) A user-allocated array of size *m* containing the residual vector b - Ax.

IMSL_FACTOR, *float* **p_qraux, *float* **p_qr (Output)

**p_qraux: The address of a pointer qraux to an array of size *n* containing the scalars τ_k of the Householder transformations in the first min (m, n)

positions. On return, the necessary space is allocated by the function. Typically, *float* *graux is declared, and &graux is used as an argument.

**p_qr: The address of a pointer to an array of size $m \times n$ containing the Householder transformations that define the decomposition. The strictly lower-triangular part of this array contains the information to construct Q, and the upper-triangular part contains R. On return, the necessary space is allocated by the function. Typically, *float* *qr is declared, and &qr is used as an argument.

IMSL_FACTOR_USER, float graux[], float gr[] (Input/Output)

qraux[]: A user-allocated array of size *n* containing the scalars τ_k of the Householder transformations in the first min (m, n) positions.

qr[]: A user-allocated array of size $m \times n$ containing the Householder transformations that define the decomposition. The strictly lower-triangular part of this array contains the information to construct Q. The upper-triangular part contains R. If the data in a is not needed, qr can share the same storage locations as a by using a instead of the separate argument qr.

These parameters are "Input" if IMSL_SOLVE is specified; "Output" otherwise.

IMSL_FAC_COL_DIM, int qr_col_dim (Input)

The column dimension of the array containing QR factorization. Default: $qr_col_dim = n$

IMSL_Q, float **p_q (Output)

The address of a pointer to an array of size $m \times m$ containing the orthogonal matrix of the factorization. On return, the necessary space is allocated by the function. Typically, *float* *q is declared, and &q is used as an argument.

IMSL_Q_USER, float q[] (Output)

A user-allocated array of size $m \times m$ containing the orthogonal matrix Q of the QR factorization.

IMSL_Q_COL_DIM, *int* q_col_dim (Input)

The column dimension of the array containing the Q matrix of the factorization.

Default: q_col_dim = m

IMSL_PIVOT, int pvt[] (Input/Output)

Array of size *n* containing the desired variable order and usage information. The argument is used with IMSL_FACTOR_ONLY or IMSL_SOLVE_ONLY.

On input, if pvt [k-1] > 0, then column *k* of *A* is an initial column. If pvt [k-1] = 0, then the column of *A* is a free column and can be interchanged in the column pivoting. If pvt [k-1] < 0, then column *k* of *A* is a final column. If all columns are specified as initial (or final) columns, then no pivoting is performed. (The permutation matrix *P* is the identity matrix in this case.)

On output, pvt [k-1] contains the index of the column of the original matrix that has been interchanged into column k.

Default: pvt [k-1] = 0, k = 1, ..., n

IMSL_FACTOR_ONLY

Compute just the *QR* factorization of the matrix *AP* with the permutation matrix *P* defined by pvt and by further pivoting involving free columns. If IMSL_FACTOR_ONLY is used, the additional arguments IMSL_PIVOT and IMSL_FACTOR are required. In that case, the required argument b is ignored, and the returned value of the function is NULL.

IMSL_SOLVE_ONLY

Compute the solution to the least-squares problem Ax = b given the QR factorization previously computed by this function. If IMSL_SOLVE_ONLY is used, arguments IMSL_FACTOR, IMSL_PIVOT, and IMSL_BASIS are required, and the required argument a is ignored.

Description

The function imsl_f_lin_least_squares_gen solves a system of linear least-squares problems Ax = b with column pivoting. It computes a QR factorization of the matrix AP, where P is the permutation matrix defined by the pivoting, and computes the smallest integer k satisfying $|r_{k+1, k+1}| < |tol|*|r_{1,1}|$ to the output variable kbasis. Householder transformations

$$Q_k = l - \tau_k u_k u_k^T Q$$

 $k = 1, ..., \min(m - 1, n)$ are used to compute the factorization. The decomposition is computed in the form $Q_{\min(m-1, n)}...Q_1AP = R$, so AP = QR where $Q = Q_1...Q_{\min(m-1, n)}$. Since each Householder vector u_k has zeros in the first k - 1 entries, it is stored as part of column k of qr. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of the first min (m, n) rows of qr. The solution x to the least-squares problem is computed by solving the upper-triangular system of linear equations

 $R(1:k, 1:k) y (1:k) = (Q^T b) (1:k)$ with k = kbasis. The solution is completed by setting y(k+1:n) to zero and rearranging the variables, x = Py.

When $IMSL_FACTOR_ONLY$ is specified, the function computes the *QR* factorization of *AP* with *P* defined by the input pvt and by column pivoting among "free" columns. Before the factorization, initial columns are moved to the beginning of the array a and the final columns to the end. Both initial and final columns are not permuted further during the computation. Just the free columns are moved.

If IMSL_SOLVE_ONLY is specified, then the function computes the least-squares solution to Ax = b given the QR factorization previously defined. There are kbasis columns used in the solution. Hence, in the case that all columns are free, x is computed as described in the default case.

Examples

Example 1

This example illustrates the least-squares solution of four linear equations in three unknowns using column pivoting. The problem is equivalent to least-squares quadratic polynomial fitting to four data values. Write the polynomial as $p(t) = x_1 + tx_2 + t^2x_3$ and the data pairs $(t_i, b_i), t_i = 2i, i = 1, 2, 3, 4$. A pointer to the solution to Ax = b is returned by the function imsl_f_lin_least_squares_gen.

```
#include <imsl.h>
```

```
float
         a[] = \{1.0, 2.0, 4.0,
                 1.0, 4.0, 16.0,
                 1.0, 6.0, 36.0,
                 1.0, 8.0, 64.0};
float
         b[] = {4.999, 9.001, 12.999, 17.001};
main()
{
    int
                  m = 4, n = 3;
    float
                  *x;
                                     /* Solve Ax = b for x */
    x = imsl_f_lin_least_squares_gen (m, n, a, b, 0);
                                     /* Print x */
    imsl_f_write_matrix ("Solution vector", 1, n, x, 0);
}
```

Output

Solution	vector	
1	2	3
0.999	2.000	0.000

Example 2

This example uses the same coefficient matrix A as in the initial example. It computes the QR factorization of A with column pivoting. The final and free columns are specified by pvt and the column pivoting is done only among the free columns.

```
#include <imsl.h>
```

88 • lin_least_squares_gen

```
float
                  *p_q;
                                     /* Compute the QR factorization */
                                     /* of A with partial column */
                                     /* pivoting */
    x = imsl_f_lin_least_squares_gen (m, n, a, b,
                                       IMSL_PIVOT, pvt,
                                       IMSL_FACTOR, &p_qraux, &p_qr,
                                       IMSL_Q, &p_q,
                                       IMSL_FACTOR_ONLY,
                                       0);
                                     /* Print 0 */
    imsl_f_write_matrix ("The matrix Q", m, m, p_q, 0);
                                     /* Print R */
    imsl_f_write_matrix ("The matrix R", m, n, p_qr,
                          IMSL_PRINT_UPPER,
                           0);
                                     /* Print pivots */
    imsl_i_write_matrix ("The Pivot Sequence", 1, n, pvt, 0);
}
            Output
                  The matrix Q
            1
                       2
                                     3
                                                 4
                               0.5000
1
      -0.1826
                  -0.8165
                                           -0.2236
2
      -0.3651
                  -0.4082
                              -0.5000
                                            0.6708
      -0.5477
                   0.0000
                              -0.5000
                                           -0.6708
3
4
      -0.7303
                   0.4082
                                0.5000
                                            0.2236
            The matrix R
            1
                        2
                                     3
                                -73.03
1
       -10.95
                    -1.83
2
                    -0.82
                                16.33
3
                                 8.00
The Pivot Sequence
    1 2 3
     2
         1
             3
```

Example 3

This example computes the *QR* factorization with column pivoting for the matrix *A* of the initial example. It computes the least-squares solutions to $Ax = b_i$ for i = 1, 2, 3.

```
#include <imsl.h>
```

```
int
        pvt[] = \{0, 0, 0\};
main()
{
                  m = 4, n = 3;
    int
                  i, k = 3;
    int
    float
                  *p_qraux, *p_qr;
    float
                  tol = 1.e-4;
    int
                  *kbasis;
    float
                  *x, *p_res;
                                     /* Factor A with the given pvt */
                                     /* setting all variables to */
                                     /* be free */
    imsl_f_lin_least_squares_gen (m, n, a, b,
                              IMSL_BASIS, tol, &kbasis,
                              IMSL_PIVOT, pvt,
                              IMSL_FACTOR, &p_qraux, &p_qr,
                               IMSL_FACTOR_ONLY,
                              0);
                                     /* Print some factorization */
                                     /* information*/
    printf("Number of Columns in the base\n%2d", kbasis);
    imsl_f_write_matrix ("Upper triangular R Matrix", m, n, p_qr,
                              IMSL_PRINT_UPPER,
                              0);
    imsl_i_write_matrix ("The output column order ", 1, n, pvt, 0);
                                     /* Solve Ax = b for each x */
                                     /* given the factorization */
    for (i = 0; i < k; i++) {
          x = imsl_f_lin_least_squares_gen (m, n, a, &b[i*m],
                              IMSL_BASIS, tol, &kbasis,
                              IMSL_PIVOT, pvt,
                              IMSL_FACTOR_USER, p_qraux, p_qr,
                              IMSL_RESIDUAL, &p_res,
                              IMSL_SOLVE_ONLY,
                              0);
                                     /* Print right-hand side, b */
                                     /* and solution, x */
          imsl_f_write_matrix ("Right-hand side, b ", 1, m,
                        &b[i*m], 0);
          imsl_f_write_matrix ("Solution, x ", 1, n, x, 0);
                               /* Print residuals, b - Ax */
          imsl_f_write_matrix ("Residual, b - Ax ", 1, m, p_res,
                        0);
         }
}
```

Number of Columns in the base 3 Upper triangular R Matrix 1 2 3 1 -75.26 -10.63 -1.59 2 -2.65 -1.15 3 0.36

90 • lin_least_squares_gen

IMSL C/Math/Library

The output 1 3	column order 2 3 2 1		
1 5	Right-hand 2 9	side, b 3 13	4 17
1 0.999	Solution, x 2 2.000	3 0.000	
1 -0.0004	Residual, 2 0.0012	b - Ax 3 -0.0012	4 0.0004
1 2.000	Right-hand 2 3.142	side, b 3 5.110	4 0.000
1 -4.244	Solution, x 2 3.706	3 -0.391	
1 0.395	Residual, 2 -1.186	b - Ax 3 1.186	4 -0.395
1 1.34	Right-hand 2 8.11	side, b 3 3.76	4 10.99
1 0.4735	Solution, x 2 0.9437	3 0.0286	
1 -1.135	Residual, 2 3.406	b - Ax 3 -3.406	4 1.135

Fatal Errors

IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of the first zero diagonal term is #.

lin_lsq_lin_constraints

Solves a linear least-squares problem with linear constraints.

Synopsis

#include <imsl.h>

The type double function is imsl_d_lin_lsq_lin_constraints.

Required Arguments

int nra (Input)

Number of least-squares equations.

- *int* nca (Input) Number of variables.
- int ncon (Input)

Number of constraints.

float a[] (Input)

Array of size $nra \times nca$ containing the coefficients of the nra least-squares equations.

float b[] (Input)

Array of length nra containing the right-hand sides of the least-squares equations.

float c[] (Input)

Array of size $n con \times n ca$ containing the coefficients of the n constraints.

float bl[] (Input)

Array of length ncon containing the lower limit of the general constraints. If there is no lower limit on the *i*-th constraint, then bl[i] will not be referenced.

float bu[] (Input)

Array of length ncon containing the upper limit of the general constraints. If there is no upper limit on the *i*-th constraint, then bu[i] will not be referenced. If there is no range constraint, bl and bu can share the same storage.

int con_type[] (Input)

Array of length ncon indicating the type of constraints exclusive of simple bounds, where $con_type[i] = 0, 1, 2, 3$ indicates =, <=, >= and range constraints, respectively.

float xlb[] (Input)

Array of length nca containing the lower bound on the variables. If there is no lower bound on the *i*-th variable, then xlb[i] should be set to 1.0e30.

float xub[] (Input)

Array of length nea containing the upper bound on the variables. If there is no lower bound on the *i*-th variable, then xub[i] should be set to -1.0e30.

Return Value

A pointer to the to a vector of length nca containing the approximate solution. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
Store the solution in the user supplied vector x of length nca.

IMSL_RESIDUAL, *float* **residual (Output) The address of a pointer to an array containing the residuals b - Ax of the least-squares equations at the approximate solution.

IMSL_RESIDUAL_USER, float residual_user[] (Output)
Store the residuals in the user-supplied vector of length nra.

IMSL_PRINT,

Debug output flag. Choose this option if more detailed output is desired.

IMSL_MAX_ITER, int max_iter (Input)
 Set the maximum number of add/drop iterations.
 Default: max_iter = 5*max(nra, nca)

IMSL_REL_FCN_TOL, float rel_tol (Input)
Relative rank determination tolerance to be used.
Default: rel_tol = sqrt(imsl_f_machine(4))

IMSL_ABS_FCN_TOL, float abs_tol (Input)
 Absolute rank determination tolerance to be used.
 Default: abs_tol = sqrt(imsl_f_machine(4))

Description

The function imsl_f_lin_lsq_lin_constraints solves linear least-squares problems with linear constraints. These are systems of least-squares equations of the form

 $Ax \cong b$

subject to

$$b^{l} \le Cx \le b_{u}$$
$$x_{l} \le x \le x_{u}$$

Here *A* is the coefficient matrix of the least-squares equations, *b* is the right-hand side, and *C* is the coefficient matrix of the constraints. The vectors b_l , b_u , x_l and x_u are the lower and upper bounds on the constraints and the variables, respectively. The system is solved by defining dependent variables $y \equiv Cx$ and then solving the least-squares system with the lower and upper bounds on *x* and *y*. The equation Cx - y = 0 is a set of equality constraints. These constraints are realized by heavy weighting, i.e., a penalty method, Hanson (1986, pp. 826-834).

Examples

Example 1

In this example, the following problem is solved in the least-squares sense:

$$3x_{1} + 2x_{2} + x_{3} = 3.3$$

$$4x_{1} + 2x_{2} + x_{3} = 2.2$$

$$2x_{1} + 2x_{2} + x_{3} = 1.3$$

$$x_{1} + x_{2} + x_{3} = 1.0$$
Subject to
$$x_{1} = x_{2} + x_{3} \le 1$$

$$0 \le x_{1} \le 0.5$$

$$0 \le x_{2} \le 0.5$$

$$0 \le x_{3} \le 0.5$$
#include
main()
{
 int nra = 4;
 int nca = 3;
}

94 • lin_lsq_lin_constraints

```
int
        ncon = 1;
float
       *x;
float
        a[] = \{3.0, 2.0, 1.0,
                4.0, 2.0, 1.0,
        b[] = {3.3, 2.3, 1.3, 1.0};
float
float
        c[] = \{1.0, 1.0, 1.0\};
float
        xlb[] = \{0.0, 0.0, 0.0\};
        xub[] = \{0.5, 0.5, 0.5\};
float
        con_type[] = {1};
int
float
        bc[] = \{1.0\};
x = imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
        bc, bc, con_type, xlb, xub, 0);
imsl_f_write_matrix ("Solution", 1, nca, x, 0);
```

Output

	Solution	
1	2	3
0.5	0.3	0.2

Example 2

The same problem solved in the first example is solved again. This time residuals of the least-squares equations at the approximate solution are returned, and the norm of the residual vector is printed. Both the solution and residuals are returned in user-supplied space.

```
#include <imsl.h>
```

```
main()
{
```

}

```
int.
         nra = 4;
int
         nca = 3;
         ncon = 1;
int
float
         x[3];
         residual[4];
float
         a[] = {3.0, 2.0, 1.0,
float
                 4.0, 2.0, 1.0,
2.0, 2.0, 1.0,
                 1.0, 1.0, 1.0};
float
         b[] = \{3.3, 2.3, 1.3, 1.0\};
float
         c[] = \{1.0, 1.0, 1.0\};
         xlb[] = {0.0, 0.0, 0.0};
xub[] = {0.5, 0.5, 0.5};
float
float
int
         con_type[] = {1};
         bc[] = \{1.0\};
float
imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
         bc, bc, con_type, xlb, xub,
         IMSL_RETURN_USER, x,
         IMSL_RESIDUAL_USER, residual,
         0);
```

```
imsl_f_write_matrix ("Solution", 1, nca, x, 0);
imsl_f_write_matrix ("Residual", 1, nra, residual, 0);
printf ("\n\nNorm of residual = %f\n",
imsl_f_vector_norm (nra, residual, 0));
```

Output

	Solution		
1	2	3	
0.5	0.3	0.2	
	Residual		
1	2	3	4
-1.0	0.5	0.5	-0.0

```
Norm of residual = 1.224745
```

lin_svd_gen

}

Computes the SVD, $A = USV^T$, of a real rectangular matrix A. An approximate generalized inverse and rank of A also can be computed.

Synopsis

```
#include <imsl.h>
```

float *imsl_f_lin_svd_gen (int m, int n, float a[], ..., 0)

The type *double* procedure is imsl_d_lin_svd_gen.

Required Arguments

int m (Input)

Number of rows in the matrix.

int n (Input)

Number of columns in the matrix.

float a[] (Input)

Array of size $m \times n$ containing the matrix.

Return Value

If no optional arguments are used, $imsl_f_lin_svd_gen$ returns a pointer to an array of size min (m, n) containing the ordered singular values of the matrix. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input) The column dimension of the array a. Default: a_col_dim = n

IMSL_RETURN_USER, float s[] (Output) A user-allocated array of size min (m, n) containing the singular values of A in

its first min (m, n) positions in nonincreasing order. If IMSL_RETURN_USER is used, the return value of imsl_f_lin_svd_gen is s.

IMSL_RANK, *float* tol, *int* *rank (Input/Output)

tol: Scalar containing the tolerance used to determine when a singular value is negligible and replaced by the value zero. If tol > 0, then a singular value $s_{i,i}$ is considered negligible if $s_{i,i} \leq \text{tol}$. If tol < 0, then a singular value $s_{i,i}$ is considered negligible if $s_{i,i} \leq \text{tol} |\text{tol}| < 0$, then a singular value a singular value $s_{i,i}$ is considered negligible if $s_{i,i} \leq \text{tol} |\text{tol}| < 1$. If tol < 0, then a singular value $s_{i,i}$ is considered negligible if $s_{i,i} \leq \text{tol} |\text{tol}| < 1$. If this case, |tol| should be an estimate of relative error or uncertainty in the data.

*rank: Integer containing an estimate of the rank of *A*.

IMSL_U, float **p_u (Output)

**p_u: The address of a pointer to an array of size $m \times \min(m, n)$ containing the left- singular vectors of A. On return, the necessary space is allocated by imsl_f_lin_svd_gen. Typically, *float* *p_u is declared, and &p_u is used as an argument.

IMSL_U_USER, *float* u[] (Output)

u[]: A user-allocated array of size $m \times \min(m, n)$ containing the left-singular vectors of *A*. If $m \ge n$, the left-singular vectors can be returned using the storage locations of the array a.

IMSL_U_COL_DIM, int u_col_dim (Input)

The column dimension of the array containing the left-singular vectors. Default: $u_col_dim = min(m, n)$

IMSL_V, float **p_v (Output)

**p_v: The address of a pointer to an array of size $n \times \min(m, n)$ containing the right singular vectors of A. On return, the necessary space is allocated by imsl_f_lin_svd_gen. Typically, *float* *p_v is declared, and &p_v is used as an argument.

IMSL_V_USER, float v[] (Output)

v[]: A user-allocated array of size $n \times \min(m, n)$ containing the right-singular vectors of *A*. The right-singular vectors can be returned using the storage locations of the array a. Note that the return of the left- and right-singular vectors cannot use the storage locations of a simultaneously.

IMSL_V_COL_DIM, int v_col_dim (Input)

The column dimension of the array containing the right-singular vectors. Default: $v_col_dim = min(m, n)$

IMSL_INVERSE, float **p_gen_inva (Output)

The address of a pointer to an array of size $n \times m$ containing the generalized inverse of the matrix A. On return, the necessary space is allocated by imsl_f_lin_svd_gen. Typically, *float* *p_gen_inva is declared, and &p_gen_inva is used as an argument.

- IMSL_INVERSE_USER, float gen_inva[] (Output)
 A user-allocated array of size n × m containing the general inverse of the
 matrix A.
- IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
 The column dimension of the array containing the general inverse of the
 matrix A.
 Default: gen_inva_col_dim = m

Description

The function $imsl_f_lin_svd_gen$ computes the singular value decomposition of a real matrix *A*. It first reduces the matrix *A* to a bidiagonal matrix *B* by pre- and post-multiplying Householder transformations. Then, the singular value decomposition of *B* is computed using the implicit-shifted *QR* algorithm. An estimate of the rank of the matrix *A* is obtained by finding the smallest integer *k* such that $s_{k,k} \leq tol$ or $s_{k,k} \leq |tol|^*||A||_{\infty}$. Since $s_{i+1, i+1} \leq s_{i,i}$, it follows that all the $s_{i,i}$ satisfy the same inequality for $i = k, ..., \min(m, n) - 1$. The rank is set to the value k - 1. If $A = USV^T$, its generalized inverse is $A^+ = VS^+ U^T$. Here,

$$S^{+} = diag(s_{1,1}^{-1}, \dots, s_{i,i}^{-1}, 0, \dots, 0)$$

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or IMSL_INVERSE_USER is specified, the function first computes the singular value

decomposition of the matrix A. The generalized inverse is then computed. The function imsl_f_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a real 6×4 matrix.

```
#include <imsl.h>
```

```
float a[] =
              {1.0,
                     2.0,
                           1.0,
                                 4.0,
                     2.0, 1.0,
               3.0,
                                 3.0,
                    3.0, 1.0,
               4.0,
                                 4.0,
                          3.0,
                                1.0,
               2.0, 1.0,
               1.0,
                     5.0,
                           2.0,
                                 2.0,
               1.0,
                     2.0,
                           2.0,
                                 3.0};
main()
{
    int
                m = 6, n = 4;
    float
                 *s;
                              /* Compute singular values */
    s = imsl_f_lin_svd_gen (m, n, a, 0);
                              /* Print singular values */
    imsl_f_write_matrix ("Singular values", 1, n, s, 0);
}
```

Output

	Singular va	lues	
1	2	3	4
11.49	3.27	2.65	2.09

Example 2

This example computes the singular value decomposition of the 6×4 real matrix *A*. The singular values are returned in the user-provided array. The matrices *U* and *V* are returned in the space provided by the function $imsl_flin_svd_gen$.

```
#include <imsl.h>
```

```
\{1.0, 2.0, 1.0,
float a[] =
                                4.0,
               3.0, 2.0, 1.0,
                                3.0,
               4.0, 3.0, 1.0,
                                 4.0,
               2.0,
                    1.0,
                           3.0,
                                 1.0,
                    5.0,
                           2.0,
               1.0,
                                 2.0,
               1.0,
                     2.0,
                           2.0, 3.0\};
main()
{
                  m = 6, n = 4;
    int
                 s[4], *p_u, *p_v;
    float
                                    /* Compute SVD */
    imsl_f_lin_svd_gen (m, n, a,
                        IMSL_RETURN_USER, s,
```

Chapter 1: Linear Systems

```
IMSL_U, &p_u,
IMSL_V, &p_v,
0); /* Print decomposition*/
```

imsl_f_write_matrix ("Singular values, S", 1, n, s, 0); imsl_f_write_matrix ("Left singular vectors, U", m, n, p_u, 0); imsl_f_write_matrix ("Right singular vectors, V", n, n, p_v, 0);

Output

}

	Singular values, S						
	1	2	3	4			
	11.49	3.27	2.65	2.09			
		singular ve	,				
	1	2	3	4			
1	-0.3805	0.1197	0.4391	-0.5654			
2	-0.4038	0.3451	-0.0566	0.2148			
3	-0.5451	0.4293	0.0514	0.4321			
4	-0.2648	-0.0683	-0.8839	-0.2153			
5	-0.4463	-0.8168	0.1419	0.3213			
6	-0.3546	-0.1021	-0.0043	-0.5458			
	Righ	nt singular v	vectors, V				
	1	2	3	4			
1	-0.4443	0.5555	-0.4354	0.5518			
2	-0.5581	-0.6543	0.2775	0.4283			
3	-0.3244	-0.3514	-0.7321	-0.4851			
4	-0.6212	0.3739	0.4444	-0.5261			

Example 3

#include <imsl.h>

This example computes the rank and generalized inverse of a 3×2 matrix *A*. The rank and the 2×3 generalized inverse matrix A^+ are printed.

```
1.0, 0.0,
1.0, 1.0,
float a[] = \{1.0,
             100.0, -50.0;
main()
{
    int
                  m = 3, n = 2;
                 tol;
    float
    float
                 gen_inva[6];
                 *s;
    float
    int
                 *rank;
                                   /* Compute generalized inverse */
    tol = 1.e-4;
    s = imsl_f_lin_svd_gen (m, n, a,
                             IMSL_RANK, tol, &rank,
                             IMSL_INVERSE_USER, gen_inva,
                             IMSL_INV_COL_DIM, m,
                             0);
                                   /* Print rank, singular values and */
                                   /* generalized inverse. */
```

```
printf ("Rank of matrix = %2d", rank);
imsl_f_write_matrix ("Singular values", 1, n, s, 0);
imsl_f_write_matrix ("Generalized inverse", n, m, gen_inva,
IMSL_A_COL_DIM, m,
0);
```

Output

```
Rank of matrix = 2
   Singular values
                  2
       1
    111.8
                1.4
       Generalized inverse
         1 2
                                3
       0.100
                 0.300
                           0.006
1
2
       0.200
                 0.600
                           -0.008
```

Warning Errors

IMSL_SLOWCONVERGENT_MATRIX

Convergence cannot be reached after 30 iterations.

lin_svd_gen (complex)

Computes the SVD, $A = USV^{H}$, of a complex rectangular matrix A. An approximate generalized inverse and rank of A also can be computed.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[], ..., 0)

The type *d_complex function* is imsl_z_lin_svd_gen.

Required Arguments

- *int* m (Input) Number of rows in the matrix.
- int n (Input)

Number of columns in the matrix.

```
f_complex a[] (Input)
```

Array of size $m \times n$ containing the matrix.

Chapter 1: Linear Systems

lin_svd_gen (complex) • 101

Return Value

Using only required arguments, imsl_c_lin_svd_gen returns a pointer to a complex array of length min (*m*, *n*) containing the singular values of the matrix. To release this space, use free. If no value can be computed then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[],
    IMSL_A_COL_DIM, int a_col_dim,
    IMSL_RETURN_USER, f_complex s[],
    IMSL_RANK, float tol, int *rank,
    IMSL_U, f_complex **p_u,
    IMSL_U_USER, f_complex u[],
    IMSL_U_COL_DIM, int u_col_dim,
    IMSL_V, f_complex **p_v,
    IMSL_V_USER, f_complex v[],
    IMSL_V_USER, f_complex v[],
    IMSL_INVERSE, f_complex **p_gen_inva,
    IMSL_INVERSE, f_complex **p_gen_inva,
    IMSL_INVERSE_USER, f_complex gen_inva[],
    IMSL_INVERSE_USER, f_complex gen_inva[],
    IMSL_INV_COL_DIM, int gen_inva_col_dim,
    0)
```

Optional Arguments

IMSL_A_COL_DIM, *int* a_col_dim (Input) The column dimension of the array a. Default: a_col_dim = n

```
IMSL_RETURN_USER, f_complex s[] (Output)
```

A user-allocated array of length min (m, n) containing the singular values of A in its first min (m, n) positions in nonincreasing order. The complex entries are all real. If IMSL_RETURN_USER is used, the return value of imsl_c_lin_svd_gen is s.

IMSL_RANK, *float* tol, *int* *rank (Input/Output)

tol: Scalar containing the tolerance used to determine when a singular value is negligible and replaced by the value zero. If tol > 0, then a singular value $s_{i,i}$ is considered negligible if $s_{i,i} \le \text{tol}$. If tol < 0, then a singular value $s_{i,i}$ is considered negligible if $s_{i,i} \le |\text{tol}|^* ||A||_{\infty}$. In this case, should be an estimate of relative error or uncertainty in the data.

*rank: Integer containing an estimate of the rank of *A*.

IMSL_U, f_complex **p_u (Output)

The address of a pointer to an array of size $m \times \min(m, n)$ containing the leftsingular vectors of A. On return, the necessary space is allocated by $imsl_c_lin_svd_gen$. Typically, $f_complex *p_u$ is declared, and $&p_u$ is used as an argument. IMSL_U_USER, f_complex u[] (Output)

A user-allocated array of size $m \times \min(m, n)$ containing the left-singular vectors of *A*. If $m \ge n$, the left-singular vectors can be returned using the storage locations of the array a.

IMSL_U_COL_DIM, int u_col_dim (Input)

The column dimension of the array containing the left-singular vectors. Default: $u_col_dim = min(m, n)$

IMSL_V, f_complex **p_v (Output)
The address of a pointer to an array of size n × min (m, n) containing the
right-singular vectors of A. On return, the necessary space is allocated by
imsl_c_lin_svd_gen. Typically, f_complex *p_v is declared,
and &p_v is used as an argument.

IMSL_V_USER, $f_complex v[]$ (Output) A user-allocated array of size $n \times \min(m, n)$ containing the right-singular vectors of A. The right-singular vectors can be returned using the storage locations of the array a. Note that the return of the left and right-singular vectors cannot use the storage locations of a simultaneously.

- IMSL_V_COL_DIM, int v_col_dim (Input)
 The column dimension of the array containing the right-singular vectors.
 Default: v_col_dim = min (m, n)
- IMSL_INVERSE, *f_complex* **p_gen_inva (Output)

The address of a pointer to an array of size $n \times m$ containing the generalized inverse of the matrix A. On return, the necessary space is allocated by $imsl_c_lin_svd_gen$. Typically, $f_complex *p_gen_inva$ is declared, and &p_gen_inva is used as an argument.

- IMSL_INVERSE_USER, f_complex gen_inva[] (Output)
 A user-allocated array of size n × m containing the general inverse of the
 matrix A.
- IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
 The column dimension of the array containing the general inverse of the
 matrix A.
 Default: gen_inva_col_dim = m

Description

The function imsl_c_lin_svd_gen computes the singular value decomposition of a complex matrix *A*. It first reduces the matrix *A* to a bidiagonal matrix *B* by pre- and post-multiplying Householder transformations. Then, the singular value decomposition of *B* is computed using the implicit-shifted *QR* algorithm. An estimate of the rank of the matrix *A* is obtained by finding the smallest integer *k* such that $s_{k,k} \leq tol$ or $s_{k,k} \leq |tol|*||A||_{\infty}$. Since $s_{i+1,i+1} \leq s_{i,i}$, it follows that all the $s_{i,i}$ satisfy the same inequality for $i = k, ..., \min(m, n) - 1$. The rank is set to the value k - 1. If $A = USV^H$, its generalized inverse is $A^+ = VS^+ U^H$.

Here,

$$S^+ = \operatorname{diag}(s_{1,1}^{-1}, \dots, s_{i,i}^{-1}, 0, \dots, 0)$$

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or IMSL_INVERSE_USER is specified, the function first computes the singular value decomposition of the matrix *A*. The generalized inverse is then computed. The function imsl_c_lin_svd_gen fails if the *QR* algorithm does not converge after 30 iterations isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a 6×3 complex matrix.

Output

Singular values								
		1			2			3
(11.77,	0.00)	(9.30,	0.00)	(4.99,	0.00)

Example 2

This example computes the singular value decomposition of the 6×3 complex matrix *A*. The singular values are returned in the user-provided array. The matrices *U* and *V* are returned in the space provided by the function imsl_c_lin_svd_gen.

```
#include <imsl.h>
```

```
main()
{
```

```
int m = 6, n = 3;
f_complex s[3], *p_u, *p_v;
f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0, -4.0},
{3.0, -2.0}, {2.0, -4.0}, {1.0, 3.0},
```

104 • lin_svd_gen (complex)

```
{4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
{2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
{1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
{1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0};
/* Compute SVD of a */
imsl_c_lin_svd_gen (m, n, a,
IMSL_RETURN_USER, s,
IMSL_U, &p_u,
IMSL_V, &p_v,
0);
/* Print decomposition factors */
imsl_c_write_matrix ("Singular values, S", 1, n, s, 0);
imsl_c_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
imsl_c_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
```

Output

}

	Singular values, S							
		1		2			3	
(11.77,	0.00) (9.30,	0.00) (4.99,	0.00)	
		Ţ	ft singular	mostowa II				
		Те	eit singular	vectors, u			2	
		T		2			3	
1 (0.1968,	0.2186) (0.5011,	0.0217)	(-0.2007,	-0.1003)	
2 (0.3443,	-0.3542) (-0.2933,	0.0248)	(0.1155,	-0.2338)	
3 (0.1457,	0.2307) (-0.5424,	0.1381)	(-0.4361,	-0.4407)	
4 (0.3016,	-0.0844) (0.2157,	0.2659)	(-0.0523,	-0.0894)	
5 (0.2283,	-0.6008) (-0.1325,	0.1433)	(0.3152,	-0.0090)	
6 (0.2876,	-0.0350) (0.4377,	-0.0400)	(0.0458,	-0.6205)	
		Rig	ht singular	vectors, V				
		1		2			3	
1 (0.6616,	0.0000) (-0.2651,	0.0000)	(-0.7014,	0.0000)	
2 (0.7355,	0.0379) (0.3850,	-0.0707)	(0.5482,	0.0624)	
3 (0.0507,	-0.1317) (,	0.8642)	(-0.0173,	,	

Example 3

This example computes the rank and generalized inverse of a 6×4 matrix A. The rank and the 4×6 generalized inverse matrix A^+ are printed.

```
#include <imsl.h>
main()
{
             m = 6, n = 4;
   int
             *rank;
   int
   float
             tol;
   f_complex
             gen_inv[24], *s;
  /* Factor a */
   tol = 1.e-4;
   s = imsl_c_lin_svd_gen (m, n, a,
                     IMSL_RANK, tol, &rank,
```

Chapter 1: Linear Systems

Output

Rank	Rank = 4								
	Singular values								
(12.13,	0.00) (9.53,	2 0.00) (5.67,	0.00)			
(1.74,	4 0.00)							
			Generalized	inverse					
		1		2		3			
1 (0.0266,	0.0164)	(-0.0185,	0.0453)	(0.0720,	0.0700)			
2 (0.0061,	0.0280)	(0.0820,	-0.1156)	(-0.0410,	-0.0242)			
3 (-0.0019,	-0.0572)	(0.1174,	0.0812)	(0.0499,	0.0463)			
4 (0.0380,	0.0298)	(-0.0758,	-0.2158)	(0.0356,	-0.0557)			
		4		F		ć			
1 (-0.0220,	-0.0428)	(-0.0003,	5 -0.0709)	(0.0254,	6 0.1050)			
2 (0.0885)		0.0287)	· ,				
2 (0.1033)		,	(0.0218, 0.0810, 0.	,			
	0.2918,	,		0.0103) 0.2070)	(-0.1531)				
4 (0.2918,	-0.0763)	(0.0881,	0.2070)	(-0.1531,	0.0814)			

Warning Errors

IMSL_SLOWCONVERGENT_MATRIX

Convergence cannot be reached after 30 iterations.

lin_sol_nonnegdef

Solves a real symmetric nonnegative definite system of linear equations Ax = b. Using options, computes a Cholesky factorization of the matrix A, such that $A = R^T R = LL^T$. Computes the solution to Ax = b given the Cholesky factor.

Synopsis

```
#include <imsl.h>
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[], ..., 0)
```

The type *double* function is <code>imsl_d_lin_sol_nonnegdef</code>.

106 • lin_sol_nonnegdef

Required Arguments

```
int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)

Array of size n \times n containing the matrix.

float b[] (Input)

Array of size n containing the right-hand side.
```

Return Value

Using required arguments, imsl_f_lin_sol_nonnegdef returns a pointer to a solution *x* of the linear system. To release this space, use free. If no value can be computed, NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[],
    IMSL_RETURN_USER, float x[],
    IMSL_A_COL_DIM, int a_col_dim,
    IMSL_FACTOR, float **p_factor,
    IMSL_FACTOR_USER, float factor[],
    IMSL_FAC_COL_DIM, int fac_col_dim,
    IMSL_INVERSE, float **p_inva,
    IMSL_INVERSE_USER, float inva[],
    IMSL_INV_COL_DIM, int inv_col_dim,
    IMSL_TOLERANCE, float tol,
    IMSL_SOLVE_ONLY,
    IMSL_INVERSE_ONLY,
    0)
```

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x. When this option
is specified, no storage is allocated for the solution, and
imsl_f_lin_sol_nonnegdef returns a pointer to the array x.

IMSL_A_COL_DIM, *int* a_col_dim (Input) The column dimension of the array a. Default: a_col_dim = n

```
IMSL_FACTOR, float **p_factor (Output)
```

The address of a pointer to an array of size $n \times n$ containing the LL^T factorization of A. When this option is specified, the space for the factor matrix is allocated by imsl_f_lin_sol_nonnegdef. The lower-triangular part of the factor array contains L, and the upper-triangular part contains $L^T R$. Typically, *float* *p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)

A user-allocated array of size $n \times n$ containing the LL^T factorization of A. The lower-triangular part of factor contains L, and the upper-triangular part contains L^T . If a is not needed, a and factor can be the same storage locations. If IMSL_SOLVE is specified, this parameter is *input*; otherwise, it is *output*.

IMSL_FAC_COL_DIM, *int* fac_col_dim (Input) The column dimension of the array containing the LL^T factorization.

Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)

The address of a pointer to an array of size $n \times n$ containing the inverse of A. The space for this array is allocated by $imsl_flin_sol_nonnegdef$. Typically, *float* *p_inva is declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)

A user-allocated array of size $n \times n$ containing the inverse of A. If a is not needed, a and factor can be the same storage locations. The storage locations for A cannot be the factorization and the inverse of A at the same time.

- IMSL_INV_COL_DIM, int inva_col_dim (Input)
 The column dimension of the array containing the inverse of A.
 Default: inva_col_dim = n
- IMSL_TOLERANCE, float tol (Input)
 Tolerance used in determining linear dependence.
 Default: tol = 100* imsl_f_machine(4)
 See the documentation for imsl_f_machine in Chapter 12, "Utilities."
- IMSL_FACTOR_ONLY

Compute the LL^T factorization of A only. The argument b is ignored, and either the optional argument IMSL_FACTOR or IMSL_FACTOR_USER is required.

```
IMSL_SOLVE_ONLY
```

Solve Ax = b using the factorization previously computed by this function. The argument a is ignored, and the optional argument IMSL_FACTOR_USER is required.

IMSL_INVERSE_ONLY

Compute the inverse of *A* only. The argument b is ignored, and either the optional argument IMSL_INVERSE or IMSL_INVERSE_USER is required.

Description

The function $imsl_f_lin_sol_nonnegdef$ solves a system of linear algebraic equations having a symmetric nonnegative definite (positive semidefinite) coefficient matrix. It first computes a Cholesky (LL^T or $R^T R$) factorization of the coefficient matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds sequentially by columns. The *i*-th column is declared to be linearly dependent on the first i - 1 columns if

$$\left|a_{ii} - \sum_{j=1}^{i-1} r_{ji}^2\right| \le \varepsilon |a_{ii}|$$

where ε (specified in tol) may be set by the user. When a linear dependence is declared, all elements in the *i*-th row of *R* (column of *L*) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for checking for matrices that are not nonnegative definite also are incorporated. The function imsl_f_lin_sol_nonnegdef declares A to not be nonnegative definite and issues an error message if either of the following conditions are satisfied:

1.
$$a_{ii} - \sum_{j=1}^{i-1} r_{ji}^2 < -\varepsilon |a_{ii}|$$

2. $r_{ii} = 0$ and $\left| a_{ik} - \sum_{j=1}^{i-1} r_{ji} r_{jk} \right| > \varepsilon \sqrt{a_{ii} a_{kk}}, k > i$

Healy's (1968) algorithm and the function imsl_f_lin_sol_nonnegdef permit the matrices *A* and *R* to occupy the same storage. Barrett and Healy (1978) in their remark neglect this fact. The function imsl_f_lin_sol_nonnegdef uses

$$\sum_{j=1}^{i-1} r_{ij}^2$$

for a_{ii} in the above condition 2 to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive definite, then the resulting inverse is a symmetric g_2 inverse of A. For a matrix G to be a g_2 inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose inverse, but generally fail conditions 3 and 4. The four conditions for G to be a Moore-Penrose inverse of A are as follows:

1.
$$AGA = A$$

Chapter 1: Linear Systems

2.GAG = G3.AG is symmetric4.GA is symmetric

The solution of the linear system Ax = b is computed by solving the factored version of the linear system $R^T Rx = b$ as two successive triangular linear systems. In solving the triangular linear systems, if the elements of a row of *R* are all zero, the corresponding element of the solution vector is set to zero. For a detailed description of the algorithm, see Section 2 in Sallas and Lionti (1988).

Examples

Example 1

A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83–86 and 104–105) discusses the computations for the factorization and solution to this problem.

#include <imsl.h>

```
main()
{
    int
                n = 4;
    float
                *x;
                a[] = {36.0, 12.0, 30.0, 6.0,
    float
                       12.0, 20.0, 2.0, 10.0,
                       30.0, 2.0, 29.0, 1.0,
                        6.0, 10.0, 1.0, 14.0};
    float
                b[] = \{18.0, 22.0,
                                    7.0, 20.0};
                                /* Solve Ax = b
                                                for x */
   x = imsl_f_lin_sol_nonnegdef(n, a, b, 0);
                                /* Print solution, x, of Ax = b */
    imsl_f_write_matrix("Solution, x", 1, n, x, 0);
}
```

Output

Solution, x 1 2 3 4 0.167 0.500 0.000 1.000

Example 2

The symmetric nonnegative definite matrix in the initial example is used to compute the factorization only in the first call to $lin_sol_nonnegdef$. The space needed for the factor is provided by the user. On the second call, both the LL^T factorization and the right-hand side vector in the first example are used as the input to compute a solution x. It also illustrates another way to obtain the solution array x.

#include <imsl.h>

```
main()
```

{

int n = 4, a_col_dim = 6; float factor[36], x[5];

```
a[] = \begin{cases} 36.0, 12.0, 30.0, 6.0, \\ 12.0, 20.0, 2.0, 10.0, \\ 30.0, 2.0, 29.0, 1.0, \end{cases}
float
                      6.0, 10.0, 1.0, 14.0};
float
             b[] = \{18.0, 22.0, 7.0, 20.0\};
                                /* Factor A */
imsl_f_lin_sol_nonnegdef(n, a, b,
                             IMSL_FACTOR_USER, factor,
                            IMSL_FAC_COL_DIM, a_col_dim,
                             IMSL_FACTOR_ONLY,
                            0);
                                /* NULL is returned in
                                                           */
                                                           */
                                /* this case. Another
                                /* way to obtain the
                                                           */
                                /* factor is to use the */
                                /* IMSL_FACTOR option. */
imsl_f_write_matrix("factor", n, n, factor,
                       IMSL_A_COL_DIM, a_col_dim,
                       0);
                                /* Get the solution using */
                                /* the factorized matrix. */
imsl_f_lin_sol_nonnegdef(n, a, b,
                             IMSL_FACTOR_USER, factor,
                            IMSL_FAC_COL_DIM, a_col_dim,
                            IMSL_RETURN_USER, x,
                            IMSL_SOLVE_ONLY,
                            0);
imsl_f_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
```

```
Output
```

}

1

2

3

4

	:	factor			
	1	2	3		4
	6	2	5		1
	2	4	-2		2
	5	-2	0		0
	1	2	0		3
	Solution,	x, of Ax	: = b		
1	:	2	3	4	
0.167	0.50	0 0	.000	1.000	

Example 3

This example uses the IMSL_INVERSE option to compute the symmetric *g* inverse of the symmetric nonnegative matrix in the first example. Maindonald (1984, p. 106) discusses the computations for this problem.

```
12.0, 20.0, 2.0, 10.0,
30.0, 2.0, 29.0, 1.0,
6.0, 10.0, 1.0, 14.0};
/* Get g2_inverse(a) */
imsl_f_lin_sol_nonnegdef(n, a, NULL,
                            IMSL_INVERSE, &p_inva,
                            IMSL_INVERSE_ONLY,
                            0);
                               /* Form a*g2_inverse(a) */
p_a_inva = imsl_f_mat_mul_rect("A*B",
                                  IMSL_A_MATRIX, n, n, a,
                                  IMSL_B_MATRIX, n, n, p_inva,
                                  0);
                               /* Form a*g2_inverse(a)*a */
p_a_inva_a = imsl_f_mat_mul_rect("A*B",
                                    IMSL_A_MATRIX, n, n, p_a_inva,
                                    IMSL_B_MATRIX, n, n, a,
                                     0);
imsl_f_write_matrix("The g2 inverse of a", n, n, p_inva, 0);
imsl_f_write_matrix("a*g2_inverse(a)\nviolates condition 3 of"
                      " the M-P inverse", n, n, p_a_inva, 0);
imsl_f_write_matrix("a = a*g2_inverse(a)*a\ncondition 1 of"
                      " the M-P inverse", n, n, p_a_inva_a, 0);
```

}

Output

	Т	he g2 invers	se of a	
	1	2	3	4
1	0.0347	-0.0208	0.0000	0.0000
2	-0.0208	0.0903	0.0000	-0.0556
3	0.0000	0.0000	0.0000	0.0000
4	0.0000	-0.0556	0.0000	0.1111
		a*q2_invers	se(a)	
	violates co		the M-P inv	erse
	1	2	3	4
1	1.0	-0.0	0.0	0.0
2	0.0	1.0	0.0	0.0
3	1.0	-0.5	0.0	0.0
4	0.0	-0.0	0.0	1.0
	a	= a*q2_inver	rse(a)*a	
	conditi	on 1 of the	M-P inverse	
	1	2	3	4
1	36	12	30	6
2	12	20	2	10
3	30	2	29	1
4	б	10	1	14
	warr	ing Errors		

IMSL_INCONSISTENT_EQUATIONS_2	The linear system of equations is inconsistent.
IMSL_NOT_NONNEG_DEFINITE	The matrix A is not nonnegative definite.

112 • lin_sol_nonnegdef

Chapter 2: Eigensystem Analysis

Routines

2.2

2.1 Linear Eigensystem Problems

General Matrices	
Eigenvalues and eigenvectorseig_gen	116
Eigenvalues and eigenvectorseig_gen (complex)	118
Real Symmetric Matrices	
Eigenvalues and eigenvectorseig_sym	121
Complex Hermitian Matrices	
Eigenvalues and eigenvectorseig_herm (complex)	124
Generalized Eigensystem Problems	
Real Symmetric Matrices and <i>B</i> Positive Definite	
Eigenvalues and eigenvectorseig_symgen	127
Real matricesgeneig	130
Complex matrices	133

Usage Notes

An ordinary linear eigensystem problem is represented by the equation $Ax = \lambda x$ where A denotes an $n \times n$ matrix. The value λ is an *eigenvalue* and $x \neq 0$ is the corresponding *eigenvector*. The eigenvector is determined up to a scalar factor. In all functions, we have chosen this factor so that x has Euclidean length one, and the component of x of largest magnitude is positive. If x is a complex vector, this component of largest magnitude is scaled to be real and positive. The entry where this component occurs can be arbitrary for eigenvectors having nonunique maximum magnitude values.

A generalized linear eigensystem problem is represented by $Ax = \lambda Bx$ where *A* and *B* are $n \times n$ matrices. The value λ is a generalized eigenvalue, and *x* is the corresponding generalized eigenvector. The generalized eigenvectors are normalized in the same manner as the ordinary eigensystem problem.

Error Analysis and Accuracy

The remarks in this section are for ordinary eigenvalue problems. Except in special cases, functions will not return the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem $Ax = \lambda x$. Typically, the computed pair

x̃,λ

are an exact eigenvector-eigenvalue pair for a "nearby" matrix A + E. Information about *E* is known only in terms of bounds of the form $||E||_2 \le f(n) ||A||_2 \varepsilon$. The value of f(n) depends on the algorithm, but is typically a small fractional power of *n*. The parameter ε is the machine precision. By a theorem due to Bauer and Fike (see Golub and Van Loan 1989, p. 342),

$$\min |\widetilde{\lambda} - \lambda| \le \kappa(X) ||E||_2$$
 for all λ in $\sigma(A)$

where $\sigma(A)$ is the set of all eigenvalues of *A* (called the *spectrum* of *A*), *X* is the matrix of eigenvectors, $\|\cdot\|_2$ is Euclidean length, and $\kappa(X)$ is the condition number of *X* defined as $\kappa(X) = \|X\|_2 \|X^{-1}\|_2$. If *A* is a real symmetric or complex Hermitian matrix, then its eigenvector matrix *X* is respectively orthogonal or unitary. For these matrices, $\kappa(X) = 1$.

The accuracy of the computed eigenvalues

$$\tilde{\lambda}_{j}$$

and eigenvectors

$$\widetilde{x}_{j}$$

can be checked by computing their performance index τ . The performance index is defined to be

$$\tau = \max_{1 \le j \le n} \frac{\left\| A \widetilde{x}_j - \widetilde{\lambda}_j \widetilde{x}_j \right\|_2}{n \varepsilon \|A\|_2 \left\| \widetilde{x}_j \right\|_2}$$

where ε is again the machine precision.

The performance index τ is related to the error analysis because

$$\left\| E\widetilde{x}_{j} \right\|_{2} = \left\| A\widetilde{x}_{j} - \widetilde{\lambda}_{j}\widetilde{x}_{j} \right\|_{2}$$

where *E* is the "nearby" matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an eigensystem analysis function is defined as excellent if $\tau < 1$, good if $1 \le \tau \le 100$, and poor if $\tau > 100$. This is an arbitrary definition, but large values of τ can serve as a warning that there is a significant error in the calculation.

If the condition number $\kappa(X)$ of the eigenvector matrix *X* is large, there can be large errors in the eigenvalues even if τ is small. In particular, it is often difficult to recognize near multiple eigenvalues or unstable mathematical problems from numerical results. This facet of the eigenvalue problem is often difficult for users to understand. Suppose the accuracy of an individual eigenvalue is desired. This can be answered approximately by computing the *condition number of an individual eigenvalue*

(see Golub and Van Loan 1989, pp. 344–345). For matrices A, such that the computed array of normalized eigenvectors X is invertible, the condition number of λ_i is

$$\kappa_j = \left\| e_j^T X^{-1} \right\|$$

the Euclidean length of the *j*-th row of X^{-1} . Users can choose to compute this matrix using function imsl_c_lin_sol_gen in Chapter 1, "Linear Systems." An approximate bound for the accuracy of a computed eigenvalue is then given by $\kappa_j \varepsilon ||A||$. To compute an approximate bound for the relative accuracy of an eigenvalue, divide this bound by $|\lambda_j|$.

Reformulating Generalized Eigenvalue Problems

The generalized eigenvalue problem $Ax = \lambda Bx$ is often difficult for users to analyze because it is frequently ill-conditioned. Occasionally, changes of variables can be performed on the given problem to ease this ill-conditioning. Suppose that *B* is singular, but *A* is nonsingular. Define the reciprocal $\mu = \lambda^{-1}$. Then, assuming *A* is definite, the roles of *A* and *B* are interchanged so that the reformulated problem $Bx = \mu Ax$ is solved. Those generalized eigenvalues $\mu_j = 0$ correspond to eigenvalues $\lambda_j = \infty$. The remaining $\lambda_j = \mu_j^{-1}$. The generalized eigenvectors for λ_j correspond to those for μ_j . Now suppose that *B* is nonsingular. The user can solve the ordinary eigenvalue problem $Cx = \lambda x$ where $C = B^{-1}A$. The matrix *C* is subject to perturbations due to illconditioning and rounding errors when computing $B^{-1}A$. Computing the condition numbers of the eigenvalues for *C* may, however, be helpful for analyzing the accuracy of results for the generalized problem.

There is another method that users can consider to reduce the generalized problem to an alternate ordinary problem. This technique is based on first computing a matrix decomposition B = PQ where both P and Q are matrices that are "simple" to invert. Then, the given generalized problem is equivalent to the ordinary eigenvalue problem $Fy = \lambda y$. The matrix $F = P^{-1}AQ^{-1}$ and the unnormalized eigenvectors of the generalized problem are given by $x = Q^{-1}y$. An example of this reformulation is used in the case where A and B are real and symmetric, with B positive definite. The function $imsl_f_eig_symgen$ (page 127), uses $P = R^T$ and Q = R where R is an upper-triangular matrix obtained from a Cholesky decomposition, $B = R^T R$. The matrix $F = R^{-T}AR^{-1}$ is symmetric and real. Computation of the eigenvalue-eigenvector expansion for F is based on function $imsl_f_eig_sym}$ (page 121).

eig_gen

Computes the eigenexpansion of a real matrix A.

Synopsis

#include <imsl.h>

f_complex *imsl_f_eig_gen (int n, float *a, ..., 0)

The type *d_complex* function is imsl_d_eig_gen.

Required Arguments

```
int n (Input)
Number of rows and columns in the matrix.
```

float *a (Input) An array of size $n \times n$ containing the matrix.

Return Value

A pointer to the *n* complex eigenvalues of the matrix. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
f_complex *imsl_f_eig_gen (int n, float *a,
        IMSL_VECTORS, f_complex **evec,
        IMSL_VECTORS_USER, f_complex evecu[],
        IMSL_RETURN_USER, f_complex evalu[],
        IMSL_A_COL_DIM, int a_col_dim,
        IMSL_EVECU_COL_DIM, int evecu_col_dim,
        0)
```

Optional Arguments

IMSL_VECTORS, $f_complex **evec$ (Output) The address of a pointer to an array of size $n \times n$ containing eigenvectors of the matrix. On return, the necessary space is allocated by the function. Typically, $f_complex *evec$ is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, $f_complex$ evecu[] (Output) Compute eigenvectors of the matrix. An array of size $n \times n$ containing the matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

```
IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n
IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n
```

Description

Function $imsl_f_eig_gen$ computes the eigenvalues of a real matrix by a two-phase process. The matrix is reduced to upper Hessenberg form by elementary orthogonal or Gauss similarity transformations. Then, eigenvalues are computed using a *QR* or combined *LR-QR* algorithm (Golub and Van Loan 1989, pp. 373–382, and Watkins and Elsner 1990). The combined *LR-QR* algorithm is based on an implementation by Jeff Haag and David Watkins. Eigenvectors are then calculated as required. When eigenvectors are computed, the *QR* algorithm is used to compute the eigenexpansion. When only eigenvalues are required, the combined *LR-QR* algorithm is used.

Examples

Example 1

Output

			Eigenvalue	S		
		1		2		3
(2,	4) (2,	-4) (1,	0)

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

(

main()
{
 int n = 3;

Output

					Eigen	values			
			1			2			3
(2,	4)	(2,	-4)	(1,	0)
					Eigen	vectors			
			1			2			3
1	(0.3162,	0.3162)	(0.3162,	-0.3162)	(0.4082,	0.0000)
2	(0.0000,	0.6325)	(0.0000,	-0.6325)	(0.8165,	0.0000)
3	(0.6325,	0.0000)	(0.6325,	0.0000)	(0.4082,	0.0000)

Warning Errors

IMSL_SLOW_CONVERGENCE_GEN

The iteration for an eigenvalue did not converge after # iterations.

eig_gen (complex)

Computes the eigenexpansion of a complex matrix A.

Synopsis

#include <imsl.h>

f_complex *imsl_c_eig_gen (int n, f_complex *a, ..., 0)

The type *d_complex* procedure is imsl_z_eig_gen.

Required Arguments

int n (Input) Number of rows and columns in the matrix. *f_complex* *a (Input)

Array of size $n \times n$ containing the matrix.

Return Value

A pointer to the *n* complex eigenvalues of the matrix. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

- IMSL_VECTORS, $f_complex **evec$ (Output) The address of a pointer to an array of size $n \times n$ containing eigenvectors of the matrix. On return, the necessary space is allocated by the function. Typically, $f_complex$ *evecu is declared, and &evecu is used as an argument.
- IMSL_VECTORS_USER, $f_complex$ evecu[] (Output) Compute eigenvectors of the matrix. An array of size $n \times n$ containing the matrix of eigenvectors is returned in the space evecu.
- IMSL_RETURN_USER, f_complex evalu[] (Output)
 Store the n eigenvalues in the space evalu.
- IMSL_A_COL_DIM, int a_col_dim (Input)
 The column dimension of A.
 Default: a_col_dim = n
- IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
 The column dimension of evecu.
 Default: evecu_col_dim = n

Description

The function $imsl_c_eig_gen$ computes the eigenvalues of a complex matrix by a two-phase process. The matrix is reduced to upper Hessenberg form by elementary Gauss transformations. Then, the eigenvalues are computed using an explicitly shifted *LR* algorithm. Eigenvectors are calculated during the iterations for the eigenvalues (Martin and Wilkinson 1971).

Examples

Example 1

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

```
#include <imsl.h>
```

```
main()
{
      int
                          n = 4;
                                         \left\{ \begin{array}{c} \{5,9\}, \ \{5,5\}, \\ \{3,3\}, \ \{6,10\}, \\ \{2,2\}, \ \{3,3\}, \end{array} \right. 
      f_complex
                          a[] =
                                                                     {-6,-6},
                                                                                    \{-7, -7\},\
                                                                    \left\{ -5, -5 \right\}, \left\{ -1, 3 \right\},
                                                                                    {-6,-6},
{-5,-5},
                                                                                    \{0, 4\}\};
                                            \{1,1\}, \{2,2\},\
                                                                     \{-3, -3\},\
      f_complex
                           *eval;
      f_complex
                           *evec;
                                             /* Compute eigenvalues and eigenvectors */
      eval = imsl_c_eig_gen (n, a,
                                             IMSL_VECTORS, &evec,
                                             0);
                                             /* Print eigenvalues and eigenvectors */
      imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}
```

Output

	Eigenvalues								
(4,	1 8) (3,	2 7)	(2,	3 6)
(1,	4 5)						
					Eigenve	ctors			
			1			2			3
1	(0.5773,	-0.0000)	(0.5774	0.0000)	(0.3780,	-0.0000)
2	(0.5773,	-0.0000)	(0.5773,	-0.0000)	(0.7559,	0.0000)
3	(0.5774,	0.0000)	(-0.0000,	-0.0000)	(0.3780,	0.0000)
4	(-0.0000,	-0.0000)	(0.5774,	0.0000)	(0.3780,	-0.0000)

120 • eig_gen (complex)

			4
1	(0.7559,	0.0000)
2	(0.3780,	0.0000)
3	(0.3780,	0.0000)
4	(0.3780,	0.0000)

Fatal Errors

IMSL_SLOW_CONVERGENCE_GEN

The iteration for an eigenvalue did not converge after # iterations.

eig_sym

Computes the eigenexpansion of a real symmetric matrix A.

Synopsis

#include <imsl.h>

float *imsl_f_eig_sym (int n, float *a, ..., 0)

The type *double* procedure is imsl_d_eig_sym.

Required Arguments

- *int* n (Input) Number of rows and columns in the matrix.
- float *a (Input)

Array of size $n \times n$ containing the symmetric matrix.

Return Value

A pointer to the *n* eigenvalues of the symmetric matrix. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_eig_sym (int n, float *a,
    IMSL_VECTORS, float **evec,
    IMSL_VECTORS_USER, float evecu[],
    IMSL_RETURN_USER, float evalu[],
    IMSL_RANGE, float elow, float ehigh,
    IMSL_A_COL_DIM, int a_col_dim,
    IMSL_EVECU_COL_DIM, int evecu_col_dim,
    IMSL_RESULT_NUMBER, int *n_eval,
    0)
```

Optional Arguments

vectors of Typically,
the
with lower

IMSL_RESULT_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range low, ehigh.

Description

The function $imsl_f_eig_sym$ computes the eigenvalues of a symmetric real matrix by a two-phase process. The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the eigenvalues are computed using a rational *QR* or bisection algorithm. Eigenvectors are calculated as required (Parlett 1980, pp. 169–173).

Examples

Example 1

```
imsl_f_write_matrix ("Eigenvalues", 1, 3, eval, 0);
}
```

Output

	Eigenvalues	
1	2	3
-27.90	22.68	9.22

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

```
main()
{
    int
                  n = 3;
                           float
                  a[] =
    float
                  *eval;
    float
                  *evec;
                                     /* Compute eigenvalues and eigenvectors */
    eval = imsl_f_eig_sym(n, a,
                             IMSL_VECTORS, &evec,
                             0);
                                    /* Print eigenvalues and eigenvectors */
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}
```

Output

	Eigenvalues	
1	2	3
-27.90	22.68	9.22

	Eige	nvectors	
	1	2	3
1	0.2945	-0.2722	0.9161
2	0.8521	-0.3591	-0.3806
3	0.4326	0.8927	0.1262

Warning Errors

IMSL_SLOW_CONVERGENCE_SYM	The iteration for the eigenvalue failed to converge in 100 iterations before deflating.
IMSL_SLOW_CONVERGENCE_2	Inverse iteration did not converge. Eigenvector is not correct for the specified eigenvalue.
IMSL_LOST_ORTHOGONALITY_2	The eigenvectors have lost orthogonality.

IMSL_NO_EIGENVALUES_RETURNED

The number of eigenvalues in the specified interval exceeds mxeval. The argument n_eval contains the number of eigenvalues in the interval. No eigenvalues will be returned.

eig_herm (complex)

Computes the eigenexpansion of a complex Hermitian matrix A.

Synopsis

#include <imsl.h>

float *imsl_c_eig_herm (*int* n, *f_complex* *a, ..., 0)

The type *double* procedure is imsl_d_eig_herm.

Required Arguments

int n (Input) Number of rows and columns in the matrix.

 $f_complex *a$ (Input) Array of size $n \times n$ containing the matrix.

Return Value

A pointer to the *n* eigenvalues of the matrix. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size $n \times n$ containing eigenvectors of the matrix. On return, the necessary space is allocated by the function. Typically, $f_complex * evec}$ is declared, and & evec is used as an argument.

```
IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n \times n containing the unitary matrix of eigenvectors is returned in the space evecu.
```

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_RANGE, *float* elow, *float* ehigh (Input) Return eigenvalues and optionally eigenvectors that lie in the interval with lower limit elow and upper limit ehigh. Default: (elow, ehigh) = $(-\infty, +\infty)$.

- IMSL_A_COL_DIM, int a_col_dim (Input)
 The column dimension of A.
 Default: a_col_dim = n
- IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
 The column dimension of X.
 Default: evecu_col_dim = n
- IMSL_RESULT_NUMBER, int *n_eval (Output)
 The number of output eigenvalues and eigenvectors in the range elow, ehigh.

Description

The function $imsl_c_eig_herm$ computes the eigenvalues of a complex Hermitian matrix by a two-phase process. The matrix is reduced to tridiagonal form by elementary orthogonal similarity transformations. Then, the eigenvalues are computed using a rational *QR* or bisection algorithm. Eigenvectors are calculated as required.

Examples

Example 1

```
#include <imsl.h>
main()
{
    int
                  n = 3;
                            \{ \{1,0\}, \{1,-7\}, \{0,-1\}, 
    f_complex a[] =
                               \{1,7\}, \{5,0\}, \{10,-3\}, \{0,1\}, \{10,3\}, \{-2,0\}\};
    float
                   *eval;
                                          /* Compute eigenvalues */
    eval = imsl_c_eig_herm(n, a, 0);
                                          /* Print eigenvalues */
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}
              Output
              Eigenvalues
```

1 2 3 15.38 -10.63 -0.75

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

```
main()
{
      int
                         n = 3;
      f_complex a[] =
                                       \left\{ \begin{array}{c} \left\{ {1\,,0} \right\},\; \left\{ {1\,,-7} \right\},\; \left\{ {0\,,-1} \right\}, \end{array} \right.
                                           \{1,7\}, \{5,0\}, \{10,-3\}, \{0,1\}, \{10,3\}, \{-2,0\}\};
      float
                          *eval;
                          *evec;
      f_complex
                                                      /* Compute eigenvalues and eigenvectors */
      eval = imsl_c_eig_herm(n, a,
                                            IMSL_VECTORS, &evec,
                                            0);
                                                      /* Print eigenvalues and eigenvectors */
      imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}
```

Output

	Eigenvalues	
3	2	1
-0.75	-10.63	15.38
Figenzeato		

	Eigenvectors								
			1			2			3
1	(0.0631,	-0.4075)	(-0.0598,	-0.3117)	(0.8539,	0.0000)
2	(0.7703,	0.0000)	(-0.5939,	0.1841)	(-0.0313,	-0.1380)
3	(0.4668,	0.1366)	(0.7160,	0.0000)	(0.0808,	-0.4942)

Warning Errors

IMSL_LOST_ORTHOGONALITY	The iteration for at least one eigenvector failed to converge. Some of the eigenvectors may be inaccurate.
IMSL_NEVAL_MXEVAL_MISMATCH	The determined number of eigenvalues in the interval (#, #) is #. However, the input value for the maximum number of eigenvalues in this interval is #.
Fatal Errors	
IMSL_SLOW_CONVERGENCE_GEN	The iteration for the eigenvalues did not converge.
IMSL_HERMITIAN_DIAG_REAL	The matrix element $A(\#, \#) = \#$. The diagonal of a Hermitian matrix must be real.

eig_symgen

Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$. The matrices *A* and *B* are real and symmetric, and *B* is positive definite.

Synopsis

#include <imsl.h>

float *imsl_f_eig_symgen (int n, float *a, float *b, ..., 0)

The type *double* procedure is imsl_d_eig_symgen.

Required Arguments

int n (Input)

Number of rows and columns in the matrices.

float *a (Input)

Array of size $n \times n$ containing the symmetric coefficient matrix *A*.

float *b (Input)

Array of size $n \times n$ containing the positive definite symmetric coefficient matrix *B*.

Return Value

A pointer to the *n* eigenvalues of the symmetric matrix. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_eig_symgen (int n, float *a, float *b,
    IMSL_VECTORS, float **evec,
    IMSL_VECTORS_USER, float evecu[],
    IMSL_RETURN_USER, float evalu[],
    IMSL_RANGE, float elow, float ehigh,
    IMSL_A_COL_DIM, int a_col_dim,
    IMSL_B_COL_DIM, int b_col_dim,
    IMSL_EVECU_COL_DIM, int evecu_col_dim,
    0)
```

Optional Arguments

IMSL_VECTORS, float **evec (Output)

The address of a pointer to an array of size $n \times n$ containing eigenvectors of the problem. On return, the necessary space is allocated by the function. Typically, *float* *evec is declared, and &evec is used as an argument.

```
IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n \times n containing the matrix of generalized eigenvectors is returned in the space evecu.
```

- IMSL_RETURN_USER, float evalu[] (Output)
 Store the n eigenvalues in the space evalu.
- IMSL_A_COL_DIM, int a_col_dim (Input)
 The column dimension of A.
 Default: a_col_dim = n
- IMSL_B_COL_DIM, int b_col_dim (Input)
 The column dimension of B.
 Default: b_col_dim = n
- IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
 The column dimension of evecu.
 Default: evecu_col_dim = n

Description

The function $imsl_f_eig_symgen$ computes the eigenvalues of a symmetric, positive definite eigenvalue problem by a three-phase process (Martin and Wilkinson 1971). The matrix *B* is reduced to factored form using the Cholesky decomposition. These factors are used to form a congruence transformation that yields a symmetric real matrix whose eigenexpansion is obtained. The problem is then transformed back to the original coordinates. Eigenvectors are calculated and transformed as required.

Examples

Example 1

```
#include <imsl.h>
main()
{
    int
                 n = 3;
                           \{ 1.1, 1.2, 1.4, \\ 1.2, 1.3, 1.5, 
                 a[] =
    float
                           1.4, 1.5, 1.6};
                           \{2.0, 1.0, 0.0,
    float
                 b[] =
                            1.0, 2.0, 1.0,
                           0.0, 1.0, 2.0;
    float
                  *eval;
                                    /* Solve for eigenvalues */
    eval = imsl_f_eig_symgen (n, a, b, 0);
                                    /* Print eigenvalues */
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}
             Output
```

Eigenvalues 1 2 3 1.386 -0.058 -0.003

This example is a variation of the first example. Here, the eigenvectors are computed as well as the eigenvalues.

#include <imsl.h>

```
main()
{
      int
                         n = 3;
      float
                         a[] =
                                       \{1.1, 1.2, 1.4,
                                        1.2, 1.3, 1.5,
                                      \begin{array}{c} 1.2, 1.5, 1.6 \\ 1.4, 1.5, 1.6 \\ ; \\ \{2.0, 1.0, 0.0, \\ 1.0, 2.0, 1.0, \\ 0.0, 1.0, 2.0 \\ ; \end{array}
      float
                         b[] =
      float
                          *eval;
      float
                          *evec;
                                                  /\,\star\, Solve for eigenvalues and eigenvectors \,\star\,/\,
      eval = imsl_f_eig_symgen (n, a, b,
                                                IMSL_VECTORS, &evec,
                                                0);
                                                 /* Print eigenvalues and eigenvectors */
      imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}
```

```
Output
            Eigenvalues
         1
                     2
                                  3
                             -0.003
     1.386
                -0.058
            Eigenvectors
                        2
                                     3
            1
       0.6431
                  -0.1147
                              -0.6817
1
2
      -0.0224
                  -0.6872
                               0.7266
3
       0.7655
                   0.7174
                               -0.0858
```

Warning Errors

IMSL_SLOW_CONVERGENCE_SYM	The iteration for an eigenvalue failed to converge in 100 iterations before deflating.
Fatal Errors	
IMSL_SUBMATRIX_NOT_POS_DEFINITE	The leading # by # submatrix of the input matrix is not positive definite.
IMSL_MATRIX_B_NOT_POS_DEFINITE	Matrix B is not positive definite.

geneig

Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$, with A and B real.

Synopsis

```
#include <imsl.h>
```

```
void imsl_f_geneig (int n, float *a, float *b, f_complex *alpha, float
            *beta, ..., 0)
```

The *double* analogue is imsl_d_geneig.

Required Arguments

- *int* n (Input) Number of rows and columns in A and B.
- *float* *a (Input) Array of size $n \times n$ containing the coefficient matrix A.
- *float* *b (Input) Array of size $n \times n$ containing the coefficient matrix *B*.

f_complex *alpha (Output) Vector of size *n* containing scalars α_i . If $\beta_i \neq 0$, $\lambda_i = \alpha_i / \beta_i$ for i = 0, ..., n - 1 are the eigenvalues of the system.

float *beta (Output) Vector of size n.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size $n \times n$ containing eigenvectors of the problem. Each vector is normalized to have Euclidean length equal to the value one. On return, the necessary space is allocated by the function. Typically, $f_complex * evec$ is declared, and & evec is used as an argument.

IMSL_VECTORS_USER, $f_complex$ evecu[] (Output) Compute eigenvectors of the matrix. An array of size $n \times n$ containing the matrix of generalized eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length equal to the value one.

- IMSL_A_COL_DIM, *int* a_col_dim (Input) The column dimension of A. Default: a_col_dim = n
- IMSL_B_COL_DIM, int b_col_dim (Input)
 The column dimension of B.
 Default: b_col_dim = n.
- IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
 The column dimension of evecu.
 Default: evecu_col_dim = n

Description

The function imsl_f_geneig uses the QZ algorithm to compute the eigenvalues and eigenvectors of the generalized eigensystem $Ax = \lambda Bx$, where A and B are real matrices of order *n*. The eigenvalues for this problem can be infinite, so α and β are returned instead of λ . If β is nonzero, $\lambda = \alpha/\beta$.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_f_geneig is based on the QZ algorithm due to Moler and Stewart (1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).

Examples

Example 1

In this example, the eigenvalue, λ , of system $Ax = \lambda Bx$ is computed, where

	1.0	0.5	0.0		0.5	0.0	0.0
A =	-10.0	2.0	0.0	and $B =$	3.0	3.0	0.0
	5.0	1.0	0.5		4.0	0.5	1.0

#include <imsl.h>

main()
{

```
int n = 3;
f_complex alpha[3];
float beta[3];
int i;
f_complex eval[3];
float a[] = {1.0, 0.5, 0.0,
-10.0, 2.0, 0.0,
5.0, 1.0, 0.5};
```

```
b[] = {0.5, 0.0, 0.0,
3.0, 3.0, 0.0,
4.0, 0.5, 1.0};
float
                           /* Compute eigenvalues */
imsl_f_geneig (n, a, b, alpha, beta, 0);
for (i=0; i<n; i++)</pre>
        if (beta[i] != 0.0)
                  eval[i] = imsl_c_div(alpha[i],
                           imsl_cf_convert(beta[i], 0.0));
         else
                  printf ("Infinite eigenvalue\n");
                           /* Print eigenvalues */
imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
```

```
}
```

{

Output

				Eigenval	lues			
		1			2			3
(0.833,	1.993)	(0.833,	-1.993)	(0.500,	0.000)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

#include <imsl.h>

```
main()
                           n = 3;
         int
         f_complex
                           alpha[3];
         float
                           beta[3];
         int
                           i;
         f_complex
                           eval[3];
                          *evec;
         f_complex
                           a[] = \{1.0, 0.5, 0.0,
         float
                                  -10.0, 2.0, 0.0,
                                   5.0, 1.0, 0.5};
                           b[] = {0.5, 0.0, 0.0,
3.0, 3.0, 0.0,
4.0, 0.5, 1.0};
         float
         imsl_f_geneig (n, a, b, alpha, beta,
                  IMSL_VECTORS, &evec,
                  0);
         for (i=0; i<n; i++)</pre>
                  if (beta[i] != 0.0)
                           eval[i] = imsl_c_div(alpha[i],
                                    imsl_cf_convert(beta[i], 0.0));
                  else
                           printf ("Infinite eigenvalue\n");
```

Output

					Eigenvalu	es			
			1			2			3
(0.833,	1.993) (0.833,	-1.993)	(0.500,	-0.000)
	Eigenvectors								
			1			2			3
1	(-0.197,	0.150)	(-0.197,	-0.150)	(-0.000,	0.000)
2	(-0.069,	-0.568)	(-0.069,	0.568)	(-0.000,	0.000)
3	(0.782,	0.000)	(0.782,	0.000)	(1.000,	0.000)

geneig (*complex*)

Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$, with A and B complex.

Synopsis

#include <imsl.h>

The *double* analogue is imsl_z_geneig.

Required Arguments

int n (Input) Number of rows and columns in A and B. f_complex *a (Input) Array of size n × n containing the coefficient matrix A. f_complex *b (Input)

Array of size $n \times n$ containing the coefficient matrix B

f_complex *alpha (Output) Vector of size *n* containing scalars α_i . If $\beta_i \neq 0$, $\lambda_i = \alpha_i / \beta_i$ for i = 0, ..., n - 1 are the eigenvalues of the system.

 $f_complex$ *beta (Output) Vector of size n.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

```
void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha,
        f_complex *beta
        IMSL_VECTORS, f_complex **evec,
        IMSL_VECTORS_USER, f_complex evecu[],
        IMSL_A_COL_DIM, int a_col_dim,
        IMSL_B_COL_DIM, int b_col_dim,
        IMSL_EVECU_COL_DIM, int evecu_col_dim,
        0)
```

Optional Arguments

IMSL_VECTORS, $f_complex **evec$ (Output) The address of a pointer to an array of size $n \times n$ containing eigenvectors of the problem. Each vector is normalized to have Euclidean length equal to the value one. On return, the necessary space is allocated by the function. Typically, $f_complex *evec$ is declared, and &evec is used as an argument.

```
IMSL_VECTORS_USER, f\_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n \times n containing the matrix
of generalized eigenvectors is returned in the space evecu. Each vector is
normalized to have Euclidean length equal to the value one.
```

- IMSL_A_COL_DIM, int a_col_dim (Input)
 The column dimension of A.
 Default: a_col_dim =
- IMSL_B_COL_DIM, int b_col_dim (Input)
 The column dimension of B.
 Default: b_col_dim = n.
- IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
 The column dimension of evecu.
 Default: evecu_col_dim = n.

Description

The function imsl_c_geneig uses the QZ algorithm to compute the eigenvalues and eigenvectors of the generalized eigensystem $Ax = \lambda Bx$, where *A* and *B* are real matrices of order *n*. The eigenvalues for this problem can be infinite, so α and β are returned instead of λ . If β is nonzero, $\lambda = \alpha/\beta$.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_c_geneig is based on the QZ algorithm due to Moler and Stewart (1973).

134 • geneig (complex)

Example 1

In this example, the eigenvalue, λ , of system $Ax = \lambda Bx$ is solved, where

$$A = \begin{bmatrix} 1+i & 0.5+i & 5i \\ -10 & 2+i & 0 \\ 5+i & 1 & 0.5+3i \end{bmatrix} \text{ and } B = \begin{bmatrix} 0.5 & 0 & 0 \\ 3+3i & 3+3i & i \\ 4+2i & 0.5+i & 1+i \end{bmatrix}$$

#include <imsl.h>

main()
{

alli()						
	int f_complex	<pre>n = 3; alpha[3]; beta[3]; i; eval[3]; zero = {0.0, 0.0}; a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},</pre>				
	f_complex	$b[] = \{ \{0.5, 0.0\}, \{0.0, 0.0\}, \{0.0, 0.0\}, \\ \{3.0, 3.0\}, \{3.0, 3.0\}, \{0.0, 1.0\}, \\ \{4.0, 2.0\}, \{0.5, 1.0\}, \{1.0, 1.0\} \};$				
		/* Compute eigenvalues */				
	imsl_c_geneig (n, a, b, alpha, beta, 0);				
	<pre>for (i=0; i<n; (!imsl_c_eq(beta[i],="" beta[i]);="" else<="" eval[i]="imsl_c_div(alpha[i]," i++)="" if="" pre="" zero))=""></n;></pre>					
	0100	<pre>printf ("Infinite eigenvalue\n");</pre>				
		/* Print eigenvalues */				
	imsl_c_write_ma	trix ("Eigenvalues", 1, n, eval, 0);				
	Output					
		Eigenvalues				

			Ergenvard	165		
		1		2		3
(-8.18,	-25.38) (2.18,	0.61) (0.12,	-0.39)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

#include <imsl.h>

main() {

}

```
int
                      n = 3;
                      alpha[3];
f_complex
f_complex
                      beta[3];
int
                      i;
f_complex
                      eval[3];
                     *evec;
f_complex
                      zero = \{0.0, 0.0\};

a[] = \{\{1.0, 0.0\}, \{0.5, 1.0\}, \{0.0, 5.0\}, \{-10.0, 0.0\}, \{2.0, 1.0\}, \{0.0, 0.0\}, \{5.0, 1.0\}, \{1.0, 0.0\}, \{0.5, 3.0\}\};
f_complex
f_complex
                     b[] = \{\{0.5, 0.0\}, \{0.0, 0.0\}, \{0.0, 0.0\}, \\ \{3.0, 3.0\}, \{3.0, 3.0\}, \{0.0, 1.0\}, \\ \{4.0, 2.0\}, \{0.5, 1.0\}, \{1.0, 1.0\}\};
f_complex
                                 /* Compute eigenvalues and eigenvectors */
imsl_c_geneig (n, a, b, alpha, beta,
           IMSL_VECTORS_USER, evec,
           0);
for (i=0; i<n; i++)</pre>
           if (!imsl_c_eq(beta[i], zero))
                      eval[i] = imsl_c_div(alpha[i], beta[i]);
           else
                      printf ("Infinite eigenvalue\n");
                                 /* Print eigenvalues */
imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
                                 /*Print eigenvectors */
imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
```

}

Output

		•	1		Eigenvalu				2
(-8.18, -	·25.38) (2.18,	2 0.61) (0.12,	-0.39)
	Eigenvectors								
1 2 3	(((-0.3267, 0.1767, 0.9201,	1 -0.1245) 0.0054) 0.0000)	(((-0.3007, 0.8959, -0.2019,	2 -0.2444) 0.0000) 0.0801)	(((0.0371, 0.9577, -0.2215,	3 0.1518) 0.0000) 0.0968)

Chapter 3: Interpolation and Approximation

Routines

3.1	Cubic Spline Interpolation Derivative end conditionscub_spline_interp_e_cnd Shape preservingcub_spline_interp_shape	143 150
3.2	Cubic Spline Evaluation and Integration Evaluation and differentiationcub_spline_value Integrationcub_spline_integral	155 158
3.3	Spline Interpolation One-dimensional interpolation	159 165 169
3.4	Spline Evaluation and Integration One-dimensional evaluation and differentiationspline_value One-dimensional integrationspline_integral Two-dimensional evaluation and differentiationspline_2d_value Two-dimensional integrationspline_2d_integral	175 178 180 184
3.5	Least-Squares Approximation and Smoothing General functionsuser_fcn_least_squares Splines with fixed knotsspline_least_squares Tensor-product splines with fixed knotsspline_2d_least_squares Cubic smoothing splinecub_spline_smooth Splines with constraintsspline_lsq_constrained Smooth one-dimensional data by error detectionsmooth_1d_data	187 191 197 203 207 214
3.6	Scattered Data Interpolation Akima's surface-fitting methodscattered_2d_interp	218
3.7	Scattered Data Least Squares Fit using radial-basis functionsradial_scattered_fit Evaluate radial-basis fitradial_evaluate	223 229

Usage Notes

The majority of the functions in this chapter produce cubic piecewise polynomial or general spline functions that either interpolate or approximate given data or support the evaluation and integration of these functions. Two major subdivisions of functions are provided. The cubic spline functions begin with the prefix "cub_spline_" and use the piecewise polynomial representation described below. The spline functions begin with the prefix "spline_" and use the B-spline representation described below. Most of the spline functions are based on routines in the book by de Boor (1978).

We provide a few general purpose routines for general least-squares fit to data and a routine that produces an interpolant to two-dimensional scattered data.

Piecewise Polynomials

A univariate piecewise polynomial (function) p is specified by giving its breakpoint sequence $\xi \in \mathbf{R}^n$, the order k (degree k - 1) of its polynomial pieces, and the $k \times (n - 1)$ matrix c of its local polynomial coefficients. In terms of this information, the piecewise polynomial (ppoly) function is given by

$$p(x) = \sum_{j=1}^{k} c_{ji} \frac{(x - \xi_i)^{j-1}}{(j-1)!} \quad \text{for } \xi_i \le x \le \xi_{i+1}$$

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the ppoly function to the entire real axis by extrapolation from the first and last intervals. This representation is redundant when the ppoly function is known to be smooth. For example, if *p* is known to be continuous, then we can compute $c_{1,i+1}$ from the c_{ji} as follows:

$$c_{1,i+1} = p(\xi_{i+1}) = \sum_{j=1}^{k} c_{ji} \frac{(\xi_{i+1} - \xi_i)^{j-1}}{(j-1)!}$$

For smooth ppoly, we prefer to use the nonredundant representation in terms of the "basis" or B-splines, at least when such a function is first to be determined.

Splines and B-Splines

B-splines provide a particularly convenient and suitable basis for a given class of smooth ppoly functions. Such a class is specified by giving its breakpoint sequence, its order *k*, and the required smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified by giving its knot sequence $\mathbf{t} \in \mathbf{R}^{M}$. The specification rule is as follows: If the class is to have all derivatives up to and including the *j*-th derivative continuous across the interior breakpoint ξ_i , then the number ξ_i should occur k - j - 1 times in the knot sequence. Assuming that ξ_1 and ξ_n are the endpoints of the interval of interest, choose the first *k* knots equal to ξ_1 and the last *k* knots equal to ξ_n . This can be done because the B-splines are defined to be right continuous near ξ_1 and left continuous near ξ_n .

When the above construction is completed, a knot sequence **t** of length *M* is generated, and there are m := M - k B-splines of order *k*, for example B_0, \ldots, B_{m-1} , spanning the ppoly functions on the interval with the indicated smoothness. That is, each ppoly function in this class has a unique representation

$$p = a_0 B_0 + a_1 B_1 + \ldots + a_{m-1} B_{m-1}$$

as a linear combination of B-splines. A B-spline is a particularly compact ppoly function. B_i is a nonnegative function that is nonzero only on the interval $[\mathbf{t}_{i,}\mathbf{t}_{i+k}]$. More precisely, the support of the *i*-th B-spline is $[\mathbf{t}_{i,}\mathbf{t}_{i+k}]$. No ppoly function in the same class (other than the zero function) has smaller support (i.e., vanishes on more intervals) than a B-spline. This makes B-spline particularly attractive basis functions since the influence of any particular B-spline coefficient extends only over a few intervals. When it is necessary to emphasize the dependence of the B-spline on its parameters, we will use the notation $B_{i,k,\mathbf{t}}$ to denote the *i*-th B-spline of order *k* for the knot sequence **t**.

Cubic Splines

Cubic splines are smooth (i.e., C^{l} or C^{2}), fourth-order ppoly functions. For historical and other reasons, cubic splines are the most heavily used ppoly functions. Therefore, we provide special functions for their construction and evaluation. These routines use the ppoly representation as described above for general ppoly functions (with k = 4).

We provide two cubic spline interpolation functions:

imsl_f_cub_spline_interp_e_cnd and imsl_f_cub_spline_interp_shape. The function imsl_f_cub_spline_interp_e_cnd allows the user to specify various endpoint conditions (such as the value of the first or second derivative at the right and left points). This means that the natural cubic spline can be obtained using this function by setting the second derivative to zero at both endpoints. The function imsl_f_cub_spline_interp_shape is designed so that the shape of the curve matches the shape of the data. In particular, one option of this function preserves the convexity of the data while the default attempts to minimize oscillations.

It is possible that the cubic spline interpolation functions will produce unsatisfactory results. For example, the interpolant may not have the shape required by the user, or the data may be noisy and require a least-squares fit. The interpolation function <code>imsl_f_spline_interp</code> is more flexible, as it allows you to choose the knots and order of the spline interpolant. We encourage the user to use this routine and exploit the flexibility provided.

Tensor Product Splines

The simplest method of obtaining multivariate interpolation and approximation functions is to take univariate methods and form a multivariate method via tensor products. In the case of two-dimensional spline interpolation, the derivation proceeds as follows. Let \mathbf{t}_x be a knot sequence for splines of order k_x , and \mathbf{t}_y be a knot sequence for splines of order k_y . Let $N_x + k_x$ be the length of \mathbf{t}_x , and $N_y + k_y$ be the length of \mathbf{t}_y . Then, the tensor-product spline has the following form.

$$\sum_{m=0}^{N_y-1} \sum_{n=0}^{N_x-1} c_{nm} B_{n,k_x,\mathbf{t}_x}(x) B_{m,k_y,\mathbf{t}_y}(y)$$

Given two sets of points

$$\left\{x_i\right\}_{i=1}^{N_x}$$

and

$$\left\{y_i\right\}_{i=1}^{N_y}$$

for which the corresponding univariate interpolation problem can be solved, the tensorproduct interpolation problem finds the coefficients c_{nm} so that

$$\sum_{m=0}^{N_y-1} \sum_{n=0}^{N_x-1} c_{nm} B_{n,k_x,\mathbf{t}_x}(x_i) B_{m,k_y,\mathbf{t}_y}(y_j) = f_{ij}$$

This problem can be solved efficiently by repeatedly solving univariate interpolation problems as described in de Boor (1978, p. 347). Three-dimensional interpolation can be handled in an analogous manner. This chapter provides functions that compute the two-dimensional, tensor-product spline coefficients given two-dimensional interpolation data (imsl_f_spline_2d_interp) and that compute the two-dimensional, tensor-product spline coefficients for a tensor-product, least-squares problem (imsl_f_spline_2d_least_squares). In addition, we provide evaluation, differentiation, and integration functions for the two-dimensional, tensor-product spline insl_f_spline_2d_value and imsl_f_spline_2d_integral.

Scattered Data Interpolation

The IMSL C/Math/Library provides one function, $imsl_f_scattered_2d_interp$, that returns values of an interpolant to scattered data in the plane. This function is based on work by Akima (1978), which uses C^1 piecewise quintics on a triangular mesh.

Least Squares

The IMSL C/Math/Library includes functions for smoothing noisy data. The function $imsl_f_user_fcn_least_squares$ computes regressions with user-supplied functions. The function $imsl_f_spline_least_squares$ computes a least-squares fit using splines with fixed knots or variable knots. These functions produce cubic spline, least-squares fit by default. Optional arguments allow the user to choose the order and the knot sequence. IMSL C/Math/Library also includes a tensor-product spline regression function (imsl_f_spline_2d_least_squares) mentioned above. The function imsl_f_radial_scattered_fit computes an approximation to scattered data in \mathbf{R}^N using radial-basis functions.

In addition to the functions listed above, several functions in Chapter 10, "Statistics and Random Number Generation", provide for polynomial regression and general linear regression.

Smoothing by Cubic Splines

One "smoothing spline" function is provided. The default action of imsl_f_cub_spline_smooth estimates a smoothing parameter by cross-validation and then returns the cubic spline that smooths the data. If the user wishes to supply a smoothing parameter, then this function returns the appropriate cubic spline.

Structures for Splines and Piecewise Polynomials

This optional section includes more details concerning the structures for splines and piecewise polynomials.

A spline may be viewed as a mapping with domain \mathbf{R}^d and target \mathbf{R}^r , where *d* and *r* are positive integers. For this version of the IMSL C/Math/Library, only r = 1 is supported. Thus, if *s* is a spline, then for some *d* and *r*

$$s: \mathbf{R}^d \to \mathbf{R}^r$$

This implies that such a spline s must have d knot sequences and orders (one for each domain dimension). Thus, associated with s, we have knots and orders

$$\mathbf{t}^{0}, ..., \mathbf{t}^{d-1}$$

 $k_{0}, ..., \mathbf{k}_{d-1}$

The precise form of the spline follows:

$$s(x) = (s_0(x), \dots, s_{r-1}(x))$$
 $x = (x_1, \dots, x_d) \in \mathbf{R}^d$

where the following equation is true.

$$s_i(x) := \sum_{j_{d-1}=0}^{n_{d-1}-1} \cdots \sum_{j_0=0}^{n_0-1} c_{j_0,\ldots,j_{d-1}}^i B_{j_0,k_0,\mathbf{t}^{0\dots}} B_{j_{d-1},k_{d-1},\mathbf{t}^{d-1}}$$

Note that n_i is the number of knots in \mathbf{t}^i minus the order k_i .

We store all the information for a spline in one structure called *Imsl_f_spline*. (If the type is double, then the structure name is *Imsl_d_spline*, and the *float* becomes *double*.) The specification for this structure follows:

```
typedef struct {
    int domain_dim;
    int target_dim;
    int *order;
    int *num_coef;
    int *num_knots;
    float **knots;
    float **coef;
} Imsl_f_spline;
```

= dsp-> domain_dim sp-> target_dim = *r* $= k_i$ i = 0, ..., d - 1sp-> order[i] $= m_i \quad i = 0, ..., d-1$ sp-> num_coef[i] $= n_i + k_i \quad i = 0, \dots, d-1$ sp-> num_knots[i] sp-> knots[i][j] $= t_i$ $i = 0, \dots, d-1$ $j = 0, \dots, n_i + k_i - 1$ sp-> coef[i][j] $= c_i$ $i = 0, \dots, r-1, j = j_0 + j_1, n_0 + \dots + j_{d-1}, n_0 \dots n_{d-2}$

Explicitly, if sp is a pointer to Imsl_f_spline, then

For ppoly functions, we view a ppoly as a mapping with domain \mathbf{R}^d and target \mathbf{R}^r where *d* and *r* are positive integers. Thus, if *p* is a ppoly, then for some *d* and *r* the following is true.

$$p: \mathbf{R}^d \to \mathbf{R}^r$$

For this version of the C/Math/Library, only r = 1 is supported. This implies that such a ppoly *p* must have *d* breakpoint sequences and orders (one for each domain dimension). Thus, associated with *p*, we have breakpoints and orders

$$\xi^1, ..., \xi^d$$

 $k_1, ..., k_d$

The precise form of the ppoly follows:

$$p(x) = (p_0(x), ..., p_r(x)) \ x = (x_1, ..., x_d) \in \mathbf{R}^d$$

where

$$p_i(x) := \sum_{l_d=0}^{k_d-1} \dots \sum_{l_1=0}^{k_1-1} c_{L^1,\dots,L^d,l_1,\dots,l_d}^i \frac{\left(x_1 - \xi_{L^1}^1\right)}{l_1!} \dots \frac{\left(x_d - \xi_{L^d}^d\right)^{l_d}}{l_d!}$$

with

$$L^{j} := \max \{1, \min \{M^{j}, n_{j} - 1\}\}$$

where M^{J} is chosen so that

$$\xi_{M^{j}}^{j} \leq x_{j} < \xi_{M^{j+1}}^{j}$$
 $j = 1, ..., d$

with

$$\xi_0^j = -\infty$$
 and $\xi_{n_j+1}^j = \infty$

Note that n_j is the number of breakpoints in ξ^j .

142 • Usage Notes

We store all the information for a ppoly in one structure called *Imsl_f_ppoly*. (If the type is *double*, then the structure name is *Imsl_d_ppoly*, and the *float* becomes *double*.) The following is the specification for this structure.

typedef struct {
 int domain_dim;
 int target_dim;
 int *order;
 int *num_coef;
 int *num_breakpoints;
 float **breakpoints;
 float **coef;
} Imsl_f_ppoly;

In particular, if ppoly is a pointer to the structure of type *Imsl_f_ppoly*, then

ppoly-> domain_dim	= d
ppoly-> target_dim	= <i>r</i>
ppoly-> order [i]	$=k_i$ $i=0,, d-1$
ppoly-> num_coef [i]	$=k_i(n_i-1)$ $i=0,, d-1$
<pre>ppoly-> num_breakpoints[i]</pre>	$= n_i i = 0, \dots, d-1$
<pre>ppoly-> breakpoints[i][j]</pre>	$= \xi_j$ i = 0,, d - 1 j = 0,, n _i - 1
ppoly->coef[i[[j]	$= c_j$ i = 0,, r - 1 $j = 0,, k_0(n_0 - 1)k_{d-1}(n_{d-1} - 1)$

cub_spline_interp_e_cnd

Computes a cubic spline interpolant, specifying various endpoint conditions. The default interpolant satisfies the "not-a-knot" condition.

Synopsis

The type *Imsl_d_ppoly* function is imsl_d_cub_spline_interp_e_cnd.

Required Arguments

int ndata (Input) Number of data points.

float xdata[] (Input)

Array with ndata components containing the abscissas of the interpolation problem.

float fdata[] (Input)

Array with ndata components containing the ordinates for the interpolation problem.

Chapter 3: Interpolation and Approximation

cub_spline_interp_e_cnd • 143

Return Value

A pointer to the structure that represents the cubic spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata, float xdata[],
 float fdata[],
 IMSL_LEFT, int ileft, float left,
 IMSL_RIGHT, int iright, float right,
 IMSL_PERIODIC,
 0)

Optional Arguments

IMSL_LEFT, *int* ileft, *float* left (Input)

Set the value for the first or second derivative of the interpolant at the left endpoint. If ileft = i, then the interpolant *s* satisfies

 $s^{(i)}(x_L) = \text{left}$

where x_L is the leftmost abscissa. The only valid values for ileft are 1 or 2.

IMSL_RIGHT, int iright, float right (Input)

Set the value for the first or second derivative of the interpolant at the right endpoint. If iright = i, then the interpolant *s* satisfies

 $s^{(i)}(x_R) = \text{right}$

where x_R is the rightmost abscissa. The only valid values for iright are 1 or 2.

IMSL_PERIODIC

Compute the C^2 periodic interpolant to the data. That is, we require

$$s^{(i)}(x_L) = s^{(i)}(x_R)$$
 $i = 0, 1, 2$

where s, x_L , and x_R are defined above.

Description

The function $imsl_f_cub_spline_interp_e_cnd$ computes a C^2 cubic spline interpolant to a set of data points (x_i, f_i) for i = 0, ..., ndata - 1 = n. The breakpoints of the spline are the abscissas. We emphasize here that for all the univariate interpolation functions, the abscissas need not be sorted. Endpoint conditions are to be selected by the user. The user may specify "not-a-knot" or first derivative or second derivative at each endpoint, or C^2 periodicity may be requested (see de Boor 1978, Chapter 4). If no defaults are selected, then the "not-a-knot" spline interpolant is computed. If the IMSL_PERIODIC keyword is selected, then all other keywords are ignored; and a C^2 periodic interpolant is computed. In this case, if the fdata values at the left and right endpoints are not the same, then a warning message is issued; and we set the right value equal to the left. If IMSL_LEFT or IMSL_RIGHT are selected (in the absence of IMSL_PERIODIC), then the user has the ability to select the values of the first or second derivative at either endpoint. The default case (when the keyword is not used) is the "not-a-knot" condition on that endpoint. Thus, when no optional arguments are chosen, this function produces the "not-a-knot" interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth (say C^4) function *f*, i.e. $f_i = f(x_i)$, then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies

$$\|f - s\|_{[\xi_0,\xi_n]} \le C \|f^{(4)}\|_{[\xi_0,\xi_n]} |\xi|^4$$

where

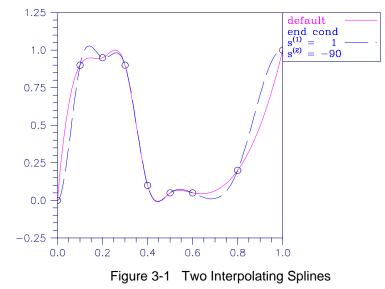
$$|\xi| := \max_{i=0,...,n-1} |\xi_{i+1} - \xi_i|$$

For more details, see de Boor (1978, Chapters 4 and 5).

The return value for this function is a pointer to the structure $Imsl_f_poly$. The calling program must receive this in a pointer $Imsl_f_poly *_{PPoly}$. This structure contains all the information to determine the spline (stored as a piecewise polynomial) that is computed by this function. For example, the following code sequence evaluates this spline at *x* and returns the value in *y*

y = imsl_f_cub_spline_value (x, ppoly, 0)

The difference between the default ("not-a-knot") spline and the interpolating cubic spline, which has first derivative set to 1 at the left end and the second derivative set to -90 at the right end, is illustrated in the following figure.



cub_spline_interp_e_cnd • 145

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. Since we are using the default settings, the interpolant is determined by the "not-a-knot" condition (see de Boor 1978).

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
                                  /* Define function */
#define F(x)
                  (float)(sin(15.0*x))
main()
ł
    int
                         i;
                         fdata[NDATA], xdata[NDATA], x, y;
    float
    Imsl_f_ppoly
                         *ppoly;
                                  /* Compute xdata and fdata */
    for (i = 0; i < NDATA;
                              i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                                  /* Compute cubic spline interpolant */
    ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
                                  /* Print results */
    printf("
                            F(x)
                                        Interpolant
                                                        Error\n");
                 x
    for (i = 0; i < 2*NDATA-1;</pre>
                                  i++){
        x = (float) i / (float)(2*NDATA-2);
        y = imsl_f_cub_spline_value(x,ppoly,0);
        printf(" %6.3f %10.3f
                                   %10.3f
                                            %10.4f\n", x, F(x), y,
                                                      fabs(F(x)-y));
    }
}
            Output
              F(x)
                        Interpolant
                                        Error
    х
0.000
            0.000
                          0.000
                                       0.0000
0.050
            0.682
                          0.809
                                       0.1270
0.100
            0.997
                          0.997
                                       0.0000
            0.778
0.150
                          0.723
                                       0.0552
0.200
            0.141
                          0.141
                                       0.0000
0.250
           -0.572
                         -0.549
                                       0.0228
0.300
           -0.978
                         -0.978
                                       0.0000
0.350
           -0.859
                         -0.843
                                       0.0162
0.400
           -0.279
                         -0.279
                                       0.0000
0.450
            0.450
                          0.441
                                       0.0093
0.500
            0.938
                          0.938
                                       0.0000
0.550
            0.923
                          0.903
                                       0.0199
0.600
            0.412
                          0.412
                                       0.0000
0.650
           -0.320
                         -0.315
                                       0.0049
0.700
           -0.880
                         -0.880
                                       0.0000
0.750
           -0.968
                         -0.938
                                       0.0295
0.800
           -0.537
                         -0.537
                                       0.0000
```

146 • cub_spline_interp_e_cnd

0.850	0.183	0.148	0.0347
0.900	0.804	0.804	0.0000
0.950	0.994	1.086	0.0926
1.000	0.650	0.650	0.0000

In this example, a cubic spline interpolant to a function f is computed. The value of the derivative at the left endpoint and the value of the second derivative at the right endpoint are specified. The values of this spline are then compared with the exact function values.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
                                  /* Define function */
#define F(x)
                (float)(sin(15.0*x))
main()
{
                      i, ileft, iright;
    int
    float
                      left, right, x, y, fdata[NDATA], xdata[NDATA];
    Imsl_f_ppoly
                      *pp;
                                /* Compute xdata and fdata */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)(i)/(NDATA-1);
        fdata[i] = F(xdata[i]);
    }
                                  /* Specify end conditions */
    ileft
            = 1;
    left
           = 0.0;
    iright = 2;
    right =-225.0*sin(15.0);
                                  /* Compute cubic spline interpolant */
    pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
                                          IMSL_LEFT, ileft, left,
IMSL_RIGHT, iright, right,
                                          0);
                                  /* Print results for first half */
                                  /* of interval */
    printf("
                 х
                            F(x)
                                        Interpolant
                                                       Error\n\n");
    for (i=0;
               i<NDATA; i++){
        x = (float)(i)/(float)(2*NDATA-2);
        y = imsl_f_cub_spline_value(x,pp,0);
        printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
                                                     fabs(F(x)-y));
    }
}
            Output
              F(x)
                        Interpolant
                                       Error
    х
0.000
            0.000
                          0.000
                                       0.0000
0.050
            0.682
                          0.438
                                       0.2441
0.100
            0.997
                          0.997
                                       0.0000
            0.778
                                       0.0442
0.150
                          0.822
0.200
            0.141
                          0.141
                                       0.0000
```

Chapter 3: Interpolation and Approximation

cub_spline_interp_e_cnd • 147

0.250	-0.572	-0.575	0.0038
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.836	0.0233
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.439	0.0111
0.500	0.938	0.938	0.0000

This example computes the *natural* cubic spline interpolant to a function f by forcing the second derivative of the interpolant to be zero at both endpoints. As in the previous example, the exact function values are computed with the values of the spline.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
                                 /* Define function */
#define F(x)
                (float)(sin(15.0*x))
main()
{
    int
                      i, ileft, iright;
    float
                      left, right, x, y, fdata[NDATA],
                      xdata[NDATA];
    Imsl_f_ppoly
                      *pp;
                                 /* Compute xdata and fdata */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)(i)/(NDATA-1);
        fdata[i] = F(xdata[i]);
    }
                                 /* Specify end conditions */
    ileft
           = 2;
    left
           = 0.0;
    iright = 2;
    right = 0.0;
                                 /* Compute cubic spline interpolant */
    pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
                                          IMSL_LEFT, ileft, left,
IMSL_RIGHT, iright, right,
                                          0);
                                  /* Print results for first half */
                                  /* of interval */
    printf("
                                        Interpolant
                                                       Error\n\n");
                 х
                            F(x)
    for (i = 0; i < NDATA; i++)
        x = (float)(i)/(float)(2*NDATA-2);
        y = imsl_f_cub_spline_value(x,pp,0);
        printf(" %6.3f %10.3f %10.3f
                                            %10.4f\n", x, F(x), y,
                                                     fabs(F(x)-y);
    }
}
            Output
              F(x)
                        Interpolant
                                       Error
    х
0.000
            0.000
                                       0.0000
                          0.000
0.050
            0.682
                          0.667
                                       0.0150
0.100
            0.997
                          0.997
                                       0.0000
0.150
            0.778
                          0.761
                                       0.0172
```

148 • cub_spline_interp_e_cnd

0.200	0.141	0.141	0.0000
0.250	-0.572	-0.559	0.0126
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.840	0.0189
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.440	0.0098
0.500	0.938	0.938	0.0000

This example computes the cubic spline interpolant to a functions, and imposes the periodic end conditions s(a) = s(b), s'(a) = s'(b), and s''(a) = s''(b), where *a* is the leftmost abscissa and *b* is the rightmost abscissa.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
                                 /* Define function*/
#define F(x)
                (float)(sin(x))
main()
{
                         i;
    int
                         x, y, twopi, fdata[NDATA], xdata[NDATA];
    float
    Imsl_f_ppoly
                         *pp;
                                /* Compute xdata and fdata */
    twopi = 2.0*imsl_f_constant("pi", 0);
    for (i = 0; i < NDATA; i++)</pre>
        xdata[i] = twopi*(float)(i)/(NDATA-1);
        fdata[i] = F(xdata[i]);
    fdata[NDATA-1] = fdata[0];
                                /* Compute periodic cubic spline */
                                /* interpolant */
    pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
                                         IMSL_PERIODIC,
                                         0);
                                /* Print results for first half */
                                /* of interval */
    printf("
                            F(x)
                                       Interpolant
                                                       Error n n'';
                 х
    for (i = 0; i < NDATA; i++){</pre>
        x = (twopi/20.)*i;
        y = imsl_f_cub_spline_value(x, pp, 0);
        printf(" %6.3f %10.3f %10.3f %10.4f\n",x,F(x), y,
                                                   fabs(F(x)-y));
    }
}
            Output
              F(x)
                        Interpolant
                                       Error
    х
0.000
            0.000
                          0.000
                                      0.0000
0.314
            0.309
                          0.309
                                      0.0001
0.628
            0.588
                          0.588
                                      0.0000
0.942
            0.809
                          0.809
                                      0.0004
1.257
                          0.951
                                      0.0000
            0.951
1.571
            1.000
                          1.000
                                      0.0004
1.885
            0.951
                          0.951
                                      0.0000
```

Chapter 3: Interpolation and Approximation

cub_spline_interp_e_cnd • 149

2.199	0.809	0.809	0.0004
2.513	0.588	0.588	0.0000
2.827	0.309	0.309	0.0001
3.142	-0.000	-0.000	0.0000

Warning Errors

IMSL_NOT_PERIODIC

The data is not periodic. The rightmost fdata value is set to the leftmost fdata value.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES

The xdata values must be distinct.

cub_spline_interp_shape

Computes a shape-preserving cubic spline.

Synopsis

#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata, float xdata[],
 float fdata[], ..., 0)

The type *Imsl_d_ppoly* function is imsl_d_cub_spline_interp_shape.

Required Arguments

- *int* ndata (Input) Number of data points.
- float xdata[] (Input)
 Array with ndata components containing the abscissas of the interpolation
 problem.
- float fdata[] (Input)
 Array with ndata components containing the ordinates for the interpolation
 problem.

Return Value

A pointer to the structure that represents the cubic spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

150 • cub_spline_interp_shape

Optional Arguments

```
IMSL_CONCAVE
```

This option produces a cubic interpolant that will preserve the concavity of the data.

IMSL_CONCAVE_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of
Newton's Method. Default: itmax = 25.

Description

The function $imsl_f_cub_spline_interp_shape$ computes a C^i cubic spline interpolant to a set of data points(x_i, f_i) for i = 0, ..., ndata - 1 = n. The breakpoints of the spline are the abscissas. This computation is based on a method by Akima (1970) to combat wiggles in the interpolant. Endpoint conditions are automatically determined by the program; see Akima (1970) or de Boor (1978).

If the optional argument IMSL_CONCAVE is chosen, then this function computes a cubic spline interpolant to the data. For ease of explanation, we will assume that $x_i < x_{i+1}$, although it is not necessary for the user to sort these data values. If the data are strictly convex, then the computed spline is convex, C^2 , and minimizes the expression $\int_{x_i}^{x_i} (g'')^2$

over all convex C^{l} functions that interpolate the data. In the general case, when the data have both convex and concave regions, the convexity of the spline is consistent with the data, and the above integral is minimized under the appropriate constraints. For more information on this interpolation scheme, refer to Michelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this function is that it is not possible, a priori, to predict the number of breakpoints of the resulting interpolant. In most cases, there will be breakpoints at places other than data locations. This function should be used when it is important to preserve the convex and concave regions implied by the data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear polynomials are reproduced.) This explains the theoretical error estimate below.

If the data points arise from the values of a smooth (say C^4) function f, i.e. $f_i = f(x_i)$, then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for either of the above spline interpolants. Then, the maximum absolute error satisfies

$$||f - s||_{[\xi_0, \xi_m]} \le C ||f^{(2)}||_{[\xi_0, \xi_m]} |\xi|^2$$

where

$$|\boldsymbol{\xi}| := \max_{i=0,\dots,m-1} |\boldsymbol{\xi}_{i+1} - \boldsymbol{\xi}_i|$$

and ξ_m is the last breakpoint.

Chapter 3: Interpolation and Approximation

The return value for this function is a pointer of the type $Imsl_f_poly$. The calling program must receive this in a pointer $Imsl_f_poly *_poly$. This structure contains all the information to determine the spline (stored as a piecewise polynomial) that is computed by this function. For example, the following code sequence evaluates this spline at *x* and returns the value in *y*.

y = imsl_f_cub_spline_value (x, ppoly, 0)

The difference between the convexity-preserving spline and Akima's spline is illustrated in the following figure. Note that the convexity-preserving interpolant exhibits linear segments where the convexity constraints are binding.

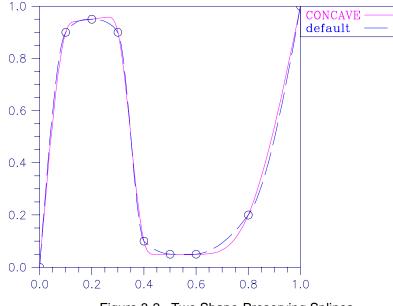


Figure 3-2 Two Shape-Preserving Splines

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values.

152 • cub_spline_interp_shape

```
Imsl_f_ppoly
                      *pp;
                               /* Compute xdata and fdata */
for (i = 0; i < NDATA; i++) {</pre>
    xdata[i] = (float)(i)/(NDATA-1);
    fdata[i] = F(xdata[i]);
}
                               /* Compute cubic spline interpolant */
pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata, 0);
                               /* Print results */
printf("
                         F(x)
                                      Interpolant
                                                       Error n'n');
              х
for (i = 0; i < 2*NDATA-1;</pre>
                              i++) {
    x = (float) i / (float) (2*NDATA-2);
    y = imsl_f_cub_spline_value(x, pp, 0);
printf(" %6.3f %10.3f %10.3f %10
                                           %10.4f\n", x, F(x), y,
                                                    fabs(F(x)-y));
}
```

Output

}

x	F(x)	Interpolant	Error
0.000	0.000	0.000	0.0000
0.050	0.682	0.818	0.1360
0.100	0.997	0.997	0.0000
0.150	0.778	0.615	0.1635
0.200	0.141	0.141	0.0000
0.250	-0.572	-0.478	0.0934
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.812	0.0464
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.386	0.0645
0.500	0.938	0.938	0.0000
0.550	0.923	0.854	0.0683
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.276	0.0433
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.889	0.0789
0.800	-0.537	-0.537	0.0000
0.850	0.183	0.149	0.0338
0.900	0.804	0.804	0.0000
0.950	0.994	0.932	0.0613
1.000	0.650	0.650	0.0000

Example 2

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values.

Chapter 3: Interpolation and Approximation

cub_spline_interp_shape • 153

```
float
                    fdata[NDATA], xdata[NDATA], x, y;
Imsl_f_ppoly
                    *pp;
                            /* Compute xdata and fdata */
for (i = 0; i < NDATA; i++) {</pre>
    xdata[i] = (float)(i)/(NDATA-1);
    fdata[i] = F(xdata[i]);
}
                            /* Compute cubic spline interpolant */
pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata,
                                    IMSL_CONCAVE,
                                    0);
                           /* Print results */
printf("
             х
                       F(x)
                                  Interpolant
                                                 Error\n\n");
for (i = 0; i < 2*NDATA-1; i++){
   x = (float) i / (float)(2*NDATA-2);
   y = imsl_f_cub_spline_value(x, pp, 0);
   printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
                                               fabs(F(x)-y));
}
```

Output

}

x	F(x)	Interpolant	Error
0.000	0.000	0.000	0.0000
0.050	0.682	0.667	0.0150
0.100	0.997	0.997	0.0000
0.150	0.778	0.761	0.0172
0.200	0.141	0.141	0.0000
0.250	-0.572	-0.559	0.0126
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.840	0.0189
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.440	0.0098
0.500	0.938	0.938	0.0000
0.550	0.923	0.902	0.0208
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.311	0.0086
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.952	0.0156
0.800	-0.537	-0.537	0.0000
0.850	0.183	0.200	0.0174
0.900	0.804	0.804	0.0000
0.950	0.994	0.892	0.1020
1.000	0.650	0.650	0.0000

Warning Errors

IMSL_MAX_ITERATIONS_REACHED

The maximum number of iterations has been reached. The best approximation is returned.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

154 • cub_spline_interp_shape

cub_spline_value

Computes the value of a cubic spline or the value of one of its derivatives.

Synopsis

#include <imsl.h>

float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly, ..., 0)

The type *double* function is imsl_d_cub_spline_value.

Required Arguments

```
float \propto (Input)
Evaluation point for the cubic spline.
```

Imsl_f_ppoly *ppoly (Input) Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value

The value of a cubic spline or one of its derivatives at the point x. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

Optional Arguments

- IMSL_DERIV, *int* deriv (Input) Let d = deriv and let *s* be the cubic spline that is represented by the structure *ppoly, then this option produces the *d*-th derivative of *s* at *x*, $s^{(d)}(x)$.
- IMSL_GRID, int n, float *xvec, float **value (Input/Output)
 The array xvec of length n contains the points at which the cubic spline is to
 be evaluated. The d-th derivative of the spline at the points in xvec is returned
 in value.
- IMSL_GRID_USER, *int* n, *float* *xvec, *float* value_user[] (Input/Output) The array xvec of length n contains the points at which the cubic spline is to be evaluated. The *d*-th derivative of the spline at the points in xvec is returned in the user-supplied space value_user.

Description

The function imsl_f_cub_spline_value computes the value of a cubic spline or one of its derivatives. The first and last pieces of the cubic spline are extrapolated. As a result, the cubic spline structures returned by the cubic spline routines are defined and can be evaluated on the entire real line. This routine is based on the routine PPVALU by de Boor (1978, p. 89).

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. Since the default settings are used, the interpolant is determined by the "not-a-knot" condition (see de Boor 1978).

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                 11
                                 /* Define function */
#define F(x)
                 (float)(sin(15.0*x))
main()
ł
    int
                        i;
    float
                        fdata[NDATA], xdata[NDATA], x, y;
                        *pp;
    Imsl_f_ppoly
                                 /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                                /* Compute cubic spline interpolant */
    pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
                                 /* Print results */
    printf("
                           F(x)
                                      Interpolant
                                                      Error\n");
                 х
    for (i = NDATA/2; i < 3*NDATA/2;
                                       i++) {
        x = (float) i / (float)(2*NDATA-2);
        y = imsl_f_cub_spline_value(x, pp, 0);
                                           %10.4f\n", x, F(x), y,
        printf(" %6.3f %10.3f %10.3f
                                                    fabs(F(x)-y));
    }
}
            Output
```

x	F(x)	Interpolant	Error
0.250	-0.572	-0.549	0.0228
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.843	0.0162
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.441	0.0093
0.500	0.938	0.938	0.0000
0.550	0.923	0.903	0.0199
0.550	0.923	0.903	0.0199

156 • cub_spline_value

0.600	0.412	0.412	0.0000
0.650	-0.320	-0.315	0.0049
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.938	0.0295

Recall that in the first example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. This example compares the values of the first derivatives.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                 11
                                 /* Define functions */
#define F(x)
                  (float)(sin(15.0*x))
#define FP(x)
                 (float)(15.*cos(15.0*x))
main()
{
    int
                         i;
    float
                         fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_ppoly
                         *pp;
                                 /* Set up a grid */
    for (i = 0; i < NDATA;
                             i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                                 /* Compute cubic spline interpolant */
    pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata,fdata, 0);
                                 /* Print results */
                            FP(x)
    printf("
                                       Interpolant
                                                      Deriv Error\n");
                 х
    for (i = NDATA/2; i < 3*NDATA/2;
                                        i++){
        x = (float) i / (float) (2*NDATA-2);
        y = imsl_f_cub_spline_value(x, pp,
                                     IMSL_DERIV, 1,
                                     0);
        printf(" %6.3f %10.3f
                                   %10.3f
                                             %10.4f\n", x, FP(x), y,
                                                     fabs(FP(x)-y));
        }
}
            Output
            FP(x)
                     Interpolant
                                   Deriv Error
  х
0.250
          -12.308
                        -12.559
                                       0.2510
0.300
           -3.162
                                       0.0560
                         -3.218
0.350
            7.681
                         7.796
                                       0.1151
0.400
           14.403
                         13.919
                                       0.4833
0.450
           13.395
                         13.530
                                       0.1346
0.500
            5.200
                          5.007
                                       0.1926
           -5.786
0.550
                         -5.840
                                       0.0535
0.600
                        -13.201
                                       0.4660
          -13.667
0.650
          -14.214
                        -14.393
                                       0.1798
0.700
           -7.133
                         -6.734
                                       0.3990
0.750
            3.775
                          3.911
                                       0.1359
```

Chapter 3: Interpolation and Approximation

cub_spline_value • 157

cub_spline_integral

Computes the integral of a cubic spline.

Synopsis

#include <imsl.h>

float imsl_f_cub_spline_integral (float a, float b, Imsl_f_ppoly *ppoly)

The type *double* function is imsl_d_cub_spline_integral.

Required Arguments

float a (Input)

float b (Input) Endpoints for integration.

Imsl_f_ppoly *ppoly (Input) Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value

The integral from *a* to *b* of the cubic spline. If no value can be computed, then NaN is returned.

Description

The function imsl_f_cub_spline_integral computes the integral of a cubic spline from *a* to *b*.

$$\int_{a}^{b} s(x) \, dx$$

Example

In this example, a cubic spline interpolant to a function f is computed. The values of the integral of this spline are then compared with the exact integral values. Since the default settings are used, the interpolant is determined by the "not-a-knot" condition (see de Boor 1978).

```
float
                    fdata[NDATA], xdata[NDATA], x, y;
Imsl_f_ppoly
                    *pp;
                            /* Set up a grid */
for (i = 0; i < NDATA; i++) {
    xdata[i] = (float)i /((float)(NDATA-1));
    fdata[i] = F(xdata[i]);
}
                            /* Compute cubic spline interpolant */
pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
                            /* Print results */
printf("
                                Interpolant
                                                Integral Error\n");
                       FI(x)
             х
for (i = NDATA/2; i < 3*NDATA/2; i++){</pre>
   x = (float) i / (float) (2*NDATA-2);
   y = imsl_f_cub_spline_integral(0.0, x, pp);
   printf(" %6.3f %10.3f %10.3f %10.4f\n", x, FI(x), y,
                                               fabs(FI(x)-y));
    }
```

Output

}

0.250 0.121 0.121 0.0001	
0.275 0.104 0.104 0.0001	
0.300 0.081 0.081 0.0001	
0.325 0.056 0.056 0.0001	
0.350 0.033 0.033 0.0001	
0.375 0.014 0.014 0.0002	
0.400 0.003 0.003 0.0002	
0.425 0.000 0.000 0.0002	
0.450 0.007 0.007 0.0002	
0.475 0.022 0.022 0.0001	
0.500 0.044 0.044 0.0001	
0.525 0.068 0.068 0.0001	
0.550 0.092 0.092 0.0001	
0.575 0.113 0.113 0.0001	
0.600 0.127 0.128 0.0001	
0.625 0.133 0.133 0.0001	
0.650 0.130 0.130 0.0001	
0.675 0.118 0.118 0.0001	
0.700 0.098 0.098 0.0001	
0.725 0.075 0.075 0.0001	
0.750 0.050 0.050 0.0001	

spline_interp

Compute a spline interpolant.

Synopsis

The type *Imsl_d_spline* function is imsl_d_spline_interp.

Required Arguments

```
int ndata (Input)
Number of data points.
```

float xdata[] (Input)

Array with ndata components containing the abscissas of the interpolation problem.

float fdata[] (Input)
 Array with ndata components containing the ordinates of the interpolation
 problem.

Return Value

A pointer to the structure that represents the spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

```
Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[], float
    fdata[],
    IMSL_ORDER, int order,
    IMSL_KNOTS, float knots[],
    0)
```

Optional Arguments

IMSL_ORDER, *int* order (Input)

The order of the spline subspace for which the knots are desired. This option is used to communicate the order of the spline subspace. Default: order = 4, i.e., cubic splines

IMSL_KNOTS, float knots[] (Input)

This option requires the user to provide the knots.

Default: knots are selected by the function imsl_f_spline_knots using its defaults.

Description

Given the data points x = xdata, f = fdata, and the number n = ndata of elements in xdata and fdata, the default action of imsl_f_spline_interp computes a cubic (k = 4) spline interpolant s to the data using the default knot sequence generated by imsl_f_spline_knots.

The optional argument IMSL_ORDER allows the user to choose the order of the spline interpolant. The optional argument IMSL_KNOTS allows user specification of knots.

The function imsl_f_spline_interp is based on the routine SPLINT by de Boor (1978, p. 204).

First, imsl_f_spline_interp sorts the xdata vector and stores the result in x. The elements of the fdata vector are permuted appropriately and stored in f, yielding the equivalent data (x_i , f_i) for i = 0 to n - 1.

The following preliminary checks are performed on the data. We verify that

$$x_i < x_{i+1} \qquad i = 0, ..., n-2$$

$$\mathbf{t}_i < \mathbf{t}_{i+k} \qquad i = 0, ..., n-1$$

$$\mathbf{t}_i < \mathbf{t}_{i+1} \qquad i = 0, ..., n+k-2$$

The first test checks to see that the abscissas are distinct. The second and third inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check
 t_{k-1} ≤ x_i ≤ t_n for i = 0 to n − 1. This first inequality in the last check is necessary since
 the method used to generate the entries of the interpolation matrix requires that the
 k possibly nonzero B-splines at x_i,

$$B_{j-k+1}, \ldots, B_j$$
 where j satisfies $\mathbf{t}_j \leq x_i < \mathbf{t}_{j+1}$

be well-defined (that is, $j - k + 1 \ge 0$).

General conditions are not known for the exact behavior of the error in spline interpolation; however, if **t** and *x* are selected properly and the data points arise from the values of a smooth (say C^k) function *f*, i.e. $f_i = f(x_i)$, then the error will behave in a predictable fashion. The maximum absolute error satisfies

$$\left\|f-s\right\|_{\left[\mathbf{t}_{k-1},\mathbf{t}_{n}\right]} \leq C\left\|f^{\left(k\right)}\right\|_{\left[\mathbf{t}_{k-1},\mathbf{t}_{n}\right]}\left|\mathbf{t}\right|^{k}$$

where

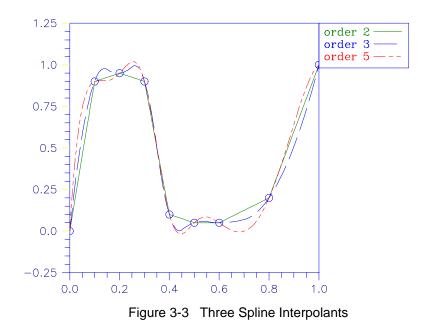
$$|\mathbf{t}| := \max_{i=k-1,\ldots,n-1} |\mathbf{t}_{i+1} - \mathbf{t}_i|$$

For more information on this problem, see de Boor (1978, Chapter 13) and his reference. This function can be used in place of the IMSL function imsl_f_cub_spline_interp.

The return value for this function is a pointer of type $Imsl_f_spline$. The calling program must receive this in a pointer $Imsl_f_spline *sp$. This structure contains all the information to determine the spline (stored as a linear combination of B-splines) that is computed by this function. For example, the following code sequence evaluates this spline at *x* and returns the value in *y*.

$$y = imsl_f_spline_value (x, sp, 0)$$

Three spline interpolants of order 2, 3, and 5 are plotted. These splines use the default knots.



Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. Since the default settings are used, the interpolant is determined by the "not-a-knot" condition (see de Boor 1978).

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                11
                                 /* Define function */
#define F(x)
                 (float)(sin(15.0*x))
main()
{
    int
                         i;
    float
                         xdata[NDATA], fdata[NDATA], x, y;
    Imsl_f_spline
                         *sp;
                                 /* Set up a grid */
    for (i = 0; i < NDATA;
                              i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                                 /* Compute cubic spline interpolant */
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
                                 /* Print results */
    printf("
                            F(x)
                                       Interpolant
                                                       Error \n");
                 х
    for (i = 0;
                 i < 2*NDATA-1;
                                  i++){
```

```
x = (float) i /(float)(2*NDATA-2);
y = imsl_f_spline_value(x, sp, 0);
printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
fabs(F(x)-y));
```

```
}
```

}

	Output		
x	F(x)	Interpolant	Error
0.000	0.000	0.000	0.0000
0.050	0.682	0.809	0.1270
0.100	0.997	0.997	0.0000
0.150	0.778	0.723	0.0552
0.200	0.141	0.141	0.0000
0.250	-0.572	-0.549	0.0228
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.843	0.0162
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.441	0.0093
0.500	0.938	0.938	0.0000
0.550	0.923	0.903	0.0199
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.315	$\begin{array}{c} 0.0049 \\ 0.0000 \\ 0.0295 \\ 0.0000 \\ 0.0347 \\ 0.0000 \\ 0.0926 \\ 0.0000 \end{array}$
0.700	-0.880	-0.880	
0.750	-0.968	-0.938	
0.800	-0.537	-0.537	
0.850	0.183	0.148	
0.900	0.804	0.804	
0.950	0.994	1.086	
1.000	0.650	0.650	

Example 2

Recall that in the first example, a cubic spline interpolant to a function *f* is computed. The values of this spline are then compared with the exact function values. This example chooses to use a quadratic (k = 3) and a quintic k = 6 spline interpolant to the data instead of the default values.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 11
                                  /* Define function */
#define F(x)
                  (float)(sin(15.0*x))
main()
{
    int
                         i, order;
    float
                         fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_spline
                         *sp;
                                  /* Set up a grid */
    for (i = 0; i < NDATA; i++) {</pre>
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
    for (order =3; order<7; order += 3) {</pre>
```

```
/* Compute cubic spline interpolant */
        sp = imsl_f_spline_interp (NDATA, xdata, fdata,
                                   IMSL_ORDER, order,
                                  0);
                                /* Print results */
       printf("\nThe order of the spline is d\n", order);
       printf("
                  x
                             F(x)
                                         Interpolant
                                                        Error\n");
        for (i = NDATA/2; i < 3*NDATA/2; i++) {
           x = (float) i /(float)(2*NDATA-2);
           y = imsl_f_spline_value(x,sp,0);
           printf(" %6.3f %10.3f
                                     %10.3f
                                               %10.4f\n", x, F(x), y,
                                                       fabs(F(x)-y));
       }
   }
}
```

Output

The order of	the spline	is 3	
х	F(x)	Interpolant	Error
0.250	-0.572	-0.542	0.0299
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.819	0.0397
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.429	0.0210
0.500	0.938	0.938	0.0000
0.550	0.923	0.879	0.0433
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.305	0.0149
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.922	0.0459
The order of	the spline	is 6	
	TT ()	Thtownolont	Energene

х	F(x)	Interpolant	Error
0.250	-0.572	-0.573	0.0016
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.856	0.0031
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.448	0.0020
0.500	0.938	0.938	0.0000
0.550	0.923	0.922	0.0003
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.322	0.0025
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.959	0.0090

Warning Errors

IMSL_ILL_COND_INTERP_PROBThe interpolation matrix is ill-conditioned. The
solution might not be accurate.Fatal ErrorsIMSL_DUPLICATE_XDATA_VALUESThe xdata values must be distinct.IMSL_KNOT_MULTIPLICITYMultiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING	The knots must be nondecreasing.
IMSL_KNOT_XDATA_INTERLACING	The <i>i</i> -th smallest element of xdata (x_i) must satisfy $\mathbf{t}_i \leq x_i < \mathbf{t}_{i+order}$ where \mathbf{t} is the knot sequence.
IMSL_XDATA_TOO_LARGE	The array xdata must satisfy xdata _i $\leq \mathbf{t}_{ndata}$, for $i = 1,, ndata$.
IMSL_XDATA_TOO_SMALL	The array xdata must satisfy $x \text{data}_i \ge \mathbf{t}_{order-1}$ for $i = 1,, \text{ndata}$.

spline_knots

Computes the knots for a spline interpolant

Synopsis

#include <imsl.h>

float *imsl_f_spline_knots (int ndata, float xdata[], ..., 0)

The type *double* function is imsl_d_spline_knots.

Required Arguments

int ndata (Input) Number of data points.

float xdata[] (Input)
 Array with ndata components containing the abscissas of the interpolation
 problem.

Return Value

A pointer to the knots. If the knots cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>
float *imsl_f_spline_knots (int ndata, float xdata[],
 IMSL_ORDER, int order,
 IMSL_OPT,
 IMSL_OPT_ITMAX, int itmax,
 IMSL_RETURN_USER, float knots[],
 0)

Optional Arguments

IMSL_ORDER, *int* order (Input)

The order of the spline subspace for which the knots are desired. This option is used to communicate the order of the spline subspace. Default: order = 4, i.e., cubic splines

IMSL_OPT

This option produces knots that satisfy an optimality criterion.

IMSL_OPT_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of
Newton's method.
Default: itmax = 10

IMSL_RETURN_USER, float knots[] (Output)

This option requires the user to provide the space for the return knots. For example, the user could declare float knots[100]; and pass in knots. The return value is then also set to knots.

Description

Given the data points x = xdata, the order of the spline k = order, and the number n = ndata of elements in xdata, the default action of imsl_f_spline_knots returns a pointer to a knot sequence that is appropriate for interpolation of data on x by splines of order k (the default order is k = 4). The knot sequence is contained in its first n + k positions. If k is even, and we assume that the entries in the input vector x are increasing, then the resulting knot sequence \mathbf{t} is returned as

$$t_i = x_0 for i = 0, ..., k - 1$$

$$t_i = x_{i-k/2-1} for i = k, ..., n - 1$$

$$t_i = x_{n-1} for i = n, ..., n + k - 1$$

There is some discussion concerning this selection of knots in de Boor (1978, p. 211). If k is odd, then **t** is returned as

$$\mathbf{t}_{i} = x_{0} \qquad \text{for } i = 0, \dots, k-1$$

$$\mathbf{t}_{i} = (x_{i-\frac{k-1}{2}-1} + x_{i-1-\frac{k-2}{2}})/2 \qquad \text{for } i = k, \dots, n-1$$

$$\mathbf{t}_{i} = x_{n-1} \qquad \text{for } i = n, \dots, n = k-1$$

It is not necessary to sort the values in xdata.

If the option $IMSL_OPT$ is selected, then the knot sequence returned minimizes the constant c in the error estimate

$$\|f-s\| \le c \|f^{(k)}\|$$

166 • spline_knots

In the above formula, f is any function in C^k , and s is the spline interpolant to f at the abscissas x with knot sequence **t**.

The algorithm is based on a routine described in de Boor (1978, p. 204), which in turn is based on a theorem of Micchelli et al. (1976).

Examples

Example 1

In this example, knots for a cubic spline are generated and printed. Notice that the knots are stacked at the endpoints and that the second and next to last data points are not knots.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA 6
main()
ł
                i;
    int
                *knots, xdata[NDATA];
    float
    for(i = 0; i < NDATA; i++)
        xdata[i] = i;
    knots = imsl_f_spline_knots(NDATA, xdata, 0);
    imsl_f_write_matrix("The knots for the cubic spline are:\n",
                        1, NDATA+4, knots,
                        IMSL_COL_NUMBER_ZERO,
                        0);
}
```

Output

	The knots	for the cubic	spline are	2:	
0 0	1 0	2 0	3 0	4 2	5 3
6 5	7 5	8 5	9 5		

Example 2

This is a continuation of the examples for $imsl_f_spline_interp$ (page 159). Recall that in these examples, a cubic spline interpolant to a function *f* is computed first. The values of this spline are then compared with the exact function values. The second example uses a quadratic (k = 3) and a quintic (k = 6) spline interpolant to the data. Now, instead of using the default knots, select the "optimal" knots as described above. Notice that the error is actually worse in this case.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

```
#define NDATA
               11
                                  /* Define function */
#define F(x) (float)(sin(15.0*x))
main()
{
                          i, order;
    int
                          fdata[NDATA], xdata[NDATA], *knots, x, y;
    float
    Imsl_f_spline
                          *sp;
                                   /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
    xdata[i] = (float)i /((float)(NDATA-1));</pre>
        fdata[i] = F(xdata[i]);
    for(order = 3; order < 7; order += 3) {
        knots = imsl_f_spline_knots(NDATA, xdata, IMSL_ORDER, order,
                                       IMSL_OPT,
                                       0);
                                   /* Compute spline interpolant */
        sp = imsl_f_spline_interp (NDATA, xdata,fdata,
                                      IMSL_ORDER, order,
                                      IMSL_KNOTS, knots,
                                      0);
                                   /* Print results */
        printf("\nThe order of the spline is d\n", order);
        printf("
                   х
                                F(x)
                                            Interpolant
                                                             Error\n");
        for (i = NDATA/2; i < 3*NDATA/2; i++) {
    x = (float) i /(float)(2*NDATA-2);</pre>
             y = imsl_f_spline_value(x, sp, 0);
            printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
                                                            fabs(F(x)-y));
        }
    }
}
```

Output

The order of	the spline	is 3	
х	F(x)	Interpolant	Error
0.250	-0.572	-0.543	0.0290
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.819	0.0401
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.429	0.0210
0.500	0.938	0.938	0.0000
0.550	0.923	0.879	0.0433
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.305	0.0150
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.920	0.0478
The order of	the spline	ig 6	
x	F(x)	Interpolant	Error
0.250	-0.572	-0.578	0.0061
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.854	0.0054
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.448	0.0019

168 • spline_knots

IMSL C/Math/Library

0.500	0.938	0.938	0.0000
0.550	0.923	0.920	0.0022
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.317	0.0020
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.966	0.0023

Warning Errors

IMSL_NO_CONV_NEWTON	Newton's method iteration did not converge.
Fatal Errors	
IMSL_DUPLICATE_XDATA_VALUES	The xdata values must be distinct.

IMSL_ILL_COND_LIN_SYS

Interpolation matrix is singular. The xdata values may be too close together.

spline_2d_interp

Computes a two-dimensional, tensor-product spline interpolant from two-dimensional, tensor-product data.

Synopsis

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int num_ydata, float ydata[], float fdata[], ..., 0)

The type *Imsl_d_spline* function is imsl_d_spline_2d_interp.

Required Arguments

Array with num_xdata components containing the data points in the X direction.

int num_ydata (Input) Number of data points in the Y direction.

float ydata[] (Input)
 Array with num_ydata components containing the data points in the Y
 direction.

float fdata[] (Input)

Array of size num_data × num_data containing the values to be interpolated. fdata[i][j] is the value at (xdata[i], ydata[j]).

spline_2d_interp • 169

Return Value

A pointer to the structure that represents the tensor-product spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

```
Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int
num_ydata, float ydata[], float fdata[],
IMSL_ORDER, int xorder, int yorder,
IMSL_KNOTS, float xknots[], float yknots[],
IMSL_FDATA_COL_DIM, int fdata_col_dim,
0)
```

Optional Arguments

IMSL_ORDER, int xorder, int yorder (Input)
This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4, (i.e., tensor-product cubic splines)

IMSL_KNOTS, float xknots[], float yknots[] (Input)
This option requires the user to provide the knots. The default knots are
selected by the function imsl_f_spline_knots using its defaults.

IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)
The column dimension of the matrix fdata.
Default: fdata_col_dim = num_xdata

Description

The function imsl_f_spline_2d_interp computes a tensor-product spline interpolant. The tensor-product spline interpolant to data $\{(x_i, y_j, f_{ij})\}$, where $0 \le i \le n_x - 1$ and $0 \le j \le n_y - 1$ has the form

$$\sum_{m=0}^{n_{y}-1}\sum_{n=0}^{n_{x}-1}c_{nm}B_{n,k_{x},\mathbf{t}_{x}}(x)B_{m,k_{y},\mathbf{t}_{y}}(y)$$

where k_x and k_y are the orders of the splines. These numbers are defaulted to be 4, but can be set to any positive integer using the keyword, IMSL_ORDER. Likewise, \mathbf{t}_x and \mathbf{t}_y are the corresponding knot sequences (xknots and yknots). These values are defaulted to the knots returned by imsl_f_spline_knots. The algorithm requires that

$$\mathbf{t}_x(k_x - 1) \le x_i \le \mathbf{t}_x(n_x) \quad 0 \le i \le n_x - 1$$
$$\mathbf{t}_y(k_y - 1) \le y_j \le \mathbf{t}_y(n_y - 1) \qquad 0 \le j \le n_y - 1$$

Tensor-product spline interpolants in two dimensions can be computed quite efficiently by solving (repeatedly) two univariate interpolation problems.

The computation is motivated by the following observations. It is necessary to solve the system of equations

$$\sum_{m=0}^{n_{y}-1}\sum_{n=0}^{n_{x}-1}c_{nm}B_{n,k_{x},\mathbf{t}_{x}}(x_{i})B_{m,k_{y},\mathbf{t}_{y}}(y_{j}) = f_{ij}$$

Setting

$$h_{mi} = \sum_{n=0}^{n_x - 1} c_{nm} B_{n,k_x,\mathbf{t}_x}(x_i)$$

note that for each fixed *i* from 0 to $n_x - 1$, we have n_y linear equations in the same number of unknowns as can be seen below:

$$\sum_{m=0}^{n_{y}-1} h_{mi} B_{m,k_{y},\mathbf{t}_{y}}(y_{i}) = f_{ij}$$

$$\sum_{n=0}^{n_{y}-1} \sum_{n=0}^{n_{x}-1} c_{nm} B_{n,k_{x},\mathbf{t}_{x}}(x_{i}) B_{m,k_{y},\mathbf{t}_{y}}(y_{j}) = f_{ij}$$

Setting

$$h_{mi} = \sum_{n=0}^{n_x - 1} c_{nm} B_{n,k_x,\mathbf{t}_x}(x_i)$$

note that for each fixed *i* from 1 to $n_x - 1$, we have $n_y - 1$ linear equations in the same number of unknowns as can be seen below:

$$\sum_{m=0}^{n_y-1} h_{mi} B_{m,k_y,\mathbf{t}_y}(y_i) = f_{ij}$$

The same matrix appears in all of the equations above:

$$\left[B_{m,k_y,\mathbf{t}_y}(y_j)\right] \qquad 1 \le m, j \le n_y - 1$$

Thus, only factor this matrix once and then apply this factorization to the n_x right-hand sides. Once this is done and h_{mi} is computed, then solve for the coefficients c_{nm} using the relation

$$\sum_{n=0}^{n_x-1} c_{nm} B_{n,k_x,\mathbf{t}_x}(x_i) = h_{mi}$$

for *m* from 0 to $n_y - 1$, which again involves one factorization and n_y solutions to the different right-hand sides. The function imsl_f_spline_2d_interp is based on the routine SPLI2D by de Boor (1978, p. 347).

The return value for this function is a pointer to the structure Imsl_f_spline. The calling program must receive this in a pointer Imsl_f_spline *sp. This structure contains all the information to determine the spline (stored in B-spline format) that is

Chapter 3: Interpolation and Approximation

computed by this procedure. For example, the following code sequence evaluates this spline at (x, y) and returns the value in *z*.

z = imsl_f_spline_2d_value (x, y, sp, 0);

Examples

Example 1

In this example, a tensor-product spline interpolant to a function f is computed. The values of the interpolant and the error on a 4×4 grid are displayed.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                         11
#define OUTDATA
                          2
                                  /* Define function */
#define F(x, y)
                          (float)(x*x*x+y*y)
main()
{
    int
                         i, j, num_xdata, num_ydata;
    float
                         fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
    float
                         x, y, z;
    Imsl_f_spline
                          *sp;
                                  /* Set up grid */
    for (i = 0; i < NDATA; i++) {</pre>
        xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
    for (i = 0; i < NDATA; i++) {
        for (j = 0; j < NDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
    1
    num_xdata = num_ydata = NDATA;
                                  /* Compute tensor-product interpolant */
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
                                                          ydata, fdata, 0);
                                  /* Print results */
    printf("
                                    F(x, y)
                                               Interpolant
                                                                Error \n");
                  х
                          y
    for (i = 0; i < OUTDATA;</pre>
                                 i++) {
        x = (float) i / (float) (OUTDATA);
        for (j = 0; j < OUTDATA; j++) {
            y = (float) j / (float) (OUTDATA);
            z = imsl_f_spline_2d_value(x, y, sp, 0);
            printf(" %6.3f %6.3f %10.3f %10.3f
x, y, F(x,y), z, fabs(F(x,y)-z));
                                                          %10.4f\n",
        }
    }
}
            Output
                    F(x, y)
                                Interpolant
                                                 Error
   x
           У
0.000
        0.000
                     0.000
                                   0.000
                                                0.0000
0.000
        0.500
                     0.250
                                   0.250
                                                0.0000
0.500
        0.000
                     0.125
                                   0.125
                                                0.0000
0.500
        0.500
                     0.375
                                   0.375
                                                0.0000
```

172 • spline_2d_interp

Example 2

Recall that in the first example, a tensor-product spline interpolant to a function f is computed. The values of the interpolant and the error on a 4×4 grid are displayed. Notice that the first interpolant with order = 3 does not reproduce the cubic data, while the second interpolant with order = 6 does reproduce the data.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                        7
#define OUTDATA
                        4
                                /* Define function */
#define F(x,y)
                        (float)(x*x*x+y*y)
main()
{
    int
                       i, j, num_xdata, num_ydata, order;
    float
                        fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
    float
                       x, y, z;
    Imsl_f_spline
                         *sp;
                                /* Set up grid */
    for (i = 0; i < NDATA; i++) {</pre>
        xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
    for (i = 0; i < NDATA; i++) {
        for (j = 0; j < NDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
    }
    num_xdata = num_ydata = NDATA;
    for(order = 3; order < 7;</pre>
                               order += 3) {
                                /* Compute tensor-product interpolant */
        sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
                                                       ydata, fdata,
                                     IMSL_ORDER, order, order,
                                     (0);
                                /* Print results */
       printf("\nThe order of the spline is %d \n", order);
       printf("
                                    F(x, y)
                                               Interpolant
                                                              Error\n");
                   х
                           У
       for (i = 0; i < OUTDATA;
                                 i++)
                                       ł
           x = (float) i / (float) (OUTDATA);
            for (j = 0; j < OUTDATA; j++) {
                y = (float) j / (float) (OUTDATA);
               %10.4f
                                                                  \n",
            }
       }
    }
}
```

Output

The order	of the	spline is 3		
х	У	F(x, y)	Interpolant	Error
0.000	0.000	0.000	0.000	0.0000
0.000	0.250	0.062	0.063	0.0000
0.000	0.500	0.250	0.250	0.0000
0.000	0.750	0.562	0.562	0.0000
0.250	0.000	0.016	0.016	0.0002
0.250	0.250	0.078	0.078	0.0002
0.250	0.500	0.266	0.266	0.0002
0.250	0.750	0.578	0.578	0.0002
0.500	0.000	0.125	0.125	0.0000
0.500	0.250	0.188	0.188	0.0000
0.500	0.500	0.375	0.375	0.0000
0.500 0.750	0.750	0.688 0.422	0.687 0.422	0.0000 0.0002
0.750	0.250	0.422	0.422	0.0002
0.750	0.250	0.672	0.672	0.0002
0.750	0.750	0.984	0.984	0.0002
0.750	0.750	0.904	0.001	0.0002
The order	of the	spline is 6		
x	У	- F(x, y)	Interpolant	Error
x 0.000	у 0.000	F(x, y) 0.000	0.000	0.0000
x 0.000 0.000	y 0.000 0.250	F(x, y) 0.000 0.062	0.000 0.063	0.0000 0.0000
x 0.000 0.000 0.000	y 0.000 0.250 0.500	F(x, y) 0.000 0.062 0.250	0.000 0.063 0.250	$0.0000 \\ 0.0000 \\ 0.0000$
x 0.000 0.000 0.000 0.000	y 0.000 0.250 0.500 0.750	F(x, y) 0.000 0.062 0.250 0.562	0.000 0.063 0.250 0.562	0.0000 0.0000 0.0000 0.0000
x 0.000 0.000 0.000 0.000 0.250	y 0.000 0.250 0.500 0.750 0.000	F(x, y) 0.000 0.062 0.250 0.562 0.016	0.000 0.063 0.250 0.562 0.016	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$
x 0.000 0.000 0.000 0.250 0.250	y 0.000 0.250 0.500 0.750 0.000 0.250	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078	0.000 0.063 0.250 0.562 0.016 0.078	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
x 0.000 0.000 0.000 0.250 0.250 0.250	y 0.000 0.250 0.500 0.750 0.000 0.250 0.500	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266	0.000 0.063 0.250 0.562 0.016 0.078 0.266	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$
x 0.000 0.000 0.000 0.250 0.250 0.250 0.250	y 0.000 0.250 0.500 0.750 0.000 0.250 0.500 0.750	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$
x 0.000 0.000 0.000 0.250 0.250 0.250 0.250 0.250 0.250	y 0.000 0.250 0.500 0.750 0.000 0.250 0.500 0.750 0.000	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578 0.125	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578 0.125	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$
x 0.000 0.000 0.250 0.250 0.250 0.250 0.250 0.500 0.500	y 0.000 0.250 0.500 0.750 0.000 0.250 0.500 0.750 0.000 0.250	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$
x 0.000 0.000 0.250 0.250 0.250 0.250 0.250 0.500 0.500 0.500	y 0.000 0.250 0.500 0.750 0.000 0.250 0.500 0.750 0.000 0.250 0.500	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$
x 0.000 0.000 0.250 0.250 0.250 0.250 0.250 0.500 0.500 0.500 0.500	y 0.000 0.250 0.500 0.750 0.250 0.250 0.500 0.250 0.250 0.250 0.500 0.750	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375 0.688	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375 0.688	$\begin{array}{c} 0.0000\\ 0.000\\ 0.00$
x 0.000 0.000 0.250 0.250 0.250 0.250 0.500 0.500 0.500 0.500 0.500 0.500	y 0.000 0.250 0.500 0.750 0.000 0.250 0.500 0.750 0.000 0.250 0.500	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$
x 0.000 0.000 0.250 0.250 0.250 0.250 0.250 0.500 0.500 0.500 0.500	y 0.000 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.750 0.750 0.750 0.250	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375 0.688 0.422 0.484	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375 0.688 0.422	$\begin{array}{c} 0.0000\\ 0.000\\ 0.00$
x 0.000 0.000 0.250 0.250 0.250 0.250 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.750	y 0.000 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750 0.750 0.750	F(x, y) 0.000 0.062 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375 0.688 0.422	0.000 0.063 0.250 0.562 0.016 0.078 0.266 0.578 0.125 0.188 0.375 0.188 0.375 0.688 0.422 0.484	$\begin{array}{c} 0.0000\\ 0.000\\ $

Warning Errors

IMSL_ILL_COND_INTERP_PROBThe interpolation matrix is ill-conditioned. The
solution might not be accurate.Fatal ErrorsIMSL_XDATA_NOT_INCREASINGThe xdata values must be strictly increasing.IMSL_YDATA_NOT_INCREASINGThe ydata values must be strictly increasing.IMSL_KNOT_MULTIPLICITYMultiplicity of the knots cannot exceed the
order of the spline.IMSL_KNOT_NOT_INCREASINGThe knots must be nondecreasing.

174 • spline_2d_interp

IMSL_KNOT_DATA_INTERLACING	The <i>i</i> -th smallest element of the data arrays xdata and ydata must satisfy $\mathbf{t}_i \leq \text{data}_i < \mathbf{t}_{i+order}$, where t is the knot sequence.
IMSL_DATA_TOO_LARGE	The data arrays xdata and ydata must satisfy data _i \leq t _{num_data} , for <i>i</i> = 1,, num_data.
IMSL_DATA_TOO_SMALL	The data arrays xdata and ydata must satisfy $data_i \ge \mathbf{t}_{order-1}$, for $i = 1,, num_data$.

spline_value

Computes the value of a spline or the value of one of its derivatives.

Synopsis

#include <imsl.h>

float imsl_f_spline_value (float x, Imsl_f_spline *sp, ..., 0)

The type *double* function is imsl_d_spline_value.

Required Arguments

 $float \propto (Input)$ Evaluation point for the spline.

Imsl_f_spline *sp (Input) Pointer to the structure that represents the spline.

Return Value

The value of a spline or one of its derivatives at the point x. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

Optional Arguments

IMSL_DERIV, *int* deriv (Input) Let d = deriv and let s be the spline that is represented by the structure *sp. Then, this option produces the d-th derivative of s at x, $s^{(d)}(x)$. Default: deriv = 0

- IMSL_GRID, int n, float *xvec, float **value (Input/Output)
 The argument xvec is the array of length n containing the points at which the
 spline is to be evaluated. The d-th derivative of the spline at the points in xvec
 is returned in value.
- IMSL_GRID_USER int n, float *xvec, float value_user[] (Input/Output)
 The argument xvec is the array of length n containing the points at which the
 spline is to be evaluated. The d-th derivative of the spline at the points in xvec
 is returned in value_user.

Description

The function imsl_f_spline_value computes the value of a spline or one of its derivatives. This function is based on the routine BVALUE by de Boor (1978, p. 144).

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. Since the default settings are used, the interpolant is determined by the "not-a-knot" condition (see de Boor 1978).

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                11
                                 /* Define function */
#define F(x)
                (float)(sin(15.0*x))
main()
{
    int
                         i;
    float
                         fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_spline
                         *sp;
                                 /* Set up a grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                                 /* Compute cubic spline interpolant */
    sp = imsl_f_spline_interp (NDATA, xdata,fdata, 0);
                                 /* Print results */
    printf("
                           F(x)
                                       Interpolant
                                                       Error\n");
                 х
    for (i = NDATA/2; i < 3*NDATA/2; i++){</pre>
        x = (float) i / (float) (2*NDATA-2);
        y = imsl_f_spline_value(x, sp, 0);
        printf(" %6.3f %10.3f %10.3f
                                            %10.4f\n", x, F(x), y,
                                                     fabs(F(x)-y));
    }
}
```

Output

х	F(x)	Interpolant	Error
0.250	-0.572	-0.549	0.0228
0.300	-0.978	-0.978	0.0000
0.350	-0.859	-0.843	0.0162
0.400	-0.279	-0.279	0.0000
0.450	0.450	0.441	0.0093
0.500	0.938	0.938	0.0000
0.550	0.923	0.903	0.0199
0.600	0.412	0.412	0.0000
0.650	-0.320	-0.315	0.0049
0.700	-0.880	-0.880	0.0000
0.750	-0.968	-0.938	0.0295

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed. The values of this spline are then compared with the exact function values. This example compares the values of the first derivatives.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                11
                                 /* Define function */
#define F(x)
                (float)(sin(15.0*x))
#define FP(x)
                (float)(15.*cos(15.0*x))
main()
{
                        i;
    int
    float
                        fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_spline
                         *sp;
                                 /* Set up a grid */
    for (i = 0; i < NDATA; i++) {</pre>
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                                 /* Compute cubic spline interpolant */
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
                                 /* Print results */
    printf("
                           FP(x)
                                       Interpolant
                                                     Deriv Error\n");
                 х
    for (i = NDATA/2; i < 3*NDATA/2; i++) {</pre>
        x = (float) i / (float)(2*NDATA-2);
        y = imsl_f_spline_value(x, sp, IMSL_DERIV, 1, 0);
        printf(" %6.3f %10.3f %10.4f
                                                     n, x, FP(x), y,
                                                       fabs(FP(x)-y));
    }
}
            Output
             FP(x)
                     Interpolant
                                    Deriv Error
  x
0.250
          -12.308
                       -12.559
                                      0.2510
0.300
                        -3.218
           -3.162
                                      0.0560
                         7.796
0.350
            7.681
                                      0.1151
0.400
           14.403
                        13.919
                                      0.4833
```

Chapter 3: Interpolation and Approximation

spline_value • 177

0.450	13.395	13.530	0.1346
0.500	5.200	5.007	0.1926
0.550	-5.786	-5.840	0.0535
0.600	-13.667	-13.201	0.4660
0.650	-14.214	-14.393	0.1798
0.700	-7.133	-6.734	0.3990
0.750	3.775	3.911	0.1359

Fatal Errors

IMSL_KNOT_MULTIPLICITY	Multiplicity of the knots cannot exceed the order of the spline.
IMSL_KNOT_NOT_INCREASING	The knots must be nondecreasing.

spline_integral

Computes the integral of a spline.

Synopsis

#include <imsl.h>

float imsl_f_spline_integral (float a, float b, Imsl_f_spline *sp)

The type *double* function is imsl_d_spline_integral.

Required Arguments

float a (Input)

float b (Input) Endpoints for integration.

Imsl_f_spline *sp (Input) Pointer to the structure that represents the spline.

Return Value

The integral of a spline. If no value can be computed, then NaN is returned.

Description

The function $\mbox{imsl_f_spline_integral}$ computes the integral of a spline from a to b

$$\int_{a}^{b} s(x) dx$$

This routine uses the identity (22) on page 151 of de Boor (1978).

178 • spline_integral

Example

In this example, a cubic spline interpolant to a function f is computed. The values of the integral of this spline are then compared with the exact integral values. Since the default settings are used, the interpolant is determined by the "not-a-knot" condition (see de Boor 1978).

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                 21
                                 /* Define function */
#define F(x)
                 (float)(sin(15.0*x))
                                 /* Integral from 0 to x */
#define FI(x)
                 (float)((1.-cos(15.0*x))/15.)
main()
{
                        i;
    int
    float
                        fdata[NDATA], xdata[NDATA], x, y;
    Imsl_f_spline
                        *sp;
                                 /* Set up a grid */
    for (i = 0; i < NDATA; i++) {</pre>
        xdata[i] = (float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]);
    }
                                /* Compute cubic spline interpolant */
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
                                 /* Print results */
                                                     Integral Error\n");
    printf("
                           FI(x)
                                     Interpolant
                 х
    for (i = NDATA/2; i < 3*NDATA/2; i++) {
        x = (float) i /(float)(2*NDATA-2);
        y = imsl_f_spline_integral(0.0, x, sp);
                                                     n", x, FI(x), y,
        printf(" %6.3f %10.3f
                                 %10.3f
                                            %10.4f
                                                          fabs(FI(x)-y));
    }
}
```

Output

Chapter 3: Interpolation and Approximation

0.650	0.130	0.130	0.0001
0.675	0.118	0.118	0.0001
0.700	0.098	0.098	0.0001
0.725	0.075	0.075	0.0001
0.750	0.050	0.050	0.0001

Warning Errors

IMSL_SPLINE_SMLST_ELEMNT	The data arrays xdata and ydata must satisfy $data_1 \leq t_{order-1}$, for $i = 1,, num_data$.
IMSL_SPLINE_EQUAL_LIMITS	The upper and lower endpoints of integration are equal. The indefinite integral is zero.
IMSL_LIMITS_LOWER_TOO_SMALL	The left endpoint is less than $\mathbf{t}_{order-1}$. Integration occurs only from $\mathbf{t}_{order-1}$ to b.
IMSL_LIMITS_UPPER_TOO_SMALL	The right endpoint is less than $\mathbf{t}_{order-1}$. Integration occurs only from $\mathbf{t}_{order-1}$ to a.
IMSL_LIMITS_UPPER_TOO_BIG	The right endpoint is greater than $\mathbf{t}_{spline_space_dim-1}$. Integration occurs only from a to $\mathbf{t}_{spline_space_dim-1}$.
IMSL_LIMITS_LOWER_TOO_BIG	The left endpoint is greater than $\mathbf{t}_{spline_space_dim-1}$. Integration occurs only from b to $\mathbf{t}_{spline_space_dim-1}$.
Fatal Errors	
IMSL_KNOT_MULTIPLICITY	Multiplicity of the knots cannot exceed the order of the spline.
IMSL_KNOT_NOT_INCREASING	The knots must be nondecreasing.

spline_2d_value

Computes the value of a tensor-product spline or the value of one of its partial derivatives.

Synopsis

#include <imsl.h>

float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp, ..., 0)
The type double function is imsl_d_spline_2d_value.

Required Arguments

float x (Input)

float y (Input)

The (x, y) coordinates of the evaluation point for the tensor-product spline.

```
Imsl_f_spline *sp (Input)
```

Pointer to the structure that represents the spline.

Return Value

The value of a tensor-product spline or one of its derivatives at the point (x, y).

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_DERIV, *int* x_partial, *int* y_partial (Input) Let $p = x_partial$ and $q = y_partial$, and let s be the spline that is represented by the structure *sp, then this option produces the (p, q)-th derivative of s at (x, y), $s^{(p,q)}(x, y)$.

 $Default: x_partial = y_partial = 0$

The argument xvec is the array of length nx containing the X coordinates at which the spline is to be evaluated. The argument yvec is the array of length ny containing the Y coordinates at which the spline is to be evaluated. The value of the spline on the nx by ny grid is returned in value.

IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec,

float value_user[] (Input/Output)

The argument xvec is the array of length nx containing the X coordinates at which the spline is to be evaluated. The argument yvec is the array of length ny containing the Y coordinates at which the spline is to be evaluated. The value of the spline on the nx by ny grid is returned in the user-supplied space value_user.

Description

The function imsl_f_spline_2d_value computes the value of a tensor-product spline or one of its derivatives. This function is based on the discussion in de Boor (1978, pp. 351–353).

Examples

Example 1

In this example, a spline interpolant *s* to a function *f* is constructed. Using the procedure imsl_f_spline_2d_interp to compute the interpolant,

 $imsl_f_spline_2d_value$ is employed to compute s(x, y). The values of this partial derivative and the error are computed on a 4 × 4 grid and then displayed.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
                        11
#define NDATA
#define OUTDATA
                         2
                                 /* Define function */
#define F(x,y)
                        (float)(x*x*x+y*y)
main()
{
    int
                        i, j, num_xdata, num_ydata;
    float
                        fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
    float
                        x, y, z;
    Imsl_f_spline
                        *sp;
                                 /* Set up grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
    for (i = 0; i < NDATA; i++) {
        for (j = 0; j < NDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
    ł
    num_xdata = num_ydata = NDATA;
                                 /* Compute tensor-product interpolant */
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
                                                       ydata, fdata, 0);
                                 /* Print results */
    printf("
                                                             Error\n");
                 х
                                 F(x, y)
                                                 Value
                         y
    for (i = 0; i < OUTDATA; i++) {
        x = (float) (1+i) / (float) (OUTDATA+1);
        for (j = 0; j < OUTDATA; j++) {</pre>
            y = (float) (1+j) / (float) (OUTDATA+1);
            z = imsl_f_spline_2d_value(x, y, sp, 0);
            printf(" %6.3f %6.3f %10.3f %10.3f
                                                       %10.4f\n",
                   x, y, F(x,y), z, fabs(F(x,y)-z);
        }
    }
}
            Output
                   F(x, y)
                                 Value
    х
                                               Error
            У
0.333
        0.333
                    0.148
                                 0.148
                                              0.0000
0.333
        0.667
                    0.481
                                 0.481
                                              0.0000
0.667
        0.333
                    0.407
                                 0.407
                                              0.0000
```

0.741

0.0000

182 • spline_2d_value

0.667

0.741

0.667

Example 2

```
In this example, a spline interpolant s to a function f is constructed. Using function
            imsl_f_spline_2d_interp to compute the interpolant, then
            imsl_f_spline_2d_value is employed to compute s^{(2,1)}(x, y). The values of this
            partial derivative and the error are computed on a 4 \times 4 grid and then displayed.
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                         11
#define OUTDATA
                           2
                                  /* Define function */
#define F(x, y)
                          (float)(x*x*x*y*y)
#define F21(x,y)
                          (float)(6.*x*2.*y)
main()
{
    int
                          i, j, num_xdata, num_ydata;
    float
                          fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
    float
                         x, y, z;
    Imsl_f_spline
                          *sp;
                                  /* Set up grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
    for (i = 0; i < NDATA; i++) {
        for (j = 0; j < NDATA; j++) {</pre>
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
    num_xdata = num_ydata = NDATA;
                                  /* Compute tensor-product interpolant */
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
                                                           ydata, fdata, 0);
                                  /* Print results */
    printf("
                                   F21(x, y)
                                               21InterpDeriv Error\n");
                  х
                          У
    for (i = 0; i < OUTDATA;</pre>
                                i++) {
        x = (float) (1+i) / (float) (OUTDATA+1);
        for (j = 0; j < OUTDATA; j++) {
            y = (float) (1+j) / (float) (OUTDATA+1);
             z = imsl_f_spline_2d_value(x, y, sp,
                                          IMSL_DERIV, 2, 1,
                                          0);
            printf(" %6.3f %6.3f %10.3f
                                                %10.3f
                                                        %10.4f\n",
                    x, y, F21(x, y), z, fabs(F21(x,y)-z));
        }
    }
}
            Output
                   F21(x, y)
                                21InterpDeriv
                                                 Error
    х
            У
0.333
        0.333
                                   1.333
                                                0.0000
                     1.333
0.333
        0.667
                     2.667
                                   2.667
                                                0.0000
                                   2.667
0.667
                     2.667
                                                0.0000
        0.333
0.667
        0.667
                     5.333
                                   5.333
                                                0.0001
```

Warning Errors

IMSL_X_NOT_WITHIN_KNOTS	The value of x does not lie within the knot sequence.
IMSL_Y_NOT_WITHIN_KNOTS	The value of y does not lie within the knot sequence.
Fatal Errors	
IMSL_KNOT_MULTIPLICITY	Multiplicity of the knots cannot exceed the order of the spline.
IMSL_KNOT_NOT_INCREASING	The knots must be nondecreasing.

spline_2d_integral

Evaluates the integral of a tensor-product spline on a rectangular domain.

Synopsis

The type *double* function is imsl_d_spline_2d_integral.

Required Arguments

float a (Input)

float b (Input)

The integration limits for the first variable of the tensor-product spline.

- float c (Input)
- float d (Input)

The integration limits for the second variable of the tensor-product spline.

Imsl_f_spline *sp (Input)

Pointer to the structure that represents the spline.

Return Value

The value of the integral of the tensor-product spline over the rectangle $[a, b] \times [c, d]$. If no value can be computed, NaN is returned.

Description

The function imsl_f_spline_2d_integral computes the integral of a tensorproduct spline. If *s* is the spline, then this function returns

$$\int_{a}^{b} \int_{c}^{d} s(x, y) dy dx$$

This function uses the (univariate integration) identity (22) in de Boor (1978, p. 151)

$$\int_{\mathbf{t}_{0}}^{x} \sum_{i=0}^{n-1} \alpha_{i} B_{i,k}(\tau) d\tau = \sum_{i=0}^{r-1} \left[\sum_{j=0}^{i} \alpha_{j} \frac{\mathbf{t}_{j+k} - \mathbf{t}_{j}}{k} \right] B_{i,k+1}(x)$$

where $\mathbf{t}_0 \leq x \leq \mathbf{t}_r$.

It assumes (for all knot sequences) that the first and last k knots are stacked, that is, $\mathbf{t}_0 = \ldots = \mathbf{t}_{k-1}$ and $\mathbf{t}_n = \ldots = \mathbf{t}_{n+k-1}$, where k is the order of the spline in the x or y direction.

Example

This example integrates a two-dimensional, tensor-product spline over the rectangle [0, x] × [0, y].

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                        11
#define OUTDATA
                         2
                                /* Define function */
#define F(x,y)
                        (float)(x*x*x+y*y)
                                /* The integral of F from 0 to x */
                                /* and 0 to y */
                        (float)(y*x*x*x/4. + x*y*y*y/3.)
#define FI(x,y)
main()
{
    int
                        i, j, num_xdata, num_ydata;
   float
                        fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
    float
                        x, y, z;
    Imsl_f_spline
                        *sp;
                                /* Set up grid */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = ydata[i] = (float) i / ((float)(NDATA-1));
    }
    for (i = 0; i < NDATA; i++) {
        for (j = 0; j < NDATA; j++) {
            fdata[i][j] = F(xdata[i],ydata[j]);
        }
    }
   num_xdata = num_ydata = NDATA;
                                /* Compute tensor-product interpolant */
   sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
                                                       ydata, fdata, 0);
                                /* Print results */
   printf("
                                FI(x, y)
                                           Integral
                                                            Error\n");
                х
                        v
    for (i = 0; i < OUTDATA;</pre>
                              i++) {
        x = (float) (1+i) / (float) (OUTDATA+1);
        for (j = 0; j < OUTDATA; j++) {</pre>
            y = (float) (1+j) / (float) (OUTDATA+1);
            z = imsl_f_spline_2d_integral(0.0, x, 0.0, y, sp);
            printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
                   x, y, FI(x, y), z, fabs(FI(x,y)-z);
        }
```

}

Output

х	У	FI(x, y)	Integral	Error
0.333	0.333	0.005	0.005	0.0000
0.333	0.667	0.035	0.035	0.0000
0.667	0.333	0.025	0.025	0.0000
0.667	0.667	0.099	0.099	0.0000

Warning Errors

IMSL_SPLINE_LEFT_ENDPT	The left endpoint of <i>X</i> integration is not within the knot sequence. Integration occurs only from $\mathbf{t}_{order-1}$ to b.
IMSL_SPLINE_RIGHT_ENDPT	The right endpoint of <i>X</i> integration is not within the knot sequence. Integration occurs only from $\mathbf{t}_{order-1}$ to a.
IMSL_SPLINE_LEFT_ENDPT_1	The left endpoint of X integration is not within the knot sequence. Integration occurs only from b to
	t <i>spline_space_dim</i> -1.
IMSL_SPLINE_RIGHT_ENDPT_1	The right endpoint of <i>X</i> integration is not within the knot sequence. Integration occurs only from a to
	t <i>spline_space_dim</i> -1.
IMSL_SPLINE_LEFT_ENDPT_2	The left endpoint of <i>Y</i> integration is not within the knot sequence. Integration occurs only from $\mathbf{t}_{order-1}$ to d.
IMSL_SPLINE_RIGHT_ENDPT_2	The right endpoint of <i>Y</i> integration is not within the knot sequence. Integration occurs only from $\mathbf{t}_{order-1}$ to c.
IMSL_SPLINE_LEFT_ENDPT_3	The left endpoint of <i>Y</i> integration is not within the knot sequence. Integration occurs only from d to
	t <i>spline_space_dim</i> -1.
IMSL_SPLINE_RIGHT_ENDPT_3	The right endpoint of <i>Y</i> integration is not within the knot sequence. Integration occurs only from c to $\mathbf{t}_{spline_space_dim-1}$.
	_
Fatal Errors	
IMSL_KNOT_MULTIPLICITY	Multiplicity of the knots cannot exceed the order of the spline.

186 • spline_2d_integral

user_fcn_least_squares

Computes a least-squares fit using user-supplied functions.

Synopsis

#include <imsl.h>

float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int nbasis, int ndata, float xdata[], float ydata[], ..., 0)

The type *double* function is imsl_d_user_fcn_least_squares.

Required Arguments

float fcn (int k, float x) (Input) User-supplied function that defines the subspace from which the least-squares fit is to be performed. The k-th basis function evaluated at x is f(k, x) where

k = 1, 2, ..., nbasis.

```
int nbasis (Input)
```

Number of basis functions.

- *int* ndata (Input) Number of data points.
- float xdata[] (Input) Array with ndata components containing the abscissas of the least-squares problem.
- float ydata[] (Input)
 Array with ndata components containing the ordinates of the least-squares
 problem.

Return Value

A pointer to the vector containing the coefficients of the basis functions. If a fit cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int
    nbasis, int ndata, float xdata[], float ydata[],
    IMSL_RETURN_USER, float coef[],
    IMSL_INTERCEPT, float *intercept,
    IMSL_SSE, float *ssq_err,
    IMSL_WEIGHTS, float weights[],
    0)
```

Optional Arguments

IMSL_RETURN_USER, float coef[] (Output)
The coefficients are stored in the user-supplied array.

IMSL_INTERCEPT, float *intercept (Output)

This option adds an intercept to the model. Thus, the least-squares fit is computed using the user-supplied basis functions augmented by the constant function. The coefficient of the constant function is stored in intercept.

- IMSL_SSE, *float* *ssq_err (Output) This option returns the error sum of squares.
- IMSL_WEIGHTS, float weights[] (Input)
 This option requires the user to provide the weights.
 Default: all weights equal one

Description

The function imsl_f_user_fcn_least_squares computes a best least-squares approximation to given univariate data of the form

$$\{(x_i, f_i)\}_{i=0}^{n-1}$$

by *M* basis functions

$$\left\{F_j\right\}_{j=1}^M$$

(where M = nbasis). In particular, the default for this function returns the coefficients a which minimize

$$\sum_{i=0}^{n-1} w_i \left[f_i - \sum_{j=1}^{M} a_{j-1} F_j(x_i) \right]^2$$

where w = weights, n = ndata, x = xdata, and f = ydata.

If the optional argument IMSL_INTCERCEPT is chosen, then an intercept is placed in the model, and the coefficients *a*, returned by imsl_f_user_fcn_least_squares, minimize the error sum of squares as indicated below.

$$\sum_{i=0}^{n-1} w_i \left[f_i - \text{intercept} - \sum_{j=1}^M a_{j-1} F_j(x_i) \right]^2$$

Examples

Example 1

This example fits the following two functions (indexed by δ):

$$1 + \sin x + 7 \sin 3x + \delta \epsilon$$

```
where \varepsilon is a random uniform deviate over the range [-1, 1] and \delta is 0 for the first
             function and 1 for the second. These functions are evaluated at 90 equally spaced points
             on the interval [0, 6]. Four basis functions are used: 1, \sin x, \sin 2x, \sin 3x.
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                  90
                                    /* Define function */
#define F(x)
                  (float)(1.+ sin(x)+7.*sin(3.0*x))
float
                   fcn(int n, float x);
main()
{
    int
                  nbasis = 4, i, delta;
    float
                  ydata[NDATA], xdata[NDATA], *random, *coef;
                                    /* Generate random numbers */
    imsl_random_seed_set(1234567);
    random = imsl_f_random_uniform(NDATA, 0);
                                    /* Set up data */
    for(delta = 0; delta < 2; delta++) {</pre>
         for (i = 0; i < NDATA; i++) {
             xdata[i] = 6.*(float)i /((float)(NDATA-1));
             ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
         }
         coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
                                                                    ydata, 0);
         printf("\nFor delta = %ld", delta);
         imsl_f_write_matrix("the computed coefficients are\n",
                               1, nbasis, coef, 0);
    }
}
float fcn(int n, float x)
    return (n == 1) ? 1.0 : sin((n-1)*x);
}
             Output
For delta = 0
         the computed coefficients are
          1
                       2
                                     3
                                                  4
                                                  7
          1
                       1
                                    -0
For delta = 1
         the computed coefficients are
          1
                        2
                                     3
                                                  4
     0.979
                                0.096
                   0.998
                                              6.839
```

Example 2

Recall that the first example fitted the following two functions (indexed by δ):

 $1 + \sin x + 7 \sin 3x + \delta \varepsilon$

Chapter 3: Interpolation and Approximation

user_fcn_least_squares • 189

where ε is a random uniform deviate over the range[-1, 1], and δ is 0 for the first function and 1 for the second. These functions are evaluated at 90 equally spaced points on the interval [0, 6]. Previously, the four basis functions were used: 1, sin*x*, sin2*x*, sin3*x*. This example uses the four basis functions: sin*x*, sin2*x*, sin3*x*, sin4*x*, combined with the intercept option.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                 90
                                  /* Define function */
                  (float)(1.+ sin(x)+7.*sin(3.0*x))
#define F(x)
float
                  fcn(int n, float x);
main()
{
                 nbasis = 4, i, delta;
    int
    float
                 ydata[NDATA], xdata[NDATA], *random, *coef, intercept;
                                  /* Generate random numbers */
    imsl_random_seed_set(1234567);
    random = imsl_f_random_uniform(NDATA, 0);
                                 /* Set up data */
    for(delta = 0; delta < 2; delta++){
    for (i = 0; i < NDATA; i++) {</pre>
            xdata[i] = 6.*(float)i /((float)(NDATA-1));
            ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
        }
        coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
                                                                      ydata,
                                                IMSL_INTERCEPT, &intercept,
                                                0);
        printf("\nFor delta = %1d\n", delta);
        printf("The predicted intercept value is 10.3fn",
                 intercept);
        imsl_f_write_matrix("the computed coefficients are\n",
                              1, nbasis, coef, 0);
    }
}
float fcn(int n, float x)
{
    return sin(n*x);
}
            Output
For delta = 0
The predicted intercept value is
                                         1.000
        the computed coefficients are
         1
                      2
                                   3
                                                4
                      0
                                   7
                                               -0
         1
For delta = 1
```

190 • user_fcn_least_squares

IMSL C/Math/Library

The predicted intercept value is		e is	0.978
the computed coefficients are		ients are	
1 0.998	2 0.097	3 6.841	4 0.07
	Warning Errors		
	IMSL_LINEAR_DEPENDENCE		Linear dependence of the basis functions exists. One or more components of coef are set to zero.
IMSL_LINEAR_DEPENDENCE_CONST		T Linear dependence of the constant function and basis functions exists. One or more components of coef are set to zero.	
Fatal Errors			
	IMSL_NEGATIVE_WEI	GHTS_2	All weights must be greater than or equal to zero.

spline_least_squares

Computes a least-squares spline approximation.

Synopsis

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[],
 float fdata[], int spline_space_dim, ..., 0)

The type *Imsl_d_spline* function is imsl_d_spline_least_squares.

Required Arguments

- *int* ndata (Input) Number of data points.
- float xdata[] (Input)
 Array with ndata components containing the abscissas of the least-squares
 problem.

float fdata[] (Input) Array with ndata components containing the ordinates of the least-squares problem.

int spline_space_dim (Input)
The linear dimension of the spline subspace. It should be smaller than ndata
and greater than or equal to order (whose default value is 4).

spline_least_squares • 191

Return Value

A pointer to the structure that represents the spline fit. If a fit cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

```
Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[],
    float fdata[], int spline_space_dim,
    IMSL_SSE, float *sse_err,
    IMSL_WEIGHTS, float weights[],
    IMSL_ORDER, int order,
    IMSL_KNOTS, float knots[],
    IMSL_OPTIMIZE,
    0)
```

Optional Arguments

IMSL_SSE, float *sse (Output)

This option places the weighted error sum of squares in the place pointed to by sse.

IMSL_WEIGHTS, float weights[] (Input)

This option requires the user to provide the weights. Default: all weights equal one.

IMSL_ORDER, *int* order (Input)

The order of the spline subspace for which the knots are desired. This option is used to communicate the order of the spline subspace. Default: order = 4, (i.e., cubic splines).

IMSL_KNOTS, float knots[] (Input)

This option requires the user to provide the knots. The user must provide a knot sequence of length spline_space_dimension + order. Default: an appropriate knot sequence is selected. See below for more details.

IMSL_OPTIMIZE

This option optimizes the knot locations, by attempting to minimize the leastsquares error as a function of the knots. The optimal knots are available in the returned spline structure.

Description

Let's make the identifications

```
n = ndata

x = xdata

f = fdata

m = spline_space_dim

k = order
```

For convenience, we assume that the sequence x is increasing, although the function does not require this.

By default, k = 4, and the knot sequence we select equally distributes the knots through the distinct x_i 's. In particular, the m + k knots will be generated in $[x_1, x_n]$ with k knots stacked at each of the extreme values. The interior knots will be equally spaced in the interval.

Once knots **t** and weights *w* are determined (and assuming that the option IMSL_OPTIMIZE is not chosen), then the function computes the spline least-squares fit to the data by minimizing over the linear coefficients a_i

$$\sum_{i=0}^{n-1} w_i \left[f_i - \sum_{j=1}^m a_j B_j(x_i) \right]^2$$

where the B_j , j = 1, ..., m are a (B-spline) basis for the spline subspace.

The optional argument IMSL_ORDER allows the user to choose the order of the spline fit. The optional argument IMSL_KNOTS allows user specification of knots. The function imsl_f_spline_least_squares is based on the routine L2APPR by de Boor (1978, p. 255).

If the option IMSL_OPTIMIZE is chosen, then the procedure attempts to find the best placement of knots that will minimize the least-squares error to the given data by a spline of order k with m coefficients. For this problem to make sense, it is necessary that m > k. We then attempt to find the minimum of the functional

$$F(a, \mathbf{t}) = \sum_{i=0}^{n-1} w_i \left[f_i - \sum_{j=0}^{m-1} a_j B_{j,k,\mathbf{t}}(x_i) \right]$$

The technique employed here uses the fact that for a fixed knot sequence \mathbf{t} the minimization in *a* is a linear least-squares problem that can be easily solved. Thus, we can think of our objective function *F* as a function of just \mathbf{t} by setting

$$G(\mathbf{t}) = \min_{a} F(a, \mathbf{t})$$

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new objective function *G*. In addition to this local method, there is a global heuristic built into the algorithm that will be useful if the data arise from a smooth function. This heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184 and 258–261).

The initial guess, \mathbf{t}^{g} , for the knot sequence is either provided by the user or is the default. This guess must be a *valid* knot sequence for splines of order k with

$$\mathbf{t}_{0}^{g} \leq \ldots \leq \mathbf{t}_{k-1}^{g} \leq x_{i} \leq \mathbf{t}_{m}^{g} \leq \ldots \leq \mathbf{t}_{m+k-1}^{g}$$
 $i = 1, \ldots, M$

with \mathbf{t}^{g} nondecreasing, and

$$\mathbf{t}_{i}^{g} < \mathbf{t}_{i+k}^{g}$$
 for $i = 0, ..., m-1$

Chapter 3: Interpolation and Approximation

In regard to execution speed, this function can be several orders of magnitude slower than a simple least-squares fit.

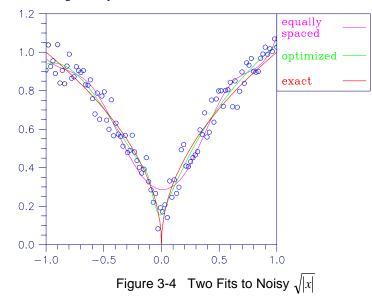
The return value for this function is a pointer of type $Imsl_f_spline$. The calling program must receive this in a pointer $Imsl_f_spline *sp$. This structure contains all the information to determine the spline (stored in B-spline form) that is computed by this function. For example, the following code sequence evaluates this spline a *x* and returns the value in *y*.

y = imsl_f_spline_value (x, sp, 0);

In the figure below two cubic splines are fit to

 $\sqrt{|x|}$

Both splines are cubics with the same spline_space_dim = 8. The first spline is computed with the default settings, while the second spline is computed by optimizing the knot locations using the keyword IMSL_OPTIMIZE.



Examples

Example 1

This example fits data generated from a trigonometric polynomial

$$1 + \sin x + 7 \sin 3x + \varepsilon$$

where ε is a random uniform deviate over the range [-1, 1]. The data are obtained by evaluating this function at 90 equally spaced points on the interval [0, 6]. This data is fitted with a cubic spline with 12 degrees of freedom (eight equally spaced interior knots). The error at 10 equally spaced points is printed out.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                90
                                 /* Define function */
#define F(x)
                (float)(1.+ sin(x)+7.*sin(3.0*x))
main()
{
                        i, spline_space_dim = 12;
    int
    float
                        fdata[NDATA], xdata[NDATA], *random;
    Imsl_f_spline
                        *sp;
                                 /* Generate random numbers */
    imsl_random_seed_set(123457);
    random = imsl_f_random_uniform(NDATA, 0);
                                 /* Set up data */
    for (i = 0; i < NDATA;
                             i++) {
        xdata[i] = 6.*(float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
    }
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
                                          spline_space_dim, 0);
    printf("
                             error \n");
                   х
    for(i = 0; i < 10; i++) {
        float x, error;
        x = 6.*i/9.;
        error = F(x) - imsl_f_spline_value(x, sp, 0);
        printf("%10.3f %10.3f\n", x, error);
    }
}
```

Output

х	Error
0.000	-0.356
0.667	-0.004
1.333	0.434
2.000	-0.069
2.667	-0.494
3.333	0.362
4.000	-0.273
4.667	-0.247
5.333	0.303
6.000	0.578

Example 2

This example continues with the first example in which we fit data generated from the trigonometric polynomial

```
1 + \sin x + 7 \sin 3x + \varepsilon
```

where ε is random uniform deviate over the range [-1, 1]. The data is obtained by evaluating this function at 90 equally spaced points on the interval [0, 6]. This data was fitted with a cubic spline with 12 degrees of freedom (in this case, the default gives us eight equally spaced interior knots) and the error sum of squares was printed. In this

```
example, the knot locations are optimized and the error sum of squares is printed. Then,
            the error at 10 equally spaced points is printed.
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                90
                                  /* Define function */
#define F(x)
                     (float)(1.+ sin(x)+7.*sin(3.0*x))
main()
{
    int
                         i, spline_space_dim = 12;
    float
                         fdata[NDATA], xdata[NDATA], *random, sse1, sse2;
    Imsl_f_spline
                          *sp;
                                  /* Generate random numbers */
    imsl_random_seed_set(123457);
    random = imsl_f_random_uniform(NDATA, 0);
                                  /* Set up data */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = 6.*(float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
    }
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
                                                          spline_space_dim,
                                       IMSL SSE, &ssel,
                                       0);
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
                                                         spline_space_dim,
                                       IMSL_OPTIMIZE,
                                       IMSL_SSE, &sse2,
                                       0);
    printf("The error sum of squares before optimizing is %10.1f\n",
           ssel);
    printf("The error sum of squares after optimizing is %10.1f\n\n",
           sse2);
    printf("
                              error\n");
                   х
    for(i = 0; i < 10; i++){</pre>
        float x, error;
        x = 6.*i/9.;
        error = F(x) - imsl_f_spline_value(x, sp, 0);
        printf("%10.3f %10.3f\n", x, Error);
    }
}
            Output
The error sum of squares before optimizing is
                                                       32.6
The error sum of squares after optimizing is
                                                       27.0
                 Error
       х
     0.000
                -0.656
     0.667
                 0.107
```

196 • spline_least_squares

0.055

-0.243

-0.063

-0.015

-0.424

1.333

2.000

2.667

3.333

4.000

4.667	-0.138
5.333	0.133
6.000	0.494

Warning Errors

IMSL_OPT_KNOTS_STACKED_1	The knots found to be optimal are stacked more than order. This indicates fewer knots will produce the same error sum of squares. The knots have been separated slightly.
Fatal Errors	
IMSL_XDATA_TOO_LARGE	The array xdata must satisfy xdata _i $\leq \mathbf{t}_{ndata}$, for $i = 1, \dots, ndata$.
IMSL_XDATA_TOO_SMALL	The array xdata must satisfy $x data_i \ge \mathbf{t}_{order-1}$, for $i = 1, \dots, ndata$.
IMSL_NEGATIVE_WEIGHTS	All weights must be greater than or equal to zero.
IMSL_KNOT_MULTIPLICITY	Multiplicity of the knots cannot exceed the order of the spline.
IMSL_KNOT_NOT_INCREASING	The knots must be nondecreasing.
IMSL_OPT_KNOTS_STACKED_2	The knots found to be optimal are stacked more than order. This indicates fewer knots will produce the same error sum of squares.

spline_2d_least_squares

Computes a two-dimensional, tensor-product spline approximant using least squares.

Synopsis

#include <imsl.h>

The type *Imsl_d_spline* function is imsl_d_spline_2d_least_squares.

Required Arguments

int num_xdata (Input) Number of data points in the X direction.

float xdata[] (Input)
 Array with num_xdata components containing the data points in the X
 direction.

Chapter 3: Interpolation and Approximation

spline_2d_least_squares • 197

int num_ydata (Input)

Number of data points in the Y direction.

float ydata[] (Input)

Array with num_ydata components containing the data points in the *Y* direction.

float fdata[] (Input)

Array of size num_xdata × num_ydata containing the values to be approximated. fdata[i][j] is the (possibly noisy) value at (xdata[i], ydata[j]).

int x_spline_space_dim (Input)

The linear dimension of the spline subspace for the *x* variable. It should be smaller than num_xdata and greater than or equal to xorder (whose default value is 4).

int y_spline_space_dim (Input)

The linear dimension of the spline subspace for the y variable. It should be smaller than num_ydata and greater than or equal to yorder (whose default value is 4).

Return Value

A pointer to the structure that represents the tensor-product spline interpolant. If an interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float xdata[], int num_ydata, float ydata[], float fdata[], int x_spline_space_dim, int y_spline_space_dim, IMSL_SSE, float *sse, IMSL_ORDER, int xorder, int yorder, IMSL_KNOTS, float xknots[], float yknots[], IMSL_FDATA_COL_DIM, int fdata_col_dim, IMSL_WEIGHTS, float xweights[], float yweights[], 0)

Optional Arguments

IMSL_SSE, *float* *sse (Output)

This option places the weighted error sum of squares in the place pointed to by sse.

IMSL_ORDER, int xorder, int yorder (Input)
This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4 (i.e., tensor-product cubic splines)

IMSL_KNOTS, float xknots[], float yknots[] (Input)
This option requires the user to provide the knots.
Default: The default knots are equally spaced in the x and y dimensions.
IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)

The column dimension of fdata. Default: fdata_col_dim = num_ydata

IMSL_WEIGHTS, float xweights[], float yweights[] (Input)
This option requires the user to provide the weights for the least-squares fit.
Default: all weights are equal to 1.

Description

The imsl_f_spline_2d_least_squares procedure computes a tensor-product spline least-squares approximation to weighted tensor-product data. The input for this function consists of data vectors to specify the tensor-product grid for the data, two vectors with the weights (optional, the default is 1), the values of the surface on the grid, and the specification for the tensor-product spline (optional, a default is chosen). The grid is specified by the two vectors x = xdata and y = ydata of length $n = num_xdata$ and $m = num_ydata$, respectively. A two-dimensional array f = fdata contains the data values which are to be fit. The two vectors $w_x = xweights$ and $w_y = yweights$ contain the weights for the weighted least-squares problem. The information for the approximating tensor-product spline can be provided using the keywords IMSL_ORDER and IMSL_KNOTS. This information is contained in $k_x = xorder$, $\mathbf{t}_x = xknots$, and $N = xspline_space_dim for the spline in the first variable, and in <math>k_y = yorder$, $\mathbf{t}_y = yknots$ and $M = y_spline_space_dim for the spline in t$

This function computes coefficients for the tensor-product spline by solving the normal equations in tensor-product form as discussed in de Boor (1978, Chapter 17). The interested reader might also want to study the paper by Grosse (1980).

As the computation proceeds, we obtain coefficients c minimizing

$$\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} w_x(i) w_y(j) \left[\sum_{k=0}^{N-1} \sum_{l=0}^{M-1} c_{kl} B_{kl}(x_i, y_i) - f_{ij} \right]^2$$

where the function B_{kl} is the tensor-product of two B-splines of order k_x and k_y . Specifically, we have

$$B_{kl}(x, y) = B_{k, k_x, \mathbf{t}_x}(x) B_{l, k_y, \mathbf{t}_y}(y)$$

The spline

$$\sum_{k=0}^{N-1} \sum_{l=0}^{M-1} c_{kl} B_{kl}$$

and its partial derivatives can be evaluated using imsl_f_spline_2d_value.

Chapter 3: Interpolation and Approximation

The return value for this function is a pointer to the structure $Imsl_f_spline$. The calling program must receive this in a pointer of type $Imsl_f_spline$. This structure contains all the information to determine the spline that is computed by this procedure. For example, the following code sequence evaluates this spline (stored in the structure sp at (*x*, *y*) and returns the value in v.

 $v = imsl_f_spline_2d_value (x, y, sp, 0)$

Examples

Example 1

The data for this example comes from the function $e^x \sin(x + y)$ on the rectangle [0, 3] \times [0, 5]. This function is sampled on a 50 \times 25 grid. Next try to recover it by using tensor-product cubic splines. The values of the function $e^x \sin(x + y)$ are printed on a 2 \times 2 grid and compared with the values of the tensor-product spline least-squares fit.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NXDATA
                        50
#define NYDATA
                        25
#define OUTDATA
                         2
                                 /* Define function */
#define F(x,y)
                        (float)(exp(x)*sin(x+y))
main()
{
    int
                        i, j, num_xdata, num_ydata;
   float
                        fdata[NXDATA][NYDATA];
    float
                        xdata[NXDATA], ydata[NYDATA], x, y, z;
    Imsl_f_spline
                        *sp;
                                 /* Set up grid */
    for (i = 0; i < NXDATA; i++) {
        xdata[i] = 3.*(float) i / ((float)(NXDATA-1));
    for (i = 0; i < NYDATA; i++) {
        ydata[i] = 5.*(float) i / ((float)(NYDATA-1));
    }
                                /* Compute function values on grid \ \ */
    for (i = 0; i < NXDATA; i++) {
        for (j = 0; j < NYDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
   num_xdata = NXDATA;
   num_ydata = NYDATA;
                                 /* Compute tensor-product interpolant */
    sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata,
                                                  ydata, fdata, 5, 7, 0);
                                 /* Print results */
   printf("
                                  F(x, y)
                                           Fitted Values
                                                              Error\n");
                 х
                         V
    for (i = 0; i < OUTDATA;</pre>
                               i++) {
       x = (float)i / (float)(OUTDATA);
        for (j = 0; j < OUTDATA; j++) {
            y = (float)j / (float)(OUTDATA);
```

200 • spline_2d_least_squares

У	F(x, y)	Fitted Values	Error
0.000	0.000	-0.020	0.0204
0.500	0.479	0.500	0.0208
0.000	0.790	0.816	0.0253
0.500	1.387	1.384	0.0031
	0.500	0.500 0.000 0.790	0.000 0.000 -0.020 0.500 0.479 0.500 0.000 0.790 0.816

Example 2

The same data is used as in the previous example. Optional argument IMSL_SSE is used to return the error sum of squares.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NXDATA
                       50
#define NYDATA
                       25
#define OUTDATA
                        2
                                /* Define function */
#define F(x,y)
                       (float)(exp(x)*sin(x+y))
main()
{
                        i, j, num_xdata, num_ydata;
    int
   float
                        fdata[NXDATA][NYDATA];
   float
                        xdata[NXDATA], ydata[NYDATA], x, y, z;
   Imsl_f_spline
                        *sp;
                                /* Set up grid */
    for (i = 0; i < NXDATA; i++) {
        xdata[i] = 3.*(float) i / ((float) (NXDATA - 1));
    }
   for (i = 0; i < NYDATA; i++) {
       ydata[i] = 5.*(float) i / ((float) (NYDATA - 1));
    }
                                /* Compute function values on grid */
    for (i = 0; i < NXDATA; i++) {</pre>
        for (j = 0; j < NYDATA; j++) {
            fdata[i][j] = F(xdata[i], ydata[j]);
        }
    }
   num_xdata = NXDATA;
   num_ydata = NYDATA;
                                /* Compute tensor-product interpolant */
    sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata,
                                                    ydata, fdata, 5, 7,
                                         IMSL_SSE, &x,
                                         0);
                                 /* Print results */
   printf("The error sum of squares is %10.3f\n\n", x);
```

Chapter 3: Interpolation and Approximation

spline_2d_least_squares • 201

The error sum of squares is 3.753

Warning Errors

IMSL_ILL_COND_LSQ_PROB	The least-squares matrix is ill-conditioned. The solution might not be accurate.
IMSL_SPLINE_LOW_ACCURACY	There may be less than one digit of accuracy in the least-squares fit. Try using a higher precision if possible.
Fatal Errors	
IMSL_KNOT_MULTIPLICITY	Multiplicity of the knots cannot exceed the order of the spline.
IMSL_KNOT_NOT_INCREASING	The knots must be nondecreasing.
IMSL_SPLINE_LRGST_ELEMNT	The data arrays xdata and ydata must satisfy $data_i \leq \mathbf{t}_{spline_space_dim}$, for $i = 1$,, num_data.
IMSL_SPLINE_SMLST_ELEMNT	The data arrays xdata and ydata must satisfy data _i \geq t _{order-1} , for i = 1,, num_data.
IMSL_NEGATIVE_WEIGHTS	All weights must be greater than or equal to zero.
IMSL_DATA_DECREASING	The xdata values must be nondecreasing.

cub_spline_smooth

Computes a smooth cubic spline approximation to noisy data by using cross-validation to estimate the smoothing parameter or by directly choosing the smoothing parameter.

Synopsis

#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float
fdata[], ..., 0)

The type *Imsl_d_ppoly* function is imsl_d_cub_spline_smooth.

Required Arguments

int ndata (Input) Number of data points.

float xdata[] (Input) Array with ndata components containing the abscissas of the problem.

float fdata[] (Input) Array with ndata components containing the ordinates of the problem.

Return Value

A pointer to the structure that represents the cubic spline. If a smoothed cubic spline cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float
 fdata[],
 IMSL_WEIGHTS, float weights[],
 IMSL_SMOOTHING_PAR, float sigma,
 0)

Optional Arguments

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights are equal to 1.

 $\label{eq:smoothing_par} \begin{array}{ll} \mbox{IMSL_SMOOTHING_PAR, $float$ sigma (Input)$ \\ & \mbox{This option sets the smoothing parameter σ = sigma explicitly. } \end{array}$

Description

The function $imsl_f_cub_spline_smooth$ is designed to produce a C^2 cubic spline approximation to a data set in which the function values are noisy. This spline is called a *smoothing spline*.

Consider first the situation when the optional argument IMSL_SMOOTHING_PAR is selected. Then, a natural cubic spline with knots at all the data abscissas x = xdata is computed, but it does *not* interpolate the data (x_i, f_i) . The smoothing spline *s* is the unique C^2 function which minimizes

$$\int_{a}^{b} s''(x)^2 dx$$

subject to the constraint

$$\sum_{i=0}^{n-1} \left| \left(s(x_i) - f_i \right) w_i \right|^2 \le \sigma$$

where w = weights, $\sigma = sigma$ is the smoothing parameter, and n = ndata.

Recommended values for σ depend on the weights *w*. If an estimate for the standard deviation of the error in the value f_i is available, then w_i should be set to the inverse of this value; and the smoothing parameter σ should be chosen in the confidence interval corresponding to the left side of the above inequality. That is,

$$n - \sqrt{2n} \le \sigma \le n + \sqrt{2n}$$

The function imsl_f_cub_spline_smooth is based on an algorithm of Reinsch (1967). This algorithm is also discussed in de Boor (1978, pp. 235-243).

The default for this function chooses the smoothing parameter σ by a statistical technique called *cross-validation*. For more information on this topic, refer to Craven and Wahba (1979).

The return value for this function is a pointer to the structure $Imsl_f_poly$. The calling program must receive this in a pointer $Imsl_f_poly *_{PP}$. This structure contains all the information to determine the spline (stored as a piecewise polynomial) that is computed by this procedure. For example, the following code sequence evaluates this spline at *x* and returns the value in *y*.

y = imsl_f_cub_spline_value (x, pp, 0);

Examples

Example 1

In this example, function values are contaminated by adding a small "random" amount to the correct values. The function <code>imsl_f_cub_spline_smooth</code> is used to approximate the original, uncontaminated data.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                90
                                 /* Define function */
#define F(x)
                (float)(1.+ sin(x)+7.*sin(3.0*x))
main()
{
    int
                        i;
    float
                        fdata[NDATA], xdata[NDATA], *random;
    Imsl_f_ppoly
                         *pp;
                                 /* Generate random numbers */
    imsl_random_seed_set(123457);
    random = imsl_f_random_uniform(NDATA, 0);
                                 /* Set up data */
    for (i = 0; i < NDATA; i++) {
        xdata[i] = 6.*(float)i /((float)(NDATA-1));
        fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
    }
    pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata, 0);
    printf("
                             error \n");
                  x
    for(i = 0; i < 10; i++){</pre>
        float x, error;
        x = 6.*i/9.;
        error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
        printf("%10.3f %10.3f\n", x, error);
    }
}
```

x	Error
0.000	-0.201
0.667	0.070
1.333	-0.008
2.000	-0.058
2.667	-0.025
3.333	0.076
4.000	-0.002
4.667	-0.008
5.333	0.045
6.000	0.276

Example 2

Recall that in the first example, function values are contaminated by adding a small "random" amount to the correct values. Then, imsl_f_cub_spline_smooth is used to approximate the original, uncontaminated data. This example explicitly inputs the value of the smoothing parameter to be 5.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
```

#define NDATA 90

/* Define function */

cub_spline_smooth • 205

```
#define F(x)
            (float)(1.+ sin(x)+7.*sin(3.0*x))
main()
{
                      i;
   int
   float
                      fdata[NDATA], xdata[NDATA], *random;
   Imsl_f_ppoly
                      *pp;
                             /* Generate random numbers */
   imsl_random_seed_set(123457);
   random = imsl_f_random_uniform(NDATA, 0);
                             /* Set up data */
   for (i = 0; i < NDATA; i++) {
       xdata[i] = 6.*(float)i /((float)(NDATA-1));
       fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
   }
   pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata,
                               IMSL_SMOOTHING_PAR, 5.0,
                               0);
   printf("
                          error \n");
                 х
   for(i = 0; i < 10; i++){
       float x, error;
       x = 6.*i/9.;
       }
}
```

Error х 0.000 -0.593 0.667 0.230 1.333 -0.116 2.000 -0.106 2.667 0.176 3.333 -0.071 4.000 -0.171 4.667 0.196 5.333 -0.036 6.000 0.971

Warning Errors

IMSL_MAX_ITERATIONS_REACHED

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES	The xdata values must be distinct.
IMSL_NEGATIVE_WEIGHTS	All weights must be greater than or equal to
	zero.

The maximum number of iterations has been

reached. The best approximation is returned.

spline_lsq_constrained

Computes a least-squares constrained spline approximation.

Synopsis

#include <imsl.h>

```
Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[],
    float fdata[], int spline_space_dim, int num_con_pts,
    f_constraint_struct constraints[], ..., 0)
```

The type *Imsl_d_spline* function is imsl_d_spline_lsq_constrained.

Required Arguments

- *int* ndata (Input) Number of data points.
- float xdata[] (Input)

Array with ndata components containing the abscissas of the least-squares problem.

float fdata[] (Input)

Array with ndata components containing the ordinates of the least-squares problem.

int spline_space_dim (Input)

The linear dimension of the spline subspace. It should be smaller than ndata and greater than or equal to order (whose default value is 4).

int num_con_pts (Input)

The number of points in the vector constraints.

f_constraint_struct constraints[] (Input)

A structure containing the abscissas at which the fit is to be constrained, the derivative of the spline that is to be constrained, the type of constraints, and any lower or upper limits. A description of the structure fields follows:

Field	Description
xval	point at which fit is constrained
der	derivative value of the spline to be constrained
type	types of the general constraints
bl	lower limit of the general constraints
bu	upper limit of the general constraints

Notes: If you want to constrain the integral of the spline over the closed interval (*c*, *d*), then set constraints[i].der = constraints [i+1].der = -1 and constraints[i].xval = *c* and constraints[i+1].xval = *d*. For consistency, insist that

constraints [i].type	<i>i</i> -th constraint
1	$bl_i = f^{(d_i)}(x_i)$
2	$f^{(d_i)}(x_i) \le bu_i$
3	$f^{(d_i)}(x_i) \ge bl_i$
4	$bl_i \le f^{(d_i)}(x_i) \le bu_i$
5	$bl_i = \int f(t)dt$
6	$\int_{c} f(t) dt \le b u_i$
7	$\int_{c}^{c} f(t)dt \ge bl_{i}$
8	$bl_i \leq \int_c f(t)dt \leq bu_i$
20	periodic end conditions
99	disregard this constraint

 $constraints[i].type = constraints[i+1].type \ge 0$ and $c \le d$. Note that every der must be at least -1.

In order to have two point constraints, must have

constraints[i].type = constraints[i+1].type

constraints [i]. type	<i>i</i> -th constraint
9	$bl_i = f^{(d_i)}(x_i) - f^{(d_{i+1})}(x_{i+1})$
10	$bl_{i} = f^{(d_{i})}(x_{i}) - f^{(d_{i+1})}(x_{i+1})$ $f^{(d_{i})}(x_{i}) - f^{(d_{i+1})}(x_{i+1}) \le bu_{i}$
11	$f^{(d_i)}(x_i) - f^{(d_{i+1})}(x_{i+1}) \ge bl_i$
12	$bl_i \le f^{(d_i)}(x_i) - f^{(d_{i+1})}(x_{i+1}) \le bu_i$

Return Value

A pointer to the structure that represents the spline fit. If a fit cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

```
Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[],
    float fdata[], int spline_space_dim, int num_con_pts,
    f_constraint_struct constraints[],
    IMSL_NHARD, int nhard,
    IMSL_WEIGHTS, float weights[],
    IMSL_ORDER, int order,
    IMSL_KNOTS, float knots[],
    0)
```

Optional Arguments

```
IMSL_NHARD, int nhard (Output)
```

The argument nhard is the number of entries of constraints involved in the "hard" constraints. Note that $0 \le nhard \le num_con_pts$. The default, nhard = 0, always results in a fit, while setting nhard = num_con_pts forces all constraints to be met. The "hard" constraints must be met, or else the function signals failure. The "soft" constraints need not be satisfied, but there will be an attempt to satisfy the "soft" constraints. The constraints must be listed in terms of priority with the most important constraints first. Thus, all of the "hard" constraints must precede the "soft" constraints. If infeasibility is detected among the "soft" constraints, we satisfy, in order, as many of the "soft" constraints as possible. Default: nhard = 0

IMSL_WEIGHTS, float weights[] (Input)

This option requires the user to provide the weights. Default: all weights equal one

IMSL_ORDER, *int* order (Input)

The order of the spline subspace for which the knots are desired. This option is used to communicate the order of the spline subspace. Default: order = 4(i.e., cubic splines)

IMSL_KNOTS, float knots[] (Input)

This option requires the user to provide the knots. The user must provide a knot sequence of length spline_space_dimension + order. Default: an appropriate knot sequence is selected. See below for more details.

Description

The function imsl_f_spline_lsq_constrained produces a constrained, weighted least-squares fit to data from a spline subspace. Constraints involving one point, two points, or integrals over an interval are allowed. The types of constraints supported by the functions are of four types:

$E_p[f]$	$=f^{(J_p)}(y_p)$
or	$= f^{(J_p)}(y_p) - f^{(J_{p+1})}(y_{p+1})$
or	
or	$= \int_{y_p} f(t)at$ = periodic end conditions

An interval, I_p (which may be a point, a finite interval, or a semi-infinite interval), is associated with each of these constraints.

The input for this function consists of several items; first, the data set (x_i, f_i) for i = 1, ..., N (where N = NDATA), that is the data which is to be fit. Second, we have the weights to be used in the least-squares fit (w = WEIGHT, defaulting to 1). The vector constraints contains the abscissas of the points involved in specifying the constraints, as well as information relating the type of constraints and the constraint interval.

Let n_f denote the number of feasible constraints as described above. Then, the function solved the problem

$$\sum_{i=1}^{n} \left| f_i - \sum_{j=1}^{m} a_j B_j(x_i) \right|^2 w_i$$

subject to

$$E_p\left[\sum_{j=1}^m a_j B_j\right] \in I_p \qquad p = 1, \dots, n_f$$

This linearly constrained least-squares problem is treated as a quadratic program and is solved by invoking the function imsl_f_quadratic_prog.

The choice of weights depends on the data uncertainty in the problem. In some cases, there is a natural choice for the weights based on the estimates of errors in the data points.

Determining feasibility of linear constraints is a numerically sensitive task. If you encounter difficulties, a quick fix would be to widen the constraint intervals I_p .

Examples

Example 1

This is a simple application of imsl_f_lsq_constrained. Data is generated from the function

$$\frac{x}{2} + \sin(\frac{x}{2})$$

and contaminated with random noise and fit with cubic splines. The function is increasing, so least-squares fit should also be increasing. This is not the case for the unconstrained least-squares fit generated by imsl_f_spline_least_squares. Then, the derivative is forced to be greater than 0 at num_con_pts = 15 equally spaced points and imsl_f_lsq_constrained is called. The resulting curve is monotone. The error is printed for the two fits averaged over 100 equally spaced points.

```
#include <imsl.h>
#include <math.h>
```

```
#define MXKORD 4
#define MXNCOF 20
#define MXNDAT 51
#define MXNXVL 15
main()
{
    f_constraint_struct constraint[MXNXVL];
    int i, korder, ncoef, ndata, nxval;
    float *noise, errlsq, errnft, grdsiz, rels, x;
    float fdata[MXNDAT], xdata[MXNDAT];
    Imsl_f_spline *sp, *spls;
```

210 • spline_lsq_constrained

```
#define F1(x)
                 (float)(.5*(x) + sin(.5*(x)))
   korder = 4;
   ndata = 15;
   nxval = 15;
   ncoef = 8;
   /*
    * Compute original xdata and fdata with random noise.
    */
   imsl_random_seed_set (234579);
   noise = imsl_f_random_uniform (ndata, 0);
   qrdsiz = 10.0;
   for (i = 0; i < ndata; i++) {
       xdata[i] = grdsiz * ((float) (i) / (float) (ndata - 1));
       fdata[i] = F1 (xdata[i]) + (noise[i] - .5);
    }
   /* Compute least-squares fit. */
   spls = imsl_f_spline_least_squares (ndata, xdata, fdata, ncoef, 0);
    /*
    * Construct the constraints.
    */
    for (i = 0; i < nxval; i++) {</pre>
       constraint[i].xval = grdsiz * (float)(i) / (float)(nxval - 1);
       constraint[i].itype = 3;
       constraint[i].ider = 1;
       constraint[i].bl = 0.0;
    }
    /* Compute constrained least-squares fit. */
   sp = imsl_f_spline_lsq_constrained (ndata, xdata, fdata, ncoef,
              nxval, constraint, 0);
    /*
    * Compute the average error of 100 points in the interval.
    */
   errlsq = 0.0;
   errnft = 0.0;
   for (i = 0; i < 100; i++) {
       x = grdsiz * (float) (i) / 99.0;
       errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
       errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
    }
    /* Print results */
   printf (" Average error with spline_least_squares fit:
                                                              %8.5f\n",
              errlsq / 100.0);
   printf (" Average error with spline_lsq_constrained fit: %8.5f\n",
              errnft / 100.0);
```

}

```
Average error with spline_least_squares fit:
                                                0.20250
Average error with spline_lsq_constrained fit:
                                                0.14334
```

Chapter 3: Interpolation and Approximation

Example 2

Now, try to recover the function

$$\frac{1}{1+x^4}$$

from noisy data. First, try the unconstrained least-squares fit using imsl_f_spline_least_squares. Finding that fit somewhat unsatisfactory, several constraints are applied using imsl_f_spline_lsq_constrained. First, notice that the unconstrained fit oscillates through the true function at both ends of the interval. This is common for flat data. To remove this oscillation, the cubic spline is constrained to have zero second derivative at the first and last four knots. This forces the cubic spline to reduce to a linear polynomial on the first and last three knot intervals. In addition, the fit is constrained (called *s*) as follows:

$$s(-7) \ge 0$$

 $\int_{-7}^{7} s(x) dx \le 2.3$
 $s(-7) = s(7)$

Notice that the last constraint was generated using the periodic option (requiring only the *zero*-th derivative to be periodic). The error is printed for the two fits averaged over 100 equally spaced points.

```
#include <imsl.h>
#include <math.h>
#define KORDER
                 4
#define NDATA
                51
#define NXVAL
                12
#define NCOEF
                13
main()
{
    f_constraint_struct constraint[NXVAL];
        i;
   int
    float *noise, errlsq, errnft, grdsiz, rels, x;
   float fdata[NDATA], xdata[NDATA], xknot[NDATA+KORDER];
    Imsl_f_spline *sp, *spls;
#define F1(x)
                 (float)(1.0/(1.0+x*x*x*x))
     /* Compute original xdata and fdata with random noise */
    imsl_random_seed_set (234579);
   noise = imsl_f_random_uniform (NDATA, 0);
   grdsiz = 14.0;
    for (i = 0; i < NDATA; i++) {
        xdata[i] = grdsiz * ((float)(i)/(float)(NDATA - 1))
                   - grdsiz/2.0;
        fdata[i] = F1 (xdata[i]) + 0.125*(noise[i] - .5);
    }
```

```
/* Generate knots. */
    for (i = 0; i < NCOEF-KORDER+2; i++) {</pre>
       xknot[i+KORDER-1] = grdsiz * ((float)(i)/
                            (float)(NCOEF-KORDER+1)) - grdsiz/2.0;
   for (i = 0; i < KORDER - 1; i++) {
       xknot[i] = xknot[KORDER-1];
       xknot[i+NCOEF+1] = xknot[NCOEF];
    }
    /* Compute spline_least_squares fit */
   spls = imsl_f_spline_least_squares (NDATA, xdata, fdata, NCOEF,
                IMSL_KNOTS, xknot, 0);
    /* Construct the constraints for CONFT */
   for (i = 0; i < 4; i++) {
       constraint[i].xval = xknot[KORDER+i-1];
       constraint[i+4].xval = xknot[NCOEF-3+i];
       constraint[i].itype = 1;
       constraint[i+4].itype = 1;
       constraint[i].ider = 2;
       constraint[i+4].ider = 2;
       constraint[i].bl = 0.0;
       constraint[i+4].bl = 0.0;
    }
   constraint[8].xval = -7.0;
   constraint[8].itype = 3;
   constraint[8].ider = 0;
   constraint[8].bl = 0.0;
   constraint[9].xval = -7.0;
   constraint[9].itype = 6;
   constraint[9].bu = 2.3;
   constraint[10].xval = 7.0;
   constraint[10].itype = 6;
   constraint[10].bu = 2.3;
   constraint[11].xval = -7.0;
   constraint[11].itype = 20;
   constraint[11].ider = 0;
   sp = imsl_f_spline_lsq_constrained (NDATA, xdata, fdata, NCOEF,
               NXVAL, constraint, IMSL_KNOTS, xknot, 0);
    /* Compute the average error of 100 points in the interval */
   errlsq = 0.0;
   errnft = 0.0;
   for (i = 0; i < 100; i++) {
       x = grdsiz * (float) (i) / 99.0 - grdsiz/2.0;
        errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
       errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
    /* Print results */
   printf (" Average error with BSLSQ fit: %8.5f\n",
```

```
errlsq / 100.0);
printf (" Average error with CONFT fit: %8.5f\n",
errnft / 100.0);
}
```

Average error with BSLSQ fit: 0.01783 Average error with CONFT fit: 0.01339

smooth_1d_data

Smooth one-dimensional data by error detection.

Synopsis

#include <imsl.h>

float *imsl_f_smooth_ld_data (int ndata, float xdata[], float fdata[], ..., 0)

The type *double* function is imsl_d_smooth_ld_data.

Required Arguments

int ndata (Input) Number of data points.

float xdata[] (Input) Array with ndata components containing the abscissas of the data points.

float fdata[] (Input) Array with ndata components containing the ordinates of the data points.

Return Value

A pointer to the vector of length ndata containing the smoothed data.

Synopsis with Optional Arguments

#include <imsl.h>

```
float * imsl_f_smooth_ld_data (int ndata,
    float xdata[], float fdata[],
    IMSL_RETURN_USER, float sdata[],
    IMSL_ITMAX, int itmax,
    IMSL_DISTANCE, float dis,
    IMSL_STOPPING_CRITERION, float sc,
    0)
```

Optional Arguments

IMSL_RETURN_USER, float sdata[] (Output)
 The smoothed data is stored in the user-supplied array.
IMSL_ITMAX, int itmax (Input)
 The maximum number of iterations allowed.
 Default: itmax = 500
IMSL_DISTANCE, float dis (Input)
 Proportion of the distance the ordinate in error is moved to its
 interpolating curve. It must be in the range 0.0 to 1.0.
 Default: dis = 1.0
IMSL_STOPPING_CRITERION, float sc (Input)
 The stopping criterion _ sc should be greater than or equal to z

The stopping criterion. sc should be greater than or equal to zero. Default: sc = 0.0

Algorithm

The function imsl_f_smooth_ld_data is designed to smooth a data set that is mildly contaminated with isolated errors. In general, the routine will not work well if more than 25% of the data points are in error. The routine imsl_f_smooth_ld_data is based on an algorithm of Guerra and Tapia (1974).

Setting ndata = n, fdata = f, sdata = s and xdata = x, the algorithm proceeds as follows. Although the user need not input an ordered xdata sequence, we will assume that x is increasing for simplicity. The algorithm first sorts the xdata values into an increasing sequence and then continues. A cubic spline interpolant is computed for each of the 6-point data sets (initially setting s = f)

 (x_i, s_i) $j = i - 3, ..., i + 3j \neq i,$

where i = 4, ..., n - 3. For each *i* the interpolant, which we will call S_i , is compared with the current value of s_i , and a 'point energy' is computed as

$$pe_i = S_i(x_i) - s_i$$

Setting sc = sc, the algorithm terminates either if itmax iterations have taken place or if

$$|pe_i| \le sc(x_{i+3} - x_{i-3})/6$$
 $i = 4, ..., n-3$

If the above inequality is violated for any *i*, then we update the *i*-th element of *s* by setting $s_i = s_i + d(pe_i)$, where d = dis. Note that neither the first three nor the last three data points are changed. Thus, if these points are inaccurate, care must be taken to interpret the results.

The choice of the parameters d, sc and itmax are crucial to the successful usage of this subroutine. If the user has specific information about the extent of the contamination, then he should choose the parameters as follows: d = 1, sc = 0 and itmax to be the number of data points in error. On the other hand, if no such specific information is available, then choose d = .5, itmax $\leq 2n$, and

$$sc = .5 \frac{max \, s - min \, s}{\left(x_n - x_1\right)}$$

In any case, we would encourage the user to experiment with these values.

Example

We take 91 uniform samples from the function $5 + (5 + t^2 \sin t)/t$ on the interval [1, 10]. Then, we contaminate 10 of the samples and try to recover the original function values.

```
#include <imsl.h>
#include "stdlib.h"
#include "math.h"
#define NDATA 91
#define F(X) (X*X*sin((double)(X))+5.0)/X + 5.0
main()
{
  int i, maxit;
  int isub[10] = {5, 16, 25, 33, 41, 48, 55, 61, 74, 82};
  float dis, f, fdata[NDATA], sc, *sdata=NULL;
  float c, xdata[NDATA], s_user[NDATA];
  float rnoise[10] = {2.5, -3., -2., 2.5, 3.,
                      -2., -2.5, 2., -2., 3.;
  /* Example 1: No specific information available. */
  dis = .5;
  sc = .56;
  maxit = 182;
  /* Set values for xdata and fdata. */
  xdata[0] = 1.;
  fdata[0] = F(xdata[0]);
  for (i=1;i<NDATA;i++) {</pre>
    xdata[i] = xdata[i-1]+.1;
    fdata[i] = F(xdata[i]);
  }
  /* Contaminate the data. */
  for (i=0;i<10;i++) fdata[isub[i]] += rnoise[i];</pre>
  /* Smooth the data. */
```

216 • smooth_1d_data

```
sdata = imsl_f_smooth_ld_data(NDATA, xdata, fdata,
                                IMSL_DISTANCE, dis,
                                IMSL_STOPPING_CRITERION, sc,
                                IMSL_ITMAX, maxit,
                                0);
  /* Output the result. */
  printf("Case A - No specific information available. \n");
 printf(" F(X)
                         F(X)+noise
                                            sdata\n");
 for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",</pre>
                            F(xdata[isub[i]]),
                            fdata[isub[i]],
                            sdata[isub[i]]);
  /* Example 2: No specific information is available. */
  dis = 1.0;
  sc = 0.0;
 maxit = 10;
  /*
   * A warning message is produced because the maximum
  * number of iterations is reached.
   */
  /* Smooth the data. */
sdata = imsl_f_smooth_ld_data(NDATA, xdata, fdata,
                                IMSL_DISTANCE, dis,
                                IMSL_STOPPING_CRITERION, sc,
                                IMSL_ITMAX, maxit,
                                IMSL_RETURN_USER, s_user,
                                0);
  /* Output the result. */
 printf("Case B - Specific information available. \n");
 printf(" F(X)
                       F(X)+noise
                                            sdata\n");
  for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",</pre>
                            F(xdata[isub[i]]),
                            fdata[isub[i]],
                            s_user[isub[i]]);
}
```

Case A - No	specific information	available.
F(X)	F(X)+noise	sdata
9.830	12.330	9.870
8.263	5.263	8.215
5.201	3.201	5.168
2.223	4.723	2.264
1.259	4.259	1.308
3.167	1.167	3.138
7.167	4.667	7.131
10.880	12.880	10.909
12.774	10.774	12.708
7.594	10.594	7.639

*** WARNING Error IMSL_ITMAX_EXCEEDED from imsl_f_smooth_1d_data.

*** Maximum number of iterations limit "itmax" = 10 exceeded.

*** The best answer found is returned.

```
Case B - Specific information available.
```

F(X)	F(X)+noise	sdata
9.830	12.330	9.831
8.263	5.263	8.262
5.201	3.201	5.199
2.223	4.723	2.225
1.259	4.259	1.261
3.167	1.167	3.170
7.167	4.667	7.170
10.880	12.880	10.878
12.774	10.774	12.770
7.594	10.594	7.592

scattered_2d_interp

Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables.

Synopsis

```
#include <imsl.h>
```

```
float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float
    fdata[], int nx_out, int ny_out, float x_out[], float y_out[], ...,
    0)
```

218 • scattered_2d_interp

The type *double* function is imsl_d_scattered_2d_interp.

Required Arguments

- *int* ndata (Input) Number of data points.
- float xydata[] (Input)

Array with ndata*2 components containing the data points for the interpolation problem. The *i*-th data point (x_i, y_i) is stored consecutively in the 2i and 2i + 1 positions of xydata.

float fdata[] (Input)

Array of size ndata containing the values to be interpolated.

int nx_out (Input)

Number of data points in the *x* direction for the output grid.

int ny_out (Input)

Number of data points in the *y* direction for the output grid.

float x_out[] (Input)

Array of length nx_out specifying the *x* values for the output grid. It must be strictly increasing.

float y_out[] (Input)

Array of length ny_{out} specifying the *y* values for the output grid. It must be strictly increasing.

Return Value

A pointer to the $nx_out \times ny_out$ grid of values of the interpolant. If no answer can be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float
 fdata[], int nx_out, int ny_out, float x_out[], float y_out[],
 IMSL_RETURN_USER, float surface[],
 IMSL_SUR_COL_DIM, int surface_col_dim,
 0)

Optional Arguments

IMSL_RETURN_USER, float surface[] (Output)
This option allows the user to provide his own space for the result. In this
case, the answer will be returned in surface.

IMSL_SUR_COL_DIM, int surface_col_dim (Input)
This option requires the user to provide the column dimension of the two-

dimensional array surface.
Default: surface_col_dim = ny_out

Description

The function $imsl_f_scattered_2d_interp$ computes a C^1 interpolant to scattered data in the plane. Given the data points

$$\{(x_i, y_i, f_i)\}_{i=0}^{n-1}$$

in \mathbb{R}^3 where n = ndata, imsl_f_scattered_2d_interp returns the values of the interpolant *s* on the user-specified grid. The computation of *s* is as follows: First the Delaunay triangulation of the points

$$\{(x_i, y_i)\}_{i=0}^{n-1}$$

is computed. On each triangle T in this triangulation, s has the form

$$s(x, y) = \sum_{m+n \le 5} c_{mn}^T x^m y^n \qquad \forall x, y \in T$$

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In addition, we have

$$s(x_i, y_i) = f_i$$
 for $i = 0, ..., n-1$

and *s* is continuously differentiable across the boundaries of neighboring triangles. These conditions do not exhaust the freedom implied by the above representation. This additional freedom is exploited in an attempt to produce an interpolant that is faithful to the global shape properties implied by the data. For more information on this procedure, refer to the article by Akima (1978). The output grid is specified by the two integer variables nx_out and ny_out that represent the number of grid points in the first (second) variable and by two real vectors that represent the first (second) coordinates of the grid.

Examples

Example 1

In this example, the interpolant to the linear function (3 + 7x + 2y) is computed from 20 data points equally spaced on the circle of radius 3. Then the values are printed on a 3×3 grid.

220 • scattered_2d_interp

```
main()
{
    int
                        i, j;
                        fdata[NDATA], xydata[2*NDATA], *surf;
    float
    float
                        x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;
    pi = imsl_f_constant("pi", 0);
                                 /* Set up output grid */
    for (i = 0; i < OUTDATA;</pre>
                                i++) {
        x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
    }
    for (i = 0; i < 2*NDATA; i += 2) {
        xydata[i] = 3.*cos(pi*i/NDATA);
        xydata[i+1] = 3.*sin(pi*i/NDATA);
        fdata[i/2] = F(xydata[i], xydata[i+1]);
    }
                                 /* Compute scattered data interpolant */
    surf = imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
                                               OUTDATA, x_out, y_out, 0);
                                 /* Print results */
    printf("
                 х
                         У
                                  F(x, y)
                                              Interpolant
                                                              Error\n");
                               i++) {
    for (i = 0; i < OUTDATA;</pre>
        for (j = 0; j < OUTDATA; j++) {</pre>
            x = x_out[i];
            y = y_out[j];
            z = SURF(i,j);
            printf(" %6.3f %6.3f %10.3f
                                              %10.3f
                                                        %10.4f\n",
                               x, y, F(x,y), z, fabs(F(x,y)-z);
        }
    }
}
            Output
                   F(x, y)
                               Interpolant
                                              Error
    х
            У
0.000
        0.000
                                  3.000
                    3.000
                                              0.0000
0.000
                                  4.000
                                              0.0000
        0.500
                    4.000
```

0.000	0.300	1.000	1.000	0.0000
0.000	1.000	5.000	5.000	0.0000
0.500	0.000	6.500	6.500	0.0000
0.500	0.500	7.500	7.500	0.0000
0.500	1.000	8.500	8.500	0.0000
1.000	0.000	10.000	10.000	0.0000
1.000	0.500	11.000	11.000	0.0000
1.000	1.000	12.000	12.000	0.0000

Example 2

Recall that in the first example, the interpolant to the linear function 3 + 7x + 2y is computed from 20 data points equally spaced on the circle of radius 3. We then print the values on a 3×3 grid. This example used the optional arguments to indicate that the answer is stored noncontiguously in a two-dimensional array surf with column dimension equal to 11.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

```
20
#define NDATA
#define OUTDATA
                        3
#define COLDIM
                        11
                                /* Define function */
#define F(x,y)
                        (float)(3.+7.*x+2.*y)
main()
{
    int
                        i, j;
    float
                        fdata[NDATA], xydata[2*NDATA];
    float
                        surf[OUTDATA][COLDIM];
    float
                        x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;
   pi = imsl_f_constant("pi", 0);
                                /* Set up output grid */
    for (i = 0; i < OUTDATA; i++) {</pre>
       x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
    for (i = 0; i < 2*NDATA; i += 2) {
       xydata[i] = 3.*cos(pi*i/NDATA);
        xydata[i+1] = 3.*sin(pi*i/NDATA);
        fdata[i/2] = F(xydata[i], xydata[i+1]);
    }
                                /* Compute scattered data interpolant */
    imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
                                                   OUTDATA, x_out, y_out,
                                IMSL_RETURN_USER, surf,
                                IMSL_SUR_COL_DIM, COLDIM,
                                0);
                                /* Print results */
   printf("
                                 F(x, y)
                                             Interpolant
                                                             Error\n");
                х
                         y
   for (i = 0; i < OUTDATA; i++) {</pre>
        for (j = 0; j < OUTDATA; j++) {
            x = x_out[i];
            y = y_out[j];
            z = surf[i][j];
            printf(" %6.3f
                            %6.3f %10.3f %10.3f %10.4f\n",
                               x, y, F(x,y), z, fabs(F(x,y)-z);
        }
   }
}
           Output
                   F(x, y)
                              Interpolant
                                              Error
   х
            y
                    3.000
                                 3.000
0.000
        0.000
                                              0.0000
0.000
        0.500
                    4.000
                                 4.000
                                              0.0000
0.000
        1.000
                    5.000
                                 5.000
                                              0.0000
0.500
        0.000
                    6.500
                                 6.500
                                              0.0000
```

7.500

8.500

10.000

11.000

12.000

0.0000

0.0000

0.0000

0.0000

0.0000

0.500

1.000

0.000

0.500

1.000

7.500

8.500

10.000

11.000

12.000

0.500

0.500

1.000

1.000

1.000

Fatal Errors

IMSL_DUPLICATE_XYDATA_VALUES	The two-dimensional data values must be distinct.
IMSL_XOUT_NOT_STRICTLY_INCRSING	The vector x_{out} must be strictly increasing.
IMSL_YOUT_NOT_STRICTLY_INCRSING	The vector y_out must be strictly increasing.

radial_scattered_fit

Computes an approximation to scattered data in \mathbf{R}^n for $n \ge 1$ using radial-basis functions.

Synopsis

#include <imsl.h>

The type *Imsl_d_radial_basis_fit* function is imsl_d_radial_scattered_fit.

Required Arguments

int dimension (Input) Number of dimensions.

int num_points (Input) The number of data points.

float abscissae[] (Input)

Array of size dimension \times num_points containing the abscissae of the data points. The argument abscissae[i][j] is the abscissa value of the (i+1)-th data point in the (j+1)-th dimension.

float fdata[] (Input)
 Array with num_points components containing the ordinates for the
 problem.

int num_centers (Input)

The number of centers to be used when computing the radial-basis fit. The argument num_centers should be less than or equal to num_points.

Return Value

A pointer to the structure that represents the radial-basis fit. If a fit cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension, int num_points, float abscissae[], float fdata[], int num_centers, IMSL_CENTERS, float centers[], IMSL_CENTERS_RATIO, float ratio, IMSL_RANDOM_SEED, int seed, IMSL_SUPPLY_BASIS, float radial_function(), IMSL_SUPPLY_DELTA, float delta, IMSL_WEIGHTS, float weights[], IMSL_QR, 0)

Optional Arguments

IMSL_CENTERS (Input)

User-supplied centers. See the "Description" section of this function for details.

IMSL_CENTERS_RATIO, *float* ratio (Input)

The desired ratio of centers placed on an evenly spaced grid to the total number of centers. The condition that the same number of centers placed on a grid for each dimension must be equal. Thus, the actual number of centers placed on a grid is usually less than ratio*num_centers, but will never be more than ratio*num_centers. The remaining centers are randomly chosen from the set of abscissae given in abscissae. Default: ratio = 0.5

IMSL_RANDOM_SEED, *int* seed

The value of the random seed used when determining the random subset of abscissae to use as centers. By changing the value of seed on different calls to $imsl_f_radial_scattered_fit$, with the same data set, a different set of random centers will be chosen. Setting seed to zero forces the random number seed to be based on the system clock, so a possibly different set of centers will be chosen each time the program is executed. Default: seed = 234579

IMSL_SUPPLY_BASIS, *float* radial_function (*float* distance) (Input) User-supplied function to compute the values of the radial functions. Default: Hardy multiquadric

IMSL_SUPPLY_DELTA, *float* delta (Input) The delta used in the default basis function

$$\phi(r) = \sqrt{r^2 + \delta^2}$$

Default: delta = 1

224 • radial_scattered_fit

IMSL_WEIGHTS, float weights[]

This option requires the user to provide the weights. Default: all weights equal one

IMSL_QR

This option forces the use of a QR decomposition instead of a singular value decomposition. This may result in space savings for large problems.

Description

The function imsl_f_radial_scattered_fit computed a least-squares fit to scattered data in \mathbf{R}^d where d = dimension. More precisely, let n = ndata, x = abscissae, f = fdata, and d = dimension. Then we have

$$x^0, \dots, x^{n-1} \subset \mathbf{R}^d f_0, \dots, f_{n-1} \subset \mathbf{R}^1$$

This function computes a function F which approximates the above data in the sense that it minimizes the sum-of-squares error

$$\sum_{i=0}^{n-1} w_i \left(F\left(x^i\right) - f_i \right)^2$$

where w = weights. Of course, we must restrict the functional form of *F*. This is done as follows:

$$F(x) := \sum_{j=0}^{k-1} \alpha_j \phi \left(\sqrt{\left\| x - c_j \right\|^2 + \delta^2} \right)$$

The function ϕ is called the radial function. It maps \mathbf{R}^1 into \mathbf{R}^1 , only defined for the nonnegative reals. For the purpose of this routine, the user-supplied function

$$\phi(r) = \sqrt{\left(r^2 + \delta^2\right)}$$

Note that the value of delta is defaulted to 1. It can be set by the user by using the keyword IMSL_DELTA. The parameter δ is used to scale the problem. Generally choose δ to be near the minimum spacing of the centers.

The default basis function is called the Hardy multiquadric, and it is defined as

$$\phi(r) = \sqrt{\left(r^2 + \delta^2\right)}$$

A key feature of this routine is the user's control over the selection of the basis function.

To obtain the default selection of centers, we first compute the number of centers that will be on a grid and how many are on a random subset of the abscissae. Next, we compute those centers on a grid. Finally, a random subset of abscissa are obtained determining where the centers are placed. Let us examine the selection of centers in more detail.

Chapter 3: Interpolation and Approximation

First, we restrict the computed grid to have the same number of grid values in each of the dimension directions. Then, the number of centers placed on a grid, num_gridded, is computed as follows:

$$\alpha = (\text{centers}_{ratio}) \text{ (num_centers)}$$
$$\beta = \lfloor \alpha^{1/dim \text{ ension}} \rfloor$$
num gridded = $\beta^{dim \text{ ension}}$

Note that there are β grid values in each of the dimension directions. Then we have

num_random = (num_centers) - (num_gridded)

Now we know how many centers will be placed on a grid and how many will be placed on a random subset of the abscissae. The gridded centers are computed such that they are equally spaced in each of the dimension directions. The last problem is to compute a random subset, without replacement, of the abscissa. The selection is based on a random seed. The default seed is 234579. The user can change this using the optional argument IMSL_RANDOM_SEED. Once the subset is computed, we use the abscissae as centers.

Since the selection of good centers for a specific problem is an unsolved problem at this time, we have given the ultimate flexibility to the user. That is, you can select your own centers using the keyword IMSL_CENTERS. As a rule of thumb, the centers should be interspersed with the abscissae.

The return value for this function is a pointer to the structure, which contains all the information necessary to evaluate the fit. This pointer is then passed to the function <code>imsl_f_radial_evaluate</code> to produce values of the fitted function.

Examples

Example 1

This example, generates data from a function and contaminates it with noise on a grid of 10 equally spaced points. The fit is evaluated on a finer grid and compared with the actual function values.

```
#include <imsl.h>
#include <math.h>
#define NDATA
                        10
#define NUM_CENTERS
                        5
#define NOISE_SIZE
                        0.25
#define F(x)
                        ((float)(sin(2*pi*x)))
main ()
ł
    int
                i;
    int
                j;
               \dim = 1;
    int
    float
                fdata[NDATA];
    float
                *fdata2;
               xdata[NDATA];
    float
               xdata2[2*NDATA];
    float
```

```
float
              pi;
   float
               *noise;
   Imsl_f_radial_basis_fit *radial_fit;
   pi = imsl_f_constant ("pi", 0);
   imsl_random_seed_set (234579);
   noise = imsl_f_random_uniform(NDATA, 0);
/* Set up the sampled data points with noise. */
   for (i = 0; i < NDATA; ++i) {
      xdata[i] = (float)(i)/(float)(NDATA-1);
      fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
    }
/* Compute the radial fit. */
   radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
                 fdata, NUM_CENTERS, 0);
/* Compare result to the original function at twice as many values as
  there were original data points. */
    for (i = 0; i < 2*NDATA; ++i)</pre>
       xdata2[i] = (float)(i/(float)(2*(NDATA-1)));
/* Evaluate the fit at these new points. */
   fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);
                      TRUE
   printf("
               I
                                 APPROX
                                            ERROR\n");
   for (i = 0; i < 2*NDATA; ++i)
   printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
           F(xdata2[i])-fdata2[i]);
 }
```

I 1	TRUE 0.00000	APPROX -0.08980	ERROR 0.08980
2	0.34202	0.38795	-0.04593
3	0.64279	0.75470	-0.11191
4	0.86603	0.99915	-0.13312
5	0.98481	1.11597	-0.13116
6	0.98481	1.10692	-0.12211
7	0.86603	0.98183	-0.11580
8	0.64279	0.75826	-0.11547
9	0.34202	0.46078	-0.11876
10	-0.00000	0.11996	-0.11996
11	-0.34202	-0.23007	-0.11195
12	-0.64279	-0.55348	-0.08931
13	-0.86603	-0.81624	-0.04979
14	-0.98481	-0.98752	0.00271
15	-0.98481	-1.04276	0.05795
16	-0.86603	-0.96471	0.09868
17	-0.64279	-0.74472	0.10193
18	-0.34202	-0.38203	0.04001
19	0.00000	0.11600	-0.11600
20	0.34202	0.73553	-0.39351

Example 2

This example generates data from a function and contaminates it with noise. We fit this data successively on grids of size 10, 20, ..., 100. Now interpolate and print the 2-norm of the difference between the interpolated result and actual function values. Note that double precision is used for higher accuracy.

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define NDATA
                        100
#define NUM_CENTERS
                       100
#define NRANDOM
                        200
#define NOISE_SIZE
                       1.0
#define G(x,y)
                        (\exp((y)/2.0)*\sin(x) - \cos((y)/2.0))
double radial_function (double r);
main()
ł
              i;
    int
   int
              ndata;
   double
              *fit;
   double
              ratio;
   double
              fdata[NDATA+1];
              xydata[2 * NDATA+1];
   double
   double
              pi;
   double
               *noise;
    int
              num_centers;
    Imsl_d_radial_basis_fit *radial_struct;
   pi = imsl_d_constant ("pi", 0);
    /* Get the random numbers used for the noise. */
    imsl_random_seed_set (234579);
   noise = imsl_d_random_uniform (NRANDOM+1, 0);
   for (i = 0; i < NRANDOM; ++i) noise[i] = 1.0 - 2.0 * noise[i];</pre>
                              || Error ||_2 \n");
   printf("
               NDATA
    for (ndata = 10; ndata <= 100; ndata += 10) {</pre>
        num_centers = ndata;
    /* Set up the sampled data points with noise. */
        for (i = 0; i < 2 * ndata; i += 2) {
           xydata[i] = 3. * (noise[i]);
           xydata[i + 1] = 3. * (noise[i + 1]);
           }
    /* Compute the radial fit. */
        ratio = 0.5;
        radial_struct= imsl_d_radial_scattered_fit (2, ndata, xydata,
                     fdata, num_centers,
                     IMSL_CENTERS_RATIO, ratio,
                     IMSL_SUPPLY_BASIS, radial_function,
```

```
0);
        fit = imsl_d_radial_evaluate (ndata, xydata, radial_struct, 0);
        for (i = 0; i < ndata; ++i) fit[i] -= fdata[i];</pre>
        printf("%8d %17.8f n, ndata,
                imsl_d_vector_norm(ndata, fit, 0));
    }
}
double radial_function (double r)
ł
    return log(1.0+r);
}
            Output
NDATA
              || Error ||_2
           0.0000000
10
 20
           0.0000000
 30
           0.0000000
 40
           0.00000000
 50
           0.0000000
 60
           0.0000000
 70
           0.0000000
 80
           0.0000000
90
           0.0000000
100
           0.0000000
```

radial_evaluate

Evaluates a radial-basis fit.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_evaluate.

Required Arguments

```
int n (Input)
```

The number of points at which the fit will be evaluated.

```
float x[] (Input)
```

Array of size $(radial_fit -> dimension) \times n$ containing the abscissae of the data points at which the fit will be evaluated. The argument x[i][j] is the abscissa value of the (i+1)-th data point in the (j+1)-th dimension.

Return Value

A pointer to an array of length n containing the values of the radial-basis fit at the desired values. If no value can be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

Optional Arguments

IMSL_RETURN_USER, value[] (Input) A user-allocated array of length n containing the returned values.

Description

The function imsl_f_radial_evaluate evaluates a radial-basis fit from data generated by imsl_f_radial_scattered_fit.

Example

```
#include <imsl.h>
#include <math.h>
                       10
#define NDATA
#define NUM_CENTERS
                       5
#define NOISE_SIZE
                       0.25
#define F(x)
                       ((float)(sin(2*pi*x)))
main ()
{
    int
               i;
    int
               j;
               dim = 1;
    int
    float
               fdata[NDATA];
    float
               *fdata2;
    float
               xdata[NDATA];
    float
               xdata2[2*NDATA];
    float
               pi;
    float
               *noise;
    Imsl_f_radial_basis_fit
                               *radial_fit;
    pi = imsl_f_constant ("pi", 0);
    imsl_random_seed_set (234579);
    noise = imsl_f_random_uniform(NDATA, 0);
/* Set up the sampled data points with noise */
    for (i = 0; i < NDATA; ++i) {</pre>
```

```
xdata[i] = (float)(i)/(float)(NDATA-1);
      fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
    }
/* Compute the radial fit */
   radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
                fdata, NUM_CENTERS, 0);
/* Compare result to the original function at twice as many values as there
  were original data points */
   for (i = 0; i < 2*NDATA; ++i)
       xdata2[i] = (float)(i/(float)(2*(NDATA-1)));
/* Evaluate the fit at these new points */
   fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);
   printf("
              I
                     TRUE
                                APPROX
                                           ERROR\n");
   for (i = 0; i < 2*NDATA; ++i)
   printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
           F(xdata2[i])-fdata2[i]);
  }
```

I	TRUE	APPROX	ERROR
1	0.0000	-0.08980	0.08980
2	0.34202	0.38795	-0.04593
3	0.64279	0.75470	-0.11191
4	0.86603	0.99915	-0.13312
5	0.98481	1.11597	-0.13116
6	0.98481	1.10692	-0.12211
7	0.86603	0.98183	-0.11580
8	0.64279	0.75826	-0.11547
9	0.34202	0.46078	-0.11876
10	-0.00000	0.11996	-0.11996
11	-0.34202	-0.23007	-0.11195
12	-0.64279	-0.55348	-0.08931
13	-0.86603	-0.81624	-0.04979
14	-0.98481	-0.98752	0.00271
15	-0.98481	-1.04276	0.05795
16	-0.86603	-0.96471	0.09868
17	-0.64279	-0.74472	0.10193
18	-0.34202	-0.38203	0.04001
19	0.0000	0.11600	-0.11600
20	0.34202	0.73553	-0.39351

Chapter 4: Quadrature

Routines

4.1	Univariate Quadrature	
	Adaptive general-purpose endpoint singularity int_fcn_sing	233
	Adaptive general purposeint_fcn	237
	Adaptive general-purpose points of singularityint_fcn_sing_pts	241
	Adaptive weighted algebraic singularities int_fcn_alg_log	245
	Adaptive infinite intervalint_fcn_inf	248
	Adaptive weighted oscillatory (trigonometric) int_fcn_trig	252
	Adaptive weighted Fourier (trigonometric)int_fcn_fourier	256
	Cauchy principal valueint_fcn_cauchy	260
	Nonadaptive general purposeint_fcn_smooth	263
4.2	Multivariate Quadrature	
	Two-dimensional iterated integralint_fcn_2d	266
	Iterated integral on a hyper-rectangleint_fcn_hyper_rect	270
4.3	Gauss Quadrature	
	Gauss quadrature formulasgauss_quad_rule	273
4.4	Differentiation	
	First, second, or third derivative of a function fcn_derivative	277

Usage Notes

Univariate Quadrature

The first nine functions in this chapter are designed to compute approximations to integrals of the form

$$\int_{c}^{b} f(x) w(x) dx$$

The weight function *w* is used to incorporate known singularities (either algebraic or logarithmic) or to incorporate oscillations. For general-purpose integration, we recommend the use of imsl_f_int_fcn_sing (even if no endpoint singularities are

present). If more efficiency is desired, then the use of one of the more specialized functions should be considered. These functions are organized as follows:

- w = 1
 imsl_f_int_fcn_sing
 imsl_f_int_fcn
 imsl_f_int_fcn_sing_pts
 imsl_f_int_fcn_inf
 imsl_f_int_fcn_smooth
- $w(x) = \sin\omega x$ or $w(x) = \cos\omega x$

imsl_f_int_fcn_trig (for a finite interval)

imsl_f_int_fcn_fourier (for an infinite interval)

- $w(x) = (x a)^{\alpha}(b x)^{\beta}\ln(x a)\ln(b x)$ where the ln factors are optional imsl_f_int_fcn_alg_log
- w(x) = 1/(x c)

imsl_f_int_fcn_cauchy

The calling sequences for these functions are very similar. The function to be integrated is always fcn, and the lower and upper limits are a and b, respectively. The requested absolute error ε is err_abs, while the requested relative error ρ is err_rel. These quadrature functions return the estimated answer *R*. An optional value err_est = *E* estimates the error. These numbers are related as follows:

$$\left|\int_{a}^{b} f(x)w(x)dx - R\right| \le E \le \max\{\varepsilon, \rho \left|\int_{a}^{b} f(x)w(x)dx\right|\}$$

Several of the univariate quadrature functions have arguments of type Imsl_quad, which is defined in imsl.h.

One situation that occasionally arises in univariate quadrature concerns the approximation of integrals when only tabular data are given. The functions described above do not directly address this question. However, the standard method for handling this problem is first to interpolate the data, and then to integrate the interpolant. This can be accomplished by using the IMSL spline interpolation functions with one of the spline integration functions, which can be found in Chapter 3, "Interpolation and Approximation".

Multivariate Quadrature

Two functions have been included in this chapter that are of use in approximating certain multivariate integrals. In particular, the function imsl_f_int_fcn_2d returns an approximation to an iterated two-dimensional integral of the form

$$\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) dy dx$$

The second function, imsl_f_int_fcn_hpyer_rect, returns an approximation to the integral of a function of *n* variables over a hyper-rectangle

$$\int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) dx_n \dots dx_1$$

When working with two-dimensional tensor-product tabular data, use the IMSL spline interpolation function imsl_f_spline_2d_interp, followed by the IMSL spline integration function imsl_f_spline_2d_integral described in Chapter 3, "Interpolation and Approximation".

Gauss Quadrature

Before computing Gauss quadratures, you must compute so-called Gauss quadrature rules that integrate polynomials of as high degree as possible. These quadrature rules can be easily computed using the function $imsl_f_gauss_quad_rule$, which produces the points $\{w_i\}$ for i = 1, ..., N that satisfy

$$\int_{a}^{b} f(x)w(x)dx = \sum_{i=1}^{N} f(x_i)w_i$$

for all functions f that are polynomials of degree less than 2N. The weight functions w may be selected from the following table.

w(x)	Interval	Name
1	(-1, 1)	Legendre
$1/(\sqrt{1-x^2})$	(-1, 1)	Chebyshev 1st kind
$\sqrt{1-x^2}$	(-1, 1)	Chebyshev 2nd kind
e^{-x^2}	$(-\infty,\infty)$	Hermite
$(1+x)^{\alpha} (1-x)^{\beta}$	(-1, 1)	Jacobi
$e^{-x}x^a$	(0, ∞)	Generalized Laguerre
$1/\cosh(x)$	$(-\infty,\infty)$	Hyperbolic cosine

Where permissible, imsl_f_gauss_quad_rule also computes Gauss-Radau and Gauss-Lobatto quadrature rules.

int_fcn_sing

Integrates a function, which may have endpoint singularities, using a globally adaptive scheme based on Gauss-Kronrod rules.

Synopsis

```
#include <imsl.h>
float imsl_f_int_fcn_sing (float fcn(), float a, float b, ..., 0)
```

Chapter 4: Quadrature

int_fcn_sing • 233

The type *double* function is imsl_d_int_fcn_sing.

Required Arguments

- float fcn (float x) (input) User-supplied function to be integrated.
- float a (Input) Lower limit of integration.
- float b (Input) Upper limit of integration.

Return Value

An estimate of

$$\int_{a}^{b} \operatorname{fcn}(x) dx$$

If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

```
IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_abs = \sqrt{\epsilon}
```

where ε is the machine precision

IMSL_ERR_REL, *float* err_rel (Input) Relative accuracy desired. Default: err_rel = $\sqrt{\epsilon}$

where ε is the machine precision

```
IMSL_ERR_EST, float *err_est (Output)
        Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)
```

Number of subintervals allowed. Default: max_subinter = 500

```
IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.
```

IMSL_N_EVALS, *int* *n_evals (Output) Address to store the number of evaluations of fcn.

Description

This function is designed to handle functions with endpoint singularities. However, the performance on functions that are well-behaved at the endpoints is also quite good.

The function $imsl_f_int_fcn_sing$ is a general-purpose integrator that uses a globally adaptive scheme in order to reduce the absolute error. It subdivides the interval [a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. This function uses an extrapolation procedure known as the ε -algorithm.

The function imsl_f_int_fcn_sing is based on the subroutine QAGS by Piessens et al. (1983).

Examples

Example 1

The value of

$$\int_{0}^{1} \ln(x) x^{-1/2} dx = -4$$

is estimated.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
    float
                q, exact;
                                 /* Evaluate the integral */
    q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0);
                                 /* Print the result and */
                                 /*the exact answer */
    exact = -4.0;
    printf("integral = %10.3f\nexact
                                           = %10.3f\n", q, exact);
}
float fcn(float x)
{
    return log(x)/sqrt(x);
```

integral = -4.000 exact = -4.000

Example 2

The value of

 $\int_{0}^{1} ln(x) x^{-1/2} dx = -4$

is again estimated. The values of the actual and estimated errors are printed as well. Note that these numbers are machine dependent. Furthermore, usually the error estimate is pessimistic. That is, the actual error is usually smaller than the error estimate as is in this example.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
   float
                q, exact, err_est, exact_err;
                                /* Evaluate the integral */
   q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0,
                             IMSL_ERR_EST, &err_est,
                             0);
                                /* Print the result and */
                                /* the exact answer */
   exact = -4.0;
   exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact
                                         = %10.3f\n", q, exact);
                                                    = %e\n", err_est,
   printf("error estimate = %e\nexact error
             exact_err);
}
float fcn(float x)
{
   return log(x)/sqrt(x);
}
           Output
                -4.000
integral
         =
```

 $\begin{array}{rcl} \text{integral} & = & -4.000 \\ \text{exact} & = & -4.000 \\ \text{error estimate} & = & 3.175735e-04 \\ \text{exact error} & = & 6.556511e-05 \end{array}$

Warning Errors

```
IMSL_ROUNDOFF_CONTAMINATION
```

Roundoff error, preventing the requested tolerance from being achieved, has been detected.

IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.
IMSL_EXTRAPOLATION_ROUNDOFF	Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.
Fatal Errors	
IMSL_DIVERGENT	Integral is probably divergent or slowly convergent.
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals allowed has been reached.

int_fcn

Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.

Synopsis

#include <imsl.h>
float imsl_f_int_fcn (float fcn(), float a, float b, ..., 0)
The type double function is imsl_d_int_fcn.

Required Arguments

float fcn (float x) (Input) User-supplied function to be integrated.

- *float* a (Input) Lower limit of integration.
- float b (Input) Upper limit of integration.

Return Value

The value of

 $\int_{a}^{b} \operatorname{fcn}(x) dx$

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

```
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)
```

Optional Arguments

IMSL_RULE, *int* rule (Input) Choice of quadrature rule.

rule	Gauss-Kronrod Rule
1	7-15 points
2	10-21 points
3	15-31 points
4	20-41 points
5	25-51 points
6	30-61 points

```
Default: rule = 1
```

```
IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_abs = \sqrt{\epsilon}
```

where ε is the machine precision

```
IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = \sqrt{\epsilon}
```

where ε is the machine precision

```
IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.
```

- IMSL_MAX_SUBINTER, int max_subinter (Input)
 Number of subintervals allowed.
 Default: max_subinter = 500
- IMSL_N_SUBINTER, int *n_subinter (Output)
 Address to store the number of subintervals generated.
- IMSL_N_EVALS, int *n_evals (Output)
 Address to store the number of evaluations of fcn.

Description

The function $imsl_f_int_fcn$ is a general-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It subdivides the interval [a, b] and uses a (2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the *k*-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same

procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. The function <code>imsl_f_int_fcn</code> is based on the subroutine QAG by Piessens et al. (1983).

Should imsl_f_int_fcn fail to produce acceptable results, consider one of the more specialized functions documented in this chapter.

Examples

Example 1

The value of

$$\int_0^2 x e^x dx = e^2 + 1$$

is computed. Since the integrand is not oscillatory, all of the default values are used. The values of the actual and estimated error are machine dependent.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
float
                ai
float
                exact;
main()
{
                    /* evaluate the integral */
    q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);
    /* print the result and the exact answer */ exact = \exp(2.0) + 1.0;
    printf("integral = %10.3f\nexact
                                            = %10.3f\n", q, exact);
}
float fcn(float x)
{
    float y;
   y = x *
              (exp(x));
   return y;
}
            Output
```

integral = 8.389 exact = 8.389

Example 2

The value of

 $\int_0^1 \sin(1/x) dx$

```
#include <math.h>
#include <imsl.h>
float
               fcn(float x);
main()
                q, err_est, err_abs= 0.0001, exact = 0.50406706, error;
float
                    /* intergrate fcn(x) from 0 to 1 */
   q = imsl_f_int_fcn (fcn, 0.0, 1.0,
                        IMSL_ERR_ABS,
                                         err_abs,/* set abs error value*/
                        IMSL_RULE,
                                         б,
                        IMSL_ERR_EST,
                                         &err_est, /* pass in address */
                        0);
   error = q - exact;
                   /* print the result and the exact answer */
   printf(" integral = %10.3f\n
                                 exact = %10.3f\n error = %10.3f\n ",
           q, exact , error);
   printf(" err_est = %g\n", err_est);
}
float fcn(float x)
{
                    /* compute \sin(1/x), avoiding division by zero */
   return
                ((x)>1.0e-5) ? sin(1.0/(x)) : 0.0;
}
```

is computed. Since the integrand is oscillatory, rule = 6 is used. The exact value is 0.50406706. The values of the actual and estimated error are machine dependent.

Output

integral = 0.504
exact = 0.504
error = 0.000
err_est = 0.000170593

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION	Roundoff error, preventing the requested tolerance from being achieved, has been detected.
IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.
Fatal Errors	
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals allowed has been reached.

int_fcn_sing_pts

Integrates a function with singularity points given.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints, float points[], ..., 0)

The type *double* function is imsl_d_int_fcn_sing_pts.

Required Arguments

float fcn (float x) (Input) User-supplied function to be integrated.

float a (Input) Lower limit of integration.

float b (Input) Upper limit of integration.

int npoints (Input) The number of singularities of the integrand.

float points[] (Input)
The abscissas of the singularities. These values should be interior to the
interval [a, b].

Return Value

The value of

 $\int_{a}^{b} \operatorname{fcn}(x) dx$

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints,
      float points[],
      IMSL_ERR_ABS, float err_abs,
      IMSL_ERR_REL, float err_rel,
      IMSL_ERR_EST, float *err_est,
      IMSL_MAX_SUBINTER, int max_subinter,
      IMSL_N_SUBINTER, int *n_subinter,
      IMSL_N_EVALS, int *n_evals,
      0)
```

Optional Arguments

```
IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_abs = \sqrt{\epsilon}
```

where ε is the machine precision

```
IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = \sqrt{\epsilon}
```

where ε is the machine precision

- IMSL_ERR_EST, *float* *err_est (Output) Address to store an estimate of the absolute value of the error.
- IMSL_MAX_SUBINTER, int max_subinter (Input)
 Number of subintervals allowed.
 Default: max_subinter = 500
- IMSL_N_SUBINTER, int *n_subinter (Output)
 Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function $imsl_f_int_fcn_sing_pts$ is a special-purpose integrator that uses a globally adaptive scheme in order to reduce the absolute error. It subdivides the interval [a, b] into npoints + 1 user-supplied subintervals and uses a 21-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. This function uses an extrapolation procedure known as the ε -algorithm.

The function imsl_f_int_fcn_sing_pts is based on the subroutine QAGP by Piessens et al. (1983).

Examples

Example 1

The value of

$$\int_0^3 x^3 \ln \left| (x^2 - 1)(x^2 - 2) \right| dx = 61 \ln 2 + \frac{77}{4} \ln 7 - 27$$

is computed. The values of the actual and estimated error are machine dependent. Note that this function never evaluates the user-supplied function at the user-supplied breakpoints.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
    int
                npoints = 2i
                q, exact, points[2];
    float
                                /* Set singular points */
    points[0] = 1.0;
    points[1] = sqrt(2.);
                                 /* Evaluate the integral */
    q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points, 0);
                                 /* print the result and */
                                 /* the exact answer */
    exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
    printf("integral = %10.3f\nexact
                                          = %10.3f\n", q, exact);
}
float fcn(float x)
{
    return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}
```

Output

integral	=	52.741
exact	=	52.741

Example 2

The value of

$$\int_{0}^{3} x^{3} \ln \left(x^{2} - 1\right) \left(x^{2} - 2\right) dx = 61 \ln 2 + \frac{77}{4} \ln 7 - 27$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as in this example. The number of function evaluations also are printed.

```
points[1] = sqrt(2.);
                                 /* Evaluate the integral and get the */
                                /\,\star\, error estimate and the number of \,\star\,/\,
                                /* evaluations */
   q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points,
                                 IMSL_ERR_EST, &err_est,
                                 IMSL_N_EVALS, &n_evals,
                                 0);
                                /* Print the result and the */
                                /* exact answer */
   exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
   exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
   printf("error estimate = %e\nexact error
                                                    = %e\n", err_est,
             exact_err);
   printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
   return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}
```

```
integral = 52.741
exact = 52.741
error estimate = 1.258850e-04
exact error = 3.051758e-05
The number of function evaluations = 819
```

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION	Roundoff error, preventing the requested tolerance from being achieved, has been detected.
IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.
IMSL_EXTRAPOLATION_ROUNDOFF	Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.
Fatal Errors	
IMSL_DIVERGENT	Integral is probably divergent or slowly convergent.
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals allowed has been reached.

int_fcn_alg_log

Integrates a function with algebraic-logarithmic singularities.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_alg_log (float fcn(), float a, float b, Imsl_quad weight, float alpha, float beta, ..., 0)

The type *double* function is imsl_d_int_fcn_alg_log.

Required Arguments

float fcn (float x) (Input) User-supplied function to be integrated.

float a (Input)

Lower limit of integration.

float b (Input)

Upper limit of integration.

Imsl_quad weight, float alpha, float beta (Input)

These three parameters are used to describe the weight function that may have algebraic or logarithmic singularities at the endpoints. The parameter weight can take on four values as described below. The parameters $alpha = \alpha$ and $beta = \beta$ specify the strength of the singularities at *a* or *b* and hence, must be greater than -1.

weight	Integration Weight
IMSL_ALG	$(x-a)^{\alpha} (b-x)^{\beta}$
IMSL_ALG_LEFT_LOG	$(x-a)^{\alpha} (b-x)^{\beta} \log (x-a)$
IMSL_ALG_RIGHT_LOG	$(x-a)^{\alpha} (b-x)^{\beta} \log (b-x)$
IMSL_ALG_LOG	$(x-a)^{\alpha} (b-x)^{\beta} \log (x-a) \log (b-x)$

Return Value

The value of

$$\int_{a}^{b} \operatorname{fcn}(x) w(x) dx$$

is returned where w(x) is one of the four weights above. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_ERR_ABS, *float* err_abs (Input) Absolute accuracy desired. Default: err_abs = $\sqrt{\epsilon}$

where ε is the machine precision

IMSL_ERR_REL, *float* err_rel (Input) Relative accuracy desired. Default: err_rel = $\sqrt{\epsilon}$

where ε is the machine precision

- IMSL_ERR_EST, *float* *err_est (Output) Address to store an estimate of the absolute value of the error.
- IMSL_MAX_SUBINTER, int max_subinter (Input)
 Number of subintervals allowed.
 Default: max_subinter = 500
- IMSL_N_SUBINTER, *int* *n_subinter (Output) Address to store the number of subintervals generated.
- IMSL_N_EVALS, int *n_evals (Output)
 Address to store the number of evaluations of fcn.

Description

The function $imsl_f_int_fcn_alg_log$ is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x) where w(x) is a weight function described above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas is employed. This function is based on the subroutine QAWS, which is fully documented by Piessens et al. (1983).

Examples

Example 1

The value of

$$\int_0^1 \left[(1+x) (1-x) \right]^{1/2} x \ln(x) \, dx = \frac{3\ln(2) - 4}{9}$$

is computed.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
    float
                q, exact;
                                 /* Evaluate the integral */
    q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
                                 IMSL_ALG_LEFT_LOG, 1.0, 0.5,
                                 0);
                                 /* Print the result and the */
                                 /* exact answer */
    exact = (3.*log(2.)-4.)/9.;
    printf("integral = %10.3f\nexact
                                           = %10.3f\n", q, exact);
}
float fcn(float x)
{
    return sqrt(1+x);
}
```

```
Output
```

integral	=	-0.213
exact	=	-0.213

Example 2

The value of

$$\int_{0}^{1} \left[(1+x)(1-x) \right]^{1/2} x \ln(x) \, dx = \frac{3\ln(2) - 4}{9}$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as in this example. The number of function evaluations also are printed.

```
IMSL_ERR_EST, &err_est,
                                IMSL_N_EVALS, &n_evals,
                               0);
                                /* Print the result and the */
                                /* exact answer */
   exact = (3.*log(2.)-4.)/9.;
   exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact
                                         = %10.3f\n", q, exact);
   printf("error estimate = %e\nexact error = %e\n", err_est,
            exact_err);
   printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
   return sqrt(1+x);
}
```

```
integral = -0.213
exact = -0.213
error estimate = 3.725290e-09
exact error = 1.490116e-08
The number of function evaluations = 50
```

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION	Roundoff error, preventing the requested tolerance from being achieved, has been detected.
IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.
Fatal Errors	
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals

allowed has been reached.

int_fcn_inf

Integrates a function over an infinite or semi-infinite interval.

Synopsis

#include <imsl.h>

```
float imsl_f_int_fcn_inf (float fcn(), float bound, Imsl_quad interval,
..., 0)
```

The type *double* procedure is imsl_d_int_fcn_inf.

Required Arguments

float fcn (float x) (Input)

User-supplied function to be integrated.

float bound (Input)

Finite limit of integration. This argument is ignored if interval has the value IMSL_INF_INF.

Imsl_quad interval (Input)

Flag indicating integration limits. The following settings are allowed:

interval	Integration Limits
IMSL_INF_BOUND	(−∞, bound)
IMSL_BOUND_INF	(bound, ∞)
IMSL_INF_INF	$(-\infty,\infty)$

Return Value

The value of

$$\int_{a}^{b} \operatorname{fcn}(x) dx$$

is returned where *a* and *b* are appropriate integration limits. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_ERR_ABS, *float* err_abs (Input) Absolute accuracy desired. Default: err_abs = $\sqrt{\epsilon}$

where ε is the machine precision

```
IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = \sqrt{\epsilon}
```

where ε is the machine precision

```
IMSL_ERR_EST, float *err_est (Output)
    Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)
    Number of subintervals allowed.
    Default: max_subinter = 500
IMSL_N_SUBINTER, int *n_subinter (Output)
    Address to store the number of subintervals generated.
IMSL_N_EVALS, int *n_evals (Output)
    Address to store the number of evaluations of fcn.
```

Description

The function $imsl_f_int_fcn_inf$ is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It initially transforms an infinite or semi-infinite interval into the finite interval [0, 1]. It then uses the same strategy as the function $imsl_f_int_fcn_sing$.

The function imsl_f_int_fcn_inf is based on the subroutine QAGI by Piessens et al. (1983).

Examples

Example 1

The value of

$$\int_0^\infty \frac{\ln(x)}{1 + (10x)^2} dx = \frac{-\pi \ln(10)}{20}$$

is computed.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
   float
                q, exact, pi;
   pi = imsl_f_constant("pi", 0);
                                /* Evaluate the integral */
   q = imsl_f_int_fcn_inf (fcn, 0.0,
                            IMSL_BOUND_INF,
                            0);
                                 /* Print the result and the */
                                 /* exact answer */
   exact = -pi*log(10.)/20.;
                                          = %10.3f\n", q, exact);
   printf("integral = %10.3f\nexact
}
float fcn(float x)
{
```

```
float z;
z = 10.*x;
return log(x)/(1+ z*z);
}
```

integral = -0.362exact = -0.362

Example 2

The value of

$$\int_0^\infty \frac{\ln x}{1 + (10x)^2} dx = \frac{-\pi \ln(10)}{20}$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as in this example. The number of function evaluations also are printed.

```
#include <math.h>
#include <imsl.h>
                fcn(float x);
float
main()
{
    int
                n_evals;
   float
                q, exact, err_est, exact_err, pi;
   pi = imsl_f_constant("pi", 0);
                               /* Evaluate the integral */
   q = imsl_f_int_fcn_inf (fcn, 0.0,
                            IMSL_BOUND_INF,
                            IMSL_ERR_EST, &err_est,
                            IMSL_N_EVALS, &n_evals,
                            0);
                                /* Print the result and the */
                                /* exact answer */
   exact = -pi*log(10.)/20.;
   exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact
                                         = %10.3f\n", q, exact);
   printf("error estimate = %e\nexact error
                                                    = %e\n", err_est,
             exact_err);
   printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
    float
                z;
   z = 10.*x;
   return log(x)/(1+z*z);
}
```

integral = -0.362 exact = -0.362 error estimate = 2.801418e-06 exact error = 2.980232e-08 The number of function evaluations = 285

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION	Roundoff error, preventing the requested tolerance from being achieved, has been detected.
IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.
IMSL_EXTRAPOLATION_ROUNDOFF	Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.
Fatal Errors	
IMSL_DIVERGENT	Integral is probably divergent or slowly convergent.
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals allowed has been reached.

int_fcn_trig

Integrates a function containing a sine or a cosine factor.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_int_fcn_trig.

Required Arguments

- float fcn (float x) (Input) User-supplied function to be integrated.
- *float* a (Input)
 - Lower limit of integration.
- float b (Input) Upper limit of integration.

Imsl_quad weight and float omega (Input)

These two parameters are used to describe the trigonometric weight. The parameter weight can take on the two values described below, and the parameter $omega = \omega$ specifies the frequency of the trigonometric weighting function.

weight	Integration Weight
IMSL_COS	$\cos(\omega x)$
IMSL_SIN	sin (ax)

Return Value

The value of

$$\int_{a}^{b} \operatorname{fcn}(x) \cos\left(\omega x\right) dx$$

is returned if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced with a sine factor. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_MAX_MOMENTS, int max_moments,
0)
```

Optional Arguments

IMSL_ERR_ABS, *float* err_abs (Input) Absolute accuracy desired. Default: err_abs = $\sqrt{\epsilon}$

where ε is the machine precision

IMSL_ERR_REL, *float* err_rel (Input) Relative accuracy desired. Default: err_rel = $\sqrt{\epsilon}$

where $\boldsymbol{\epsilon}$ is the machine precision

IMSL_ERR_EST, *float* *err_est (Output) Address to store an estimate of the absolute value of the error.

```
IMSL_MAX_SUBINTER, int max_subinter (Input)
    Number of subintervals allowed.
    Default: max_subinter = 500
```

IMSL_N_SUBINTER, *int* *n_subinter (Output) Address to store the number of subintervals generated.

```
IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.
```

IMSL_MAX_MOMENTS, int max_moments (Input)
This is an upper bound on the number of Chebyshev moments that can be
stored. Increasing (decreasing) this number may increase (decrease) execution
speed and space used.

Default: max_moments = 21

Description

The function $imsl_f_int_fcn_trig$ is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x) where w(x) is either $cos(\omega x)$ or $sin(\omega x)$. Depending on the length of the subinterval in relation to the size of ω , either a modified Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to approximate the integral on a subinterval. This function uses the general strategy of the function $imsl_f_int_fcn_sing$. The function $imsl_f_int_fcn_trig$ is based on the subroutine QAWO by Piessens et al. (1983).

Examples

Example 1

The value of

$$\int_{0}^{1} \ln(x) \sin(10\pi x) \, dx$$

is computed. Notice that we have coded around the singularity at zero. This is necessary since this procedure evaluates the integrand at the two endpoints.

```
/* exact answer */
exact = -.1281316;
printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
{
    return (x==0.0) ? 0.0 : log(x);
}
```

integral = -0.128 exact = -0.128

Example 2

The value of

$$\int_{0}^{1} \ln\left(x\right) \sin\left(10\pi x\right) dx$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, it is usually the case that the error estimate is pessimistic. That is, the actual error is usually smaller than the error estimate as is the case in this example. The number of function evaluations are also printed.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
    int
                n_evals;
    float
                q, exact, omega, err_est, exact_err;
   omega = 10*imsl_f_constant("pi", 0);
                                /* Evaluate the integral */
   q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
                             IMSL_SIN, omega,
                             IMSL_ERR_EST, &err_est,
                             IMSL_N_EVALS, &n_evals,
                             0);
                                 /* Print the result and the */
                                 /* exact answer */
   exact = -.1281316;
   exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact
                                           = %10.3f\n", q, exact);
   printf("error estimate = %e\nexact error
                                                     = %e\n", err_est,
             exact_err);
   printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
```

```
return (x==0.0) ? 0.0 : log(x);
}
```

```
integral = -0.128
exact = -0.128
error estimate = 7.504603e-05
exact error = 5.245209e-06
The number of function evaluations = 215
```

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION	Roundoff error, preventing the requested tolerance from being achieved, has been detected.
IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.
IMSL_EXTRAPOLATION_ROUNDOFF	Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.
Fatal Errors	
IMSL_DIVERGENT	Integral is probably divergent or slowly convergent.
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals allowed has been reached.

int_fcn_fourier

Computes a Fourier sine or cosine transform.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_int_fcn_fourier.

Required Arguments

float fcn (float x) (Input) User-supplied function to be integrated. float a (Input)

Lower limit of integration. The upper limit of integration is ∞ .

Imsl_quad weight and *float* omega (Input) These two parameters are used to describe the trigonometric weight. The parameter weight can take on the two values described below, and the parameter $omega = \infty$ specifies the frequency of the trigonometric weighting function.

weight	Integration Weight
IMSL_COS	$\cos(\omega x)$
IMSL_SIN	sin (ωx)

Return Value

The return value is

$$\int_{a}^{\infty} fcn(x) \cos(\omega x) \, dx$$

if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced with a sine factor. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

IMSL_MAX_MOMENTS, *int* max_moments,

IMSL_N_CYCLES, *int* *n_cycles,

```
IMSL_N_EVALS, int *n_evals,
```

0)

Optional Arguments

IMSL_ERR_ABS, *float* err_abs (Input) Absolute accuracy desired. Default: err_abs = $\sqrt{\varepsilon}$

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
 Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)
 Number of subintervals allowed.

Default: max_subinter = 500

IMSL_MAX_CYCLES, int max_cycles (Input)
Number of cycles allowed.
Default: max_subinter = 50

```
IMSL_MAX_MOMENTS, int max_moments (Input)
        Number of subintervals allowed in the partition of each cycle.
        Default: max_moments = 21
IMSL_N_CYCLES, int *n_cycles (Output)
```

Address to store the number of cycles generated.

IMSL_N_EVALS, *int* *n_evals (Output) Address to store the number of evaluations of fcn.

Description

The function $imsl_f_int_fcn_fourier$ is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x) where w(x) is either $\cos\omega x$ or $\sin\omega x$. The integration interval is always semi-infinite of the form

 $[a, \infty]$. These Fourier integrals are approximated by repeated calls to the function $imsl_fint_fcn_trig$ followed by extrapolation.

The function imsl_f_int_fcn_fourier is based on the subroutine QAWF by Piessens et al. (1983).

Examples

Example 1

The value of

$$\int_0^\infty x^{-1/2} \cos\left(\pi x / 2\right) dx = 1$$

is computed. Notice that the integrand is coded to protect for the singularity at zero.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
   float
                q, exact, omega;
   omega = imsl_f_constant("pi",0) / 2.;
                                /* Evaluate the integral */
   q = imsl_f_int_fcn_fourier (fcn, 0.0,
                                IMSL_COS, omega,
                                0);
                                /* Print the result and the */
                                /* exact answer */
    exact = 1.0;
   printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}
float fcn(float x)
ł
   return (x==0.) ? 0. : 1./sqrt(x);
}
```

258 • int_fcn_fourier

integral = 1.000 exact = 1.000

Example 2

The value of

$$\int_0^\infty x^{-1/2} \cos(\pi x / 2) \, dx = 1$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as is the case in this example. The number of function evaluations also are printed. Notice that the integrand is coded to protect for the singularity at zero.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
    int
                n_evals;
   float
                q, exact, omega, err_est, exact_err;
   omega = imsl_f_constant("pi",0) / 2.0;
                                 /* Evaluate the integral */
   q = imsl_f_int_fcn_fourier (fcn, 0.0,
                                IMSL_COS, omega,
                                IMSL_ERR_EST, &err_est,
                                IMSL_N_EVALS, &n_evals,
                                0);
                                /* Print the result and the */
                                /* exact answer */
   exact = 1.;
    exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact
                                          = %10.3f\n", q, exact);
                                                     = %e\n", err_est,
   printf("error estimate = %e\nexact error
             exact_err);
   printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
ł
   return (x==0.) ? 0. : 1./sqrt(x);
}
```

Output

integral = 1.000
exact = 1.000
error estimate = 1.803637e-04
exact error = 1.013279e-06
The number of function evaluations = 405

Warning Errors

IMSL_BAD_INTEGRAND_BEHAVIOR	Bad integrand behavior occurred in one or more cycles.
IMSL_EXTRAPOLATION_PROBLEMS	Extrapolation table constructed for convergence acceleration of the series formed by the integral contributions of the cycles does not converge to the requested accuracy.
Fatal Errors	

IMSL_MAX_CYCLES

Maximum number of cycles allowed has been reached.

int_fcn_cauchy

Computes integrals of the form

$$\int_{a}^{b} \frac{f(x)}{x-c} \, dx$$

in the Cauchy principal value sense.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c, ..., 0)

The type *double* function is imsl_d_int_fcn_cauchy.

Required Arguments

float fcn (float x) (Input) User-supplied function to be integrated.

- float a (Input) Lower limit of integration.
- *float* b (Input) Upper limit of integration.
- float c (Input) Singular point, c must not equal a or b.

Return Value

The value of

$$\int_{a}^{b} \frac{\operatorname{fcn}(x)}{x-c} \, dx$$

is returned. If no value can be computed, NaN is returned.

IMSL C/Math/Library

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_ERR_ABS, *float* err_abs (Input) Absolute accuracy desired. Default: err_abs = $\sqrt{\epsilon}$

where ε is the machine precision

IMSL_ERR_REL, *float* err_rel (Input) Relative accuracy desired. Default: err_rel = $\sqrt{\epsilon}$

where ε is the machine precision

- IMSL_ERR_EST, *float* *err_est (Output) Address to store an estimate of the absolute value of the error.
- IMSL_MAX_SUBINTER, int max_subinter (Input)
 Number of subintervals allowed.
 Default: max_subinter = 500
- IMSL_N_SUBINTER, *int* *n_subinter (Output) Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function $imsl_f_int_fcn_cauchy$ uses a globally adaptive scheme in an attempt to reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x) where w(x) = 1/(x - c). If *c* lies in the interval of integration, then the integral is interpreted as a Cauchy principal value. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas are employed.

The function imsl_f_int_fcn_cauchy is an implementation of the subroutine QAWC by Piessens et al. (1983).

Examples

Example 1

The Cauchy principal value of

$$\int_{-1}^{5} \frac{1}{x(5x^3+6)} \, dx = \frac{\ln\left(125/631\right)}{18}$$

is computed.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
    float
                q, exact;
                                 /* Evaluate the integral */
    q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0, 0);
                                /* Print the result and the */
                                 /* exact answer */
    exact = log(125./631.)/18.;
    printf("integral = %10.3f\nexact
                                          = %10.3f\n", q, exact);
}
float fcn(float x)
{
    return 1.0/(5.0*x*x*x+6.0);
}
```

Output

integral = -0.090 exact = -0.090

Example 2

The Cauchy principal value of

$$\int_{-1}^{5} \frac{1}{x(5x^3+6)} \, dx = \frac{\ln\left(125/631\right)}{18}$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as is the case in this example. The number of function evaluations also are printed.

```
#include <math.h>
#include <imsl.h>
float fcn(float x);
```

main()

262 • int_fcn_cauchy

```
{
   int
                n_evals;
   float
                q, exact, err_est, exact_err;
                                /* Evaluate the integral */
   q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0,
                               IMSL_ERR_EST, &err_est,
                               IMSL_N_EVALS, &n_evals,
                               0);
                               /* Print the result and the */
                                /* exact answer */
   exact = log(125./631.)/18.;
   exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact
                                        = %10.3f\n", q, exact);
   printf("error estimate = %e\nexact error
                                                    = %e\n", err_est,
           exact_err);
   printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x)
{
   return 1.0/(5.0*x*x*x+6.0);
}
```

```
integral = -0.090
exact = -0.090
error estimate = 2.160174e-06
exact error = 0.000000e+00
The number of function evaluations = 215
```

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION	Roundoff error, preventing the requested tolerance from being achieved, has been detected.
IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.
Fatal Errors	
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals allowed has been reached.

int_fcn_smooth

Integrates a smooth function using a nonadaptive rule.

Synopsis

#include <imsl.h>
float imsl_f_int_fcn_smooth (float fcn(), float a, float b, ..., 0)
The type double function is imsl_d_int_fcn_smooth.

Chapter 4: Quadrature

int_fcn_smooth • 263

Required Arguments

float fcn (float x) (Input) User-supplied function to be integrated.

float a (Input) Lower limit of integration.

float b (Input) Upper limit of integration.

Return Value

The value of

$$\int_{a}^{b} \operatorname{fcn}(x) \, dx$$

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

Optional Arguments

IMSL_ERR_ABS, *float* err_abs (Input) Absolute accuracy desired. Default: err_abs = $\sqrt{\epsilon}$

where ε is the machine precision

IMSL_ERR_REL, *float* err_rel (Input) Relative accuracy desired. Default: err_rel = $\sqrt{\epsilon}$

where ε is the machine precision

IMSL_ERR_EST, *float* *err_est (Output) Address to store an estimate of the absolute value of the error.

Description

The function imsl_f_int_fcn_smooth is designed to integrate smooth functions. It implements a nonadaptive quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87. These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130, respectively. The function imsl_f_int_fcn_smooth applies these rules successively, estimating the error, until either the error estimate satisfies the user-supplied constraints or the last rule is applied.

This function is not very robust, but for certain smooth functions it can be efficient. If imsl_f_int_fcn_smooth should not perform well, we recommend the use of the function imsl_f_int_fcn_sing.

The function imsl_f_int_fcn_smooth is based on the subroutine QNG by Piessens et al. (1983).

Examples

Example 1

The value of

 $\int_0^2 x e^x dx = e^2 + 1$

is computed.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
    float
                q, exact;
                                 /* Evaluate the integral */
    q = imsl_f_int_fcn_smooth (fcn, 0., 2., 0);
                                /* Print the result and the */
                                 /* exact answer */
    exact = exp(2.0) + 1.0;
    printf("integral = %10.3f\nexact
                                           = %10.3f\n", q, exact);
}
float fcn(float x)
{
    return x * \exp(x);
}
```

Output

integral = 8.389 exact = 8.389

Example 2

The value of

$$\int_0^2 x e^x dx = e^2 + 1$$

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as is the case in this example.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x);
main()
{
                q, exact, err_est, exact_err;
    float
                                /* Evaluate the integral */
   q = imsl_f_int_fcn_smooth (fcn, 0.0, 2.0,
                               IMSL_ERR_EST, &err_est,
                               0);
                                /* Print the result and the */
                                /* exact answer */
   exact = exp(2.0) + 1.0;
   exact_err = fabs(exact - q);
   printf("integral = %10.3f\nexact
                                         = %10.3f\n", q, exact);
   printf("error estimate = %e\nexact error
                                                   = e^n, err_est,
             exact_err);
}
float fcn(float x)
{
   return x * exp(x);
}
```

```
integral = 8.389
exact = 8.389
error estimate = 5.000267e-05
exact error = 9.536743e-07
```

Fatal Errors

```
IMSL_MAX_STEPS
```

The maximum number of steps allowed have been taken. The integrand is too difficult for this routine.

int_fcn_2d

Computes a two-dimensional iterated integral.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_int_fcn_2d.

Required Arguments

float fcn (float x, float y) (Input) User-supplied function to be integrated.

<i>float</i> a	(Input)
	Lower limit of outer integral.
<i>float</i> b	(Input)
	Upper limit of outer integral.
<i>float</i> go	en (float x) (Input)
	User-supplied function to evaluate the lower limit of the inner integral.

float hcn (float x) (Input) User-supplied function to evaluate the upper limit of the inner integral.

Return Value

The value of

$$\int_{a}^{b} \int_{gcn(x)}^{hcn(x)} \operatorname{fcn}(x, y) \, dy dx$$

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

```
IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_abs = \sqrt{\epsilon}
```

where ε is the machine precision

IMSL_ERR_REL, *float* err_rel (Input) Relative accuracy desired. Default: err_rel = $\sqrt{\epsilon}$

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

```
IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.
```

IMSL_N_EVALS, *int* *n_evals (Output) Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn_2d approximates the two-dimensional iterated integral

$$\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) \, dy dx$$

An estimate of the error is returned in err_est. The lower-numbered rules are used for less smooth integrands while the higher-order rules are more efficient for smooth (oscillatory) integrands.

Examples

Example 1

In this example, compute the value of the integral

$$\int_0^1 \int_1^3 y \cos(x+y^2) \, dy \, dx$$

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x, float y), gcn(float x), hcn(float x);
main()
{
    float
                q, exact;
                                 /* Evaluate the integral */
    q = imsl_f_int_fcn_2d (fcn, 0.0, 1.0, gcn, hcn, 0);
                    /* print the result and the exact answer */
    exact = 0.5*(\cos(9.0)+\cos(2.0)-\cos(10.0)-\cos(1.0));
    printf("integral = %10.3f\nexact
                                          = %10.3f\n", q, exact);
}
float fcn(float x, float y)
{
    return y * cos(x+y*y);
}
float gcn(float x)
ł
    return 1.0;
}
float hcn(float x)
{
    return 3.0;
}
```

integral = -0.514exact = -0.514

Example 2

In this example, compute the value of the integral

```
\int_0^1 \int_1^3 y \cos(x+y^2) \, dy dx
```

The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. That is, the actual error is usually smaller than the error estimate, as is the case in this example. The number of function evaluations also are printed.

```
#include <math.h>
#include <imsl.h>
float
                fcn(float x, float y), gcn(float x), hcn(float x);
main()
{
    int
                n_evals;
    float
                q, exact, err_est, exact_err;
                                /* Evaluate the integral */
    q = imsl_f_int_fcn_2d (fcn, 0., 1., gcn, hcn,
                           IMSL_ERR_EST, &err_est,
                           IMSL_N_EVALS, &n_evals,
                            0);
                                 /* Print the result and the */
                                 /* exact answer */
    exact = 0.5*(\cos(9.0)+\cos(2.0)-\cos(10.0)-\cos(1.0));
    exact_err = fabs(exact - q);
    printf("integral = %10.3f\nexact
                                           = %10.3f\n", q, exact);
    printf("error estimate = %e\nexact error
                                                     = %e\n", err_est,
             exact_err);
    printf("The number of function evaluations = %d\n", n_evals);
}
float fcn(float x, float y)
    return y * \cos(x+y*y);
}
float gcn(float x)
ł
    return 1.0;
}
float hcn(float x)
ł
    return 3.0;
}
```

integral = -0.514 exact = -0.514 error estimate = 3.065193e-06 exact error = 1.192093e-07 The number of function evaluations = 441

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION	Roundoff error, preventing the requested tolerance from being achieved, has been detected.	
IMSL_PRECISION_DEGRADATION	A degradation in precision has been detected.	
Fatal Errors		
IMSL_MAX_SUBINTERVALS	The maximum number of subintervals	

allowed has been reached.

int_fcn_hyper_rect

Integrate a function on a hyper-rectangle,

$$\int_{a_0}^{b_0} \dots \int_{a_{n-1}}^{b_{n-1}} f(x_0, \dots, x_{n-1}) dx_{n-1} \dots dx_0$$

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_int_fcn_hyper_rect.

Required Arguments

float fcn (int ndim, float x) (Input) User-supplied function to be integrated.

int ndim (Input)

The dimension of the hyper-rectangle.

float a[] (Input) Lower limits of integration.

float b[] (Input) Upper limits of integration.

Return Value

The value of

270 • int_fcn_hyper_rect

$$\int_{a_0}^{b_0} \dots \int_{a_{n-1}}^{b_{n-1}} f(x_0, \dots, x_{n-1}) dx_{n-1} \dots dx_0$$

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[], float
            b[], IMSL_ERR_ABS, float err_abs,
            IMSL_ERR_REL, float err_rel,
            IMSL_ERR_EST, float *err_est,
            IMSL_MAX_EVALS, int max_evals,
            0)
```

Optional Arguments

```
IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_abs = \sqrt{\epsilon}
```

where ε is the machine precision

IMSL_ERR_REL, *float* err_rel (Input) Relative accuracy desired. Default: err_rel = $\sqrt{\epsilon}$

where ε is the machine precision

IMSL_ERR_EST, *float* *err_est (Output) Address to store an estimate of the absolute value of the error.

IMSL_MAX_EVALS, *int* max_evals (Input) Number of evaluations allowed.

Default: max_evals = 32^n .

Description

The function imsl_f_int_fcn_hyper_rect approximates the *n*-dimensional iterated integral

$$\int_{a_0}^{b} \dots \int_{a_{n-1}}^{b_{n-1}} f(x_0, \dots, x_{n-1}) dx_{n-1} \dots dx_0$$

An estimate of the error is returned in the optional argument err_est. The approximation is achieved by iterated applications of product Gauss formulas. The integral is first estimated by a two-point tensor product formula in each direction. Then for i = 1, ..., n, the function calculates a new estimate by doubling the number of points in the *i*-th direction, then halving the number immediately afterwards if the new estimate does not change appreciably. This process is repeated until either one complete sweep results in no increase in the number of sample points in any dimension;

the number of Gauss points in one direction exceeds 256; or the number of function evaluations needed to complete a sweep exceeds max_evals.

Example

In this example, we compute the integral of

```
e^{-(x_1^2+x_2^2+x_3^2)}
```

on an expanding cube. The values of the error estimates are machine dependent. The exact integral over \mathbf{R}^3 is $\pi^{3/2}$.

```
#include <math.h>
#include <imsl.h>
float
                fcn(int n, float x[]);
main()
{
                i, j, ndim = 3;
q, limit, a[3], b[3];
    int
    float
    printf("
                   integral
                                   limit \n");
    limit = pow(imsl_f_constant("pi",0), 1.5);
                                 /* Evaluate the integral */
    for (i = 0; i < 6; i++) {
        for (j = 0; j < 3; j++) {
            a[j] = -(i+1)/2.;
            b[j] = (i+1)/2.;
        }
        q = imsl_f_int_fcn_hyper_rect (fcn, ndim, a, b, 0);
                                 /* Print the result and the */
                                 /* limiting answer */
        printf(" %10.3f
                              %10.3f\n", q, limit);
    }
}
float fcn(int n, float x[])
ł
    float
              s;
    s = x[0]*x[0] + x[1]*x[1] + x[2]*x[2];
    return exp(-s);
}
```

Output

integral	limit
0.785	5.568
3.332	5.568
5.021	5.568
5.491	5.568
5.561	5.568
5.568	5.568

Warning Errors

IMSL_MAX_EVALS_TOO_LARGE

The argument max_evals was set greater than 2^{8n} .

Fatal Errors

IMSL_NOT_CONVERGENT

The maximum number of function evaluations has been reached, and convergence has not been attained.

gauss_quad_rule

Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions.

Synopsis

#include <imsl.h>

```
void imsl_f_gauss_quad_rule (int n, float weights[], float points[], ...,
0)
```

The type *double* procedure is imsl_d_gauss_quad_rule.

Required Arguments

int n (Input) Number of quadrature points. float weights[] (Output)

Array of length n containing the quadrature weights.

float points[] (Output)

Array of length *n* containing quadrature points. The default action of this routine is to produce the Gauss Legendre points and weights.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_CHEBYSHEV_FIRST

Compute the Gauss points and weights using the weight function

$$1/\sqrt{1-x^2}$$

on the interval (-1, 1).

IMSL_CHEBYSHEV_SECOND

Compute the Gauss points and weights using the weight function

$$\sqrt{1-x^2}$$

on the interval (-1, 1).

IMSL_HERMITE

Compute the Gauss points and weights using the weight function exp $(-x^2)$ on the interval $(-\infty, \infty)$.

IMSL_COSH

Compute the Gauss points and weights using the weight function $1/(\cosh(x))$ on the interval $(-\infty, \infty)$.

IMSL_JACOBI, *float* alpha, *float* beta (Input)

Compute the Gauss points and weights using the weight function

 $(1-x)^{\alpha} (1+x)^{\beta}$ on the interval (-1, 1).

IMSL_GEN_LAGUERRE, *float* alpha (Input)

Compute the Gauss points and weights using the weight function $\exp(-x)x^{\alpha}$ on the interval $(0, \infty)$.

IMSL_FIXED_POINT, float a (Input)

Compute the Gauss-Radau points and weights using the specified weight function and the fixed point *a*. This formula will integrate polynomials of degree less than 2n - 1 exactly.

```
IMSL_TWO_FIXED_POINTS, float a, float b (Input)
```

Compute the Gauss-Lobatto points and weights using the specified weight function and the fixed points *a* and *b*. This formula will integrate polynomials of degree less than 2n - 2 exactly.

Description

The function imsl_f_gauss_quad_rule produces the points and weights for the Gauss, Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most popular weights. The default weight is the weight function identically equal to 1 on the interval (-1, 1). In fact, it is slightly more general than this suggests, because the extra one or two points that may be specified do not have to lie at the endpoints of the interval. This function is a modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969).

In the default case, the function returns points in x = points and weights in w = weights so that

$$\int_{a}^{b} f(x)w(x)dx = \sum_{i=1}^{N} f(x_{i})w_{i}$$

for all functions f that are polynomials of degree less than 2n.

If the keyword IMSL_FIXED_POINT is specified, then one of the above x_i is equal to a. Similarly, if the keyword IMSL_TWO_FIXED_POINTS is specified, then two of the components of x are equal to a and b. In general, the accuracy of the above quadrature formula degrades when n increases. The quadrature rule will integrate all functions f that are polynomials of degree less than 2n - F, where F is the number of fixed points.

Examples

Example 1

The three-point Gauss Legendre quadrature points and weights are computed and used to approximate the integrals

$$\int_{-1}^{1} x^{i} dx \qquad i = 0, \dots, 6$$

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In general, the Gauss rules with k points integrate polynomials with degree less than 2k exactly.

```
#include <math.h>
#include <imsl.h>
#define OUADPTS 3
#define POWERS
                  7
main()
{
    int
                i, j;
                weights[QUADPTS], points[QUADPTS], s[POWERS];
    float
                                 /* Produce the Gauss Legendre */
                                 /* quadrature points */
    imsl_f_gauss_quad_rule (QUADPTS, weights, points, 0);
                                /* integrate the functions */
                                 /* 1, x, ..., pow(x,POWERS-1) */
    for(i = 0; i < POWERS; i++) {</pre>
        s[i] = 0.0;
        for(j = 0; j < QUADPTS; j++) {</pre>
            s[i] += weights[j]*imsl_fi_power(points[j], i);
    }
    printf("The integral from -1 to 1 of pow(x, i) is\n");
    printf("Function
                               Quadrature
                                             Exact\n\n");
    for(i = 0; i < POWERS; i++){</pre>
        float
                zi
        z = (1-i%2)*2./(i+1.);
                                  %10.3f %10.3f\n", i, s[i], z);
        printf("pow(x, %d)
    }
}
```

The int	egral	from	-1 to	1 of	pow(x	, i)	is
Functio	on		Quad	dratu	re	Exact	5
pow(x,	0)		2	.000		2.000)
pow(x,	1)		0	.000		0.000)
pow(x,	2)		0	.667		0.667	7
pow(x,	3)		0	.000		0.000)
pow(x,	4)		0	.400		0.400)
pow(x,	5)		0	.000		0.000)
pow(x,	6)		0	.240		0.286	5

Example 2

The three-point Gauss Laguerre quadrature points and weights are computed and used to approximate the integrals

$$\int_{0}^{\infty} x^{i} x e^{-x} dx = i! \qquad i = 0, \dots, 6$$

Notice that the integrals are exact for the first six monomials, but that the last approximation is in error. In general, the Gauss rules with k points integrate polynomials with degree less than 2k exactly.

```
#include <math.h>
#include <imsl.h>
#define QUADPTS 3
#define POWERS
                  7
main()
{
    int
                i, j;
                weights[QUADPTS], points[QUADPTS], s[POWERS], z;
    float
                                 /* Produce the Gauss Legendre */
                                 /* quadrature points */
    imsl_f_gauss_quad_rule (QUADPTS, weights, points,
                             IMSL GEN LAGUERRE, 1.0,
                             0);
                                 /* Integrate the functions */
                                 /* 1, x, ..., pow(x, POWERS-1) */
    for(i = 0; i < POWERS; i++) {</pre>
        s[i] = 0.0;
        for(j = 0; j < QUADPTS; j++){</pre>
            s[i] += weights[j]*imsl_fi_power(points[j], i);
        }
    }
    printf("The integral from 0 to infinity of pow(x, i)*x*exp(x) is\n");
    printf("Function
                                Quadrature
                                               Exact n n");
    for(z = 1.0, i = 0; i < POWERS; i++){</pre>
        z *= (i+1);
                                   %10.3f %10.3f \n", i, s[i], z);
        printf("pow(x, %d)
    }
}
```

The int	cegral	from 0	to infinity	of pow(x,	i)*x*exp(x)	is
Functio	on		Quadrature	Exact		
pow(x,	0)		1.000	1.000		
pow(x,	1)		2.000	2.000		
pow(x,	2)		6.000	6.000		
pow(x,	3)		24.000	24.000		
pow(x,	4)		120.000	120.000		
pow(x,	5)		720.000	720.000		
pow(x,	6)	4	4896.000	5040.000		

fcn_derivative

Computes the first, second, or third derivative of a user-supplied function.

Synopsis

#include <imsl.h>

float imsl_f_fcn_derivative (float fcn(), float x, ..., 0)

The type *double* procedure is imsl_d_fcn_derivative.

Required Arguments

float fcn(float x) (Input) User-supplied function whose derivative at x will be computed.

float x (Input) Point at which the derivative will be evaluated.

Return Value

An estimate of the first, second or third derivative of fcn at x. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
    float imsl_f_fcn_derivative (float fcn(), float x,
    IMSL_ORDER, int order,
    IMSL_INITIAL_STEPSIZE, float stepize,
    IMSL_RELATIVE_ERROR, float tolerance,
    0)
```

Optional Arguments

```
IMSL_ORDER, int order (Input)
    The order of the desired derivative (1, 2 or 3).
    Default: order = 1.
IMSL_INITIAL_STEPSIZE, float stepsize (Input)
    Beginning value used to compute the size of the interval for approximating the
```

Chapter 4: Quadrature

fcn_derivative • 277

derivative. Stepsize must be chosen small enough that fcn is defined and reasonably smooth in the interval

(x - 4.0*stepsize, x + 4.0*stepsize), yet large enough to avoid roundoff problems.

Default: stepsize = .01

IMSL_RELATIVE_ERROR, float tolerance (Input)

The relative error desired in the derivative estimate. Convergence is assumed when $(2/3) |d_2 - d_1| < \text{tolerance}$, for two successive derivative estimates, d_1 and d_2 . Default: tolerance = $\sqrt[4]{\epsilon}$

Description

The function imsl_f_fcn_derivative produces an estimate to the first, second, or third derivative of a function. The estimate originates from first computing a spline interpolant to the input function using value within the interval (x - 4.0*stepsize, x + 4.0*stepsize), then differentiating the spline at x.

Examples

Example 1

This example obtains the approximate first derivative of the function $f(x) = -2\sin(3x/2)$ at the point x = 2.

```
#include <imsl.h>
#include <math.h>
void main()
{
    float fcn(float);
    float x;
    float deriv;
    x = 2.0;
    deriv = imsl_f_fcn_derivative(fcn, x, 0);
    printf ("f'(x) = %7.4f\n", deriv);
}
float fcn(float x)
{
    return -2.0*sin(1.5*x);
}
```

Output

f'(x) = 2.9701

Example 2

This example obtains the approximate first, second, and third derivative of the function $f(x) = -2\sin(3x/2)$ at the point x = 2.

```
#include <imsl.h>
#include <math.h>
void main()
{
        double fcn(double);
        double x;
        double tolerance;
       double deriv;
       x = 2.0;
        deriv = imsl_d_fcn_derivative(fcn, x,
                0);
        printf ("f'(x) = %7.3f, error = %5.2e\n", deriv,
                fabs(deriv+3.0*cos(1.5*x)));
        deriv = imsl_d_fcn_derivative(fcn, x,
                IMSL_ORDER, 2,
                0);
        printf ("f''(x) = %7.4f, error = %5.2e\n", deriv,
                fabs(deriv-4.5*sin(1.5*x)));
        deriv = imsl_d_fcn_derivative(fcn, x,
                IMSL_ORDER, 3,
                0);
        printf ("f'''(x) = %7.4f, error = %5.2e\n", deriv,
                fabs(deriv-6.75*cos(1.5*x)));
}
double fcn(double x)
{
       return -2.0*sin(1.5*x);
}
```

f'(x) = 2.970, error = 1.11e-07 f''(x) = 0.6350, error = 8.52e-09 f'''(x) = -6.6824, error = 1.12e-08

Chapter 5: Differential Equations

Routines

Runge-Kutta methodode_r	unge_kutta 283
Adam's or Gear's methodode_ad	dams_gear 288
Method of linespde_metho	od_of_lines 295
Fast Poisson solver fast_p	poisson_2d 311

Usage Notes

Ordinary Differential Equations

An *ordinary differential equation* is an equation involving one or more dependent variables called y_i , one independent variable, t, and derivatives of the y_i with respect to t.

In the *initial-value problem* (IVP), the initial or starting values of the dependent variables y_i at a known value $t = t_0$ are given. Values of $y_i(t)$ for $t > t_0$ or $t < t_0$ are required.

The functions imsl_f_ode_runge_kutta and imsl_f_ode_adams_gear solve the IVP for ODEs of the form

$$\frac{dy_i}{dt} = y'_i = f_i(t, y_1, ..., y_N) \qquad i = 1, ..., N$$

with $y_i = (t = t_0)$ specified. Here, f_i is a user-supplied function that must be evaluated at any set of values $(t, y_1, ..., y_N)$, i = 1, ..., N.

This problem statement is abbreviated by writing it as a *system* of first-order ODEs, $y(t) = [y_1(t), ..., y_N(t)]^T$, $f(t, y) = [f_1(t, y), ..., f_N(t, y)]^T$, so that the problem becomes y' = f(t, y) with initial values $y(t_0)$.

The system

$$\frac{dy}{dt} = y' = f(t, y)$$

is said to be stiff if some of the eigenvalues of the Jacobian matrix

 $\left\{ \partial y_{i}^{\prime }/\partial y_{j}\right\}$

Chapter 5: Differential Equations

Routines • 281

are large and negative. This is frequently the case for differential equations modeling the behavior of physical systems, such as chemical reactions proceeding to equilibrium where subspecies effectively complete their reactions in different epochs. An alternate model concerns discharging capacitors such that different parts of the system have widely varying decay rates (or *time constants*).

Users typically identify stiff systems by the fact that numerical differential equation solvers such as $imsl_f_ode_runge_kutta$ are inefficient, or else completely fail. Special methods are often required. The most common inefficiency is that a large number of evaluations of f(t, y) (and hence an excessive amount of computer time) are required to satisfy the accuracy and stability requirements of the software. In such cases, use the IMSL function $imsl_f_ode_adams_gear$. For more discussion about stiff systems, see Gear (1971, Chapter 11) or Shampine and Gear (1979).

Partial Differential Equations

The routine imsl_f_pde_method_of_lines, page 295, solves the IVP problem for systems of the form

$$\frac{\partial u_i}{\partial t} = f_i \left(x, t, u_1, \dots, u_N, \frac{\partial u_1}{\partial x}, \dots, \frac{\partial u_N}{\partial x}, \frac{\partial^2 u_1}{\partial x^2}, \dots, \frac{\partial^2 u_N}{\partial x^2} \right)$$

subject to the boundary conditions

$$\alpha_1^{(i)} u_i(a) + \beta_1^{(i)} \frac{\partial u_i}{\partial x}(a) = \gamma_1(t)$$

$$\alpha_2^{(i)} u_i(b) + \beta_2^{(i)} \frac{\partial u_i}{\partial x}(b) = \gamma_2(t)$$

2

and subject to the initial conditions

$$u_i(x, t = t_0) = g_i(x)$$

for i = 1, ..., N. Here, f_i, g_i ,

$$\alpha_{j}^{(i)}$$
, and $\beta_{j}^{(i)}$

are user-supplied, j = 1, 2.

The routine fast_poisson_2d, page 311, solves Laplace's, Poisson's, or Helmholtz's equation in two dimensions. This routine uses a fast Poisson method to solve a PDE of the form

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + cu = f(x, y)$$

over a rectangle, subject to boundary conditions on each of the four sides. The scalar constant c and the function f are user specified.

ode_runge_kutta

Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method.

Synopsis

#include <imsl.h>

float imsl_ode_runge_kutta_mgr (int task, void **state, ..., 0)

void imsl_f_ode_runge_kutta (int neq, float *t, float tend, float y[], void *state, void fcn())

Required Arguments for imsl_ode_runge_kutta_mgr

int task (Input)

This function must be called with task set to IMSL_ODE_INITIALIZE to set up for solving an ODE system and with task equal to IMSL_ODE_RESET to clean up after it has been solved. These values for task are defined in the include file, imsl.h.

void **state (Input/Output)

The current state of the ODE solution is held in a structure pointed to by state. It cannot be directly manipulated.

Required Arguments for imsl_f_ode_runge_kutta

int neq (Input)

Number of differential equations.

float *t (Input/Output)

Independent variable. On input, t is the initial independent variable value. On output, t is replaced by tend, unless error conditions arise.

float tend (Input)

Value of t at which the solution is desired. The value tend may be less than the initial value of t.

float y[] (Input/Output)

Array with neq components containing a vector of dependent variables. On input, y contains the initial values. On output, y contains the approximate solution.

void *state (Input/Output)

The current state of the ODE solution is held in a structure pointed to by state. It must be initialized by a call to imsl_ode_runge_kutta_mgr. It cannot be directly manipulated.

void fcn (int neq, float t, float *y, float *yprime)
User-supplied function to evaluate the right-hand side where
float *yprime (Output)

Array with neq components containing the vector y'. This function computes

$$yprime = \frac{dy}{dt} = y' = f(t, y)$$

and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

```
IMSL_TOL, float tol (Input)
        Tolerance for error control. An attempt is made to control the norm of the
       local error such that the global error is proportional to tol.
       Default: tol = 100.0*imsl_f_machine(4)
IMSL_HINIT, float hinit (Input)
       Initial value for the step size h. Steps are applied in the direction of
       integration.
       Default: hinit = 0.001 |tend - t|
IMSL_HMIN, float hmin (Input)
       Minimum value for the step size h.
        Default: hmin - 0.0
IMSL_HMAX, float hmax (Input)
       Maximum value for the step size h.
       Default: hmax = 2.0
IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
        Maximum number of steps allowed.
       Default: max_steps = 500
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
       Maximum number of function evaluations allowed.
       Default: max_fcn_evals = No enforced limit
```

IMSL_SCALE, *float* scale (Input) A measure of the scale of the problem, such as an approximation to the Jacobian along the trajectory. Default: scale = 1 IMSL_NORM, int norm (Input) Switch determining the error norm. In the following, e_i is the absolute value of the error estimate for y_i . 0 minimum of the absolute error and the relative error, equals the maximum of $e_i / \max(|y_i|, 1)$ for i = 1, ..., neq. 1 absolute error, equals $\max_i e_i$. 2 $\max_i(e_i / w_i)$ where $w_i = \max(|y_i|, \text{floor})$. The value of floor is reset using IMSL_FLOOR. Default: norm = 0IMSL FLOOR, *float* floor (Input) This is used with IMSL_NORM. It provides a positive lower bound for the error norm option with value 2. Default: floor = 1.0 IMSL_NSTEP, int *nstep (Output) Returns the number of steps taken. IMSL_NFCN, *int* *nfcn (Output) Returns the number of function evaluations used.

IMSL_HTRIAL, *float* *htrial (Output) Returns the current trial step size.

Description

The function imsl_f_ode_runge_kutta finds an approximation to the solution of a system of first-order differential equations of the form

$$\frac{dy}{dt} = y' = f(t, y)$$

with given initial conditions for *y* at the starting value for *t*. The function attempts to keep the global error proportional to a user-specified tolerance. The proportionality depends on the differential equation and the range of integration.

The function $imsl_f_ode_runge_kutta$ is efficient for nonstiff systems where the evaluations of f(t, y) are not expensive. The code is based on an algorithm designed by Hull et al. (1976, 1978). It uses Runge-Kutta formulas of order five and six developed by J.H. Verner.

Examples

Example 1

This example solves

$$\frac{dy}{dt} = -y$$

```
over the interval [0, 1] with the initial condition y(0) = 1. The solution is y(t) = e^{-t}.
```

The ODE solver is initialized by a call to $imsl_f_ode_runge_kutta_mgr$ with IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default values are changed. The function $imsl_f_ode_runge_kutta$ is then called to integrate from t = 0 to t = 1.

```
#include <imsl.h>
#include <math.h>
void
            fcn (int neq, float t, float y[], float yprime[]);
main()
{
                neq = 1;
    int
                                /* Number of ode's */
                                /* Initial time */
   float
                t = 0.0;
                                /* Final time */
                tend = 1.0;
   float
   float
                y[1] = \{1.0\};
                                /* Initial condition */
                *state;
   void
                                 /* Initialize the ODE solver */
    imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state, 0);
                                /* Integrate from t=0 to tend=1 */
   imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
                                /* Print the solution and error */
   printf("y[%f] = %f\n", t, y[0]);
   printf("Error is: %e\n", exp( (double)(-tend) )-y[0]);
}
void fcn (int neq, float t, float y[], float yprime[])
{
   yprime[0] = -y[0];
}
```

Output

y[1.000000] = 0.367879 Error is: -9.149755e-09

Example 2

Consider a predator-prey problem with rabbits and foxes. Let r be the density of rabbits, and let f be the density of foxes. In the absence of any predator-prey interaction, the rabbits would increase at a rate proportional to their number, and the foxes would die of starvation at a rate proportional to their number. Mathematically, the model without species interaction is approximated by the equation

r' = 2rf' = -f

IMSL C/Math/Library

With species interaction, the rate at which the rabbits are consumed by the foxes is assumed to equal the value 2*rf*. The rate at which the foxes increase, because they are consuming the rabbits, is equal to *rf*. Thus, the model differential equations to be solved are

$$r' = 2r - 2rf$$

$$f' = -f + rf$$

For illustration, the initial conditions are taken to be r(0) = 1 and f(0) = 3. The interval of integration is $0 \le t \le 10$. In the program, y[0] = r and y[1] = f. The ODE solver is initialized by a call to imsl_f_ode_runge_kutta_mgr. The error tolerance is set to 0.0005. Absolute error control is selected by setting IMSL_NORM to the value one. We also request that nstep be set to the current number of steps in the integration. The function imsl_f_ode_runge_kutta is then called in a loop to integrate from t = 0 to t = 10 in steps of $\delta t = 1$. At each step, the solution is printed. Note that nstep is updated even though it is not an argument to this function. Its address has been stored within imsl_f_ode_runge_kutta_mgr with IMSL_ODE_RESET releases workspace.

```
#include <imsl.h>
```

```
void
                fcn(int neq, float t, float y[], float yprime[]);
main()
{
    int
                neq = 2;
                t = 0.0;
                                     /* Initial time */
    float
                                     /* Final time */
    float
                tend;
                y[2] = {1.0, 3.0}; /* Initial conditions */
    float
    int
                k;
    int
                nstep;
                *state;
    void
                                 /* Initialize the ODE solver */
    imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state,
                                IMSL_TOL,
                                             0.0005,
                                IMSL_NSTEP,
                                             &nstep,
                                IMSL_NORM,
                                             1.
                                0);
    printf("\n Start
                         End
                                 Density of
                                             Density of
                                                           Number of " );
    printf("\n Time
                                                            Stepsn^{n};
                        Time
                                   Rabbits
                                               Foxes
    for (k = 0; k < 10;
                            k++) {
        tend = k + 1i
        imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
        printf("%3d %12.3f %12.3f %12.3f %12d\n", k, t, y[0], y[1], nstep);
    imsl_f_ode_runge_kutta_mgr(IMSL_ODE_RESET, &state, 0);
}
void fcn (int neq, float t, float y[], float yprime[])
                                 /* Density change rate for Rabbits: */
    yprime[0] = 2*y[0]*(1 - y[1]);
                                 /* Density change rate for Foxes: */
```

```
yprime[1] = -y[1]*(1 - y[0]);
}
```

	Output			
Start	End	Density of	Density of	Number of
Time	Time	Rabbits	Foxes	Steps
0	1.000	0.078	1.465	4
1	2.000	0.085	0.578	6
2	3.000	0.292	0.250	7
3	4.000	1.449	0.187	8
4	5.000	4.046	1.444	11
5	6.000	0.176	2.256	15
б	7.000	0.066	0.908	18
7	8.000	0.148	0.367	20
8	9.000	0.655	0.188	21
9	10.000	3.157	0.352	23

Fatal Errors

IMSL_ODE_TOO_MANY_EVALS	Completion of the next step would make the number of function evaluations #, but only # evaluations are allowed.
IMSL_ODE_TOO_MANY_STEPS	Maximum number of steps allowed, #, used. The problem may be stiff.
IMSL_ODE_FAIL	Unable to satisfy the error requirement. "tol" = # may be too small.

ode_adams_gear

Solves a stiff initial-value problem for ordinary differential equations using the Adams-Gear methods.

Synopsis

#include <imsl.h>

- float imsl_ode_adams_gear_mgr (int task, void **state, ..., 0)

Required Arguments for imsl_ode_adams_gear_mgr

int task (Input)

This function must be called with task set to IMSL_ODE_INITIALIZE to set up for solving an ODE system and with task equal to IMSL_ODE_RESET to clean up after it has been solved. These values for task are defined in the included file, imsl.h.

void **state (Input/Output)

The current state of the ODE solution is held in a structure pointed to by state. It cannot be directly manipulated.

Required Arguments for imsl_f_ode_adams_gear

int neq (Input)

Number of differential equations.

float *t (Input/Output)

Independent variable. On input, t is the initial independent variable value. On output, t is replaced by tend unless error conditions arise.

float tend (Input)

Value of t at which the solution is desired. The value tend may be less than the initial value of t.

float y[] (Input/Output)

Array with neq components containing a vector of dependent variables. On input, y contains the initial values. On output, y contains the approximate solution.

void *state (Input/Output)

The current state of the ODE solution is held in a structure pointed to by state. It must be initialized by a call to imsl_ode_adams_gear_mgr. It cannot be directly manipulated.

void fcn (int neq, float t, float *y, float *yprime)

User-supplied function to evaluate the right-hand side where

float *yprime (Output)

Array with neq components containing the vector y'. This function computes

$$yprime = \frac{dy}{dt} = y' = f(t, y)$$

and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments

#include <imsl.h>

```
IMSL_SCALE, float scale,
IMSL_NORM, int norm,
IMSL_FLOOR, float floor,
IMSL_NSTEP, int *nstep,
IMSL_NFCN, int *nfcn,
IMSL_NFCNJ, int *nfcnj,
0)
```

Optional Arguments

IMSL_JACOBIAN, void fcnj (int neq, float t, float *y, float yprime[],
 float dypdy[])

User-supplied function to evaluate the Jacobian matrix where

float yprime[] (Input)

Array with neq components containing the vector y' = f(t, y).

float dypdy[] (Output)

Array of size $neq \times neq$ containing the partial derivatives. Each derivative $\partial y'_i / \partial y_i$ is evaluated at the provided (t, y) values and is returned in array location dypdy[(i-1)*n+j-1].

and neq, t, and *y are described in the "Required Arguments" section.

IMSL_METHOD, *int* method (Input)

Choose the class of integration methods.

1 Use implicit Adams method.

2 Use backward differentiation formula (BDF) methods.

Default: method = 2

IMSL_MAXORD, int maxord (Input)

Define the highest order formula to use of implicit Adams type or BDF type. The default is the value 12 for Adams formulas and is the value 5 for BDF formulas.

IMSL_MITER, *int* miter (Input)

Choose the method for solving the formula equations.

- 1 Use function iteration or successive substitution.
- 2 Use chord or modified Newton method and a user-supplied Jacobian matrix.
- 3 Same as 2 except Jacobian is approximated within the function by divided differences.

Default: miter = 3

IMSL_TOL, *float* tol (Input)

Tolerance for error control. An attempt is made to control the norm of the local error such that the global error is proportional to tol. Default: tol = 0.001

```
IMSL_HINIT, float hinit (Input)
        Initial value for the step size h. Steps are applied in the direction of
        integration.
        Default: hinit = 0.001|tend - t|
IMSL_HMIN, float hmin (Input)
        Minimum value for the step size h.
        Default: hmin = 0.0
IMSL_HMAX, float hmax (Input)
        Maximum value for the step size h.
        Default: hmax = imsl_amach(2)
IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
        Maximum number of steps allowed.
        Default: max_steps = 500
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
        Maximum number of evaluations of y' allowed.
        Default: max fcn evals = No enforced limit
IMSL_SCALE, float scale (Input)
        A measure of the scale of the problem, such as an approximation to the
        Jacobian along the trajectory.
        Default: scale = 1
IMSL_NORM, int norm (Input)
        Switch determining the error norm. In the following, e_i is the absolute value of
        the error estimate for y_i.
             0
                      minimum of the absolute error and the relative error, equals
                      the maximum of e_i / (\max(|y_i|, 1)) for i = 1, ..., \text{neq}.
              1
                      absolute error, equals \max_i e_i.
              2
                      \max_i (e_i / w_i) where w_i = \max(|y_i|, \text{floor}). The value of floor
                      is reset using IMSL_FLOOR.
              Default: norm = 0.
IMSL_FLOOR, float floor (Input)
        This is used with IMSL_NORM. It provides a positive lower bound for the error
        norm option with value 2.
        Default: floor = 1.0
IMSL_NSTEP, int *nstep (Output)
        Returns the number of steps taken.
IMSL_NFCN, int *nfcn (Output)
        Returns the number of evaluations of y' used.
IMSL_NFCNJ, int *nfcnj (Output)
        Returns the number of Jacobian matrix evaluations used. This value will be
        nonzero only if the option IMSL_JACOBIAN is used.
```

Description

The function imsl_f_ode_adams_gear finds an approximation to the solution of a system of first-order differential equations of the form

$$\frac{dy}{dt} = y' = f(t, y)$$

with given initial conditions for *y* at the starting value for *t*. The function attempts to keep the global error proportional to a user-specified tolerance. The proportionality depends on the differential equation and the range of integration.

The code is based on using backward difference formulas not exceeding order five as outlined in Gear (1971) and implemented by Hindmarsh (1974). There is an optional use of the code that employs implicit Adams formulas. This use is intended for nonstiff problems with expensive functions y' = f(t, y).

Examples

Example 1

This is a mildly stiff example problem (F2) from the test set of Enright and Pryce (1987):

$$y'_{1} = -y_{1} - y_{1}y_{2} + k_{1}y_{2}$$

$$y'_{2} = -k_{2}y_{2} + k_{3}(1 - y_{2})y_{1}$$

$$y_{1}(0) = 1$$

$$y_{2}(0) = 0$$

$$k_{1} = 294.$$

$$k_{2} = 3.$$

$$k_{3} = 0.01020408$$
tend = 240.

The ODE solver is initialized by a call to $imsl_f_ode_adams_gear_mgr$ with IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default values are changed. The function $imsl_f_ode_adams_gear$ is then called to integrate from t = 0 to t = 240.

```
#include <stdio.h>
#include <imsl.h>
                fcn (int neg, float t, float y[], float yprime[]);
void
                k1 = 294.0;
                                /* Model data */
float
float
                k2 = 3.0;
                k3 = 0.01020408;
float
main()
{
               neq = 2;
                                     /* Number of ode's */
    int
                                     /* Initial time */
    float
                t = 0.0;
                                     /* Final time */
                tend = 240.0;
    float
```

```
float
                y[2] = {1.0, 0.0}; /* Initial condition */
   void
                *state;
                                /* Initialize the ODE solver */
    imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state, 0);
                                /* Integrate from t=0 to tend=240 */
    imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn);
                                /* Print the solution */
   printf("y[%f] = %f, %f\n", t, y[0], y[1]);
}
void fcn (int neq, float t, float y[], float yprime[])
{
   yprime[0] = -y[0] - y[0]*y[1] + k1*y[1];
   yprime[1] = -k2*y[1] + k3*(1.0-y[1])*y[0];
}
```

y[240.00000] = 0.392391, 0.001334

Example 2

This problem is a stiff example (F5) from the test set of Enright and Pryce (1987). An initial step size of $h = 10^{-7}$ is suggested by these authors. It is necessary to provide for more evaluations of y' and for more steps than the default value allows. Both have been set to 4000.

$$y'_{1} = k_{1} (-k_{2}y_{1}y_{2} + k_{3}y_{4} - k_{4}y_{1}y_{3})$$

$$y'_{2} = -k_{1}k_{2}y_{1}y_{2} + k_{5}y_{4}$$

$$y'_{3} = k_{1} (-k_{4}y_{1}y_{3} + k_{6}y_{4})$$

$$y'_{4} = k_{1} (k_{2}y_{1}y_{2} - k_{3}y_{4} + k_{4}y_{1}y_{3})$$

$$y_{1}(0) = 3.365 \times 10^{-7}$$

$$y_{2}(0) = 8.261 \times 10^{-3}$$

$$y_{3}(0) = 1.641 \times 10^{-3}$$

$$y_{4}(0) = 9.380 \times 10^{-6}$$

$$k_{1} = 10^{11}$$

$$k_{2} = 3.$$

$$k_{3} = 0.0012$$

$$k_{4} = 9.$$

$$k_{5} = 2 \times 10^{7}$$

$$k_{6} = 0.001$$
tend = 100.

The last call to imsl_f_ode_adams_gear_mgr with IMSL_ODE_RESET releases workspace.

#include <stdio.h>
#include <imsl.h>

Chapter 5: Differential Equations

```
void
                fcn (int neq, float t, float y[], float yprime[]);
float
                k1 = 1.e11;
                                          /* Model data */
float
                k2 = 3.0;
float
                k3 = 0.0012;
                k4 = 9.0;
k5 = 2.e7;
float
float
                k6 = 0.001;
float
main()
{
    int
                neq = 4;
                                          /* Number of ode's */
                                          /* Initial time */
    float
                t = 0.0;
                tend = 100.0;
                                          /* Final time */
    float
                                          /* Initial condition */
                y[4] = {3.365e-7, 8.261e-3, 1.642e-3, 9.380e-6};
    float
    void
                 *state;
    int
                *nfcn;
                                  /* Initialize the ODE solver */
    imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state,
                               IMSL_HINIT, 1.e-7,
                                IMSL_MAX_NUMBER_STEPS, 4000,
                                IMSL_MAX_NUMBER_FCN_EVALS, 4000,
                               IMSL_NFCN, &nfcn,
                               0);
                                  /* Integrate from t=0 to tend=100 */
    imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn);
                                  /* Release workspace and reset */
    imsl_f_ode_adams_gear_mgr(IMSL_ODE_RESET, &state, 0);
                                  /* Print the solution */
    printf("y[%f] = %f, %f, %f, %f\n", t, y[0], y[1], y[2], y[3]);
                                  /* Print the number of evaluations
                                     of yprime[] */
    printf("Number of yprime[] evaluations: %d\n", nfcn);
}
void fcn (int neq, float t, float y[], float yprime[])
    yprime[0] = k1*(-k2*y[0]*y[1]+k3*y[3]-k4*y[0]*y[2]);
    yprime[1] = -k1*k2*y[0]*y[1] + k5*y[3];
yprime[2] = k1*(-k4*y[0]*y[2] + k6*y[3]);
    yprime[3] = k1*(k2*y[0]*y[1] - k3*y[3] + k4*y[0]*y[2]);
}
```

y[100.000000] = 0.000000, 0.003352, 0.005586, 0.000009
Number of yprime[] evaluations: 3630

Fatal Errors

IMSL_ODE_TOO_MANY_EVALS	Completion of the next step would make the number of function evaluations #, but only # are allowed.
IMSL_ODE_TOO_MANY_STEPS	Maximum number of steps allowed, # have been used. Try increasing the maximum number of steps allowed or increase the tolerance.

pde_method_of_lines

Solves a system of partial differential equations of the form $u_t = f(x, t, u, u_x, u_{xx})$ using the method of lines. The solution is represented with cubic Hermite polynomials.

Synopsis

#include <imsl.h>

- void imsl_f_pde_method_of_lines_mgr (int task, void **state, ..., 0)

Required Arguments for imsl_f_pde_method_of_lines_mgr

int task (Input)

This function must be called with task set to IMSL_PDE_INITIALIZE to set up memory and default values prior to solving a problem and with task equal to IMSL_PDE_RESET to clean up after it has solved. These values for task are defined in the header file imsl.h.

void **state (Input/Output)

The current state of the PDE solution is held in a structure pointed to by state. It cannot be directly manipulated.

Required Arguments for imsl_f_pde_method_of_lines

int npdes (Input)

Number of differential equations.

float *t (Input/Output)

Independent variable. On input, t supplies the initial time, t_0 . On output, t is set to the value to which the integration has been updated. Normally, this new value is tend.

float tend (Input)

Value of t = tend at which the solution is desired.

int nx (Input)

Number of mesh points or lines.

float xbreak[] (Input)

Array of length nx containing the breakpoints for the cubic Hermite splines used in the x discretization. The points in xbreak must be strictly increasing. The values xbreak[0] and xbreak[nx - 1] are the endpoints of the interval.

float y[] (Input/Output)

Array of size npdes by nx containing the solution. The array y contains the solution as $y[k,i] = u_k(x, tend)$ at x = xbreak[i]. On input, y contains the initial values. It must satisfy the boundary conditions. On output, y contains the computed solution.

void *state (Input/Output)

The current state of the PDE solution is held in a structure pointed to by state. It must be initialized by a call to imsl_f_pde_method_of_lines_mgr. It cannot be directly manipulated.

void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[],
 float ut[])

User-supplied function to evaluate u_t .

int npdes (Input)

Number of equations.

float x (Input)

Space variable, *x*.

float t (Input)

Time variable, t.

float u[] (Input)

Array of length npdes containing the dependent values, u.

float ux[] (Input)

Array of length npdes containing the first derivatives, u_x .

float uxx[] (Input)

Array of length npdes containing the second derivative, u_{xx} .

float ut[] (Output)

Array of length npdes containing the computed derivatives u_l .

void fcn_bc(int npdes, float x, float t, float alpha[], float beta[], float
gammap[])

User-supplied function to evaluate the boundary conditions. The boundary conditions accepted by imsl_f_pde_method_of_lines are

$$\alpha_k u_k + \beta_k \, \frac{2\gamma_k}{2x} \equiv \gamma_k$$

Note: Users must supply the values α_k and β_k , which determine the values γ_k . Since γ_k can depend on *t* values of γ_k' also are required.

int npdes (Input)

Number of equations.

 $\begin{array}{l} float \ \mathbf{x} \quad (\text{Input}) \\ \text{Space variable, } x. \end{array}$

float t (Input) Time variable, t.

float alpha[] (Output) $Array of length npdes containing the \alpha_k values.$ float beta[] (Output) $Array of length npdes containing the \beta_k values.$ float gammap[] (Output)

Array of length npdes containing the derivatives,

296 • pde_method_of_lines

$$\frac{d\gamma_k}{dt} = \gamma_k^{,}$$

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_TOL, *float* tol (Input)

Differential equation error tolerance. An attempt is made to control the local error in such a way that the global relative error is proportional to tol. Default: tol = 100.0*imsl_f_machine(4)

IMSL_HINIT, float hinit (Input)

Initial step size in the *t* integration. This value must be nonnegative. If hinit is zero, an initial step size of 0.001|tend - $t_0|$ will be arbitrarily used. The step will be applied in the direction of integration. Default: hinit = 0.0

IMSL_INITIAL_VALUE_DERIVATIVE, *float* initial_deriv[] (Input/Output) Supply the derivative values $u_x(x, t_0)$. This derivative information is input as

deriv[k,i] =
$$\frac{\partial u_k}{\partial u_k}(x,t_0)$$

The array initial_deriv contains the derivative values as output:

deriv[k,i] =
$$\frac{\partial u_k}{\partial u_x}(x, \text{tend})$$
 at $x = x[i]$

Default: Derivatives are computed using cubic spline interpolation

IMSL_HTRIAL, *float* *htrial (Output) Return the current trial step size.

Description

Let M = NPDES, N = NX and $x_i = XBREAK(I)$. The routine imsl_f_pde_method_of_lines uses the method of lines to solve the partial differential equation system

$$\frac{\partial u_k}{\partial t} = f_k \left(x, t, u_1, \dots, u_M, \frac{\partial u_1}{\partial x}, \dots, \frac{\partial u_M}{\partial x}, \frac{\partial^2 u_1}{\partial x^2}, \dots, \frac{\partial^2 u_M}{\partial x^2} \right)$$

with the initial conditions

and the boundary conditions

$$\alpha_k u_k + \beta_k \frac{\partial u_k}{\partial x} = \gamma_k$$
 at $x = x_1$ and at $x = x_N$

 $u_k = u_k(x, t)$ at $t = t_0$

for k = 1, ..., M.

Cubic Hermite polynomials are used in the *x* variable approximation so that the trial solution is expanded in the series

$$\hat{u}_{k}(x,t) = \sum_{i=1}^{M} \left(a_{i,k}(t) \phi_{i}(x) + b_{i,k}(t) \psi_{i}(x) \right)$$

where $\phi_i(x)$ and $\psi_i(x)$ are the standard basis functions for the cubic Hermite polynomials with the knots $x_1 < x_2 < ... < x_N$. These are piecewise cubic polynomials with continuous first derivatives. At the breakpoints, they satisfy

$$\phi_i(x_l) = \delta_{il} \qquad \psi_i(x_l) = 0$$
$$\frac{d\phi_i}{dx}(x_l) = 0 \qquad \frac{d\psi_i}{dx}(x_l) = \delta_{il}$$

According to the collocation method, the coefficients of the approximation are obtained so that the trial solution satisfies the differential equation at the two Gaussian points in each subinterval,

$$p_{2j-1} = x_j + \frac{3 - \sqrt{3}}{6} (x_{j+1} - x_j)$$
$$p_{2j} = x_j + \frac{3 - \sqrt{3}}{6} (x_{j+1} + x_j)$$

for j = 1, ..., N. The collocation approximation to the differential equation is

$$\frac{da_{i,k}}{dt}\phi_i(p_j) + \frac{db_{i,k}}{dt}\psi_i(p_j) = f_k\left(p_j, t, \hat{u}_1(p_j), \dots, \hat{u}_M(p_j), \dots, (\hat{u}_1)_{xx}(p_j), \dots, (\hat{u}_M)_{xx}(p_j)\right)$$

for k = 1, ..., M and j = 1, ..., 2(N - 1).

This is a system of 2M(N-1) ordinary differential equations in 2M N unknown coefficient functions, $a_{i,k}$ and $b_{i,k}$. This system can be written in the matrix–vector form as $A \frac{dc}{dt} = F(t, y)$ with $c(t_0) = c_0$ where c is a vector of coefficients of length 2M N and c_0 holds the initial values of the coefficients. The last 2M equations are obtained by differentiating the boundary conditions

$$\alpha_k \frac{da_k}{dt} + \beta_k \frac{db_k}{dt} = \frac{d\gamma_k}{dt}$$

for k = 1, ..., M.

298 • pde_method_of_lines

The initial conditions $u_k(x, t_0)$ must satisfy the boundary conditions. Also, the $\gamma_k(t)$ must be continuous and have a smooth derivative, or the boundary conditions will not be properly imposed for $t > t_0$.

If $\alpha_k = \beta_k = 0$, it is assumed that no boundary condition is desired for the *k*-th unknown at the left endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the endpoint. This is generally a useful feature for systems of first-order partial differential equations.

If the number of partial differential equations is M = 1 and the number of breakpoints is N = 4, then

$$A = \begin{bmatrix} \alpha_{1} & \beta_{1} \\ \phi_{1}(p_{1}) & \psi_{1}(p_{1}) & \phi_{2}(p_{1}) & \psi_{2}(p_{1}) \\ \phi_{1}(p_{2}) & \psi_{1}(p_{2}) & \phi_{2}(p_{2}) & \psi_{2}(p_{2}) \\ & \phi_{3}(p_{3}) & \psi_{3}(p_{3}) & \phi_{4}(p_{3}) & \psi_{4}(p_{3}) \\ & \phi_{3}(p_{4}) & \psi_{3}(p_{4}) & \phi_{4}(p_{4}) & \psi_{4}(p_{4}) \\ & & \phi_{5}(p_{5}) & \psi_{5}(p_{5}) & \phi_{6}(p_{5}) & \psi_{6}(p_{5}) \\ & & & \phi_{5}(p_{6}) & \psi_{5}(p_{6}) & \phi_{6}(p_{6}) & \psi_{6}(p_{6}) \\ & & & & & \alpha_{4} & \beta_{4} \end{bmatrix}$$

The vector c is

$$c = [a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4]^T$$

and the right-side *F* is

$$F = \left[\gamma'(x_1), f(p_1), f(p_2), f(p_3), f(p_4), f(p_5), f(p_6), \gamma'(x_4)\right]^T$$

If M > 1, then each entry in the above matrix is replaced by an $M \times M$ diagonal matrix. The element α_1 is replaced by diag $(\alpha_{1,1}, ..., \alpha_{1,M})$. The elements α_N , β_1 and β_N are handled in the same manner. The $\phi_i(p_j)$ and $\psi_i(p_j)$ elements are replaced by $\phi_i(p_j)I_M$ and $\psi_i(p_j)I_M$ where I_M is the identity matrix of order M. See Madsen and Sincovec (1979) for further details about discretization errors and Jacobian matrix structure.

The input/output array Υ contains the values of the $a_{k,i}$. The initial values of the $b_{k,i}$ are obtained by using the IMSL cubic spline routine imsl_f_cub_spline_interp_e_cnd (Chapter 3, "Interpolation and Approximation") to construct functions

$$\hat{u}_k(x,t_0)$$

such that

$$\hat{u}_k(x_i, t_0) = a_{ki}$$

The IMSL routine imsl_f_cub_spline_value, Chapter 3, "Interpolation and Approximation" is used to approximate the values

$$\frac{d\hat{u}_k}{dx}(x_i, t_0) \equiv b_{k,i}$$

Chapter 5: Differential Equations

pde_method_of_lines • 299

There is an optional use of imsl_f_pde_method_of_lines that allows the user to provide the initial values of $b_{k,i}$.

The order of matrix A is 2MN and its maximum bandwidth is 6M - 1. The band structure of the Jacobian of F with respect to c is the same as the band structure of A. This system is solved using a modified version of $imsl_f_ode_adams_gear$, page 288. Some of the linear solvers were removed. Numerical Jacobians are used exclusively. The algorithm is unchanged. Gear's BDF method is used as the default because the system is typically stiff.

Four examples of PDEs are now presented that illustrate how users can interface their problems with IMSL PDE solving software. The examples are small and not indicative of the complexities that most practitioners will face in their applications. A set of seven sample application problems, some of them with more than one equation, is given in Sincovec and Madsen (1975). Two further examples are given in Madsen and Sincovec (1979).

Examples

Example 1

The normalized linear diffusion PDE, $u_t = u_{xx}$, $0 \le x \le 1$, $t > t_0$, is solved. The initial values are $t_0 = 0$, $u(x, t_0) = u_0 = 1$. There is a "zero-flux" boundary condition at x = 1, namely $u_x(1, t) = 0$, $(t > t_0)$. The boundary value of u(0, t) is abruptly changed from u_0 to the value $u_1 = 0.1$. This transition is completed by $t = t_{\delta} = 0.09$.

Due to restrictions in the type of boundary conditions successfully processed by $imsl_f_pde_method_of_lines$, it is necessary to provide the derivative boundary value function γ' at x = 0 and at x = 1. The function γ at x = 0 makes a smooth transition from the value u_0 at $t = t_0$ to the value u_1 at $t = t_\delta$. The transition phase for γ' is computed by evaluating a cubic interpolating polynomial. For this purpose, the function subprogram $imsl_f_cub_spline_value$, Chapter 3, Interpolation and Approximation" is used. The interpolation is performed as a first step in the user-supplied routine fcn_bc. The function and derivative values $\gamma(t_0) = u_0$, $\gamma'(t_0) = 0$, $\gamma(t_\delta) = u_1$, and $\gamma'(t_\delta) = 0$, are used as input to routine $imsl_f_cub_spline_interp_e_cnd$, to obtain the coefficients evaluated by $imsl_f_cub_spline_value$ will not yield this value so logic in the routine fcn_bc assigns $\gamma'(t) = 0$, $t > t_\delta$.

```
#include <imsl.h>
#include <math.h>
main()
ł
        void
                         fcnut(int, float, float, float *, float *, float *,
                                 float *);
        void
                         fcnbc(int, float, float, float *, float *,
                                 float *);
                         npdes = 1;
        int
        int
                         nx = 8;
        int
                         i;
                         j = 1;
        int
                         nstep = 10;
        int
```

300 • pde_method_of_lines

IMSL C/Math/Library

```
float
                        t = 0.0;
        float
                        tend;
        float
                        xbreak[8];
        float
                        y[8];
                        title[50];
        char
        void
                       *state;
                        /* Set breakpoints and initial conditions */
        for (i = 0; i < nx; i++) {
                xbreak[i] = (float) i / (float) (nx - 1);
                y[i] = 1.0;
        }
                        /* Initialize the solver */
        imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
                                        0);
        while (j <= nstep) {</pre>
                tend = (float) j++ / (float) nstep;
                tend *= tend;
                        /* Solve the problem */
                imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
                                            state, fcnut, fcnbc);
                        /* Print results at current t=tend */
                sprintf(title, "solution at t = %4.2f\0", t);
                imsl_f_write_matrix(title, npdes, nx, y, 0);
        }
}
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
        float *ut)
{
                        /* Define the PDE */
        *ut = *uxx;
}
void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
        float *gamp)
{
        static int
                        ndata;
        static int
                        first = 1;
        static float
                        delta = 0.09;
        static float
                        u0 = 1.0;
        static float
                        u1 = 0.1;
        static float
                        dfdata[2];
        static float
                        xdata[2];
        static float
                        fdata[2];
        static Imsl_f_ppoly *ppoly;
                        /* Compute interpolant first time only */
        if (first) {
```

Chapter 5: Differential Equations

pde_method_of_lines • 301

```
first = 0;
           ndata = 2;
           xdata[0] = 0.0;
           xdata[1] = delta;
           fdata[0] = u0;
           fdata[1] = u1;
           dfdata[0] = dfdata[1] = 0.0;
           ppoly = imsl_f_cub_spline_interp_e_cnd(ndata, xdata, fdata,
                           IMSL_LEFT, 1, dfdata[0],
                           IMSL_RIGHT, 1, dfdata[1],
                   0);
   }
                   /* Define boundary conditions */
   if (x == 0.0) {
                   /* These are for x = 0 * /
           *alpha = 1.0;
           *beta = 0.0;
           *gamp = 0.0;
                   /* If in the boundary layer, compute
                      nonzero gamma prime */
           if (t <= delta)
                   *gamp = imsl_f_cub_spline_value(t, ppoly,
                                   IMSL_DERIV, 1,
                                   0);
   } else {
                   /* These are for x = 1 * /
           *alpha = 0.0;
           *beta = 1.0;
           *gamp = 0.0;
   }
       Output
                    solution at t = 0.01
    1
                2
                           3
                                       4
                                                   5
                                                                б
0.969
                                                1.000
                                                            1.000
            0.997
                        1.000
                                    1.000
    7
                8
1.000
            1.000
                    solution at t = 0.04
                2
    1
                        3
                                     4
                                                    5
                                                               6
                                                0.998
0.625
            0.871
                        0.962
                                    0.991
                                                            1.000
     7
                8
1.000
            1.000
                    solution at t = 0.09
                2
                       3
                                                    5
    1
                                   4
                                                                б
0.1000
           0.4602
                       0.7169
                                  0.8671
                                               0.9436
                                                           0.9781
     7
                8
0.9917
           0.9951
```

302 • pde_method_of_lines

}

1 0.1000	2 0.3130	solution at t = 0.16 3 4 0.5071 0.6681	5 0.7893	6 0.8708
7 0.9168	8 0.9315			
1 0.1000	2 0.2567	solution at t = 0.25 3 0.4045 0.5354	5 0.6428	6 0.7224
7 0.7710	8 0.7874			
1 0.1000	2 0.2176	solution at t = 0.36 3 4 0.3292 0.4292	5 0.5125	6 0.5751
7 0.6139	8 0.6270			
		solution at t = 0.49 3 4 0.2661 0.3386	5 0.3992	6 0.4448
7 0.4731	8 0.4827			
	2 0.1588	solution at t = 0.64 3 4 0.2147 0.2648	5 0.3066	6 0.3381
7 0.3577	8 0.3643			
1 0.1000	2 0.1387	solution at t = 0.81 3 4 0.1754 0.2083	5 0.2358	6 0.2565
7 0.2694	8 0.2738			
1 0.1000	2 0.1242	solution at t = 1.00 3 4 0.1472 0.1678	5 0.1850	6 0.1980
7				

Example 2

Here, Problem C is solved from Sincovec and Madsen (1975). The equation is of diffusion-convection type with discontinuous coefficients. This problem illustrates a simple method for programming the evaluation routine for the derivative, u_t . Note that the weak discontinuities at x = 0.5 are not evaluated in the expression for u_t . The problem is defined as

```
u_t = \partial u / \partial t = \partial / \partial x (D(x)\partial u / \partial x) - v(x)\partial u / \partial x
                                                  x \in [0, 1], t > 0
                                                D(x) = \begin{cases} 5 & \text{if } 0 \le x < 0.5 \\ 1 & \text{if } 0.5 < x \le 1.0 \end{cases}
                                            v(x) = \begin{cases} 1000.0 & \text{if } 0 \le x < 0.5\\ 1 & \text{if } 0.5 < x \le 1.0 \end{cases}
                                                              if 0.5 < x \le 1.0
                                                     u(x, 0) = \begin{cases} 1 \text{ if } x = 0\\ 0 \text{ if } x > 0 \end{cases}
                                                      u(0, t) = 1, \quad u(1, t) = 0
#include <imsl.h>
#include <math.h>
main()
           void
                                  fcnut(int, float, float, float *, float *, float *,
                                             float *);
           void
                                  fcnbc(int, float, float, float *, float *,
                                             float *);
                                  npdes = 1;
           int
                                  nx = 100;
           int
                                  i;
           int
           int
                                  j = 1;
                                 nstep = 10;
           int
           float
                                 t = 0.0;
           float
                                 tend;
                                 xbreak[100];
           float
           float
                                 y[100];
           float
                                 tol, hinit;
                                 title[50];
           char
                                 *state;
           void
                                  /* Set breakpoints and initial conditions */
           for (i = 0; i < nx; i++) {
                      xbreak[i] = (float) i / (float) (nx - 1);
                      y[i] = 0.0;
           }
           y[0] = 1.0;
                                  /* Initialize the solver */
           tol = sqrt(imsl_f_machine(4));
           hinit = 0.01 \times tol;
           imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
                                                        IMSL_TOL, tol,
                                                        IMSL_HINIT, hinit,
                                                        0);
           while (j <= nstep) {</pre>
                       tend = (float) j++ / (float) nstep;
```

{

```
/* Solve the problem */
                imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
                                            state, fcnut, fcnbc);
        }
                        /* Print results at t=tend */
                sprintf(title, "solution at t = %4.2f(0", t);
                imsl_f_write_matrix(title, npdes, nx, y, 0);
}
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
        float *ut)
{
                        /* Define the PDE */
        float v;
        float d;
        if (x <= 0.5) {
                d = 5.0;
v = 1000.0;
        }
        else
                d = v = 1.0;
        ut[0] = d*uxx[0] - v*ux[0];
}
void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
        float *gamp)
{
        *alpha = 1.0;
        *beta = 0.0;
        *gamp = 0.0;
}
```

1 1.000	2 1.000	solution at t 3 1.000	= 1.00 4 1.000	5 1.000	6 1.000
7	8	9	10	11	12
1.000	1.000	1.000	1.000	1.000	1.000
13	14	15	16	17	18
1.000	1.000	1.000	1.000	1.000	1.000
19	20	21	22	23	24
1.000	1.000	1.000	1.000	1.000	1.000
25	26	27	28	29	30
1.000	1.000	1.000	1.000	1.000	1.000
31	32	33	34	35	36
1.000	1.000	1.000	1.000	1.000	1.000

Chapter 5: Differential Equations

pde_method_of_lines • 305

37	38	39	40	41	42
1.000	1.000	1.000	1.000	1.000	1.000
43	44	45	46	47	48
1.000	1.000	1.000	1.000	1.000	1.000
49	50	51	52	53	54
1.000	0.997	0.984	0.969	0.953	0.937
55	56	57	58	59	60
0.921	0.905	0.888	0.872	0.855	0.838
61	62	63	64	65	66
0.821	0.804	0.786	0.769	0.751	0.733
67	68	69	70	71	72
0.715	0.696	0.678	0.659	0.640	0.621
73	74	75	76	77	78
0.602	0.582	0.563	0.543	0.523	0.502
79	80	81	82	83	84
0.482	0.461	0.440	0.419	0.398	0.376
85	86	87	88	89	90
0.354	0.332	0.310	0.288	0.265	0.242
91	92	93	94	95	96
0.219	0.196	0.172	0.148	0.124	0.100
97 0.075	98 0.050	99 0.025	100 0.000		

Example 3

In this example, using imsl_f_pde_method_of_lines, the linear normalized diffusion PDE $u_t = u_{xx}$ is solved but with an optional use that provides values of the derivatives, u_{xx} , of the initial data. Due to errors in the numerical derivatives computed by spline interpolation, more precise derivative values are required when the initial data is $u(x, 0) = 1 + \cos[(2n - 1)\pi x]$, n > 1. The boundary conditions are "zero flux" conditions $u_x(0, t) = u_x(1, t) = 0$ for t > 0. Note that the initial data is compatible with these end conditions since the derivative function

$$u_x(x,0) = \frac{du(x,0)}{dx} = -(2n-1)\pi \sin[(2n-1)\pi x]$$

,

vanishes at x = 0 and x = 1.

This optional usage signals that the derivative of the initial data is passed by the user. The values u(x, tend) and $u_x(x, tend)$ are output at the breakpoints with the optional usage.

#include <imsl.h>
#include <math.h>

main()

306 • pde_method_of_lines

```
fcnut(int, float, float, float *, float *, float *,
void
                      float *);
void
                fcnbc(int, float, float, float *, float *, float *);
                npdes = 1;
int
int
                nx = 10;
int
                i;
                j = 1;
int
                nstep = 10;
int
float
                t = 0.0;
float
                tend = 0.0;
float
                xbreak[10];
float
                y[10], deriv[10];
                tol, hinit;
float
float
                pi, arg;
char
                title1[50];
char
                title2[50];
void
               *state;
pi = imsl_d_constant("pi", 0);
arg = 9.0 * pi;
                /* Set breakpoints and initial conditions */
for (i = 0; i < nx; i++) {
        xbreak[i] = (float) i / (float) (nx - 1);
        y[i] = 1.0 + cos(arg * xbreak[i]);
        deriv[i] = -arg * sin(arg * xbreak[i]);
}
                /* Initialize the solver */
tol = sqrt(imsl_f_machine(4));
imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
                                IMSL_TOL, tol,
                                IMSL_INITIAL_VALUE_DERIVATIVE,
                                deriv,
                                0);
while (j <= nstep) {</pre>
        j++;
        tend += 0.001;
                /* Solve the problem */
        imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
                                    state, fcnut, fcnbc);
                /* Print results at at every other t=tend */
        if (j % 2) {
                sprintf(title1, "\nsolution at t = %5.3f\0", t);
                sprintf(title2, "\nderivative at t = %5.3f\0", t);
                imsl_f_write_matrix(title1, npdes, nx, y, 0);
                imsl_f_write_matrix(title2, npdes, nx, deriv, 0);
        }
}
```

Chapter 5: Differential Equations

}

{

pde_method_of_lines • 307

```
Output
```

		solution at t	= 0.002		
1	2	3	4	5	6
1.233	0.767	1.233	0.767	1.233	0.767
7	8	9	10		
1.233	0.767	1.233	0.767		

		derivative	at t = 0.002		
1	2	3	4	5	6
0.000e+00	-5.172e-07	1.911e-06	1.818e-06	-5.230e-07	2.408e-06
7	8	9	10		
-2.517e-06	3.194e-06	-3.608e-06	2.023e-06		

	:	solution at t	z = 0.004		
1	2	3	4	5	6
1.053	0.947	1.053	0.947	1.053	0.947
7	8	9	10		
1.053	0.947	1.053	0.947		

		derivative	at t = 0.004		
1	2	3	4	5	6
0.000e+00	-1.332e-06	-9.059e-06	-4.401e-06	5.006e-06	-2.134e-06
7	8	9	10		
-1.733e-06	4.625e-06	6.741e-07	2.023e-06		

		t = 0.006	solution a		
б	5	4	3	2	1
0.988	1.012	0.988	1.012	0.988	1.012
		10	9	8	7

		0.988	1.012	0.988	1.012
	5	at t = 0.006 4 -6.572e-07 10 2.023e-06	3 -1.018e-06	2	
6 0.997	5 1.003	4 0.997		2 0.997 8 0.997	
6 -1.492e-06	5	at t = 0.008 4 3.114e-06 10 2.023e-06	3 4.270e-06 9	2 -1.028e-06	0.000e+00 7
6 0.999	5 1.001	at t = 0.010 4 0.999 10 0.999		2 0.999 8 0.999	
6 -9.516e-07	5	at t = 0.010 4 1.547e-07 10 2.023e-06	3 2.819e-07	2	

Example 4

In this example, consider the linear normalized hyperbolic PDE, $u_{tt} = u_{xx}$, the "vibrating string" equation. This naturally leads to a system of first order PDEs. Define a new dependent variable $u_t = v$. Then, $v_t = u_{xx}$ is the second equation in the system. Take as initial data $u(x, 0) = \sin(\pi x)$ and $u_t(x, 0) = v(x, 0) = 0$. The ends of the string are fixed so u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. The exact solution to this problem is $u(x, t) = \sin(\pi x) \cos(\pi t)$. Residuals are computed at the output values of t for $0 < t \le 2$. Output is obtained at 200 steps in increments of 0.01.

Even though the sample code imsl_f_pde_method_of_lines gives satisfactory results for this PDE, users should be aware that for *nonlinear problems*, "shocks" can develop in the solution. The appearance of shocks may cause the code to fail in

```
discussion of shocks in hyperbolic systems.
#include <imsl.h>
#include <math.h>
main()
ł
                      fcnut(int, float, float, float *, float *, float *,
      void
                             float *);
                      fcnbc(int, float, float, float *, float *);
      void
      int
                      npdes = 2i
      int
                      nx = 10;
      int
                      i;
                      j = 1;
      int
                      nstep = 200;
      int
      float
                      t = 0.0;
                      tend = 0.0;
      float
      float
                      xbreak[20];
      float
                      y[20], deriv[20];
      float
                      tol, hinit;
      float
                      pi;
      float
                      error[10], erru;
                     *state;
      void
      pi = imsl_d_constant("pi", 0);
                      /* Set breakpoints and initial conditions */
      for (i = 0; i < nx; i++) {
              xbreak[i] = (float) i / (float) (nx - 1);
              y[i] = sin(pi * xbreak[i]);
              y[nx + i] = 0.0;
              deriv[i] = pi * cos(pi * xbreak[i]);
              deriv[nx + i] = 0.0;
      }
                      /* Initialize the solver */
      tol = sqrt(imsl_f_machine(4));
      imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
                                      IMSL_TOL, tol,
                                      IMSL_INITIAL_VALUE_DERIVATIVE,
                                      deriv,
                                      0);
      while (j <= nstep) {
              j++;
              tend += 0.01;
                      /* Solve the problem */
              imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
                                          state, fcnut, fcnbc);
                       /* Look at output at steps of 0.01
                         and compute errors */
```

unpredictable ways. See Courant and Hilbert (1962), pp 488-490, for an introductory

```
for (i = 0; i < nx; i++) {
                      error[i] = y[i] - sin(pi * xbreak[i]) *
                                  cos(pi *tend);
                      erru = imsl_f_max(erru, fabs(error[i]));
                }
        ļ
      printf("Maximum error in u(x,t) = %e\n", erru);
}
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
            float *ut)
{
                      /* Define the PDE */
        ut[0] = u[1];
        ut[1] = uxx[0];
}
void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
      float *gamp)
{
                     /* Define the boundary conditions */
        alpha[0] = 1.0;
        beta[0] = 0.0;
        gamp[0] = 0.0;
        alpha[1] = 1.0;
        beta[1] = 0.0;
        gamp[1] = 0.0;
}
            Output
```

Maximum error in u(x,t) = 6.228203e-04

fast_poisson_2d

Solves Poisson's or Helmholtz's equation on a two-dimensional rectangle using a fast Poisson solver based on the HODIE finite-difference scheme on a uniform mesh.

Synopsis

#include <imsl.h>

float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float coeff_u, int nx, int ny, float ax, float bx, float ay, float by, Imsl_bc_type bc_type[], ..., 0)

Required Arguments

float rhs_pde (float x, float y)
User-supplied function to evaluate the right-hand side of the partial differential
equation at x and y.

float rhs_bc(Imsl_pde_side side, float x, float y)

User-supplied function to evaluate the right-hand side of the boundary conditions, on side side, at x and y. The value of side will be one of the following: IMSL_RIGHT, IMSL_BOTTOM, IMSL_LEFT, or IMSL_TOP.

float coeff_u (Input)

Value of the coefficient of u in the differential equation.

int nx (Input)

Number of grid lines in the *x*-direction. nx must be at least 4. See the description section for further restrictions on nx.

int ny (Input)

Number of grid lines in the y-direction. ny must be at least 4. See the "Description" section for further restrictions on ny.

float ax (Input)

The value of x along the left side of the domain.

float bx (Input)

The value of x along the right side of the domain.

float ay (Input)

The value of y along the bottom of the domain.

float by (Input)

The value of y along the top of the domain.

Imsl_bc_type bc_type[4] (Input)

Array of size 4 indicating the type of boundary condition on each side of the domain or that the solution in periodic. The sides are numbered as follows:

Side

Location

$\texttt{IMSL}_{\texttt{RIGHT}}$	x = bx
$IMSL_BOTTOM_SIDE(1)$	y = ay
$IMSL_LEFT_SIDE(2)$	x = ax
IMSL_TOP_SIDE(3)	y = by

The three possible boundary condition types are as follows:

Туре	Condition
IMSL_DIRICHLET	Value of <i>u</i> is given.
IMSL_NEUMANN	Value of du/dx is given (on the right or
	left sides) or du/dy (on the bottom or
	top of the domain).
IMSL_PERIODIC	Periodic.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float coeff_u, int nx, int ny, float ax, float bx, float ay, float by, Imsl_bc_type bc_type[], IMSL_RETURN_USER, float u_user[],

```
IMSL_ORDER, int order,
0)
```

Optional Arguments

IMSL_RETURN_USER, *float* u_user[] (Output)

User-supplied array of size nx*ny containing solution at the grid points.

IMSL_ORDER, *int* order (Input)

Order of accuracy of the finite-difference approximation. It can be either 2 or 4.

Default: order = 4

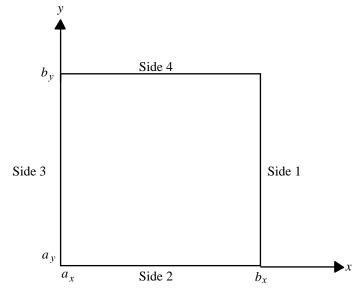
Description

Let c = COEFU, $a_x = \text{AX}$, $b_x = \text{BX}$, $a_y = \text{AY}$, $b_y = \text{BY}$, $n_x = \text{NX}$ and $n_y = \text{NY}$.

<code>imsl_f_fast_poisson_2d</code> is based on the code HFFT2D by Boisvert (1984). It solves the equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + cu = p$$

on the rectangular domain $(a_x, b_x) \times (a_y, b_y)$ with a user-specified combination of Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic boundary conditions. The sides are numbered clockwise, starting with the right side.



When c = 0 and only Neumann or periodic boundary conditions are prescribed, then any constant may be added to the solution to obtain another solution to the problem. In this case, the solution of minimum ∞ -norm is returned.

The solution is computed using either a second-or fourth-order accurate finitedifference approximation of the continuous equation. The resulting system of linear

Chapter 5: Differential Equations

algebraic equations is solved using fast Fourier transform techniques. The algorithm relies on the fact that $n_x - 1$ is highly composite (the product of small primes). For details of the algorithm, see Boisvert (1984). If $n_x - 1$ is highly composite then the execution time of imsl_f_fast_poisson_2d is proportional to $n_x n_y \log_2 n_x$. If evaluations of p(x, y) are inexpensive, then the difference in running time between IORDER = 2 and IORDER = 4 is small.

The grid spacing is the distance between the (uniformly spaced) grid lines. It is given by the formulas hx = (bx - ax)/(nx - 1) and hy = (by - ay)/(ny - 1). The grid spacings in the x and y directions must be the same, i.e., nx and ny must be such that hx is equal to hy. Also, as noted above, nx and ny must be at least 4. To increase the speed of the fast Fourier transform, nx - 1 should be the product of small primes. Good choices are 17, 33, and 65.

If -coeff_u is nearly equal to an eigenvalue of the Laplacian with homogeneous boundary conditions, then the computed solution might have large errors.

Example

In this example, the equation

$$\frac{\partial^2 u}{\partial x_2} + \frac{\partial^2 u}{\partial y^2} + 3u = -2\sin(x+2y) + 16e^{2x+3y}$$

with the boundary conditions

$$\frac{\partial u}{\partial y} = 2\cos(x+2y) + 3e^{2x+3y}$$

on the bottom side and

$$m = \sin\left(x + 2y\right) + e^{2x + 3y}$$

on the other three sides is solved. The domain is the rectangle $[0, \frac{1}{4}] \times [0, \frac{1}{2}]$. The output of imsl_f_fast_poisson_3d is a 17×33 table of values. The functions imsl_f_spline_2d_value are used to print a different table of values.

```
#include <imsl.h>
#include <math.h>
```

```
main()
```

{

```
float
                rhs_pde(float, float);
float
                rhs_bc(Imsl_pde_side, float, float);
int
                nx = 17;
                nxtabl = 5;
int
                ny = 33;
int
                nytabl = 5;
int
int
                i;
int
                j;
Imsl_f_spline
               *sp;
Imsl_bc_type
                bc_type[4];
float
                ax, ay, bx, by;
```

314 • fast_poisson_2d

```
float
                        x, y, xdata[17], ydata[33];
        float
                        coefu, *u;
        float
                        u_table;
        float
                        abs_error;
                        /* Set rectangle size */
        ax = 0.0;
        bx = 0.25;
        ay = 0.0;
        by = 0.50;
                        /* Set boundary conditions */
        bc_type[IMSL_RIGHT_SIDE] = IMSL_DIRICHLET_BC;
        bc_type[IMSL_BOTTOM_SIDE] = IMSL_NEUMANN_BC;
        bc_type[IMSL_LEFT_SIDE] = IMSL_DIRICHLET_BC;
        bc_type[IMSL_TOP_SIDE] = IMSL_DIRICHLET_BC;
                        /* Coefficient of u */
        coefu = 3.0;
                        /* Solve the PDE */
        u = imsl_f_fast_poisson_2d(rhs_pde, rhs_bc, coefu, nx, ny,
                                   ax, bx, ay, by, bc_type, 0);
                        /* Set up for interpolation */
        for (i = 0; i < nx; i++)</pre>
                xdata[i] = ax + (bx - ax) * (float) i / (float) (nx - 1);
        for (i = 0; i < ny; i++)</pre>
                ydata[i] = ay + (by - ay) * (float) i / (float) (ny - 1);
                        /* Compute interpolant */
        sp = imsl_f_spline_2d_interp(nx, xdata, ny, ydata, u, 0);
        printf("
                     х
                                           u
                                                     error\n\n");
                                У
        for (i = 0; i < nxtabl; i++)
                for (j = 0; j < nytabl; j++) {</pre>
                        x = ax + (bx - ax) * (float) j / (float) (nxtabl -
                            1);
                        y = ay + (by - ay) * (float) i / (float) (nytabl -
                            1);
                        u_table = imsl_f_spline_2d_value(x, y, sp, 0);
                        abs\_error = fabs(u\_table - sin(x + 2.0 * y) -
                                          exp(2.0 * x + 3.0 * y));
                        /* Print computed answer and absolute on
                           nxtabl by nytabl grid */
                        printf(" %6.4f
                                                       %6.4f
                                            %6.4f
                                                                 %8.2e\n",
                               x, y, u_table, abs_error);
                }
float rhs_pde(float x, float y)
```

Chapter 5: Differential Equations

}

```
/* Define the right side of the PDE */
```

```
return (sin(x + 2.0 * y) + exp(2.0 * x + 3.0 * y));
```

}

Output

x	У	u	error
0.0000	0.0000	1.0000	0.00e+00
0.0625	0.0000	1.1956	5.12e-06
0.1250	0.0000	1.4087	7.19e-06
0.1875	0.0000	1.6414	5.10e-06
0.2500	0.0000	1.8961	8.67e-08
0.0000	0.1250	1.7024	1.73e-07
0.0625	0.1250	1.9562	6.39e-06
0.1250	0.1250	2.2345	9.50e-06
0.1875	0.1250	2.5407	6.36e-06
0.2500	0.1250	2.8783	1.66e-07
0.0000	0.2500	2.5964	2.60e-07
0.0625	0.2500	2.9322	9.25e-06
0.1250	0.2500	3.3034	1.34e-05
0.1875	0.2500	3.7148	9.27e-06
0.2500	0.2500	4.1720	9.40e-08
0.0000	0.3750	3.7619	4.84e-07
0.0625	0.3750	4.2163	9.16e-06
0.1250	0.3750	4.7226	1.36e-05
0.1875	0.3750	5.2878	9.44e-06
0.2500	0.3750	5.9199	5.72e-07
0.0000	0.5000	5.3232	5.93e-07
0.0625	0.5000	5.9520	9.84e-07
0.1250	0.5000	6.6569	1.34e-06
0.1875	0.5000	7.4483	4.55e-07
0.2500	0.5000	8.3380	2.27e-06

{

Chapter 6: Transforms

Routines

6.1	Real Trigonometric FFTs	
	Real FFTfft_real	319
	Real FFT initializationfft_real_init	323
6.2	Complex Exponential FFTs	
	Complex FFT fft_complex	325
	Complex FFT initialization fft_complex_init	328
6.3	Real Sine and Cosine FFTs	
	Fourier cosine transform fft_cosine	329
	Fourier cosine transform initializationfft_cosine_init	332
	Fourier sine transformfft_sine	334
	Fourier sine transform initialization fft_sine_init	336
6.4	Two-Dimensional FFTs	
	Complex two-dimensional FFT fft_2d_complex	338
6.5	Convolution and Correlation	
	Real convolution/correlation convolution	342
	Complex convolution/correlationconvolution (complex)	348
6.6	Laplace Transform	
	Approximate inverse Laplace transform	
	of a complex functioninverse_laplace	354

Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed efficiently. Basically, the straightforward method for computing the Fourier transform takes approximately n^2 operations where *n* is the number of points in the transform, while the FFT (which computes the same values) takes approximately *n* log *n* operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965)

algorithm. Hence, these functions are most efficient for integers that are highly composite; that is, integers that are a product of small primes.

For the two functions imsl_f_fft_real and imsl_c_fft_complex, there is a corresponding initialization function. Use these functions *only* when repeatedly transforming sequences of the same length. In this situation, the initialization function computes the initial setup once; subsequently, the user calls the corresponding main function with the appropriate option. This may result in substantial computational savings. For more information on the use of these functions, consult the documentation under the appropriate function name.

In addition to the one-dimensional transformations described above, we also provide a complex two-dimensional FFT and its inverse.

Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the continuous Fourier transform. Recall that the continuous Fourier transform is defined (Brigham 1974) as

$$\hat{f}(\omega) = (\Im f)(\omega) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\omega t}dt$$

We begin by making the following approximation:

$$\hat{f}(\omega) \approx \int_{-T/2}^{T/2} f(t) e^{-2\pi i \omega t} dt$$
$$= \int_{0}^{T} f(t - T/2) e^{-2\pi i \omega (t - T/2)} dt$$
$$= e^{\pi i \omega T} \int_{0}^{T} f(t - T/2) e^{-2\pi i \omega t} dt$$

If we approximate the last integral using the rectangle rule with spacing h = T / n, we have

$$\hat{f}(\omega) \approx e^{\pi i \omega T} h \sum_{k=0}^{n-1} e^{-2\pi i \omega k h} f\left(kh - T/2\right)$$

Finally, setting $\omega = j/T$ for j = 0, ..., n - 1 yields

$$\hat{f}(j/T) \approx e^{\pi i j} h \sum_{k=0}^{n-1} e^{-2\pi i j k/n} f(kh - T/2) = (-1)^j \sum_{k=0}^{n-1} e^{-2\pi i j k/n} f_k^h$$

where the vector $f^{h} = (f(-T/2), ..., f((n-1)h - T/2))$. Thus, after scaling the components by $(-1)^{j}h$, the discrete Fourier transform, as computed in $imsl_c_fft_complex$ (with input f^{h}) is related to an approximation of the continuous Fourier transform by the above formula.

If the function f is expressed as a C function, then the continuous Fourier transform

318 • Usage Notes

can be approximated using the IMSL function imsl_f_int_fcn_fourier (Chapter 4, "Quadrature").

fft_real

Computes the real discrete Fourier transform of a real sequence.

Synopsis

#include <imsl.h>
float *imsl_f_fft_real (int n, float p[], ..., 0)
The type double function is imsl_d_fft_real.

Required Arguments

int n (Input) Length of the sequence to be transformed.

float p[] (Input) Array with n components containing the periodic sequence.

Return Value

A pointer to the transformed sequence. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

Optional Arguments

IMSL_BACKWARD

Compute the backward transform and return a pointer to the (backward) transformed sequence.

IMSL_PARAMS, float params[] (Input)

Pointer returned by a previous call to imsl_f_fft_real_init. If imsl_f_fft_real is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once.

IMSL_RETURN_USER, *float* q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and imsl_f_fft_real returns q. The array q must be at least n long.

Description

The function $imsl_f_ft_real$ computes the discrete Fourier transform of a real vector of size *n*. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when *n* is a product of small prime factors. If *n* satisfies this condition, then the computational effort is proportional to *n* log *n*.

By default, imsl_f_fft_real computes the forward transform. If *n* is even, then the forward transform is

$$q_{2m-1} = \sum_{k=0}^{n-1} p_k \cos \frac{2\pi km}{n} \qquad m = 1, ..., n/2$$
$$q_{2m-2} = -\sum_{k=0}^{n-1} p_k \sin \frac{2\pi km}{n} \qquad m = 1, ..., n/2 - 1$$
$$q_0 = \sum_{k=0}^{n-1} p_k$$

If *n* is odd, q_m is defined as above for *m* from 1 to (n - 1)/2.

Let *f* be a real valued function of time. Suppose we sample *f* at *n* equally spaced time intervals of length Δ seconds starting at time *t*₀. That is, we have

$$p_i = f(t_0 + i\Delta)$$
 $i = 0, 1, ..., n-1$

We will assume that *n* is odd for the remainder of this discussion. The function $imsl_f_ft_real$ treats this sequence as if it were periodic of period *n*. In particular, it assumes that $f(t_0) = f(t_0 + n\Delta)$. Hence, the period of the function is assumed to be $T = n\Delta$. We can invert the above transform for *p* as follows:

$$p_m = \frac{1}{n} \left[q_0 + 2 \sum_{k=0}^{(n-3)/2} q_{2k+1} \cos \frac{2\pi km}{n} - 2 \sum_{k=0}^{(n-3)/2} q_{2k+2} \sin \frac{2\pi km}{n} \right]$$

This formula is very revealing. It can be interpreted in the following manner. The coefficients *q* produced by imsl_f_fft_real determine an interpolating trigonometric polynomial to the data. That is, if we define

$$g(t) = \frac{1}{n} \left[q_0 + 2 \sum_{k=0}^{(n-3)/2} q_{2k+1} \cos \frac{2\pi k(t-t_0)}{n\Delta} - 2 \sum_{k=0}^{(n-3)/2} q_{2k+2} \sin \frac{2\pi k(t-t_0)}{n\Delta} \right]$$
$$= \frac{1}{n} \left[q_0 + 2 \sum_{k=0}^{(n-3)/2} q_{2k+1} \cos \frac{2\pi k(t-t_0)}{T} - 2 \sum_{k=0}^{(n-3)/2} q_{2k+2} \sin \frac{2\pi k(t-t_0)}{T} \right]$$

then we have

$$f(t_0 + (i-1) \Delta) = g(t_0 + (i-1) \Delta)$$

Now suppose we want to discover the dominant frequencies, forming the vector *P* of length (n + 1)/2 as follows:

$$P_0 := |q_0|$$

$$P_k := \sqrt{q_{2k-2}^2 + q_{2k-1}^2} \qquad k = 1, 2, \dots, (n-1)/2$$

These numbers correspond to the energy in the spectrum of the signal. In particular, P_k corresponds to the energy level at frequency

$$\frac{k}{T} = \frac{k}{n\Delta} \quad k = 0, 1, \dots, \frac{n-1}{2}$$

Furthermore, note that there are only $(n + 1)/2 \approx T/(2\Delta)$ resolvable frequencies when *n* observations are taken. This is related to the Nyquist phenomenon, which is induced by discrete sampling of a continuous signal. Similar relations hold for the case when *n* is even.

If the optional argument $IMSL_BACKWARD$ is specified, then the backward transform is computed. If n is even, then the backward transform is

$$q_m = p_0 + (-1)^m p_{n-1} + 2\sum_{k=0}^{n/2-1} p_{2k+1} \cos \frac{2\pi km}{n} - 2\sum_{k=0}^{n/2-2} p_{2k+2} \sin \frac{2\pi km}{n}$$

If *n* is odd,

$$q_{m} = p_{0} + 2\sum_{k=0}^{(n-3)/2} p_{2k+1} \cos \frac{2\pi km}{n} - 2\sum_{k=0}^{(n-3)/2} p_{2k+2} \sin \frac{2\pi km}{n}$$

The backward Fourier transform is the unnormalized inverse of the forward Fourier transform.

The function imsl_f_fft_real is based on the real FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Examples

Example 1

In this example, a pure cosine wave is used as a data vector, and its Fourier series is recovered. The Fourier series is a vector with all components zero except at the appropriate frequency where it has an n.

```
#include <imsl.h>
#include <math.h>
#include <stdio.h>
main()
{
                k, n = 7;
    int
                two_pi = 2*imsl_f_constant("pi", 0);
    float
   float
               p[8], *q;
                                /* Fill q with a pure exponential signal */
   for (k = 0; k < n; k++)
       p[k] = cos(k*two_pi/n);
   q = imsl_f_ft_real (n, p, 0);
   printf("
                   index
                                        q\n");
                              р
   for (k = 0; k < n; k++)
        printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
}
```

Output

index	р	q
0	1.00	0.00
1	0.62	3.50
2	-0.22	0.00
3	-0.90	-0.00
4	-0.90	-0.00
5	-0.22	0.00
6	0.62	-0.00

Example 2

This example computes the Fourier transform of the vector x, where $x_j = (-1)^J$ for j = 0 to n - 1. The backward transform of this vector is now computed by using the optional argument IMSL_BACKWARD. Note that s = nx, that is,

index	x	q	S
0	1.00	1.00	7.00
1	-1.00	1.00	-7.00
2	1.00	0.48	7.00
3	-1.00	1.00	-7.00
4	1.00	1.25	7.00
5	-1.00	1.00	-7.00
6	1.00	4.38	7.00

fft_real_init

Computes the parameters for imsl_f_fft_real.

Synopsis

#include <imsl.h>

float *imsl_f_fft_real_init (int n)

The type *double* function is imsl_d_fft_real_init.

Required Arguments

int n (Input)

Length of the sequence to be transformed.

Return Value

A pointer to the parameter vector of length 2n + 15 that can then be used by imsl_f_fft_real when the optional argument IMSL_PARAMS is specified. To release this space, use free. If no value can be computed, then NULL is returned.

Description

The function imsl_f_fft_real_init should be used when many calls are to be made to imsl_f_fft_real without changing the sequence length *n*. This function computes the parameters that are necessary for the real Fourier transform.

The function imsl_f_fft_real_init is based on the routine RFFTI in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

```
This example computes three distinct real FFTs by calling imsl_f_fft_real_ init
            once and then calling imsl_f_fft_real three times.
#include <imsl.h>
#include <math.h>
#include <stdio.h>
main()
{
                 k, j, n = 7;
    int
                 two_pi = 2*imsl_f_constant("pi", 0);
    float
    float
                p[8], *q, *work;
    work = imsl_f_fft_real_init (n);
for (j = 0; j < 3; j++) {</pre>
                                 /* Fill p with a pure sinusoidal signal */
       for (k = 0; k < n; k++)
            p[k] = cos(k*two_pi*j/n);
       q = imsl_f_fft_real (n, p,
                              IMSL_PARAMS, work, 0);
       printf("
                        index
                                               q\n");
                                     р
       for (k = 0; k < n; k++)
            printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
    }
}
```

Output

index 0 1 2 3 4 5 6	p 1.00 1.00 1.00 1.00 1.00 1.00	q 7.00 0.00 0.00 0.00 0.00 -0.00 0.00
index 0 1 2 3 4 5 6	p 1.00 0.62 -0.22 -0.90 -0.90 -0.22 0.62	q 0.00 3.50 0.00 -0.00 -0.00 0.00 -0.00
index 0 1 2 3 4 5 6	p 1.00 -0.22 -0.90 0.62 0.62 -0.90 -0.22	q -0.00 -0.00 3.50 -0.00 0.00 0.00

fft_complex

Computes the complex discrete Fourier transform of a complex sequence.

Synopsis

#include <imsl.h>

f_complex *imsl_c_fft_complex (int n, f_complex p[], ..., 0)

The type *d_complex* function is imsl_z_fft_complex.

Required Arguments

```
int n (Input)
```

Length of the sequence to be transformed.

f_complex p[] (Input) Array with n components containing the periodic sequence.

Return Value

If no optional arguments are used, imsl_c_fft_complex returns a pointer to the transformed sequence. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

Optional Arguments

IMSL_BACKWARD Compute the backward transform. IMSL_PARAMS, *float* params[] (Input)

Pointer returned by a previous call to imsl_c_fft_complex_init. If imsl_c_fft_complex is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once.

```
IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_c_fft_complex returns q.
The array q must be of length at least n.
```

Description

The function $imsl_c_fft_complex$ computes the discrete Fourier transform of a real vector of size *n*. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when *n* is a product of small prime factors. If *n* satisfies this condition, then the computational effort is proportional to *n* log *n*.

By default, imsl_c_fft_complex computes the forward transform below.

$$q_j = \sum_{m=0}^{n-1} p_m e^{-2\pi i m j/n}$$

Note that we can invert the Fourier transform as follows below.

$$p_m = {}^1_n \sum_{j=0}^{n-1} q_j e^{2\pi i j m/n}$$

This formula reveals the fact that, after properly normalizing the Fourier coefficients, you have the coefficients for a trigonometric interpolating polynomial to the data. The function imsl_c_fft_complex is based on the complex FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

If the option IMSL_BACKWARD is selected, then the following computation is performed.

$$q_j = \sum_{m=0}^{n-1} p_m e^{2\pi i m j/n}$$

Furthermore, the relation between the forward and backward transforms is that they are unnormalized inverses of each other. That is, the following code fragment begins with a vector p and concludes with a vector $p_2 = np$.

q = imsl_c_fft_complex(n, p, 0); p2 = imsl_c_fft_complex(n, q, IMSL_BACKWARD, 0);

Examples

Example 1

This example inputs a pure exponential data vector and recovers its Fourier series, which is a vector with all components zero except at the appropriate frequency where it has an n.

```
f_complex
              p[8], *q, z;
                            /* Fill p with a pure exponential signal */
for (k = 0; k < n; k++) {
     z.re = 0.;
     z.im = k*two_pi/n;
     p[k] = imsl_c_exp(z);
 }
q = imsl_c_fft_complex (n, p, 0);
printf("
               index
                                  p.im
                                             q.re
                                                       q.im\n");
                        p.re
for (k = 0; k < n; k++)
   printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
             q[k].re, q[k].im);
```

}

index	p.re	p.im	q.re	q.im
0	1.00	0.00	0.00	-0.00
1	0.62	0.78	7.00	0.00
2	-0.22	0.97	-0.00	-0.00
3	-0.90	0.43	0.00	-0.00
4	-0.90	-0.43	0.00	0.00
5	-0.22	-0.97	-0.00	0.00
6	0.62	-0.78	0.00	-0.00

Example 2

The backward transform is used to recover the original sequence. Notice that the forward transform followed by the backward transform multiplies the entries in the original sequence by the length of the sequence.

```
#include <imsl.h>
#include <math.h>
#include <stdio.h>
main()
{
    int
                   k, n = 7;
                   two_pi = 2*imsl_f_constant("pi", 0);
    float
                   p[7], *q, *pp;
    f_complex
                                /* Fill p with an increasing signal */
    for (k = 0; k < n; k++) {
         p[k].re = (float) k;
         p[k].im = 0.;
    }
    q = imsl_c_fft_complex (n, p, 0);
    pp = imsl_c_fft_complex (n, q,
                             IMSL_BACKWARD,
                             0);
    printf("
                             p.re
                   index
                                       p.im
                                                pp.re
                                                          pp.im \n");
    for (k = 0; k < n; k++)
       printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
                 pp[k].re , pp[k].im);
}
```

index	p.re	p.im	pp.re	pp.im
0	0.00	0.00	0.00	0.00
1	1.00	0.00	7.00	0.00
2	2.00	0.00	14.00	0.00
3	3.00	0.00	21.00	0.00
4	4.00	0.00	28.00	0.00
5	5.00	0.00	35.00	0.00
6	6.00	0.00	42.00	0.00

fft_complex_init

Computes the parameters for imsl_c_fft_complex.

Synopsis

#include <imsl.h>

float *imsl_c_fft_complex_init (int n)

The type *double* function is imsl_z_fft_complex_init.

Required Arguments

int n (Input)

Length of the sequence to be transformed.

Return Value

A pointer to the parameter vector of type float and length 2n + 15 which can then be used by imsl_c_fft_complex when the optional argument IMSL_PARAMS is specified. To release this space, use free. If no value can be computed, then NULL is returned.

Description

The routine imsl_c_fft_complex_init should be used when many calls are to be made to imsl_c_fft_complex without changing the sequence length *n*. This routine computes constants which are necessary for the real Fourier transform.

The function imsl_c_fft_complex_init is based on the routine CFFTI in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example computes three distinct complex FFTs by calling imsl_c_fft_complex_init once, then calling imsl_c_fft_complex 3 times.

```
#include <imsl.h>
#include <math.h>
#include <stdio.h>
```

328 • fft_complex_init

```
main()
 {
                      int
                                                                                                      k, j, n = 7;
                                                                                                    two_pi = 2*imsl_f_constant("pi", 0), *work;
                      float
                                                                                              p[8], *q, z;
                      f_complex
                      work = imsl_c_fft_complex_init (n);
                      for (j = 0; j < 3; j++)
                                                                                                                                                                               /* Fill p with a pure exponential signal */
                                 for (k = 0; k < n; k++) {
                                                          z.re = 0.;
                                                            z.im = k*two_pi*j/n;
                                                          p[k] = imsl_c_exp(z);
                                       }
                      q = imsl_c_fft_complex (n, p,
                                                                                                                                                  IMSL_PARAMS, work, 0);
                      printf("\n
                                                                                                                    index
                                                                                                                                                                                                                           p.im q.re q.im\n");
                                                                                                                                                                     p.re
                      for (k = 0; k < n; k++)
    printf("%11d%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10.2f\%10
                                                                                           q[k].re, q[k].im);
                      }
 }
```

index 0 1 2 3 4 5 6	p.re 1.00 1.00 1.00 1.00 1.00 1.00 1.00	p.im 0.00 0.00 0.00 0.00 0.00 0.00 0.00	q.re 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	q.im 0.00 0.00 0.00 0.00 0.00 0.00 0.00
index 0 1 2 3 4 5 6	p.re 1.00 0.62 -0.22 -0.90 -0.90 -0.22 0.62	p.im 0.00 0.78 0.97 0.43 -0.43 -0.97 -0.78	q.re 0.00 7.00 -0.00 0.00 -0.00 0.00	q.im -0.00 0.00 -0.00 0.00 0.00 -0.00
index 0 1 2 3 4 5 6	p.re 1.00 -0.22 -0.90 0.62 0.62 -0.90 -0.22	p.im 0.00 0.97 -0.43 -0.78 0.78 0.43 -0.97	q.re -0.00 0.00 7.00 -0.00 0.00 0.00 -0.00	q.im -0.00 0.00 -0.00 -0.00 0.00 0.00

fft_cosine

Computes the discrete Fourier cosine transformation of an even sequence.

Synopsis

#include <imsl.h>

float *imsl_f_fft_cosine (int n, float p[], ..., 0)

The type *double* procedure is imsl_d_fft_cosine.

Required Arguments

```
int n (Input)
```

Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)

Array of size n containing the sequence to be transformed.

Return Value

A pointer to the transformed sequence. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

```
float *imsl_f_fft_cosine (int n, float p[],
            IMSL_RETURN_USER, float q[],
            IMSL_PARAMS, float params[],
            0)
```

Optional Arguments

IMSL_RETURN_USER, float q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and imsl_f_fft_cosine returns q. The array must be of length n at least.

IMSL_PARAMS, float params[] (Input)

Pointer returned by a previous call to imsl_f_fft_cosine_init. If imsl_f_fft_cosine is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once.

Default: Initializing parameters computed each time ${\tt imsl_f_ft_cosine}$ is entered

Description

The function $imsl_f_ft_cosine$ computes the discrete Fourier cosine transform of a real vector of size *N*. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N - 1 is a product of small prime factors. If *N* satisfies this

condition, then the computational effort is proportional to $N \log N$. Specifically, given an *N*-vector p, imsl_f_fft_cosine returns in q

$$q_m = 2\sum_{n=1}^{N-2} p_n \sin(\frac{mn\pi}{N-1}) + s_0 + s_{N-1}(-1)^m$$

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. The <code>imsl_f_fft_cosine</code> function is based on the sine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example inputs a pure cosine wave as a data vector and recovers its Fourier cosine series, which is a vector with all components zero, except n - 1 at the appropriate frequency.

```
#include <imsl.h>
#include <math.h>
main()
{
        int
                       n = 7;
        int
                        i;
        float
                       p[7];
        float
                       *q;
        float
                        pi;
        pi = imsl_f_constant("pi", 0);
                                /* Fill p with a pure cosine wave */
        for (i=0; i<n; i++)</pre>
                p[i] = cos((float)(i)*pi/(float)(n-1));
        q = imsl_f_fft_cosine (n, p, 0);
        printf ("
                       index\t p\t q\n");
        for (i=0; i<n; i++)
                printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}
```

Output

index	р	q
0	1.00	-0.00
1	0.87	6.00
2	0.50	0.00
3	-0.00	0.00
4	-0.50	-0.00
5	-0.87	-0.00
б	-1.00	-0.00

fft_cosine_init

Computes the parameters needed for imsl_f_fft_cosine.

Synopsis

#include <imsl.h>

float *imsl_f_fft_cosine_init (int n)

The type *double* procedure is imsl_d_fft_cosine_init.

Required Arguments

```
int n (Input)
```

Length of the sequence to be transformed. It must be greater than 1.

Return Value

A pointer to parameter vector of length (3*n + 15) that can then be used by imsl_f_fft_cosine when the optional argument IMSL_PARAMS is specified. To release this space, use free. If no solution was computed, then NULL is returned.

Description

The function imsl_f_fft_cosine_init should be used when many calls must be made to imsl_f_fft_cosine without changing the sequence length n. The function imsl_f_fft_cosine_init is based on the routine COSTI in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example computes three distinct sine FFTs by calling imsl_f_fft_cosine_init once, then calling imsl_f_fft_cosine three times. The internal parameter initialization in imsl_f_fft_cosine is now skipped.

```
#include <imsl.h>
#include <math.h>
```

```
main()
{
```

```
params = imsl_f_fft_cosine_init (n);
                        /* Different frequencies of the same
                           wave will be transformed */
for (k=0; k<3; k++) \{
        printf("\n");
                        /* Fill p with a pure cosine wave */
        for (i=0; i<n; i++)</pre>
                p[i] = cos((float)((k+1)*i)*pi/(float)(n-1));
                        /* Compute the transform of p */
        imsl_f_fft_cosine (n, p,
                IMSL_PARAMS, params,
                IMSL_RETURN_USER, q,
                0);
        printf ("
                       indext p t q n";
        for (i=0; i<n; i++)
                printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}
```

}

Output

index	p	q
0	1.00	-0.00
1	0.87	6.00
2	0.50	0.00
3	-0.00	0.00
4	-0.50	-0.00
5	-0.87	-0.00
6	-1.00	-0.00
index	p	9
0	1.00	0.00
1	0.50	-0.00
2	-0.50	6.00
3	-1.00	0.00
4	-0.50	0.00
5	0.50	0.00
6	1.00	-0.00
index	p	q
0	1.00	-0.00
1	-0.00	0.00
2	-1.00	-0.00
3	0.00	6.00
4	1.00	0.00
5	-0.00	-0.00
6	-1.00	0.00

fft_sine

Computes the discrete Fourier sine transformation of an odd sequence.

Synopsis

#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[], ..., 0)

The type *double* procedure is imsl_d_fft_sine.

Required Arguments

```
int n (Input)
```

Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)

Array of size n containing the sequence to be transformed.

Return Value

A pointer to the transformed sequence. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

```
float *imsl_f_fft_sine (int n, float p[],
            IMSL_RETURN_USER, float q[],
            IMSL_PARAMS, float params[],
            0)
```

Optional Arguments

IMSL_RETURN_USER, float q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and $imsl_f_ft_sine$ returns q. The array must be of length at least n + 1.

IMSL_PARAMS, float params[] (Input)

Pointer returned by a previous call to imsl_f_fft_sine_init. If imsl_f_fft_sine is used repeatedly with the same value of n, then it is more efficient to compute these parameters only once.

Default: Initializing parameters computed each time imsl_f_fft_sine is entered

Description

The function $imsl_f_ft_sine$ computes the discrete Fourier sine transform of a real vector of size *N*. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 is a product of small prime factors. If *N* satisfies this

condition, then the computational effort is proportional to $N \log N$. Specifically, given an *N*-vector p, imsl_f_fft_sine returns in q

$$q_m = 2\sum_{n=0}^{N-1} p_n \sin\left(\frac{(m+1)(n+1)\pi}{N+1}\right)$$

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The function imsl_f_fft_sine is based on the sine FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example inputs a pure sine wave as a data vector and recovers its Fourier sine series, which is a vector with all components zero, except n at the appropriate frequency.

```
#include <imsl.h>
#include <math.h>
main()
{
                        n = 7;
        int
        int
                       i;
        float
                        p[7];
        float
                        *q;
        float
                        pi;
        pi = imsl_f_constant("pi", 0);
                         /* fill p with a pure sine wave */
        for (i=0; i<n; i++)</pre>
                p[i] = sin((float)(i+1)*pi/(float)(n+1));
        q = imsl_f_fft_sine (n, p, 0);
        printf ("
                        index∖t
                                 p∖t
                                       q\n");
        for (i=0; i<n; i++)</pre>
                printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}
```

Output

index	р	q
0	0.38	8.00
1	0.71	0.00
2	0.92	0.00
3	1.00	0.00
4	0.92	0.00
5	0.71	0.00
6	0.38	0.00

fft_sine_init

Computes the parameters needed for imsl_f_fft_sine.

Synopsis

#include <imsl.h>

float *imsl_f_fft_sine_init (int n)

The type *double* procedure is imsl_d_fft_sine_init.

Required Arguments

```
int n (Input)
```

Length of the sequence to be transformed. It must be greater than 1.

Return Value

A pointer to parameter vector of length (*int*) (2.5*n + 15) that can then be used by imsl_f_fft_sine when the optional argument IMSL_PARAMS is specified. To release this space, use free. If no solution was computed, then NULL is returned.

Description

The function imsl_f_fft_sine_init should be used when many calls must be made to imsl_f_fft_sine without changing the sequence length n. The function imsl_f_fft_sine_init is based on the routine SINTI in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

This example computes three distinct sine FFTs by calling imsl_f_fft_sine_init once, then calling imsl_f_fft_sine three times. The internal parameter initialization in imsl_f_fft_sine is now skipped.

```
#include <imsl.h>
#include <math.h>
```

```
main()
ł
                       n = 7;
        int
                      i, k;
        int
        float
                      p[7];
        float
                      q[8];
                      pi;
        float
        float
                      *params;
        pi = imsl_f_constant("pi", 0);
                                /* Compute parameters for transform of
                                   length n */
```

```
params = imsl_f_fft_sine_init (n);
                        /* Different frequencies of the same
                           wave will be transformed */
for (k=0; k<3; k++) \{
        printf("\n");
                        /* Fill p with a pure sine wave */
        for (i=0; i<n; i++)</pre>
                p[i] = sin((float)((k+1)*(i+1))*pi/(float)(n+1));
                        /* Compute the transform of p */
        imsl_f_fft_sine (n, p,
                IMSL_PARAMS, params,
                IMSL_RETURN_USER, q,
                0);
        printf ("
                      indext p t q n");
        for (i=0; i<n; i++)
                printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}
```

```
}
```

```
Output
```

index 0 1 2 3 4 5 6	p 0.38 0.71 0.92 1.00 0.92 0.71 0.38	$\begin{array}{c} q \\ 8.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$
index 0 1 2 3 4 5 6	p 0.71 1.00 0.71 -0.00 -0.71 -1.00 -0.71	9 00.0 00 000 0.00 0.00 0.00
index 0 1 2 3 4 5 6	p 0.92 0.71 -0.38 -1.00 -0.38 0.71 0.92	P 00.0 00.0 00.8 00.0 00.0 00.0

fft_2d_complex

Computes the complex discrete two-dimensional Fourier transform of a complex two-dimensional array.

Synopsis

#include <imsl.h>

f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[], ..., 0)

The type *d_complex* function is imsl_z_fft_2d_complex.

Required Arguments

int n (Input)

Number of rows in the two-dimensional transform.

int m (Input)

Number of columns in the two-dimensional transform.

f_complex p[] (Input)

Two-dimensional array of size $n \times m$ containing the sequence that is to be transformed.

Return Value

A pointer to the transformed array. To release this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[],
    IMSL_P_COL_DIM, int p_col_dim,
    IMSL_BACKWARD,
    IMSL_RETURN_USER, f_complex q[],
    IMSL_Q_COL_DIM, int q_col_dim,
    0)
```

Optional Arguments

```
IMSL_P_COL_DIM, int p_col_dim (Input)
The column dimension of p.
Default: p_col_dim = m
```

IMSL_BACKWARD

Compute the backward transform.

IMSL_RETURN_USER, f_complex q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no storage is allocated for the solution, and $imsl_c_fft_2d_complex$ returns q. The array must be of length at least $n \times m$.

IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of q.
Default: q_col_dim = m

Description

The function $imsl_c_fft_2d_complex$ computes the discrete Fourier transform of a two-dimensional complex array of size $n \times m$. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when both *n* and *m* are a product of small prime factors. If *n* and *m* satisfy this condition, then the computational effort is proportional to *nm* log *nm*.

By default, imsl_c_fft_2d_complex computes the forward transform below.

$$q_{jk} = \sum_{s=0}^{n-1} \sum_{t=0}^{m-1} p_{st} e^{-2\pi i j s/n} e^{-2\pi i k t/m}$$

Note that we can invert the Fourier transform as follows.

$$p_{jk} = \frac{1}{nm} \sum_{s=0}^{n-1} \sum_{t=0}^{m-1} q_{st} e^{2\pi i j s/n} e^{2\pi i k t/m}$$

This formula reveals the fact that, after properly normalizing the Fourier coefficients, you have the coefficients for a trigonometric interpolating polynomial to the data. The function imsl_c_fft_2d_complex is based on the complex FFT in FFTPACK, which was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

If the option IMSL_BACKWARD is selected, then the following computation is performed.

$$p_{jk} = \sum_{s=0}^{n-1} \sum_{t=0}^{m-1} q_{st} e^{2\pi i j s/n} e^{2\pi i k t/m}$$

The relation between the forward and backward transforms is that they are unnormalized inverses of each other. That is, the following code fragment begins with a vector p and concludes with a vector $p_2 = nmp$.

q = imsl_c_fft_2d_complex(n, m, p, 0); p2 = imsl_c_fft_2d_complex(n, m, q, IMSL_BACKWARD, 0);

Examples

Example 1

This example computes the Fourier transform of the pure frequency input for a 5×4 array

$$p_{st} = e^{2\pi i 2 s/5} e^{2\pi i t 3/4}$$

for $0 \le n \le 4$ and $0 \le m \le 3$. The result, $\hat{p} = q$, has all zeros except in the [2][3] position.

```
#include <imsl.h>
#include <math.h>
#include <stdio.h>
main()
{
                   s, t, n = 5, m = 4;
    int
    float
                   two_pi = 2*imsl_f_constant("pi", 0);
                   p[5][4], *q, z, w;
    f_complex
                             /* Fill p with a pure exponential signal */
    for (s = 0; s < n; s++) {
         z.re = 0.;
         z.im = s*two_pi*2./n;
         for(t =0; t < m; t++) {
         w.re = 0.;
         w.im = t*two_pi*3./m;
         p[s][t] = imsl_c_mul(imsl_c_exp(z),imsl_c_exp(w));
         ł
     }
    q = imsl_c_fft_2d_complex (n, m, p, 0);
                                /* Write the input */
    imsl_c_write_matrix ("The input matrix is ", 5, 4, p,
                                   IMSL_ROW_NUMBER_ZERO,
                                   IMSL_COL_NUMBER_ZERO, 0);
    imsl_c_write_matrix ("The output matrix is ", 5, 4, q,
                                   IMSL_ROW_NUMBER_ZERO,
                                   IMSL_COL_NUMBER_ZERO, 0);
}
```

```
Output
```

The input matrix is								
		0			1			2
0 (1.000,	0.000)	(0.000,	-1.000)	(-1.000,	-0.000)
1 (-0.809,	0.588)	(0.588,	0.809)	(0.809,	-0.588)
2 (0.309,	-0.951)	(-0.951,	-0.309)	(-0.309,	0.951)
3 (0.309,	0.951)	(0.951,	-0.309)	(-0.309,	-0.951)
4 (-0.809,	-0.588)	(-0.588,	0.809)	(0.809,	0.588)
		3						
0 (-0.000,	1.000)						
1 (-0.588,	-0.809)						
2 (0.951,	0.309)						
3 (-0.951,	0.309)						
4 (0.588,	-0.809)						

			The output mat	rix is		
		0		1		2
0 (-0,	-0)	(0,	-0) (Ο,	-0)
1 (Ο,	0)	(0,	-0) (-0,	0)
2 (-0,	-0)	(0,	-0) (Ο,	-0)
3 (Ο,	0)	(0,	-0) (-0,	0)
4 (-0,	-0)	(0,	-0) (Ο,	-0)
		3				
0 (Ο,	-0)				
1 (Ο,	-0)				
2 (20,	0)				
3 (-0,	-0)				
4 (-0,	-0)				

Example 2

This example uses the backward transform to recover the original sequence. Notice that the forward transform followed by the backward transform multiplies the entries in the original sequence by the product of the lengths of the two dimensions.

```
#include <imsl.h>
#include <math.h>
#include <stdio.h>
main()
{
                 s, t, n = 5, m = 4;
   int
   f_complex
                 p[5][4], *q, *p2;
                           /* Fill p with a pure exponential signal */
   for (s = 0; s < n; s++) {
        for(t =0; t < m; t++) {
        p[s][t].re = s + 5*t;
        p[s][t].im = 0.;
                             /* Forward transform */
    }
   p2 = imsl_c_fft_2d_complex (n, m, q,
                                IMSL_BACKWARD, 0);
                             /* Write the input */
   imsl_c_write_matrix ("The input matrix is ", 5, 4, p,
                                IMSL_ROW_NUMBER_ZERO,
                                IMSL_COL_NUMBER_ZERO, 0);
   imsl_c_write_matrix ("The output matrix is ", 5, 4, p2,
                                IMSL_ROW_NUMBER_ZERO,
                                IMSL_COL_NUMBER_ZERO, 0);
}
```

Output

			The ir	nput matrix i	S			
		0			1			2
0 (Ο,	0)	(5,	0)	(10,	0)
1 (1,	0)	(б,	0)	(11,	0)
2 (2,	0)	(7,	0)	(12,	0)
3 (3,	0)	(8,	0)	(13,	0)
4 (4,	0)	(9,	0)	(14,	0)

Chapter 6: Transforms

fft_2d_complex • 341

		3						
0 (15,	0)						
1 (16,	0)						
2 (17,	0)						
3 (18,	0)						
4 (19,	0)						
- (0 /						
			The o	output matrix	x is			
		0		- · · · <u>1</u> · · · · · · · ·	1			2
0 (Ο,	0)	(100,	0)	(200,	0)
1 (20,	0)	Ì	120,	0)	ì	220,	0)
2 (40,	0)	(140,	0)	ì	240,	0)
3 (60,	0)	ì	160,	0)	(260,	0)
4 (80,	0)	(180,	0)	í	280,	0)
- (007	0,	`	2007	0,		2007	σ,
		3						
0 (300,	0)						
1 (320,	0)						
2 (340,	0)						
3 (360,	0)						
4 (380,	0)						
± (500,	0)						

convolution

Computes the convolution, and optionally, the correlation of two real vectors.

Synopsis

```
#include <imsl.h>
```

float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz, ...
, 0)

The type *double* function is imsl_d_convolution.

Required Arguments

- *int* nx (Input) Length of the vector x.
- float x[] (Input) Real vector of length nx.
- *int* ny (Input) Length of the vector y.
- float y[] (Input) Real vector of length ny.
- *int* *nz (Output) Length of the output vector.

Return Value

A pointer to an array of length nz containing the convolution of x and y. To release this space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_PERIODIC

The input is periodic.

IMSL_CORRELATION

Return the correlation of x and y.

IMSL_FIRST_CALL

If the function is called multiple times with the same nx and ny, select this option on the first call.

IMSL_CONTINUE_CALL

If the function is called multiple times with the same nx and ny, select this option on intermediate calls.

```
IMSL_LAST_CALL
```

If the function is called multiple times with the same nx and ny, select this option on the final call.

IMSL_RETURN_USER, float z[] (Output)

User-supplied array of length at least nz containing the convolution or correlation of x and y.

IMSL_Z_TRANS, float zhat[](Output)
User-supplied array of length at least nz containing on output the discrete
Fourier transform of z.

Description

The function $imsl_f_convolution$, by default, computes the discrete convolution of two sequences x and y. More precisely, let n_x be the length of x, and n_y denote the length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC must be selected. We set

 $n_z = \max \{n_y, n_x\},\$

Chapter 6: Transforms

convolution • 343

and we pad out the shorter vector with zeros. Then, we compute

$$z_i = \sum_{j=1}^{n_z} x_{i-j+1} y_j$$

where the index on x is interpreted as a positive number between 1 and n_z , modulo n_z .

The technique used to compute the z_i 's is based on the fact that the (complex discrete) Fourier transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

$$\hat{z}(n) = \hat{x}(n)\hat{y}(n)$$

where the following equation is true.

$$\hat{z}(n) = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)(n-1)/n_z}$$

The technique used here to compute the convolution is to take the discrete Fourier transform of x and y, multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that n_z is the product of small primes if option IMSL_PERIODIC is selected. If n_z is a product of small primes, then the computational effort will be proportional to $n_z \log(n_z)$. If option IMSL_PERIODIC is not selected, then a good value is chosen for n_z so that the Fourier transforms are efficient and $n_z \ge n_x + n_y - 1$. This will mean that both vectors will be padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are real, and real transforms can simulate the complex transform above. Such a strategy is six times faster and requires less space than when using the complex transform.

Optionally, the function imsl_f_convolution computes the discrete correlation of two sequences *x* and *y*. More precisely, let *n* be the length of *x* and *y*. If a circular correlation is desired, then option IMSL_PERIODIC must be selected. We set (on output)

 $n_z = n$ if IMSL_PERIODIC is chosen

 $(n_z = 2^{\alpha} 3^{\beta} 5^{\gamma} \ge 2n - 1)$ if IMSL_PERIODIC is not chosen

where α , β , and γ are nonnegtive integers yielding the smallest number of the type $2^{\alpha}3^{\beta}5^{\gamma}$ satisfying the inequality. Once n_z is determined, we pad out the vectors with zeros. Then, we compute

$$z_i = \sum_{j=1}^{n_z} x_{i+j-1} y_j$$

344 • convolution

where the index on x is interpreted as a positive number between one and n_z , modulo n_z . Note that this means that

 z_{n_z-k}

contains the correlation of x(k-1) with y as $k = 0, 1, ..., n_z/2$. Thus, if x(k-1) = y(k) for all k, then we would expect

 Z_{n_z}

to be the largest component of z. The technique used to compute the z_i 's is based on the fact that the (complex discrete) Fourier transform maps correlation into multiplication. Thus, the Fourier transform of z is given by

 $\hat{z}_j = \hat{x}_j \overline{y}_j$

where the following equation is true.

$$\hat{z}_j = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)(j-1)/n_z}$$

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform of x and the conjugate of the discrete Fourier transform of y, multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that n_z is the product of small primes if IMSL_PERIODIC is selected. If n_z is the product of small primes, then the computational effort will be proportional to $n_z \log (n_z)$. If IMSL_PERIODIC is not chosen, then a good value is chosen for n_z so that the Fourier transforms are efficient and $n_z \ge 2n - 1$. This will mean that both vectors will be padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are real, and real transforms can simulate the complex transform above. Such a strategy is six times faster and requires less space than when using the complex transform.

Examples

Example 1

This example computes a nonperiodic convolution. The idea here is that you can compute a moving average of the type found in digital filtering using this function. The averaging operator in this case is especially simple and is given by averaging five consecutive points in the sequence. We try to recover the values of an exponential function contaminated by noise. The large error for the last value has to do with the fact that the convolution is averaging the zeros in the "pad" rather than the function values. Notice that the signal size is 100, but only reports the errors at 10 points.

#include <imsl.h>
#include <math.h>

#define NFLTR 5

```
#define NY
              100
        /* Define function */
#define F1(A)
                exp(A)
main()
{
                i, k, nz;
    int
                fltr[NFLTR], fltrer, origer, total1, total2, twopi,
    float
                x, y[NY], *z, *noise;
        /* Set up the filter */
    for (i = 0; i < NFLTR; i++) fltr[i] = 0.2;</pre>
         * Set up y-vector for the nonperiodic casE.
         */
    twopi = 2.0*imsl_f_constant ("Pi", 0);
    imsl_random_seed_set(1234579);
    noise = imsl_f_random_uniform(NY, 0);
    for (i = 0; i < NY; i++) {
    x = (float)(i) / (NY - 1);</pre>
        y[i] = F1(x) + 0.5 * noise[i] - 0.25;
    }
        /*
         * Call the convolution routine for the nonperiodic case.
         */
    z = imsl_f_convolution(NFLTR, fltr, NY, y, &nz, 0);
        /*
         \ast Call test routines to check z & zhat here. Print results
         */
    printf("\n Nonperiodic Case\n");
    printf("
                                              Original Error");
                    x
                               F1(x)
    printf("
              Filtered Error\n");
    total1 = 0.0;
    total2 = 0.0;
    for (i = 0; i < NY; i++) {
        if (i >= NY-2)
            k = i - NY + 2;
        else
            k = i + 2;
        x = (float)(i) / (float) (NY - 1);
        origer = fabs(y[i] - F1(x));
        fltrer = fabs(z[i+2] - Fl(x));
        if ((i % 11) == 0) {
            printf(" %10.4f%13.4f%18.4f%18.4f\n",
                    x, F1(x), origer, fltrer);
        }
        total1 += origer;
        total2 += fltrer;
    }
    printf(" Average absolute error before filter:%10.5f\n",
            total1 / (NY));
    printf(" Average absolute error after filter:1.5fn",
            total2 / (NY));
```

346 • convolution

\sim	ut	n	•4
U	uι	μι	11

Nonperiodic Case

x	F1(x)	Original Error	Filtered Error
0.0000	1.0000	0.0811	0.3523
0.1111	1.1175	0.0226	0.0754
0.2222	1.2488	0.1526	0.0488
0.3333	1.3956	0.0959	0.0161
0.4444	1.5596	0.1747	0.0276
0.5556	1.7429	0.1035	0.0250
0.6667	1.9477	0.0402	0.0562
0.7778	2.1766	0.0673	0.0835
0.8889	2.4324	0.1044	0.0050
1.0000	2.7183	0.0154	1.1255
Average absolute	error befor	re filter: 0.12481	
Average absolute	error after	filter: 0.06785	

Example 2

This example computes both a periodic correlation between two distinct signals *x* and *y*. There are 100 equally spaced points on the interval $[0, 2\pi]$ and $f_1(x) = \sin(x)$. Define *x* and *y* as follows:

$$x_{i} = f_{1}\left(\frac{2\pi i}{n-1}\right) \qquad i = 0, ..., n-1$$
$$y_{i} = f_{1}\left(\frac{2\pi i}{n-1} + \frac{\pi}{2}\right) \qquad i = 0, ..., n-1$$

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which corresponds to the offset.

```
#include <imsl.h>
#include <math.h>
#define N
             100
        /* Define function */
#define F1(A)
                sin(A)
main()
{
               i, k, nz;
    int
    float
               pi, max,
                x[N], y[N], *z, xnorm, ynorm;
        /*
* Set up y-vector for the nonperiodic case.
         */
    pi = imsl_f_constant ("Pi", 0);
    for (i = 0; i < N; i++) {
```

Chapter 6: Transforms

```
x[i] = F1(2.0*pi*(float)(i) / (N-1));
    y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
}
     * Call the correlation function for the nonperiodic case.
     */
z = imsl_f_convolution(N, x, N, y, &nz,
            IMSL_CORRELATION, IMSL_PERIODIC,0);
xnorm = imsl_f_vector_norm (N, x, 0);
ynorm = imsl_f_vector_norm (N, y, 0);
for (i = 0; i < N; i++) {
    z[i] /= xnorm*ynorm;
}
\max = z[0];
k = 0;
for (i = 1; i < N; i++) {
    if (max < z[i]) {
        \max = z[i];
        k = i;
    }
}
printf("The element of Z with the largest normalized\n");
printf("value is Z(%2d).\n", k);
printf("The normalized value of Z(\$2d) is \$6.3f\n", k, z[k]);
```

```
}
```

Output

```
The element of Z with the largest normalized value is Z(25).
The normalized value of Z(25) is 1.000
```

convolution (complex)

Computes the convolution, and optionally, the correlation of two complex vectors.

Synopsis

#include <imsl.h>

f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex
y[], int *nz, ..., 0)

The type *double* function is imsl_d_convolution.

Required Arguments

int nx (Input) Length of the vector *x*.

348 • convolution (complex)

f_complex x[] (Input) Real vector of length nx. int ny (Input) Length of the vector y. f_complex y[] (Input) Real vector of length ny. int *nz (Output) Length of the output vector.

Return Value

A pointer to an array of length nz containing the convolution of x and y. To release this space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex
y[], int*nz,
IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, f_complex z[],
IMSL_Z_TRANS, f_complex *zhat,
0)
```

Optional Arguments

IMSL_PERIODIC The input is periodic.

The input is period

IMSL_CORRELATION

Return the correlation of *x* and *y*.

IMSL_FIRST_CALL

If the function is called multiple times with the same nx and ny, select this option on the first call.

IMSL_CONTINUE_CALL

If the function is called multiple times with the same nx and ny, select this option on intermediate calls.

IMSL_LAST_CALL

If the function is called multiple times with the same nx and ny, select this option on the final call.

IMSL_RETURN_USER, f_complex z[] (Output)
User-supplied array of length at least nz containing the convolution or
correlation of x and y.

IMSL_Z_TRANS, f_complex zhat[] (Output)

User-supplied array of length at least nz containing on output the discrete Fourier transform of z.

Description

The function $imsl_c_convolution$, by default, computes the discrete convolution of two sequences x and y. More precisely, let n_x be the length of x, and n_y denote the length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC must be selected. We set

$$n_z = \max\{n_v, n_x\}$$

and we pad out the shorter vector with zeros. Then, we compute

$$z_i = \sum_{j=1}^{n_z} x_{i-j+1} y_j$$

where the index on x is interpreted as a positive number between 1 and n_z , modulo n_z .

The technique used to compute the z_i 's is based on the fact that the (complex discrete) Fourier transform maps convolution into multiplication. Thus, the Fourier transform of z is given by

$$\hat{z}(n) = \hat{x}(n)\hat{y}(n)$$

where the following equation is true.

$$\hat{z}(n) = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)(n-1)/n_z}$$

The technique used here to compute the convolution is to take the discrete Fourier transform of x and y, multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that n_z is the product of small primes if option IMSL_PERIODIC is selected. If n_z is a product of small primes, then the computational effort will be proportional to $n_z \log (n_z)$. If option IMSL_PERIODIC is not selected, then a good value is chosen for n_z so that the Fourier transforms are efficient and $n_z \ge n_x + n_y - 1$. This will mean that both vectors will be padded with zeros.

Optionally, the function imsl_c_convolution computes the discrete correlation of two sequences *x* and *y*. More precisely, let *n* be the length of *x* and *y*. If a circular correlation is desired, then option IMSL_PERIODIC must be selected.

We set (on output)

$$n_z = n$$
 if IMSL_PERIODIC is chosen

$$(n_z = 2^{\alpha} 3^{\beta} 5^{\gamma} \ge 2n - 1)$$
 if IMSL_PERIODIC is not chosen

where α , β , and γ are nonnegative integers yielding the smallest number of the type $2^{\alpha}3^{\beta}5^{\gamma}$ satisfying the inequality. Once n_z is determined, we pad out the vectors with zeros. Then, we compute

$$z_i = \sum_{j=1}^{n_z} x_{i+j-1} y_j$$

where the index on x is interpreted as a positive number between one and n_z , modulo n_z . Note that this means that

 Z_{n_7-k}

contains the correlation of x (k - 1) with y as $k = 0, 1, ..., n_z/2$. Thus, if x(k - 1) = y(k) for all k, then we would expect

 $\Re z_{n_z}$

to be the largest component of $\Re z$. The technique used to compute the z_i 's is based on the fact that the (complex discrete) Fourier transform maps correlation into multiplication.

Thus, the Fourier transform of z is given by

 $\hat{z}_i = \hat{x}_i \overline{y}_i$

where the following equation is true.

$$\hat{z}_j = \sum_{m=1}^{n_z} z_m e^{-2\pi i (m-1)(j-1)/n_z}$$

Thus, the technique used here to compute the correlation is to take the discrete Fourier transform of x and the conjugate of the discrete Fourier transform of y, multiply the results together component-wise, and then take the inverse transform of this product. It is very important to make sure that n_z is the product of small primes if IMSL_PERIODIC is selected. If n_z is the product of small primes, then the computational effort will be proportional to $n_z \log (n_z)$. If IMSL_PERIODIC is not chosen, then a good value is chosen for n_z so that the Fourier transforms are efficient and $n_z \ge 2n - 1$. This will mean that both vectors will be padded with zeros.

No complex transforms of x or y are taken since both sequences are real, and real transforms can simulate the complex transform above. Such a strategy is six times faster and requires less space than when using the complex transform.

Examples

Example 1

This example computes a nonperiodic convolution. The purpose is to compute a moving average of the type found in digital filtering. The averaging operator in this case is especially simple and is given by averaging five consecutive points in the sequence. We try to recover the values of an exponential function contaminated by noise. The large error for the last value has to do with the fact that the convolution is averaging the zeros in the "pad" rather than the function values. Notice that the signal size is 100, but only report the errors at ten points.

```
#include <imsl.h>
#include <math.h>
#define NFLTR
               5
               100
#define NY
#define F1(A)
                (imsl_c_mul(imsl_cf_convert(exp(A),0.0), ∖
                            imsl_cf_convert(cos(A),sin(A)) ))
main()
    int
                i, k, nz;
    f_complex
                fltr[NFLTR], temp,
                y[NY], *z;
    float
                x, twopi, total1, total2, *noise, origer, fltrer;
                 /* Set up the filter */
    for (i = 0; i < NFLTR; i++) fltr[i] = imsl_cf_convert(0.2,0.0);</pre>
                 /* Set up y-vector for the periodic case */
    twopi = 2.0*imsl_f_constant ("Pi", 0);
    imsl_random_seed_set(1234579);
    noise = imsl_f_random_uniform(2*NY, 0);
    for (i = 0; i < NY; i++) {
    x = (float)(i) / (NY - 1);</pre>
        temp = imsl_cf_convert(0.5*noise[i]-0.25, 0.5*noise[NY+i]-0.25);
        y[i] = imsl_c_add(F1(x), temp);
    }
                /* Call the convolution routine for the periodic case */
    z = imsl_c_convolution(NFLTR, fltr, NY, y, &nz, 0);
        /* Print results */
    printf(" Periodic Case\n");
    printf("
                   х
                                F1(x)
                                              Original Error");
    printf("
              Filtered Error\n");
    total1 = 0.0;
    total2 = 0.0;
    for (i = 0; i < NY; i++) {
        x = (float)(i) / (NY - 1);
        origer = imsl_c_abs(imsl_c_sub(y[i],F1(x)));
        fltrer = imsl_c_abs(imsl_c_sub(z[i+2],F1(x)));
```

Output

}

Periodic Case			
х	F1(x)	Original Error	Filtered Error
0.0000	(1.0000, 0.0000)	0.1684	0.3524
0.1111	(1.1106,0.1239)	0.0582	0.0822
0.2222	(1.2181,0.2752)	0.1991	0.1054
0.3333	(1.3188,0.4566)	0.1487	0.1001
0.4444	(1.4081,0.6706)	0.2381	0.1004
0.5556	(1.4808,0.9192)	0.1037	0.0708
0.6667	(1.5307,1.2044)	0.1312	0.0904
0.7778	(1.5508,1.5273)	0.1695	0.0856
0.8889	(1.5331,1.8885)	0.1851	0.0698
1.0000	(1.4687,2.2874)	0.2130	1.0760
Average absolu	ute error before f	Eilter: 0.19057	
Average absolu	ute error after f	ilter: 0.10024	

Example 2

This example computes both a periodic correlation between two distinct signals *x* and *y*. There are 100 equally spaced points on the interval $[0, 2\pi]$ and $f_1(x) = \cos(x) + i \sin(x)$. Define *x* and *y* as follows:

$$x_{i} = f_{1}\left(\frac{2\pi(i-1)}{n-1}\right) \qquad i = 1, ..., n$$
$$y_{i} = f_{1}\left(\frac{2\pi(i-1)}{n-1} + \frac{\pi}{2}\right) \qquad i = 1, ..., n$$

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which corresponds to the offset.

{

Chapter 6: Transforms

```
int
            i, k, nz;
float
            zreal[4*N], pi, max, xnorm, ynorm, sumx, sumy;
f_complex
            x[N], y[N], *z;
            /* Set up y-vector for the nonperiodic case */
pi = imsl_f_constant ("Pi", 0);
for (i = 0; i < N; i++) {
    x[i] = F1(2.0*pi*(float)(i) / (N-1));
    y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
}
            /* Call the correlation function for the
               nonperidic case */
z = imsl_c_convolution(N, x, N, y, &nz,
            IMSL_CORRELATION, IMSL_PERIODIC,0);
sumx = sumy = 0.0;
for (i = 0; i < N; i++) {
    sumx += imsl_c_abs(imsl_c_mul(x[i], x[i]));
    sumy += imsl_c_abs(imsl_c_mul(y[i], y[i]));
}
xnorm = sqrt((sumx));
ynorm = sqrt((sumy));
for (i = 0; i < N; i++) {
    zreal[i] = (z[i].re/(xnorm*ynorm));
}
max = zreal[0];
k = 0;
for (i = 1; i < N; i++) {
    if (max < zreal[i]) {</pre>
        max = zreal[i];
        k = i;
    }
}
printf("The element of Z with the largest normalizedn");
printf("value is Z(\&2d).\n", k);
printf("The normalized value of Z(\$2d) is \$6.3f\n", k, zreal[k]);
```

Output

```
The element of Z with the largest normalized value is Z(25).
The normalized value of Z(25) is 1.000
```

inverse_laplace

Computes the inverse Laplace transform of a complex function.

354 • inverse_laplace

}

Synopsis

#include <imsl.h>

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float t[], ..., 0)

The type *double* procedure is imsl_d_inverse_laplace.

Required Arguments

f_complex fcn(f_complex z) (Input)
User-supplied function for which the inverse Laplace transform will be
computed.

float sigma0 (Input)

An estimate for the maximum of the real parts of the singularities of fcn. If unknown, set sigma0 = 0.0.

int n (Input)

The number of points at which the inverse Laplace transform is desired.

float t[] (Input)

Array of size n containing the points at which the inverse Laplace transform is desired.

Return Value

A pointer to the array of length n whose *i*-th component contains the approximate value of the inverse Laplace transform at the point t[i]. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float
       t[],
       IMSL_RETURN_USER, float x[],
       IMSL_PSEUDO_ACCURACY, float pseudo_accuracy,
       IMSL_FIRST_LAGUERRE_PARAMETER, float sigma,
       IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue,
       IMSL_MAXIMUM_COEFFICIENTS, int mtop,
       IMSL_ERR_EST, float *error_est,
       IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est,
       IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est,
       IMSL_CONDITION_ERROR_EST, float *cond_error_est,
       IMSL_DECAY_FUNCTION_COEFFICIENT, float *k,
       IMSL_DECAY_FUNCTION_BASE, float *r,
       IMSL_LOG_LARGEST_COEFFICIENTS,
                                            float *log_largest_coefs,
       IMSL_LOG_SMALLEST_COEFFICIENTS,
       float *log_smallest_coefs,
```

```
IMSL_UNDER_OVERFLOW_INDICATORS,
Imsl_laplace_flow *indicators,
0)
```

Optional Arguments

<pre>IMSL_RETURN_USER, float x[] (Output) A user-allocated array of length n containing the approximate value of the inverse Laplace transform.</pre>
IMSL_PSEUDO_ACCURACY, <i>float</i> pseudo_accuracy (Input) The required absolute uniform pseudo accuracy for the coefficients and inverse Laplace transform values.
Default: pseudo_accuracy = $\sqrt{\epsilon}$, where ϵ is machine epsilon
<pre>IMSL_FIRST_LAGUERRE_PARAMETER, float sigma (Input) The first parameter of the Laguerre expansion. If sigma is not greater than sigma0, it is reset to sigma0 + 0.7. Default: sigma + 0.7</pre>
<pre>IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue (Input) The second parameter of the Laguerre expansion. If bvalue is less than 2.0*(sigma - sigma0), it is reset to 2.5*(sigma - sigma0). Default: bvalue = 2.5*(sigma - sigma0)</pre>
IMSL_MAXIMUM_COEFFICIENTS, <i>int</i> mtop (Input) An upper limit on the number of coefficients to be computed in the Laguerre expansion. Argument mtop must be a multiple of four. Default: mtop = 1024
<pre>IMSL_ERR_EST, float *error_est (Output) Overall estimate of the pseudo error, disc_error_est + trunc_error_est + cond_error_est. Pseudo error = absolute error / exp(sigma*bvalue).</pre>
IMSL_DISCRETIZATION_ERROR_EST, <i>float</i> *disc_error_est (Output) Estimate of the pseudo discretization error.
IMSL_TRUNCATION_ERROR_EST, <i>float</i> *trunc_error_est (Output) Estimate of the pseudo truncation error.
IMSL_CONDITION_ERROR_EST, <i>float</i> *cond_error_est (Output) Estimate of the pseudo condition error on the basis of minimal noise levels in the function values.
IMSL_DECAY_FUNCTION_COEFFICIENT, <i>float</i> *k (Output) The coefficient of the decay function for acoef, the coefficients of the Laguerre expansion.
IMSL_DECAY_FUNCTION_BASE, <i>float</i> *r (Output) The base of the decay function for acoef. Here $ acoef[j] \le k/r^{(j-1)}$ for some $j \ge m/2 - 1$, where <i>m</i> is the number of Laguerre coefficients actually computed.

- IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs (Output)
 The logarithm of the largest acoef.
- IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs (Output)
 The logarithm of the smallest nonzero acoef.

The address of a pointer initialized by imsl_f_inverse_laplace to point to an array of length *n* containing the overflow/underflow indicators for the computed approximate inverse Laplace transform. For the *i*-th point at which the transform is computed, indicators[i] signifies the following:

indicators [/]	meaning
IMSL_NORMAL_TERMINATION	Normal termination.
IMSL_TOO_LARGE	The value of the inverse Laplace transform is too large to be representable. This component of the result is set to NaN.
IMSL_TOO_SMALL	The value of the inverse Laplace transform is found to be too small to be representable. This component of the result is set to 0.0.
IMSL_TOO_LARGE_BEFORE_EXPANSION	The value of the inverse Laplace transform is estimated to be too large, even before the series expansion, to be representable. This component of the result is set to NaN.
IMSL_TOO_SMALL_BEFORE_EXPANSON	The value of the inverse Laplace transform is estimated to be too small, even before the series expansion, to be representable. This component of the result is set to 0.0.

Description

The function $imsl_f_inverse_laplace$ computes the inverse Laplace transform of a complex-valued function. Recall that if f is a function that vanishes on the negative real axis, then the Laplace transform of f is defined by

$$L[f](s) = \int_0^\infty e^{-sx} f(x) dx$$

It is assumed that for some value of *s* the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks' method (see Weeks (1966)) due to Garbow et al. (1988). This method is suitable when f has continuous derivatives of all orders on $[0, \infty)$. In particular, given a complex-valued

function F(s) = L[f](s), *f* can be expanded in a Laguerre series whose coefficients are determined by *F*. This is fully described in Garbow et al. (1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

$$\left|\frac{g(t) - f(t)}{e^{\sigma t}}\right| < \varepsilon$$

where $\varepsilon = pseudo_accuracy$ and $\sigma = sigma > sigma 0$. The expression on the left is called the *pseudo error*. An estimate of the pseudo error in available in error_est.

The first step in the method is to transform *F* to ϕ where

$$\phi(z) = \frac{b}{1-z} F(\frac{b}{1-z} - \frac{b}{2} + \sigma)$$

Then, if *f* is smooth, it is known that ϕ is analytic in the unit disc of the complex plane and hence has a Taylor series expansion

$$\phi(z) = \sum_{s=0}^{\infty} a_s z^s$$

which converges for all z whose absolute value is less than the radius of convergence R_c . This number is estimated in r, obtained through the optional argument IMSL_DECAY_FUNCTION_BASE. Using optional argument

IMSL_DECAY_FUNCTION_COEFFICIENT, the smallest number *K* is estimated which satisfies

$$|a_s| < \frac{K}{R^s}$$

for all $R < R_c$.

The coefficients of the Taylor series for ϕ can be used to expand f in a Laguerre series

$$f(t) = e^{\sigma t} \sum_{s=0}^{\infty} a_s e^{-bt/2} L_s(bt)$$

Examples

Example 1

This example computes the inverse Laplace transform of the function $(s - 1)^{-2}$, and prints the computed approximation, true transform value, and difference at five points. The correct inverse transform is xe^x . From Abramowitz and Stegun (1964).

#include <imsl.h>
#include <math.h>

main()

358 • inverse_laplace

```
{
        f_complex f(f_complex);
        int n = 5;
        float t[5];
        float true_inverse[5];
        float relative_diff[5];
        int i;
        float *inverse;
                         /* Initialize t and compute inverse */
        for (i=0; i<n; i++)</pre>
                t[i] = (float)i + 0.5;
        inverse = imsl_f_inverse_laplace(f, 1.5, n, t, 0);
                         /* Compute true inverse, relative difference */
        for (i=0; i<n; i++) {</pre>
                true_inverse[i] = t[i]*exp(t[i]);
                relative_diff[i] = fabs(inverse[i] - true_inverse[i])/
                                    true_inverse[i];
        }
        printf("\t
                     t\t\t f_inv\t\t true\t\t diff\n");
        for (i=0; i<n; i++)</pre>
                printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n", t[i],
                          inverse[i], true_inverse[i], relative_diff[i]);
}
f_complex f(f_complex s)
                         /* Return 1/(s-1)**2 */
        f_complex one = {1.0, 0.0};
        return (imsl_c_div(one,
                imsl_c_mul(imsl_c_sub(s, one), imsl_c_sub(s, one))));
}
            Output
          t
                       f_inv
                                                     diff
                                      true
         0.5
                       0.824
                                     0.824
                                                   1.5e-05
                      6.722
                                     6.723
                                                   1.0e-05
         1.5
         2.5
                      30.456
                                    30.456
                                                   5.6e-07
         3.5
                     115.906
                                   115.904
                                                   1.8e-05
         4.5
                     405.054
                                    405.077
                                                   5.8e-05
```

Example 2

This example computes the inverse Laplace transform of the function $e^{-1/s}/s$, and prints the computed approximation, true transform value, and difference at five points. Additionally, the inverse is returned in user-suppled space, and a required accuracy for the inverse transform values is specified. The correct inverse transform is

 $J_0(2\sqrt{x})$

Chapter 6: Transforms

```
From Abramowitz and Stegun (1964).
#include <imsl.h>
#include <math.h>
main()
{
        f_complex f(f_complex);
        int n = 5;
        int i;
        float finv[5];
        float t[5];
        float true_inverse[5];
        float relative_diff[5];
        float inverse[5];
        Imsl_laplace_flow *indicators;
                                 /* Initialize t and compute inverse */
        for (i=0; i<n; i++) t[i] = (float)i + 0.5;</pre>
        imsl_f_inverse_laplace(f, 0.0, n, t,
                IMSL_PSEUDO_ACCURACY, 1.0e-6,
                IMSL_UNDER_OVERFLOW_INDICATORS, &indicators,
                IMSL_RETURN_USER, inverse,
                0);
                                 /* Compute true inverse, relative
                                    difference */
        for (i=0; i<n; i++) {
                true_inverse[i] = imsl_f_bessel_J0(2.0*sqrt(t[i]));
                relative_diff[i] = fabs((inverse[i] - true_inverse[i])/
                                    true_inverse[i]);
        }
                                 /* Print results, noting if any results
                                    overflowed or underflowed */
        printf("\t T\t\t f_inv\t\t true\t\t diff\n");
        for (i=0; i<n; i++)</pre>
                if (indicators[i] == IMSL_NORMAL_TERMINATION)
                        printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n",
                                  t[i],
                                inverse[i], true_inverse[i],
                                relative_diff[i]);
                else
                        printf("Overflow or underflow noted.\n");
}
f_complex f(f_complex s)
                                 /* Return (1/s)(exp(-1/s) */
        f_complex one = {1.0, 0.0};
        f_complex s_inverse;
        s_inverse = imsl_c_div(one, s);
        return (imsl_c_mul(s_inverse, imsl_c_exp(imsl_c_neg(s_inverse))));
```

Output

Т	f_inv	true	diff
0.5	0.559	0.559	2.1e-07
1.5	-0.023	-0.023	8.5e-06
2.5	-0.310	-0.310	9.6e-08
3.5	-0.401	-0.401	7.4e-08
4.5	-0.370	-0.370	6.4e-07

Chapter 7: Nonlinear Equations

Routines

7.1	Zeros of a Polynomial Real coefficients using Jenkins-Traub methodzeros_poly Complex coefficients using Jenkins-Traub methodzeros_poly (complex)	364 366
7.2	Zeros of a Function Real zeros of a real functionzeros_fcn	368
7.3	Root of a System of Equations Powell's hybrid methodzeros_sys_eqn	373

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

where $a_n \neq 0$. The function imsl_f_zeros_poly finds zeros of a polynomial with real coefficients using the Jenkins-Traub method.

Zeros of a Function

The function $imsl_f_zeros_fcn$ uses Müller's method to find the real zeros of a real-valued function.

Root of System of Equations

A system of equations can be stated as follows:

$$f_i(x) = 0$$
, for $i = 1, 2, ..., n$

where $x \in \mathbf{R}^n$, and $f_i : \mathbf{R}^n \to \mathbf{R}$. The function $imsl_f_zeros_sys_eqn$ uses a modified hybrid method due to M.J.D. Powell to find the zero of a system of nonlinear equations.

zeros_poly

Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub, three-stage algorithm.

Synopsis

#include <imsl.h>

f_complex *imsl_f_zeros_poly (int ndeg, float coef[], ..., 0)

The type *d_complex* function is imsl_d_zeros_poly.

Required Arguments

int ndeg (Input) Degree of the polynomial.

float coef[] (Input) Array with ndeg + 1 components containing the coefficients of the polynomial in increasing order by degree. The polynomial is $coef[n] z^n + coef[n - 1] z^{n-1} + ... + coef[0]$, where n = ndeg.

Return Value

A pointer to the complex array of zeros of the polynomial. To release this space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

Optional Arguments

IMSL_RETURN_USER, f_complex root[] (Output)
Array with ndeg components containing the zeros of the polynomial.

Description

The function imsl_f_zeros_poly computes the *n* zeros of the polynomial

 $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$

where the coefficients a_i for i = 0, 1, ..., n are real and n is the degree of the polynomial.

The function imsl_f_zeros_poly uses the Jenkins-Traub, three-stage algorithm (Jenkins and Traub 1970; Jenkins 1975). The zeros are computed one at a time for real zeros or two at a time for a complex conjugate pair. As the zeros are found, the real zero, or quadratic factor, is removed by polynomial deflation.

Examples

Example 1

#include <imsl.h>

This example finds the zeros of the third-degree polynomial

$$p(z) = z^3 - 3z^2 + 4z - 2$$

where z is a complex variable.

```
#define NDEG 3
main()
{
    int         i;
    f_complex *zeros;
    static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};
    zeros = imsl_f_zeros_poly(NDEG, coeff, 0);
    imsl_c_write_matrix ("The complex zeros found are", 1, 3,
        zeros, 0);
}
```

Output

	Tł	ne complex	zeros fou	und are		
	1			2		3
1	, 0)	(1,	1) ((1, -1)

Example 2

The same problem is solved with the return option.

```
#include <imsl.h>
```

(

```
imsl_c_write_matrix ("The complex zeros found are", 1, 3,
              zeros, 0);
}
             Output
                           The complex zeros found are
                                          2
1, <sup>1)</sup>
                          1
                                                                                        3
                                                                         1,
                              (
                                                       1) (
                                                                                     -1)
(
           1,
                         0)
              Warning Errors
              IMSL_ZERO_COEFF
                                              The first several coefficients of the polynomial are
                                              equal to zero. Several of the last roots will be set to
                                              machine infinity to compensate for this problem.
                                              Fewer than ndeg zeros were found. The root vector
              IMSL_FEWER_ZEROS_FOUND
                                               will contain the value for machine infinity in the
                                              locations that do not contain zeros.
```

zeros_poly (complex)

Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub, three-stage algorithm.

Synopsis

#include <imsl.h>

f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[], ..., 0)

The type *d_complex* function is imsl_z_zeros_poly.

Required Arguments

int ndeg (Input) Degree of the polynomial.

f_complex coef[] (Input)

Array with ndeg + 1 components containing the coefficients of the polynomial in increasing order by degree. The degree of the polynomial is

 $coef[n] z^{n} + coef[n-1] z^{n-1} + ... + coef[0]$

where n = ndeg.

Return Value

A pointer to the complex array of zeros of the polynomial. To release this space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[],
IMSL_RETURN_USER, f_complex root[],
0)
```

Optional Arguments

IMSL_RETURN_USER, f_complex root[] (Output)
Array with ndeg components containing the zeros of the polynomial.

Description

The function imsl_c_zeros_poly computes the *n* zeros of the polynomial

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

where the coefficients a_i for i = 0, 1, ..., n are complex and n is the degree of the polynomial.

The function imsl_c_zeros_poly uses the Jenkins-Traub, three-stage complex algorithm (Jenkins and Traub 1970, 1972). The zeros are computed one at a time in roughly increasing order of modulus. As each zero is found, the polynomial is deflated to one of lower degree.

Examples

Example 1

This example finds the zeros of the third-degree polynomial

$$p(z) = z^{3} - (3 + 6i) z^{2} - (8 - 12i) z + 10$$

where z is a complex variable.

```
#include <imsl.h>
#define NDEG
                3
main()
{
        int
                         i;
        f_complex
                         *zeros;
        f_complex coeff[NDEG + 1] = \{ \{10.0, 0.0\}, \}
                                         -8.0, 12.0},
                                        \{-3.0, -6.0\},\
                                        \{1.0, 0.0\}\};
        zeros = imsl_c_zeros_poly(NDEG, coeff, 0);
        imsl_c_write_matrix ("The complex zeros found are", 1, 3,
               zeros, 0);
}
```

Chapter 7: Nonlinear Equations

```
Output
                           The complex zeros found are
                          1
                                                                                       3
                                                        2
                                                                        1,
(
            1,
                         1)
                             (
                                          1,
                                                       2) (
                                                                                      3)
              Example 2
              The same problem is solved with the return option.
#include <imsl.h>
#define NDEG
                   3
main()
{
         int
                             i;
                            zeros[3];
         f_complex
         f\_complex coeff[NDEG + 1] = \{ \{10.0, 0.0\}, \\ \{-8.0, 12.0\}, \}
                                              [-3.0, -6.0],
                                              \{1.0, 0.0\}\};
         imsl_c_zeros_poly(NDEG, coeff, IMSL_RETURN_USER, zeros, 0);
         imsl_c_write_matrix ("The complex zeros found are", 1, 3,
              zeros, 0);
}
              Output
                           The complex zeros found are
                          1
                                                        2
                                                                                       3
                                                       2) (
                                                                        1,
                                                                                      3)
(
            1,
                         1)
                                          1.
                             (
              Warning Errors
              IMSL_ZERO_COEFF
                                              The first several coefficients of the polynomial are
                                              equal to zero. Several of the last roots will be set to
                                              machine infinity to compensate for this problem.
              IMSL_FEWER_ZEROS_FOUND
                                              Fewer than ndeg zeros were found. The root vector
                                              will contain the value for machine infinity in the
                                              locations that do not contain zeros.
```

zeros_fcn

Finds the real zeros of a real function using Müller's method.

Synopsis

```
#include <imsl.h>
float *imsl_f_zeros_fcn (float fcn(), ..., 0)
The type double function is imsl_d_zeros_fcn.
```

368 • zeros_fcn

Required Arguments

float fcn (float x) (Input/Output)

User-supplied function to compute the value of the function of which the zeros will be found, where x is the point at which the function is evaluated.

Return Value

A pointer to the zeros x of the function. To release this space, use free. If no zeros can be found, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with nroot components containing the initial guesses for the zeros.
Default: xguess = 0

IMSL_NUM_ROOTS, int nroot (Input)
The number of zeros to be found by imsl_f_zeros_fcn.
Default: nroot = 1

IMSL_ERR_ABS, float err_abs (Input) First stopping criterion. A zero x_i is accepted if $|f(x_i)| < err_abs$. Default:

$$\operatorname{err}_{\operatorname{abs}} = \sqrt{\varepsilon}$$

where e is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Second stopping criterion. A zero x_i is accepted if the relative change of two
successive approximations to x_i is less than err_rel.
Default:

 $err_rel = \sqrt{\epsilon}$

where $\boldsymbol{\epsilon}$ is the machine precision

IMSL_ETA, *float* eta (Input)

Spread criteria for multiple zeros. If the zero x_i has been computed and $|x_i - x_j| < eps$, where x_j is a previously computed zero, then the computation is restarted with a guess equal to $x_i + eta$. Default: eta = 0.01

IMSL_EPS, *float* eps (Input)

See eta. Default:

 $eps = \sqrt{\epsilon}$

where $\boldsymbol{\epsilon}$ is the machine precision

- IMSL_MAX_ITN, int max_itn (Input)
 The maximum allowable number of iterations per zero.
 Default: max_itn = 100
- IMSL_RETURN_USER, float x[] (Output)

Array with nroot components containing the computed zeros.

IMSL_INFO, int **info (Output)

The address of a pointer info to an array of length nroot containing convergence information. On return, the necessary space is allocated by $imsl_f_zeros_fcn$. The value info[j-1] is the number of iterations used in finding the *j*-th zero when convergence is achieved. If convergence is not obtained in max_itn iterations, info[j-1] would be greater than max_itn.

IMSL_INFO_USER, int info[] (Output)

A user-allocated array with nroot components. On return, the value info[j-1] is the number of iterations used in finding the *j*-th zero when convergence is achieved. If convergence is not obtained in max_itn iterations, info[j-1] would be greater than max_itn.

Description

The function $imsl_f_zeros_fcn$ computes *n* real zeros of a real function *f*. Given a user-supplied function f(x) and an *n*-vector of initial guesses $x_1, x_2, ..., x_n$, the function uses Müller's method to locate *n* real zeros of *f*. The function has two convergence criteria: the first requires that

$$f(x_i^{(m)})$$

be less than err_abs ; the second requires that the relative change of any two successive approximations to an x_i be less than err_rel . Here,

 $x_i^{(m)}$

is the *m*-th approximation to x_i . Let err_abs be denoted by ε_1 and err_rel be denoted by ε_2 . The criteria may be stated mathematically as follows:

Criterion 1:

$$\left|f\left(x_{i}^{(m)}\right)\right| < \varepsilon_{1}$$

Criterion 2:

$$\left|\frac{x_i^{(m+1)} - x_i^{(m)}}{x_i^{(m)}}\right| < \varepsilon_2$$

"Convergence" is the satisfaction of either criterion.

Examples

Example 1

This example finds a real zero of the third-degree polynomial

$$f(x) = x^3 - 3x^2 + 3x - 1$$

```
#include <imsl.h>
float
              fcn(float x);
main()
{
    float
               *x;
                               /* Solve fcn(x)=0 for x */
   x = imsl_f_zeros_fcn (fcn, 0);
                               /* Print x */
    imsl_f_write_matrix ("x", 1, 1, x, 0);
}
float fcn(float x)
{
    return x * x * x - 3.0 * x * x + 3.0 * x - 1.0;
}
```

Output

1

х

Example 2

This example finds three real zeros of the third-degree polynomial

$$f(x) = x^3 + 3x^2 - 4x - 6$$

with the three initial guesses (4.6, 0.0, -193.3).

#include <imsl.h>

float fcn(float x);

main()

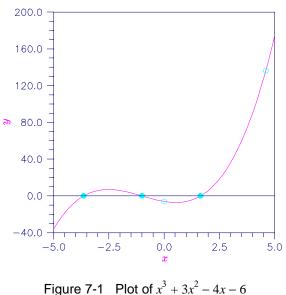
Chapter 7: Nonlinear Equations

zeros_fcn • 371

{

```
xguess[] = \{4.6, 0.0, -193.3\};
    float
                nroot = 3;
    int
    float
                eps = 1.0e-5;
    float
                err_abs = 1.0e-5;
    float
                err_rel = 1.0e-5;
    float
                eta = 1.0e-2;
    int
                max_itn = 100;
    float
                 *x;
                                 /* Solve fcn(x)=0 for x */
    x = imsl_f_zeros_fcn (fcn,
                           IMSL_XGUESS, xguess,
                           IMSL_ERR_REL, err_rel,
                           IMSL_ERR_ABS, err_abs,
                           IMSL_ETA, eta,
                           IMSL_EPS, eps,
                           IMSL_NUM_ROOTS, nroot,
                           IMSL_MAX_ITN, max_itn,
                           0);
                                 /* Print x */
    imsl_f_write_matrix ("x", 1, 3, x, 0);
}
float fcn(float x)
{
    return x * x * x + 3.0 * x * x - 4.0 * x - 6.0;
}
            Output
                 x
         1
                      2
                                  3
                -1.000
     1.646
                             -3.646
```

In the following plot, the initial guesses x = 0.0 and x = 4.6 are marked with hollow circles, and the solutions are marked with filled circles. The other initial guess x = -193.3 does not fit on this plot.



Warning Errors

IMSL_NO_CONVERGE_MAX_ITER Failure to converge within max_itn iterations for at least one of the nroot roots.

zeros_sys_eqn

Solves a system of *n* nonlinear equations f(x) = 0 using a modified Powell hybrid algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_zeros_sys_eqn (void fcn(), int n, ..., 0)

The type *double* function is imsl_d_zeros_sys_eqn.

Required Arguments

void fcn (int n, float x[], float f[]) (Input/Output)

User-supplied function to evaluate the system of equations to be solved, where n is the size of x and f, x is the point at which the functions are evaluated, and f contains the computed function values at the point x.

```
int n (Input)
```

The number of equations to be solved and the number of unknowns.

Return Value

A pointer to the vector x that is a solution of the system of equations. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
float *imsl_f_zeros_sys_eqn (void fcn(), int n,
    IMSL_XGUESS, float xguess[],
    IMSL_JACOBIAN, void jacobian(),
    IMSL_ERR_REL, float err_rel,
    IMSL_MAX_ITN, int max_itn,
    IMSL_RETURN_USER, float x[],
    IMSL_FNORM, float *fnorm,
    O)
```

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing the initial estimate of the root.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int n, float x[], float fjac[])

(Input/Output)

User-supplied function to evaluate the Jacobian, where n is the number of components in x, x is the point at which the Jacobian is evaluated, and fjac is the computed $n \times n$ Jacobian matrix at the point x. Note that each derivative $\partial f_i / \partial x_i$ should be returned in fjac[(i-1)*n+j-1].

IMSL_ERR_REL, float err_rel (Input)

Stopping criterion. The root is accepted if the relative error between two successive approximations to this root is less than err_rel. Default:

$$err_rel = \sqrt{\epsilon}$$

where ε is the machine precision

IMSL_MAX_ITN, int max_itn (Input)
The maximum allowable number of iterations.
Default: max_itn = 200

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the best estimate of the root found by
f_zeros_sys_eqn.

IMSL_FNORM, *float* *fnorm (Output) Scalar with the value

 $f_1^2 + \ldots + f_n^2$

at the point x.

Description

The function imsl_f_zeros_sys_eqn is based on the MINPACK subroutine HYBRDJ, which uses a modification of the hybrid algorithm due to M.J.D. Powell. This algorithm is a variation of Newton's method, which takes precautions to avoid undesirable large steps or increasing residuals. For further description, see Moré et al. (1980).

Examples

Example 1

The following 2×2 system of nonlinear equations

$$f_1(x) = x_1 + x_2 - 3$$
$$f_2(x) = x_1^2 + x_2^2 - 9$$

is solved.

374 • zeros_sys_eqn

```
#include <imsl.h>
#include <stdio.h>
#define N
                2
void
                fcn(int, float[], float[]);
void main()
{
    float
                *x;
    x = imsl_f_zeros_sys_eqn(fcn, N, 0);
    imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
}
void fcn(int n, float x[], float f[])
{
    f[0] = x[0] + x[1] - 3.0;
    f[1] = x[0]*x[0] + x[1] * x[1] - 9.0;
}
```

```
Output
```

The solution to the system is $\begin{array}{ccc} 1 & 2 \\ 0 & 3 \end{array}$

Example 2

The following 3×3 system of nonlinear equations

$$f_1(x) = x_1 + e^{x_1 - 1} + (x_2 + x_3)^2 - 27$$

$$f_2(x) = e^{x_2 - 2} / x_1 + x_3^2 - 10$$

$$f_3(x) = x_3 + \sin(x_2 - 2) + x_2^2 - 7$$

is solved with the initial guess (4.0, 4.0, 4.0).

```
#include <imsl.h>
#include <stdio.h>
#include <math.h>
#define N
                З
                fcn(int, float[], float[]);
void
void main()
{
                maxitn = 100;
    int
    float
                *x, err_rel = 0.0001, fnorm;
    float
                xguess[N] = \{4.0, 4.0, 4.0\};
    x = imsl_f_zeros_sys_eqn(fcn, N,
                              IMSL_ERR_REL, err_rel,
                              IMSL_MAX_ITN, maxitn,
                              IMSL_XGUESS, xguess,
                              IMSL_FNORM, &fnorm,
```

```
0);
imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
printf("\nwith fnorm = %5.4f\n", fnorm);
}
void fcn(int n, float x[], float f[])
{
f[0] = x[0] + exp(x[0] - 1.0) + (x[1] + x[2]) * (x[1] + x[2]) - 27.0;
f[1] = exp(x[1] - 2.0) / x[0] + x[2] * x[2] - 10.0;
f[2] = x[2] + sin(x[1] - 2.0) + x[1] * x[1] - 7.0;
}
```

OutputThe solution to the system is123123

with fnorm = 0.0000

Warning Errors

IMSL_TOO_MANY_FCN_EVALS	The number of function evaluations has exceeded max_itn. A new initial guess may be tried.
IMSL_NO_BETTER_POINT	Argument err_rel is too small. No further improvement in the approximate solution is possible.
IMSL_NO_PROGRESS	The iteration has not made good progress. A new initial guess may be tried.

Chapter 8: Optimization

.

Routines

8.1	Unconstrained Minimization	
	Univariate Function Using function values onlymin_uncon Using function and first derivative valuesmin_uncon_deriv	379 383
	Multivariate Function Using quasi-Newton method	387
	Nonlinear Least Squares Using Levenberg-Marquardt algorithmnonlin_least_squares	394
8.2	Linearly Constrained Minimization	
	Dense linear programminglin_prog Quadratic programmingquadratic_prog Minimize a general objective functionmin_con_gen_lin Nonlinear least-squares	402 406 410 416
	with simple bounds on the variables bounded_least_squares	410
8.3	Nonlinearly Constrained Minimization Using successive quadratic programming method	423

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

$$\min_{x \in \mathbf{R}^n} f(x)$$

where $f: \mathbf{R}^n \to \mathbf{R}$ is continuous and has derivatives of all orders required by the algorithms. The functions for unconstrained minimization are grouped into three categories: univariate functions, multivariate functions, and nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function $imsl_f_min_uncon_multivar$. The default is to use a finite-difference approximation of the gradient of f(x). Here, the gradient is defined to be the vector

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right]$$

However, when the exact gradient can be easily provided, the keyword IMSL_GRAD should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The most common application of the function is the nonlinear data-fitting problem where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function may have many local minima. Try different initial points and intervals to obtain a better local solution.

Double-precision arithmetic is recommended for the functions when the user provides only the function values.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

$$\min_{x \in \mathbf{R}^n} f(x)$$

subject to $A_1 x = b_1$

where $f : \mathbf{R}^n \to \mathbf{R}$, A_1 and A_2 are coefficient matrices, and b_1 and b_2 are vectors. If f(x) is linear, then the problem is a linear programming problem. If f(x) is quadratic, the problem is a quadratic programming problem.

The function imsl_f_lin_prog uses a revised simplex method to solve small- to medium-sized linear programming problems. No sparsity is assumed since the coefficients are stored in full matrix form.

The function $imsl_f_quadratic_prog$ is designed to solve convex quadratic programming problems using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then $imsl_f_quadratic_prog$ modifies it to be positive definite. In this case, output should be interpreted with care because the problem has been changed slightly. Here, the Hessian of f(x) is defined to be the $n \times n$ matrix

$$\nabla^2 f(x) = \left[\frac{\partial^2}{\partial x_i \partial x_j} f(x)\right]$$

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

$$\min_{\substack{x \in \mathbb{R}^n}} f(x)$$

subject to $g_i(x) = 0$ for $i = 1, 2, ..., m_1$
 $g_i(x) \ge 0$ for $i = m_1 + 1, ..., m_n$

where $f: \mathbf{R}^n \to \mathbf{R}$ and $g_i: \mathbf{R}^n \to \mathbf{R}$, for i = 1, 2, ..., m.

The function imsl_f_min_con_nonlin uses a successive quadratic programming algorithm to solve this problem. A more complete discussion of this algorithm can be found in the documentation.

min_uncon

Find the minimum point of a smooth function f(x) of a single variable using only function evaluations.

Synopsis

#include <imsl.h>

float imsl_f_min_uncon (float fcn(), float a, float b, ..., 0)

The type *double* function is imsl_d_min_uncon.

Required Arguments

float fcn(float x) (Input/Output)

User-supplied function to compute the value of the function to be minimized where x is the point at which the function is evaluated, and fcn is the computed function value at the point x.

float a (Input)

The lower endpoint of the interval in which the minimum point of fcn is to be located.

float b (Input)

The upper endpoint of the interval in which the minimum point of fcn is to be located.

Return Value

The point at which a minimum value of fcn is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_XGUESS, *float* xguess (Input) An initial guess of the minimum point of fcn. Default: xguess = (a + b)/2
IMSL_STEP, *float* step (Input) An order of magnitude estimate of the required change in x. Default: step = 1.0
IMSL_ERR_ABS, *float* err_abs (Input) The required absolute accuracy in the final value of x. On a normal return, there are points on either side of x within a distance err_abs at which fcn is no less than fcn at x. Default: err_abs = 0.0001
IMSL_MAX_FCN, *int* max_fcn (Input) Maximum number of function evaluations allowed. Default: max_fcn = 1000

Description

The function imsl_f_min_uncon uses a safeguarded quadratic interpolation method to find a minimum point of a univariate function. Both the code and the underlying algorithm are based on the subroutine ZXLSF written by M.J.D. Powell at the University of Cambridge.

The function $imsl_f_min_uncon$ finds the least value of a univariate function, f, which is specified by the function fcn. Other required data are two points a and b that define an interval for finding a minimum point from an initial estimate of the solution, x_0 where $x_0 = xguess$. The algorithm begins the search by moving from x_0 to $x = x_0 + s$ where s = step is an estimate of the required change in x and may be positive or negative. The first two function evaluations indicate the direction to the minimum point is found or until x reaches one of the endpoints a or b. During this stage, the step length increases by a factor of between two and nine per function evaluation. The factor depends on the position of the minimum point that is predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we have three points,

 x_1, x_2, x_3 , with $x_1 < x_2 < x_3$, $f(x_1) \ge f(x_2)$, and $f(x_2) \le f(x_3)$.

There are three main rules in the technique for choosing the new *x* from these three points. They are (i) the estimate of the minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance parameter η , which depends on the closeness of *f* to a quadratic, and (iii) whether x_2 is near the center of the range between x_1 and x_3 or is relatively close to an end of this range. In outline, the new value of *x* is as near as possible to the predicted minimum point, subject to being at least ε from x_2 , and subject to being in the longer interval between x_1 and x_2 , or x_2 and x_3 , when x_2 is particularly close to x_1 or x_3 .

The algorithm is intended to provide fast convergence when f has a positive and continuous second derivative at the minimum. Also, the algorithm avoids gross inefficiencies in pathological cases, such as

$$f(x) = x + 1.001|x|$$

The algorithm can automatically make ε large in the pathological cases. In this case, it is usual for a new value of *x* to be at the midpoint of the longer interval that is adjacent to the least-calculated function value. The midpoint strategy is used frequently when changes to *f* are dominated by computer rounding errors, which will almost certainly happen if the user requests an accuracy that is less than the square root of the machine precision. In such cases, the subroutine claims to have achieved the required accuracy if it decides that there is a local minimum point within distance δ of *x*, where $\delta = \text{err}_{abs}$, even though the rounding errors in *f* may cause the existence of other local minimum points nearby. This difficulty is inevitable in minimization routines that use only function values, so high precision arithmetic is recommended.

Examples

Example 1

```
A minimum point of f(x) = e^x - 5x is found.
#include <imsl.h>
#include <math.h>
float
                 fcn(float);
void main ()
{
                a = -100.0;
    float
    float
                 b = 100.0;
    float
                 fx, x;
    x = imsl_f_min_uncon (fcn, a, b, 0);
    fx = fcn(x);
    printf ("The solution is: %8.4f\n", x);
    printf ("The function evaluated at the solution is: \$8.4f\n", fx);
}
float fcn(float x)
```

Chapter 8: Optimization

```
return exp(x) - 5.0*x;
```

Output

The solution is: 1.6094The function evaluated at the solution is: -3.0472

Example 2

A minimum point of $f(x) = x(x^3 - 1) + 10$ is found with an initial guess $x_0 = 3$.

#include <imsl.h>

```
float
              fcn(float);
void main ()
{
               max_fcn = 50;
    int
               a = -10.0;
b = 10.0;
   float
   float
               xguess =
   float
                          3.0;
   float
                          0.1;
               step =
                err_abs = 0.001;
   float
   float
               fx, x;
   x = imsl_f_min_uncon (fcn, a, b,
                          IMSL_XGUESS, xguess,
                          IMSL_STEP, step,
                          IMSL_ERR_ABS, err_abs,
                          IMSL_MAX_FCN, max_fcn,
                          0);
   fx = fcn(x);
   printf ("The solution is: 8.4fn", x);
   printf ("The function evaluated at the solution is: 8.4fn", fx);
}
float fcn(float x)
{
   return x^{(x^{x}x^{-1.0})} + 10.0;
}
```

Output

The solution is: 0.6298 The function evaluated at the solution is: 9.5275

Warning Errors

IMSL_MIN_AT_BOUND	The final value of x is at a bound.
IMSL_NO_MORE_PROGRESS	Computer rounding errors prevent further refinement of x.
IMSL_TOO_MANY_FCN_EVAL	Maximum number of function evaluations exceeded.

min_uncon_deriv

Finds the minimum point of a smooth function f(x) of a single variable using both function and first derivative evaluations.

Synopsis

#include <imsl.h>

float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b, ..., 0)

The type *double* function is imsl_d_min_uncon_deriv.

Required Arguments

float fcn (float x) (Input/Output)

User-supplied function to compute the value of the function to be minimized where x is the point at which the function is evaluated, and fcn is the computed function value at the point x.

float grad (float x) (Input/Output)

User-supplied function to compute the first derivative of the function where x is the point at which the derivative is evaluated, and grad is the computed value of the derivative at the point x.

float a (Input)

The lower endpoint of the interval in which the minimum point of fcn is to be located.

float b (Input)

The upper endpoint of the interval in which the minimum point of fcn is to be located.

Return Value

The point at which a minimum value of fcn is found. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Chapter 8: Optimization

min_uncon_deriv • 383

Optional Arguments

IMSL_XGUESS, *float* xguess (Input) An initial guess of the minimum point of fcn. Default: xguess = (a + b)/2

IMSL_ERR_REL, float err_rel (Input)

The required relative accuracy in the final value of x. This is the first stopping criterion. On a normal return, the solution x is in an interval that contains a local minimum and is less than or equal to

max $(1.0, |x|) * \text{err_rel}$. When the given err_rel is less than zero,

 $\sqrt{\epsilon}$

is used as err_rel where ϵ is the machine precision. Default:

err rel = $\sqrt{\epsilon}$

The derivative tolerance used to decide if the current point is a local minimum. This is the second stopping criterion. x is returned as a solution when grad is less than or equal to grad_tol.grad_tol should be nonnegative; otherwise, zero would be used. Default:

grad tol = $\sqrt{\epsilon}$

where ε is the machine precision

- IMSL_MAX_FCN, int max_fcn (Input)
 Maximum number of function evaluations allowed.
 Default: max_fcn = 1000
- IMSL_FVALUE, *float* *fvalue (Output) The function value at point x.
- IMSL_GVALUE, *float* *gvalue (Output) The derivative value at point x.

Description

The function f_min_uncon_deriv uses a descent method with either the secant method or cubic interpolation to find a minimum point of a univariate function. It starts with an initial guess and two endpoints. If any of the three points is a local minimum point and has least function value, the function terminates with a solution. Otherwise, the point with least function value will be used as the starting point.

From the starting point, say x_c , the function value $f_c = f(x_c)$, the derivative value $g_c = g(x_c)$, and a new point x_n defined by $x_n = x_c - g_c$ are computed. The function $f_n = f(x_n)$, and the derivative $g_n = g(x_n)$ are then evaluated. If either

 $f_n \ge f_c$ or g_n has the opposite sign of g_c , then there exists a minimum point between x_c and x_n , and an initial interval is obtained. Otherwise, since x_c is kept as the point that has lowest function value, an interchange between x_n and x_c is performed. The secant method is then used to get a new point

$$x_s = x_c - g_c \left(\frac{g_n - g_c}{x_n - x_c}\right)$$

Let $x_n = x_s$, and repeat this process until an interval containing a minimum is found or one of the convergence criteria is satisfied. The convergence criteria are as follows:

Criterion 1: $|x_c - x_n| \le \varepsilon_c$

Criterion 2: $|g_c| \le \varepsilon_g$

where $\varepsilon_c = \max \{1.0, |x_c|\} \varepsilon$, ε is an error tolerance, and ε_g is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. Function and derivative are then evaluated at that point, and accordingly a smaller interval that contains a minimum point is chosen. A safeguarded method is used to ensure that the interval be reduced by at least a fraction of the previous interval. Another cubic interpolation is then performed, and this function is repeated until one of the stopping criteria is met.

Examples

Example 1

In this example, a minimum point of $f(x) = e^x - 5x$ is found.

```
#include <imsl.h>
#include <math.h>
               fcn(float);
float
float
               deriv(float);
void main ()
{
   float
               a = -10.0;
               b = 10.0;
   float
               fx, gx, x;
   float
   x = imsl_f_min_uncon_deriv (fcn, deriv, a, b, 0);
   fx = fcn(x);
   gx = deriv(x);
   printf ("The solution is: %7.3f\n", x);
   printf ("The function evaluated at the solution is: 9.3f\n", fx);
   printf ("The derivative evaluated at the solution is: 7.3fn", gx);
}
float fcn(float x)
     return exp(x) - 5.0*(x);
```

Chapter 8: Optimization

min_uncon_deriv • 385

```
}
float deriv (float x)
{
    return exp(x) - 5.0;
}
```

Output

The solution is: 1.609The function evaluated at the solution is: -3.047The derivative evaluated at the solution is: -0.001

Example 2

A minimum point of $f(x) = x(x^3 - 1) + 10$ is found with an initial guess $x_0 = 3$.

```
#include <imsl.h>
#include <stdio.h>
float
                fcn(float);
float
                deriv(float);
void main ()
{
                max_fcn = 50;
    int
                a = -10.0;
    float
    float
                b = 10.0;
                xguess = 3.0;
    float
    float
                fx, gx, x;
    x = imsl_f_min_uncon_deriv (fcn, deriv, a, b,
                                 IMSL_XGUESS, xguess,
                                 IMSL_MAX_FCN, max_fcn,
                                 IMSL_FVALUE, &fx,
                                 IMSL_GVALUE, &gx,
                                 0);
     printf ("The solution is: 7.3fn", x);
     printf ("The function evaluated at the solution is: %7.3f\n", fx);
      printf ("The derivative evaluated at the solution is: 7.3f\n",\ gx);
}
float fcn(float x)
{
      return x^{*}(x^{*}x^{*}x^{-1}) + 10.0;
}
float deriv(float x)
ł
    return 4.0*(x*x*x) - 1.0;
}
```

Output

```
The solution is: 0.630
The function evaluated at the solution is: 9.528
The derivative evaluated at the solution is: 0.000
```

386 • min_uncon_deriv

Warning Errors

IMSL_MIN_AT_LOWERBOUND TH IMSL_MIN_AT_UPPERBOUND TH IMSL_TOO_MANY_FCN_EVAL M

The final value of x is at the lower bound.

The final value of \mathbf{x} is at the upper bound.

Maximum number of function evaluations exceeded.

min_uncon_multivar

Minimizes a function f(x) of *n* variables using a quasi-Newton method.

Synopsis

```
#include <imsl.h>
```

float *imsl_f_min_uncon_multivar (float fcn(), int n, ..., 0)

The type *double* function is imsl_d_min_uncon_multivar.

Required Arguments

float fcn (int n, float x[]) (Input/Output)

User-supplied function to evaluate the function to be minimized where n is the size of x, x is the point at which the function is evaluated, and fcn is the computed function value at the point x.

int n (Input)

Number of variables.

Return Value

A pointer to the minimum point x of the function. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
IMSL_MAX_GRAD, int max_grad,
IMSL_INIT_HESSIAN, int ihess,
IMSL_RETURN_USER, float x[],
IMSL_FVALUE, float *fvalue,
0)
```

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess of the computed solution. Default: xguess = 0

IMSL_GRAD, void grad (int n, float x[], float g[]) (Input/Output)
User-supplied function to compute the gradient at the point x where n is the
size of x, x is the point at which the gradient is evaluated, and g is the
computed gradient at the point x.

IMSL_XSCALE, float xscale[] (Input)

Array with n components containing the scaling vector for the variables. xscale is used mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more detail. Default: xscale[] = 1.0

IMSL_FSCALE, *float* fscale (Input)

Scalar containing the function scaling. fscale is used mainly in scaling the gradient. See keyword IMSL_GRAD_TOL for more detail. Default: fscale = 1.0

IMSL_GRAD_TOL, float grad_tol (Input)

Scaled gradient tolerance. The *i*-th component of the scaled gradient at x is calculated as

$$\frac{|g_i|*max(|x_i|, 1/s_i)}{max(|f(x)|, f_s)}$$

where $g = \nabla f(x)$, s = xscale, and $f_s = fscale$. Default: grad_tol = $\sqrt{\varepsilon}$, $\sqrt[3]{\varepsilon}$ in double where ε is the machine precision.

IMSL_STEP_TOL, float step_tol (Input)

Scaled step tolerance. The *i*-th component of the scaled step between two points *x* and *y* is computed as

$$\frac{|x_i - y_i|}{max(|x_i|, 1/s_i)}$$

where s = xscale. Default: step_tol = $\epsilon^{2/3}$

IMSL_REL_FCN_TOL, float rfcn_tol (Input)

Relative function tolerance.

Default: rfcn_tol = max $(10^{-10}, \epsilon^{2/3})$, max $(10^{-20}, \epsilon^{2/3})$ in double

388 • min_uncon_multivar

IMSL_MAX_STEP, float max_step (Input)

Maximum allowable step size.

Default: max_step = $1000max (\epsilon_1, \epsilon_2)$ where,

$$\varepsilon_1 = \sqrt{\sum_{i=1}^n (s_i t_i)^2}$$

 $\varepsilon_2 = ||s||_2$, s = xscale, and t = xguess.

IMSL_GOOD_DIGIT, *int* ndigit (Input) Number of good digits in the function. The default is machine dependent.

IMSL_MAX_ITN, *int* max_itn (Input) Maximum number of iterations. Default: max_itn = 100

- IMSL_MAX_FCN, *int* max_fcn (Input) Maximum number of function evaluations. Default: max_fcn = 400
- IMSL_MAX_GRAD, int max_grad (Input)
 Maximum number of gradient evaluations.
 Default: max_grad = 400

IMSL_INIT_HESSIAN, int ihess (Input)

Hessian initialization parameter. If ihess is zero, the Hessian is initialized to the identity matrix; otherwise, it is initialized to a diagonal matrix containing

$$max(|f(t)|, f_s) * s_i^2$$

on the diagonal where t = xguess, $f_s = fscale$, and s = xscale. Default: ihess = 0

IMSL_RETURN_USER, *float* x[] (Output) User-supplied array with n components containing the computed solution.

IMSL_FVALUE, *float* *fvalue (Output) Address to store the value of the function at the computed solution.

Description

The function f_min_uncon_multivar uses a quasi-Newton method to find the minimum of a function f(x) of n variables. The problem is stated as follows:

$$\min_{x \in \mathbf{R}^n} f(x)$$

Given a starting point x_c , the search direction is computed according to the formula

$$d = -B^{-1} g_c$$

where *B* is a positive definite approximation of the Hessian, and g_c is the gradient evaluated at x_c . A line search is then used to find a new point

$$x_n = x_c + \lambda d, \lambda > 0$$

such that

$$f(x_n) \le f(x_c) + \alpha g^T d, \qquad \alpha \in (0, 0.5)$$

Finally, the optimality condition $||g(x)|| \le \varepsilon$ is checked where ε is a gradient tolerance. When optimality is not achieved, *B* is updated according to the BFGS formula

$$B \leftarrow B - \frac{Bss^TB}{s^TBs} + \frac{yy^T}{y^Ts}$$

where $s = x_n - x_c$ and $y = g_n - g_c$. Another search direction is then computed to begin the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for imsl_f_min_uncon_multivar occurs when the norm of the gradient is less than the given gradient tolerance grad_tol. The second stopping criterion for imsl_f_min_uncon_multivar occurs when the scaled distance between the last two steps is less than the step tolerance step_tol.

Since by default, a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended; the keyword IMSL_GRAD should be used to provide more accurate gradient evaluation.

390 • min_uncon_multivar

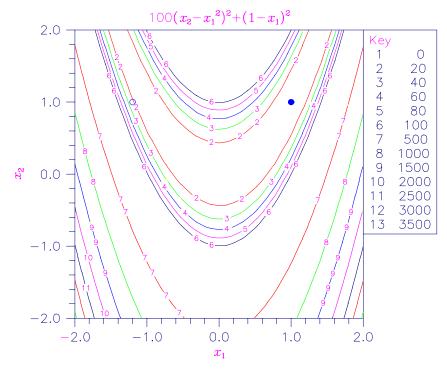


Figure 8-1 Plot of the Rosenbrock Function

Examples

Example 1

The function

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

is minimized. In the following plot, the solid circle marks the minimum.

```
#include <stdio.h>
#include <imsl.h>
void main()
{
        int
                        i, n=2;
        float
                        *result, fx;
                        rosbrk(int, float[]);
        static float
                                 /* Minimize Rosenbrock function */
        result = imsl_f_min_uncon_multivar(rosbrk, n, 0);
        fx = rosbrk(n, result);
                                 /* Print results */
        printf(" The solution is
                                         ");
```

Chapter 8: Optimization

min_uncon_multivar • 391

Output

The solution is 1.000 1.000 The function value is 0.000

Example 2

The function

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

is minimized with the initial guess x = (-1.2, 1.0). The initial guess is marked with an open circle in the figure on page 391.

```
#include <stdio.h>
#include <imsl.h>
void main()
{
        int
                        i, n=2;
                        *result, fx;
        float
        static float
                        rosbrk(int, float[]);
        static void
                        rosgrd(int, float[], float[]);
        static float
                        xguess[2] = {-1.2e0, 1.0e0};
                        grad_tol = .0001;
        static float
/* Minimize Rosenbrock function using initial guesses of -1.2 and 1.0 */
        result = imsl_f_min_uncon_multivar(rosbrk, n, IMSL_XGUESS, xguess,
                                            IMSL_GRAD, rosgrd,
                                            IMSL_GRAD_TOL, grad_tol,
                                            IMSL_FVALUE, &fx, 0);
/* Print results */
        printf(" The solution is
                                        ");
        for (i = 0; i < n; i++) printf("%8.3f", result[i]);</pre>
        printf("n\n The function value is 8.3f\n", fx);
                                 /* End of main */
}
```

Output

The	solution	is		1.000	1.000
The	function	value	is	0.000	

Informational Errors

IMSL_STEP_TOLERANCE	Scaled step tolerance satisfied. The current point may be an approximate local solution, but it is also possible that the algorithm is making very slow progress and is not near a solution, or that step_tol is too big.
Warning Errors	
IMSL_REL_FCN_TOLERANCE	Relative function convergence—Both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance rfcn_tol = #.
IMSL_TOO_MANY_ITN	Maximum number of iterations exceeded.
IMSL_TOO_MANY_FCN_EVAL	Maximum number of function evaluations exceeded.
IMSL_TOO_MANY_GRAD_EVAL	Maximum number of gradient evaluations exceeded.
IMSL_UNBOUNDED	Five consecutive steps have been taken with the maximum step length.
IMSL_NO_FURTHER_PROGRESS	The last global step failed to locate a lower point than the current x value.

Chapter 8: Optimization

Fatal Errors

IMSL_FALSE_CONVERGENCE False convergence—The iterates appear to be converging to a noncritical point. Possibly incorrect gradient information is used, or the function is discontinuous, or the other stopping tolerances are too tight.

nonlin_least_squares

Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_nonlin_least_squares (void fcn(), int m, int n, ..., 0)

The type *double* function is imsl_d_nonlin_least_squares.

Required Arguments

void fcn (int m, int n, float x[], float f[]) (Input/Output)

User-supplied function to evaluate the function that defines the least-squares problem where x is a vector of length n at which point the function is evaluated, and f is a vector of length m containing the function values at point x.

```
int m (Input)
Number of functions.
```

int n (Input)

Number of variables where $n \le m$.

Return Value

#include <imsl.h>

A pointer to the solution x of the nonlinear least-squares problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

394 • nonlin_least_squares

IMSL_ABS_FCN_TOL, float afcn_tol, IMSL_MAX_STEP, float max_step, IMSL_INIT_TRUST_REGION, *float* trust_region, IMSL_GOOD_DIGIT, *int* ndigit, IMSL_MAX_ITN, int max_itn, IMSL_MAX_FCN, *int* max_fcn, IMSL_MAX_JACOBIAN, int max_jacobian, IMSL_INTERN_SCALE, IMSL_TOLERANCE, *float* tolerance, IMSL_RETURN_USER, float x[], IMSL_FVEC, *float* **fvec, IMSL_FVEC_USER, float fvec[], IMSL_FJAC, *float* **fjac, IMSL_FJAC_USER, float fjac[], IMSL_FJAC_COL_DIM, *int* fjac_col_dim, IMSL_RANK, *int* *rank, IMSL_JTJ_INVERSE, float **jtj_inv, IMSL_JTJ_INVERSE_USER, float jtj_inv[], IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim, 0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess.
Default: xguess = 0

User-supplied function to compute the Jacobian where x is a vector of length n at which point the Jacobian is evaluated, fjac is the computed $m \times n$ Jacobian at the point x, and fjac_col_dim is the column dimension of fjac. Note that each derivative $\partial f_i / \partial x_j$ should be returned in fjac[(i-1)*fjac_col_dim+j-1]

IMSL_XSCALE, float xscale[] (Input)

Array with n components containing the scaling vector for the variables. xscale is used mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more detail. Default: xscale[] = 1

IMSL_FSCALE, float fscale[] (Input)

Array with m components containing the diagonal scaling matrix for the functions. The *i*-th component of fscale is a positive scalar specifying the reciprocal magnitude of the *i*-th component function of the problem. Default: fscale[] = 1

IMSL_GRAD_TOL, float grad_tol (Input)

Scaled gradient tolerance. The *i*-th component of the scaled gradient at x is calculated as

$$\frac{|g_i|*max(|x_i|, 1/s_i)}{\frac{1}{2}\|F(x)\|_2^2}$$

where $g = \nabla F(x)$, s = xscale, and

$$\left\|F(x)\right\|_{2}^{2} = \sum_{i=1}^{m} f_{i}(x)^{2}$$

Default:

grad_tol =
$$\sqrt{\epsilon}$$

 $\sqrt[3]{\epsilon}$ in double where ϵ is the machine precision

IMSL_STEP_TOL, float step_tol (Input)

Scaled step tolerance. The *i*-th component of the scaled step between two points *x* and *y* is computed as

$$\frac{\left|x_{i}-y_{y}\right|}{\max\left(\left|x_{i}\right|,1/s_{i}\right)}$$

where s = xscale. Default: step_tol = $\epsilon^{2/3}$ where ϵ is the machine precision.

IMSL_REL_FCN_TOL, *float* rfcn_tol (Input)

Relative function tolerance. Default: rfcn_tol = max (10^{-10} , $\varepsilon^{2/3}$), max (10^{-20} , $\varepsilon^{2/3}$) in double, where ε is the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol (Input)

Absolute function tolerance.

Default: $afcn_tol = max (10^{-20}, \varepsilon^2)$, max $(10^{-40}, \varepsilon^2)$ in double, where ε is the machine precision.

IMSL_MAX_STEP, float max_step (Input)

Maximum allowable step size. Default: max_step = 1000 max (ε_1 , ε_2) where,

$$\epsilon_{1} = \sqrt{\sum_{i=1}^{n} (s_{i}t_{i})^{2}}, \epsilon_{2} = ||s||_{2}$$

s = xscale, and t = xguess

IMSL_INIT_TRUST_REGION, *float* trust_region (Input)

Size of initial trust region radius. The default is based on the initial scaled Cauchy step.

396 • nonlin_least_squares

IMSL_G	OOD_	DIGIT,	int	ndigit	(Input)
	Nur	nber of g	ood	digits in	the function.
	Def	ault: mac	hine	e depende	ent

- IMSL_MAX_ITN, *int* max_itn (Input) Maximum number of iterations. Default: max_itn = 100
- IMSL_MAX_FCN, int max_fcn (Input)
 Maximum number of function evaluations.
 Default: max_fcn = 400
- IMSL_MAX_JACOBIAN, *int* max_jacobian (Input) Maximum number of Jacobian evaluations. Default: max_jacobian = 400

IMSL_INTERN_SCALE

Internal variable scaling option. With this option, the values for xscale are set internally.

IMSL_TOLERANCE, *float* tolerance (Input)

The tolerance used in determining linear dependence for the computation of the inverse of $J^T J$. For imsl_f_nonlin_least_squares, if IMSL_JACOBIAN is specified, then tolerance = $100 \times \text{imsl_d_machine}(4)$ is the default. Otherwise, the square root of imsl_f_machine(4) is the default. For imsl_d_nonlin_least_ squares, if IMSL_JACOBIAN is specified, then tolerance = $100 \times \text{imsl_machine}(4)$ is the default. Otherwise, the square root of imsl_machine(4) is the default. Specified, then tolerance = $100 \times \text{imsl_machine}(4)$ is the default. See imsl_f_machine (Chapter 12, "Utilities").

- IMSL_RETURN_USER, *float* x[] (Output) Array with n components containing the computed solution.
- IMSL_FVEC, float **fvec (Output)

The address of a pointer to a real array of length m containing the residuals at the approximate solution. On return, the necessary space is allocated by <code>imsl_f_nonlin_least_squares</code>. Typically, *float* *fvec is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)

A user-allocated array of size m containing the residuals at the approximate solution.

IMSL_FJAC, *float* **fjac (Output)

The address of a pointer to an array of size $m \times n$ containing the Jacobian at the approximate solution. On return, the necessary space is allocated by imsl_f_nonlin_least_squares. Typically, *float* *fjac is declared, and &fjac is used as an argument.

IMSL_FJAC_USER, *float* fjac[] (Output) A user-allocated array of size $m \times n$ containing the Jacobian at the approximate solution.

Chapter 8: Optimization

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
 The column dimension of fjac.
 Default: fjac_col_dim = n

IMSL_RANK, *int* *rank (Output) The rank of the Jacobian is returned in *rank.

IMSL_JTJ_INVERSE, float **jtj_inv (Output)

The address of a pointer to an array of size $n \times n$ containing the inverse matrix of $J^T J$ where the J is the final Jacobian. If $J^T J$ is singular, the inverse is a symmetric g_2 inverse of $J^T J$. (See imsl_flin_sol_nonnegdef in Chapter 1, "Linear Systems" for a discussion of generalized inverses and definition of the g_2 inverse.) On return, the necessary space is allocated by imsl_f_nonlin_least_squares.

IMSL_JTJ_INVERSE_USER, *float* jtj_inv[] (Output) A user-allocated array of size $n \times n$ containing the inverse matrix of $J^T J$ where the *J* is the Jacobian at the solution.

IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim (Input)
The column dimension of jtj_inv.
Default: jtj_inv_col_dim = n

Description

The function imsl_f_nonlin_least_squares is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least-squares problems. The problem is stated as follows:

$$\min \frac{1}{2} F(x)^{T} F(x) = \frac{1}{2} \sum_{i=1}^{m} f_{i}(x)^{2}$$

where $m \ge n$, $F : \mathbf{R}^n \to \mathbf{R}^m$, and $f_i(x)$ is the *i*-th component function of F(x). From a current point, the algorithm uses the trust region approach,

$$\min_{x \in \mathbf{R}^n} \left\| F(x_c) + J(x_c)(x_n - x_c) \right\|_2$$

subject to $\left\| x_n - x_c \right\|_2 \le \delta_c$

to get a new point x_n , which is computed as

$$x_n = x_c - (J(x_c)^T J(x_c) + \mu_c I)^{-1} J(x_c)^T F(x_c)$$

where $\mu_c = 0$ if $\delta_c \ge ||(J(x_c)^T J(x_c))^{-1} J(x_c)^T F(x_c)||_2$ and $\mu_c > 0$, otherwise. The value μ_c is defined by the function. The vector and matrix $F(x_c)$ and $J(x_c)$ are the function values and the Jacobian evaluated at the current point x_c , respectively. This function is repeated until the stopping criteria are satisfied.

The first stopping criterion for imsl_f_nonlin_least_squares occurs when the norm of the function is less than the absolute function tolerance fcn_tol. The second stopping criterion occurs when the norm of the scaled gradient is less than the given

gradient tolerance grad_tol. The third stopping criterion for imsl_f_nonlin_least_squares occurs when the scaled distance between the last two steps is less than the step tolerance step_tol. For more details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

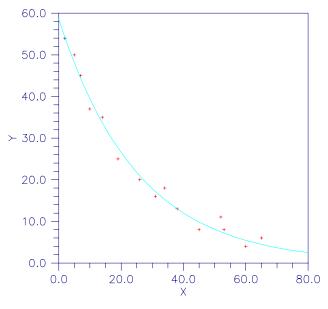


Figure 8-2 Plot of the Nonlinear Fit

Examples Example 1

In this example, the nonlinear data-fitting problem found in Dennis and Schnabel (1983, p. 225),

$$min\frac{1}{2}\sum_{i=1}^{3}f_i(x)^2$$

where

$$f_i(x) = e^{t_i x} - y_i$$

is solved with the data t = (1, 2, 3) and y = (2, 4, 3). #include <stdio.h> #include <imsl.h> #include <math.h> fcn(int, int, float[], float[]); void void main() int m=3, n=1; float *result, fx[3];

Chapter 8: Optimization

{

nonlin_least_squares • 399

```
result = imsl_f_nonlin_least_squares(fcn, m, n, 0);
        fcn(m, n, result, fx);
/* Print results */
        imsl_f_write_matrix("The solution is", 1, 1, result, 0);
        imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
}
                                  /* End of main */
void fcn(int m, int n, float x[], float f[])
{
     int i;
     float y[3] = \{2.0, 4.0, 3.0\};
     float t[3] = \{1.0, 2.0, 3.0\};
     for (i=0; i<m; i++)</pre>
          f[i] = \exp(x[0]*t[i]) - y[i];
}
                                  /* End of function */
```

Output

```
The solution is
0.4401
The function values are
1 2 3
-0.447 -1.589 0.744
```

Example 2

In this example, imsl_f_nonlin_least_squares is first invoked to fit the following nonlinear regression model discussed by Neter et al. (1983, pp. 475–478):

$$y_i = \theta_1 e^{\theta_2 x_i} + \varepsilon_i$$
 $i = 1, 2, ..., 15$

where the ε_i 's are independently distributed each normal with mean zero and variance σ^2 . The estimate of σ^2 is then computed as

$$s^{2} = \frac{\sum_{i=1}^{15} e_{i}^{2}}{15 - \operatorname{rank}(J)}$$

where e_i is the *i*-th residual and *J* is the Jacobian. The estimated asymptotic variancecovariance matrix of $\hat{\theta}_1$ and $\hat{\theta}_2$ is computed as

est. asy. var
$$(\hat{\theta}) = s^2 (J^T J)^{-1}$$

Finally, the diagonal elements of this matrix are used together with $imsl_ft_inverse_cdf$ (Chapter 9) to compute 95% confidence intervals on θ_1 and θ_2 .

#include <math.h>
#include <imsl.h>

void exampl(int, int, float[], float[]);

400 • nonlin_least_squares

```
void main()
                          i, j, m=15, n=2, rank;
         int
         float
                          a, *result, e[15], jtj_inv[4], s2, dfe;
                          *fmt="%12.5e";
         char
         static float
                          xguess[2] = \{60.0, -0.03\};
        static float
                          grad_tol = 1.0e-3;
        result = imsl_f_nonlin_least_squares(exampl, m, n,
                                             IMSL_XGUESS, xguess,
                                             IMSL_GRAD_TOL, grad_tol,
                                             IMSL_FVEC_USER, e,
                                             IMSL_RANK, &rank,
                                             IMSL_JTJ_INVERSE_USER, jtj_inv,
                                             0);
        dfe = (float) (m - rank);
        s2 = 0.0;
        for (i=0; i<m; i++)</pre>
            s2 += e[i] * e[i];
        s2 = s2 / dfe;
         j = n * n;
         for (i=0; i<j; i++)</pre>
              jtj_inv[i] = s2 * jtj_inv[i];
                                     /* Print results */
         imsl_f_write_matrix (
                      "Estimated Asymptotic Variance-Covariance Matrix",
                      2, 2, jtj_inv, IMSL_WRITE_FORMAT, fmt, 0);
        printf(" \n
                                95%% Confidence Intervals \n
                                                                       ");
        printf(" Estimate Lower Limit Upper Limit \n ");
        for (i=0; i<n; i++) {</pre>
             j = i * (n+1);
             a = imsl_f_t_inverse_cdf (0.975, dfe) * sqrt(jtj_inv[j]);
             printf(" %10.3f %12.3f %12.3f \n", result[i],
                      result[i] - a, result[i] + a);
      }
}
                                     /* End of main */
void exampl(int m, int n, float x[], float f[])
{
     int i;
     float y[15] = { 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,

18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0 };

float xdata[15] = { 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
                            34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0 };
     for (i=0; i<m; i++)</pre>
           f[i] = y[i] - x[0]*exp(x[1]*xdata[i]);
}
                                     /* End of function */
             Output
Estimated Asymptotic Variance-Covariance Matrix
                        1
                                        2
              2.17524e+00 -1.80141e-03
         1
```

Chapter 8: Optimization

nonlin_least_squares • 401

2 -1.80141e-03 2.97216e-06

 95% Confidence Intervals

 Estimate Lower Limit Upper Limit

 58.608
 55.422
 61.795

 -0.040
 -0.043
 -0.036

Informational Errors

IMSL_STEP_TOLERANCE	Scaled step tolerance satisfied. The current point may be an approximate local solution, but it is also possible that the algorithm is making very slow progress and is not near a solution, or that step_tol is too big.
Warning Errors	
IMSL_LITTLE_FCN_CHANGE	Both the actual and predicted relative reductions in the function are less than or equal to the relative function tolerance.
IMSL_TOO_MANY_ITN	Maximum number of iterations exceeded.
IMSL_TOO_MANY_FCN_EVAL	Maximum number of function evaluations exceeded.
IMSL_TOO_MANY_JACOBIAN_EVAL	Maximum number of Jacobian evaluations exceeded.
IMSL_UNBOUNDED	Five consecutive steps have been taken with the maximum step length.
Fatal Errors	
IMSL_FALSE_CONVERGE	The iterates appear to be converging to a noncritical point.

lin_prog

Solves a linear programming problem using the revised simplex algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_lin_prog (int m, int n, float a[], float b[],
 float c[], ..., 0)

The type *double* function is imsl_d_lin_prog.

Required Arguments

int m (Input) Number of constraints.

```
int n (Input)
Number of variables.
```

```
float a[] (Input)
```

Array of size $m \times n$ containing a matrix with coefficients of the m constraints.

float b[] (Input)

Array with m components containing the right-hand side of the constraints; if there are limits on both sides of the constraints, then b contains the lower limit of the constraints.

```
float c[] (Input)
```

Array with n components containing the coefficients of the objective function.

Return Value

A pointer to the solution x of the linear programming problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_UPPER_LIMIT, float bu[] (Input)
Array with m components containing the upper limit of the constraints that
have both the lower and the upper bounds. If no such constraint exists, then
bu is not needed.

IMSL_CONSTR_TYPE, int irtype[] (Input)

Array with m components indicating the types of general constraints in the matrix a. Let $r_i = a_{i1}x_1 + \ldots + a_{in}x_n$. Then, the value of irtype(i) signifies the following:

irtype(i)	Constraint
0	$r_i = b_i$
1	$r_i \leq bu_i$
2	$r_i \ge b_i$
3	$b_i \le r_i \le bu_i$

Default: irtype = 0

IMSL_LOWER_BOUND, float xlb[] (Input)

Array with n components containing the lower bound on the variables. If there is no lower bound on a variable, then 10^{30} should be set as the lower bound. Default: xlb = 0

IMSL_UPPER_BOUND, float xub[] (Input)

Array with n components containing the upper bound on the variables. If there is no upper bound on a variable, then -10^{30} should be set as the upper bound. Default: xub = ∞

IMSL_MAX_ITN, *int* max_itn (Input) Maximum number of iterations. Default: max_itn = 10000

IMSL_OBJ, float *obj (Output)

Optimal value of the objective function.

IMSL_RETURN_USER, float x[] (Output)

Array with n components containing the primal solution.

IMSL_DUAL, *float* **y (Output)

The address of a pointer y to an array with m components containing the dual solution. On return, the necessary space is allocated by imsl_f_lin_prog. Typically, *float* *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, *float* y[] (Output)

A user-allocated array of size m. On return, y contains the dual solution.

Description

The function imsl_f_lin_prog uses a revised simplex method to solve linear programming problems, i.e., problems of the form

$$\min_{x \in \mathbf{R}^n} c^T x \quad \text{subject to } b_l \le A_x \le b_u$$
$$x_l \le x \le x_u$$

where *c* is the objective coefficient vector, *A* is the coefficient matrix, and the vectors b_l , b_u , x_l , and x_u are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

Examples

Example 1

The linear programming problem in the standard form

$$\min f(x) = -x_1 - 3x_2$$

subject to $x_1 + x_2 + x_3 = 1.5$
 $x_1 + x_2 - x_4 = 0.5$
 $x_1 + x_5 = 1.0$
 $x_2 + x_6 = 1.0$
 $x_i \ge 0$, for $i = 1, ..., 6$

is solved.

```
#include <imsl.h>
```

```
main()
{
      int
                        m = 4;
      int
                         n = 6;
                         \begin{array}{c} n = 0, \\ a[] = \{1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, \\ 1.0, 1.0, 0.0, -1.0, 0.0, 0.0, \\ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, \\ 0.0, 1.0, 0.0, 0.0, 0.0, 1.0\}; \\ b[] = \{1.5, 0.5, 1.0, 1.0\}; \end{array} 
      float
      float
      float
                         c[] = \{-1.0, -3.0, 0.0, 0.0, 0.0, 0.0\};
      float
                         *x;
                                                   /* Solve the LP problem */
      x = imsl_f_lin_prog (m, n, a, b, c, 0);
                                                  /* Print x */
      imsl_f_write_matrix ("x", 1, 6, x, 0);
}
                  Output
                                                       х
                                                                                       5
0.5
                                 2
                                                    3
              1
                                                                       4
                                                                                                             б
           0.5
                              1.0
                                                 0.0
                                                                    1.0
                                                                                                          0.0
                  Example 2
                  The linear programming problem in the previous example can be formulated as follows:
                                                          \min f(x) = -x_1 - 3x_2
                                                     subject to 0.5 \le x_1 + x_2 \le 1.5
                                                                 0 \le x_1 \le 1.0
                                                                 0 \le x_2 \le 1.0
                  This problem can be solved more efficiently.
```

#include <imsl.h>

main()
{

int irtype[] = {3}; int m = 1; int n = 2;

Chapter 8: Optimization

lin_prog • 405

```
xub[ ] = {1.0, 1.0};
a[ ] = {1.0, 1.0};
b[ ] = {0.5};
float
float
float
float
           bu[] = \{1.5\};
            c[] = \{-1.0, -3.0\};
float
float
            d[1];
float
            obj, *x;
                            /* Solve the LP problem */
x = imsl_f_lin_prog (m, n, a, b, c,
                     IMSL_UPPER_LIMIT, bu,
                     IMSL_CONSTR_TYPE, irtype,
                     IMSL_UPPER_BOUND, xub,
                     IMSL_DUAL_USER, d,
                     IMSL_OBJ, &obj,
                     0);
/* Print d */
imsl_f_write_matrix ("d", 1, 1, d, 0);
printf("\n obj = %g \n", obj);
       Output
       х
     1
                 2
   0.5
               1.0
```

obj = -3.5

d

-1

}

Warning Errors

IMSL_PROB_UNBOUNDED	The problem is unbounded.
IMSL_TOO_MANY_ITN	Maximum number of iterations exceeded.
IMSL_PROB_INFEASIBLE	The problem is infeasible.
Fatal Errors	
IMSL_NUMERIC_DIFFICULTY	Numerical difficulty occurred. If float is currently being used, using double may help.
IMSL_BOUNDS_INCONSISTENT	The bounds are inconsistent.

quadratic_prog

Solves a quadratic programming problem subject to linear equality or inequality constraints.

Synopsis

#include <imsl.h>

float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[],
 float g[], float h[], ..., 0)

406 • quadratic_prog

The type *double* function is imsl_d_quadratic_prog.

Required Arguments

int m (Input)

The number of linear constraints.

int n (Input)

The number of variables.

int meg (Input)

The number of linear equality constraints.

float a[] (Input)

Array of size $m \times n$ containing the equality constraints in the first meq rows, followed by the inequality constraints.

float b[] (Input)

Array with m components containing right-hand sides of the linear constraints.

float g[] (Input)

Array with n components containing the coefficients of the linear term of the objective function.

float h[] (Input)

Array of size $n \times n$ containing the Hessian matrix of the objective function. It must be symmetric positive definite. If h is not positive definite, the algorithm attempts to solve the QP problem with h replaced by h + diag * I such that h + diag * I is positive definite.

Return Value

A pointer to the solution x of the QP problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[],
 float g[], float h[],
 IMSL_A_COL_DIM, int a_col_dim,
 IMSL_H_COL_DIM, int h_col_dim,
 IMSL_RETURN_USER, float x[],
 IMSL_DUAL, float **y,
 IMSL_DUAL_USER, float y[],
 IMSL_ADD_TO_DIAG_H, float *diag,
 IMSL_OBJ, float *obj,
 0)
Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
Leading dimension of A exactly as specified in the dimension statement of the

calling program. Default: a_col_dim = n

IMSL_H_COL_DIM, int h_col_dim (Input)

Leading dimension of h exactly as specified in the dimension statement of the calling program.

Default: n_col_dim = n

IMSL_RETURN_USER, *float* x[] (Output) Array with n components containing the solution.

IMSL_DUAL, *float* **y (Output)

The address of a pointer y to an array with n components containing the Lagrange multiplier estimates. On return, the necessary space is allocated by $imsl_f_quadratic_prog$. Typically, *float* *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[] (Output)

A user-allocated array with n components. On return, y contains the Lagrange multiplier estimates.

IMSL_ADD_TO_DIAG_H, float *diag (Output)

Scalar equal to the multiple of the identity matrix added to h to give a positive definite matrix.

```
IMSL_OBJ, float *obj (Output)
The optimal object function found.
```

Description

The function imsl_f_quadratic_prog is based on M.J.D. Powell's implementation of the Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP problems subject to general linear equality/inequality constraints (Goldfarb and Idnani 1983); i.e., problems of the form

$$\min_{x \in \mathbf{R}^{n}} g^{T} x + \frac{1}{2} x^{T} H x$$

subject to $A_{1} x = b_{1}$
 $A_{2} x \ge b_{2}$

given the vectors b_1 , b_2 , and g, and the matrices H, A_1 , and A_2 . H is required to be positive definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is not positive definite, a positive definite perturbation of H is used in place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, $H + \alpha I$, is used in the QP problem, then $H + \alpha I$ also should be used in the definition of the Lagrange multipliers.

Examples

Example 1

The quadratic programming problem

$$\min f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 2x_2x_3 - 2x_4x_5 - 2x_1$$

subject to $x_1 + x_2 + x_3 + x_4 + x_5 = 5$
 $x_3 - 2x_4 - 2x_5 = -3$

is solved.

#include <imsl.h>

```
main()
```

```
{
             m = 2;
   int
             n = 5;
   int
   int
             meq = 2;
   float
             *x;
             h[ ] =
                   \{2.0, 0.0, 0.0, 0.0, 0.0, 0.0,
   float
                    0.0, 2.0, -2.0, 0.0, 0.0,
             float
                    0.0, 0.0, 1.0, -2.0, -2.0};
            float
   float
   x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h, 0);
                         /* Print x */
   imsl_f_write_matrix ("x", 1, 5, x, 0);
}
```

Output

		x		
1	2	3	4	5
1	1	1	1	1

Example 2

Another quadratic programming problem

 $\min f(x) = x_1^2 + x_2^2 + x_3^2$

subject to $x_1 + 2x_2 - x_3 = 4$ $x_1 - x_2 + x_3 = -2$

is solved.

```
#include <imsl.h>
```

```
float h[] = {2.0, 0.0, 0.0,
            0.0, 2.0, 0.0,
            0.0, 0.0, 2.0};
float a[] = {1.0, 2.0, -1.0,
            1.0, -1.0, 1.0};
float b[] = {4.0, -2.0};
float g[] = {0.0, 0.0, 0.0};
main()
```

Chapter 8: Optimization

quadratic_prog • 409

{

}

```
m = 2;
int
              n = 3;
int
int
              meq = 2;
float
              obj;
float
              d[2];
float
             *x;
                                /* Solve the QP problem */
x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h,
        IMSL_OBJ,
                          &obj,
        IMSL_DUAL_USER,
                          d,
        0);
                                /* Print x */
imsl_f_write_matrix ("x", 1, 3, x, 0);
                                 /* Print d */
imsl_f_write_matrix ("d", 1, 2, d, 0);
printf("\n obj = %g \n", obj);
```

Output

 $\begin{array}{ccccccc}
 & x & & & \\
 & 1 & 2 & 3 \\
 & 0.286 & 1.429 & -0.857 \\ & d & & \\
 & 1 & 2 \\
 & 1.143 & -0.571 & & \\
\end{array}$

obj = 2.85714

Warning Errors

IMSL_NO_MORE_PROGRESS	Due to the effect of computer rounding error, a change in the variables fail to improve the objective function value; usually the solution is close to optimum.
Fatal Errors	
IMSL_SYSTEM_INCONSISTENT	The system of equations is inconsistent. There is no solution.

min_con_gen_lin

Minimizes a general objective function subject to linear equality/inequality constraints.

Synopsis

#include <imsl.h>

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int neq, float a[], float b[], float xlb[], float xub[], ..., 0)

410 • min_con_gen_lin

The type *double* function is imsl_d_min_con_gen_lin.

Required Arguments

void fcn (int n, float x[], float *f (Input/Output)

User-supplied function to evaluate the function to be minimized. Argument x is a vector of length n at which point the function is evaluated, and f contains the function value at x.

int nvar (Input)

Number of variables.

int ncon (Input)

Number of linear constraints (excluding simple bounds).

int neq (Input)

Number of linear equality constraints.

float a[] (Input)

Array of size $ncon \times nvar$ containing the equality constraint gradients in the first neq rows followed by the inequality constraint gradients.

float b[] (Input)

Array of size ncon containing the right-hand sides of the linear constraints. Specifically, the constraints on the variables

 x_i , i = 0, nvar - 1, are $a_{k,0}x_0 + \ldots + a_{k,nvar-1}x_{nvar-1} = b_k$, $k = 0, \ldots$, neq - 1 and $a_{k,0}x_0 + \ldots + a_{k,nvar-1}x_{nvar-1} \le b_k$, k = neq, ..., ncon - 1. Note that the data that define the equality constraints come before the data of the inequalities.

float xlb[] (Input)

Array of length nvar containing the lower bounds on the variables; choose a very large negative value if a component should be unbounded below or set xub[i] = xub[i] to freeze the *i*-th variable. Specifically, these simple bounds are $xlb[i] \le x_i$, for i = 1, ..., nvar.

float xub[] (Input)

Array of length nvar containing the upper bounds on the variables; choose a very large positive value if a component should be unbounded above. Specifically, these simple bounds are $x_i \leq \text{xub}[i]$, for i = 1, nvar.

Return Value

A pointer to the solution x. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int a, float b, float xlb[], float xub[], IMSL_XGUESS, float xguess[],

```
IMSL_GRADIENT, void gradient(),
IMSL_MAX_FCN, int max_fcn,
IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact,
IMSL_ACTIVE_CONSTRAINT, int **iact,
IMSL_ACTIVE_CONSTRAINT_USER, int *iact_user,
IMSL_LAGRANGE_MULTIPLIERS, float **lagrange,
IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user,
IMSL_TOLERANCE, float tolerance,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
0)
```

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_GRADIENT, void gradient (int n, float x[], float g[]) (Input)
User-supplied function to compute the gradient at the point x, where x is a
vector of length n, and g is the vector of length n containing the values of the
gradient of the objective function.

- IMSL_MAX_FCN, *int* max_fcn (Input) Maximum number of function evaluations. Default: max_fcn = 400
- IMSL_NUMBER_ACTIVE_CONSTRAINTS, *int* *nact (Output) Final number of active constraints.
- IMSL_ACTIVE_CONSTRAINT, int **iact (Output)
 The address of a pointer to an int, which on exit, points to an array containing
 the nact indices of the final active constraints.

IMSL_ACTIVE_CONSTRAINT_USER, *int* *iact_user (Output) A user-supplied array of length at least ncon + 2*nvar containing the indices of the final active constraints in the first nact locations.

- IMSL_LAGRANGE_MULTIPLIERS, *float* **lagrange (Output) The address of a pointer, which on exit, points to an array containing the Lagrange multiplier estimates of the final active constraints in the first nact locations.
- IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user (Output)
 A user-supplied array of length at least nvar containing the Lagrange
 multiplier estimates of the final active constraints in the first nact locations.

IMSL_TOLERANCE, *float* tolerance (Input) The nonnegative tolerance on the first order conditions at the calculated solution. Default: tolerance = $\sqrt{\varepsilon}$, where ε is machine epsilon IMSL_OBJ, *float* *obj (Output)

The value of the objective function.

IMSL_RETURN_USER, float x[] (Output)

User-supplied array with nvar components containing the computed solution.

Description

The function imsl_f_min_con_gen_lin is based on M.J.D. Powell's TOLMIN, which solves linearly constrained optimization problems, i.e., problems of the form

 $\min f(x)$

subject to

$$A_1 x = b_1$$
$$A_2 x \le b_2$$
$$x_l \le x \le x_u$$

A = h

given the vectors b_1 , b_2 , x_l , and x_u and the matrices A_1 and A_2 .

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality constraints are consistent, the method will revise x^0 , the initial guess, to satisfy

 $A_1 x = b_1$

Next, x^0 is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible x^k , let J_k be the set of indices of inequality constraints that have small residuals. Here, the simple bounds are treated as inequality constraints. Let I_k be the set of indices of active constraints. The following quadratic programming problem

$$\min f\left(x^{k}\right) + d^{T}\nabla f\left(x^{k}\right) + \frac{1}{2}d^{T}B^{k}d$$

subject to

$$a_j d = 0, j \in I_k$$

 $a_j d \le 0, j \in J_k$

is solved to get (d^k, λ^k) where a_j is a row vector representing either a constraint in A_1 or A_2 or a bound constraint on x. In the latter case, the $a_j = e_i$ for the bound constraint $x_i \le (x_u)_i$ and $a_j = -e_i$ for the constraint $-x_i \le (x_l)_i$. Here, e_i is a vector with 1 as the *i*-th component, and zeros elsewhere. Variables λ^k are the Lagrange multipliers, and B^k is a positive definite approximation to the second derivative $\nabla^2 f(x^k)$.

After the search direction d^k is obtained, a line search is performed to locate a better point. The new point $x^{k+1} = x^k + \alpha^k d^k$ has to satisfy the conditions

$$f(x^{k} + \alpha^{k} d^{k}) \le f(x^{k}) + 0.1 \ \alpha^{k} \ (d^{k})^{T} \ \nabla f(x^{k})$$

and

$$(d^K)^T \nabla f(x^k + \alpha^k d^k) \ge 0.7 \ (d^k)^T \nabla f(x^K)$$

Chapter 8: Optimization

The main idea in forming the set J_k is that, if any of the equality constraints restricts the step-length α^k , then its index is not in J_k . Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation B^{K} , is updated by the BFGS formula, if the condition

 $(d^{K})^{T}\nabla f(x^{k} + \alpha^{k}d^{k}) - \nabla f(x^{k}) > 0$

holds. Let $x^k \leftarrow x^{k+1}$, and start another iteration.

The iteration repeats until the stopping criterion

$$\|\nabla f(x^k) - A^k \lambda^K\|_2 \le \tau$$

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 1989).

Since a finite difference method is used to approximate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, if the gradient can be easily provided, the option IMSL_GRADIENT should be used.

Example 1

In this example, the problem

$$\min f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 2x_2x_3 - 2x_4x_5 - 2x_1$$

subject to $x_1 + x_2 + x_3 + x_4 + x_5 = 5$
 $x_3 - 2x_4 - 2x_5 = -3$
 $0 \le x \le 10$

is solved.

```
#include <imsl.h>
```

```
main()
{
        void
                          fcn(int, float *, float *);
        int
                          neq = 2;
        int
                          ncon = 2;
                          nvar = 5;
        int.
        float
                          obj;
        float
                          a[] = \{1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                          0.0, 0.0, 1.0, -2.0, -2.0};
b[] = {5.0, -3.0};
        float
        float
                          xlb[] = \{0.0, 0.0, 0.0, 0.0, 0.0\};
                          xub[] = \{10.0, 10.0, 10.0, 10.0, 10.0\};
        float
        float
                         *x;
        x = imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
                                      0);
        imsl_f_write_matrix("Solution", 1, nvar, x, 0);
}
```

```
void fcn(int n, float *x, float *f)
        f = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3] + x[4] * x[4]
              - 2.0*x[1]*x[2] - 2.0*x[3] * x[4] - 2.0*x[0];
}
             Output
                           Solution
                       2
         1
                                    3
                                                 4
                                                               5
                                                 1
                                                               1
         1
                       1
                                    1
             Example 2
```

In this example, the problem from Schittkowski (1987)

```
\min f(x) = -x_0 x_1 x_2
subject to -x_0 - 2x_1 - 2x_2 \le 0
      x_0 + 2x_1 + 2x_2 \le 72
           0 \le x_0 \le 20
           0 \le x_1 \le 11
           0 \le x_2 \le 42
```

is solved with an initial guess of $x_0 = 10$, $x_1 = 10$ and $x_2 = 10$. #include <imsl.h>

```
main()
{
```

```
void
                   fcn(int, float *, float *);
void
                   grad(int, float *, float *);
int
                   neq = 0;
int
                   ncon = 2i
                   nvar = 3;
int
                   lda = 2;
int
float
                   obj, x[3];
                   a[] = \{-1.0, -2.0, -2.0, \\ 1.0, 2.0, 2.0\};
float
                   xlb[] = \{0.0, 0.0, 0.0\};
float
                   xub[] = \{20.0, 11.0, 42.0\};
float
                   xguess[] = {10.0, 10.0, 10.0};
b[] = {0.0, 72.0};
float
float
```

```
imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
                               IMSL_GRADIENT, grad,
                               IMSL_XGUESS, xguess,
                               IMSL_OBJ, &obj,
                               IMSL_RETURN_USER, x,
                               0);
        imsl_f_write_matrix("Solution", 1, nvar, x, 0);
        printf("Objective value = %f\n", obj);
void fcn(int n, float *x, float *f)
```

Chapter 8: Optimization

}

{

min con gen lin • 415

```
f = -x[0] * x[1] * x[2];
}
void grad(int n, float *x, float *g)
{
        g[0] = -x[1]*x[2];
        g[1] = -x[0] * x[2];
        g[2] = -x[0] * x[1];
}
            Output
             Solution
         1
                      2
                                   3
        20
                                  15
                     11
Objective value = -3300.000000
```

bounded_least_squares

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_bounded_least_squares.

Required Arguments

void fcn (int m, int n, float x[], float f[]) (Input/Output)

User-supplied function to evaluate the function that defines the least-squares problem where x is a vector of length n at which point the function is evaluated, and f is a vector of length m containing the function values at point x.

int m (Input)

Number of functions.

int n (Input)

Number of variables where $n \le m$.

int ibtype (Input)

Scalar indicating the types of bounds on the variables.

ibtype	Action
0	User will supply all the bounds.
1	All variables are nonnegative
2	All variables are nonpositive.

ibtype	Action
3	User supplies only the bounds on 1st variable, all other variables will have the same bounds

float xlb[] (Input, Output, or Input/Output)

Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value should be set to -10^6 .

float xub[] (Input, Output, or Input/Output)

Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value should be set to 10^6 .

Return Value

A pointer to the solution x of the nonlinear least-squares problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
float *imsl_f_bounded_least_squares (void fcn(), int m, int n,
       int ibtype, float xlb[], float xub[],
       IMSL_XGUESS, float xguess[],
       IMSL_JACOBIAN, void jacobian(),
       IMSL_XSCALE, float xscale[],
       IMSL_FSCALE, float fscale[],
       IMSL_GRAD_TOL, float grad_tol,
       IMSL_STEP_TOL, float step_tol,
       IMSL_REL_FCN_TOL, float rfcn_tol,
       IMSL_ABS_FCN_TOL, float afcn_tol,
       IMSL_MAX_STEP, float max_step,
       IMSL_INIT_TRUST_REGION, float trust_region,
       IMSL_GOOD_DIGIT, int ndigit,
       IMSL_MAX_ITN, int max_itn,
       IMSL_MAX_FCN, int max_fcn,
       IMSL_MAX_JACOBIAN, int max_jacobian,
       IMSL_INTERN_SCALE,
       IMSL_RETURN_USER, float x[],
       IMSL_FVEC, float **fvec,
       IMSL_FVEC_USER, float fvec[],
       IMSL_FJAC, float **fjac,
       IMSL_FJAC_USER, float fjac[],
```

```
IMSL_FJAC_COL_DIM, int fjac_col_dim,
0)
```

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess. Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[], int
fjac_col_dim) (Input)

User-supplied function to compute the Jacobian where x is a vector of length n at which point the Jacobian is evaluated, fjac is the computed $m \times n$ Jacobian at the point x, and fjac_col_dim is the column dimension of fjac. Note that each derivative f_i/x_j should be returned in fjac[(i-1)*fjac_col_dim+j -1].

IMSL_XSCALE, float xscale[] (Input)

Array with n components containing the scaling vector for the variables. Argument xscale is used mainly in scaling the gradient and the distance between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more detail.

Default: xscale[] = 1

IMSL_FSCALE, float fscale[] (Input)

Array with m components containing the diagonal scaling matrix for the functions. The *i*-th component of fscale is a positive scalar specifying the reciprocal magnitude of the *i*-th component function of the problem. Default: fscale[] = 1

IMSL_GRAD_TOL, float grad_tol (Input)

Scaled gradient tolerance. The *i*-th component of the scaled gradient at x is calculated as

$$\frac{|g_i|*max(|x_i|,1/s_i)}{\frac{1}{2}/|F(x)|_2^2}$$

where $g = \nabla F(x)$, s = xscale, and

$$\|F(x)\|_{2}^{2} = \sum_{i=1}^{m} f_{i}(x)^{2}$$

Default: grad_tol = $\sqrt{\epsilon}, \sqrt[3]{\epsilon}$ in double where ϵ is the machine precision

IMSL_STEP_TOL, float step_tol (Input)

Scaled step tolerance. The *i*-th component of the scaled step between two points *x*, and *y*, is computed as

$$\frac{|x_i - y_y|}{max(|x_i|, 1/s_i)}$$

where s = xscale. Default: step_tol = $\varepsilon^{2/3}$, where ε is the machine precision

IMSL_REL_FCN_TOL, float rfcn_tol (Input)

Relative function tolerance. Default: rfcn_tol = max(10⁻¹⁰, $\varepsilon^{2/3}$), max(10⁻²⁰, $\varepsilon^{2/3}$) in double, where ε is the machine precision

 $\texttt{IMSL_ABS_FCN_TOL}, \ \textit{float} \ \texttt{afcn_tol} \ (\texttt{Input})$

Absolute function tolerance. Default: $afcn_tol = max(10^{-20}, \varepsilon^2)$, $max(10^{-40}, \varepsilon^2)$ in double, where ε is the machine precision

IMSL_MAX_STEP, float max_step (Input)

Maximum allowable step size.

Default: max_step = $1000 \max(\varepsilon_1, \varepsilon_2)$, where

$$\varepsilon_1 = \sqrt{\sum_{i=1}^n (s_i t_i)^2}, \varepsilon_2 = ||s||_2$$

for s = xscale and t = xguess.

IMSL_INIT_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled
Cauchy step.

- IMSL_GOOD_DIGIT, *int* ndigit (Input) Number of good digits in the function. Default: machine dependent
- IMSL_MAX_ITN, *int* max_itn (Input) Maximum number of iterations. Default: max_itn = 100
- IMSL_MAX_FCN, int max_fcn (Input)
 Maximum number of function evaluations.
 Default: max_fcn = 400
- IMSL_MAX_JACOBIAN, *int* max_jacobian (Input) Maximum number of Jacobian evaluations. Default: max_jacobian = 400

IMSL_INTERN_SCALE Internal variable scaling option. With this option, the values for xscale are set internally.

IMSL_RETURN_USER, *float* x[] (Output) Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
The address of a pointer to a real array of length m containing the residuals at
the approximate solution. On return, the necessary space is allocated by

Chapter 8: Optimization

imsl_f_bounded_least_squares. Typically, float *fvec is declared, and &fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)

A user-allocated array of size m containing the residuals at the approximate solution.

IMSL_FJAC, float **fjac (Output)

The address of a pointer to an array of size $m \times n$ containing the Jacobian at the approximate solution. On return, the necessary space is allocated by imsl_f_bounded_least_squares. Typically, *float* *fjac is declared, and &fjac is used as an argument.

- IMSL_FJAC_USER, *float* fjac[] (Output) A user-allocated array of size $m \times n$ containing the Jacobian at the approximate solution.
- IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
 The column dimension of fjac.
 Default: fjac_col_dim = n

Description

The function imsl_f_bounded_least_squares uses a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear least-squares problems subject to simple bounds on the variables. The problem is stated as follows:

$$min\frac{1}{2}F(x)^{T}F(x) = \frac{1}{2}\sum_{i=1}^{m}f_{i}(x)^{2}$$

subject to $l \le x \le u$

where $m \ge n$, $F : \mathbb{R}^n \to \mathbb{R}^m$, and $f_i(x)$ is the *i*-th component function of F(x). From a given starting point, an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a "free variable" if it is not in the active set. The routine then computes the search direction for the free variables according to the formula

$$d = -(J^T J + \mu I)^{-1} J^T F$$

where μ is the Levenberg-Marquardt parameter, F = F(x), and *J* is the Jacobian with respect to the free variables. The search direction for the variables in IA is set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality conditions are checked. The conditions are

$$||g(x_i)|| \le \varepsilon, l_i < x_i < u_i$$

 $g(x_i) < 0, x_i = u_i$
 $g(x_i) > 0, x_i = l_i$

420 • bounded_least_squares

where ε is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some singleprecision calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a noncritical point. In such cases, high-precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided, the option IMSL_JACOBIAN should be used.

Examples

Example 1

In this example, the nonlinear least-squares problem

$$min\frac{1}{2}\sum_{i=0}^{1}f_{i}(x)^{2}$$
$$-2 \le x_{0} \le 0.5$$
$$-1 \le x_{1} \le 2$$

where

$$f_0(x) = 10(x_1 - x_0^2)$$
 and $f_1(x) = (1 - x_0)$

is solved with an initial guess (-1.2, 1.0).

```
#include <imsl.h>
#include <math.h>
#define M
                 2
#define N
                 2
#define LDFJAC 2
main()
{
                 rosbck(int, int, float *, float *);
        void
        int ibtype = 0;
         float xlb[N] = \{-2.0, -1.0\};
         float
                xub[N] = \{0.5, 2.0\};
        float *x;
        x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb,
                                               xub, 0);
        printf("x[0] = %f\n", x[0]);
printf("x[1] = %f\n", x[1]);
}
```

Chapter 8: Optimization

bounded_least_squares • 421

```
void rosbck (int m, int n, float *x, float *f)
{
    f[0] = 10.0*(x[1] - x[0]*x[0]);
    f[1] = 1.0 - x[0];
}
```

Output

x[0] = 0.500000x[1] = 0.250000

#include <imsl.h>

Example 2

This example solves the nonlinear least-squares problem

$$\min \frac{1}{2} \sum_{i=0}^{1} f_i(x)^2$$

-2 \le x_0 \le 0.5
-1 \le x_1 \le 2

where

$$f_0(x) = 10(x_1 - x_0^2)$$
 and $f_1(x) = (1 - x_0)$

This time, an initial guess (-1.2, 1.0) is supplied, as well as the analytic Jacobian. The residual at the approximate solution is returned.

```
#include <math.h>
#define M
                  2
#define N
                  2
#define LDFJAC 2
main()
{
         void
                  rosbck(int, int, float *, float *);
                  jacobian(int, int, float *, float *, int);
         void
         int
                  ibtype = 0;
                 xlb[N] = \{-2.0, -1.0\};
xub[N] = \{0.5, 2.0\};
         float
         float
         float
                 xguess[N] = \{-1.2, 1.0\};
         float *fvec;
         float *x;
         x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,
                                               IMSL_JACOBIAN, jacobian,
                                               IMSL_XGUESS, xguess,
                                               IMSL_FVEC, &fvec,
                                               0);
         printf("x[0] = %f\n", x[0]);
        printf("x[1] = %f\n\n", x[1]);
printf("fvec[0] = %f\n", fvec[0]);
         printf("fvec[1] = %f\n\n", fvec[1]);
}
```

```
void rosbck (int m, int n, float *x, float *f)
{
    f[0] = 10.0*(x[1] - x[0]*x[0]);
    f[1] = 1.0 - x[0];
}
void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)
{
    fjac[0] = -20.0*x[0];
    fjac[1] = 10.0;
    fjac[2] = -1.0;
    fjac[3] = 0.0;
}

Output
x[0] = 0.500000
x[1] = 0.250000
```

```
fvec[0] = 0.000000
fvec[1] = 0.500000
```

min_con_nonlin

Solves a general nonlinear programming problem using the successive quadratic programming algorithm.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_min_con_nonlin.

Required Arguments

void fcn (int m, int meq, int n, float x[], int active[], float *f, float g[])
User-supplied function to evaluate the functions at a given point where

int m (Input) Total number of constraints.

int meq (Input) Number of equality constraints.

int n (Input)

Number of variables.

float x[] (Input)

Array with n components at which point the function is evaluated.

Chapter 8: Optimization

int active[] (Input)

Array with mmax components indicating the active constraints, where mmax is the maximum of (1, m).

float *f (Output)

The computed function value at the point x.

float g[] (Output)

Array with mmax components containing the values of the constraints at point x where mmax is the maximum of (1, m).

int m (Input)

Total number of constraints.

int meg (Input)

Number of equality constraints.

int n (Input)

Number of variables.

int ibtype (Input)

Scalar indicating the types of bounds on variables.

ibtype	Action
0	User will supply all the bounds.
1	All variables are nonnegative.
2	All variables are nonpositive.
3	User supplies only the bounds on first variable, all other variables will have the same bounds.

float xlb[] (Input, Output, or Input/Output)

Array with n components containing the lower bounds on the variables. (Input, if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value should be set to -10^6 .

float xub[] (Input, Output, or Input/Output)

Array with n components containing the upper bounds on the variables. (Input, if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value should be set to 10^6 .

Return Value

A pointer to the solution x of the nonlinear programming problem. To release this space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_XGUESS, float xguess[] (Input) Array with n components containing an initial guess of the computed solution. Default: xguess = 0IMSL_GRADIENT, void grad (int m, int meg, int mmax, int n, float x[], int active[], float f, float g[], float df[], float dg[]) User-supplied function to evaluate the gradients at a given point where int m (Input) Total number of constraints. int meg (Input) Number of equality constraints. int mmax (Input) Maximum of (1, m). int n (Input) Number of variables. float x[] (Input) Array with n components at which point the function is evaluated. int active[] (Input) Array with mmax components indicating the active constraints. float f (Input) The computed function value at the point x. float g[] (Input) Array with mmax components containing the values of the constraints at point x. float df[] (Output) Array with n components containing the values of the gradient of the objective function.

Chapter 8: Optimization

min_con_nonlin • 425

float dg[](Output)

Array of size $mmax \times n$ containing the values of the gradients for the active constraints.

IMSL_ERR_REL, *float* err_rel (Input) The final accuracy.

Default: err_rel = $\sqrt{\epsilon}$

where ε is the machine precision.

IMSL_XSCALE, float xscale[] (Input)

Array with n components containing the reciprocal magnitude of each variable. The argument xscale is used to choose the finite-difference stepsize, h. The *i*-th component of h is computed as

 $\sqrt{\varepsilon} * max(|x_i|, 1/s_i) * sign(x_i)$

where ε is the machine precision, s = xscale, and sign $(x_i) = 1$ if $x_i \ge 0$; otherwise, sign $(x_i) = -1$. Default: xscale[] = 1

IMSL_PRINT, *int* iprint (Input)

Parameter indicating the desired output level.

iprint	Action
0	No output printed.
1	Only a final convergence analysis is given.
2	One line of intermediate results is printed for each iteration.
3	Detailed information is printed for each iteration.

Default: iprint = 0

IMSL_RETURN_USER, float x[] (Output)

Array with n components containing the computed solution.

IMSL_ITMAX, int itmax (Input)

Maximum number of iterations allowed. Default: itmax = 200

IMSL_OBJ, *float* *obj (Output) Scalar containing the value of the objective function at the computed solution.

Description

The function f_min_con_nonlin is based on subroutine NLPQL developed by Schittkowski (1986). It uses a successive quadratic programming method to solve the general nonlinear programming problem. The problem is stated as follows:

$$\min_{x \in \mathbf{R}^n} f(x)$$

subject to $g_j(x) = 0$, for $j = 1, ..., m_e$
 $g_j(x) \ge 0$, for $j = m_e + 1, ..., m$
 $(x_l \le x \le x_u)$

where all problem functions are assumed to be continuously differentiable. The method, based on the iterative formulation and solution of quadratic programming (QP) subproblems, obtains these subproblems by using a quadratic approximation of the Lagrangian and by linearizing the constraints. That is,

$$\min_{x \in \mathbf{R}^{n}} \frac{1}{2} d^{T} B_{k} d + \nabla f(x_{k})^{T} d$$

subject to $\nabla g_{j}(x_{k})^{T} d + g_{j}(x_{k}) = 0$, for $j = 1, ..., m_{e}$
 $\nabla g_{j}(x_{k})^{T} d + g_{j}(x_{k}) \ge 0$, for $j = m_{e} + 1, ..., m$
 $x_{l} - x_{k} \le d \le x_{u} - x_{k}$

where B_k is a positive definite approximation of the Hessian, and x_k is the current iterate. Let d_k be the solution of the subproblem. A line search is used to find a new point x_{k+1} ,

$$x_{k+1} = x_k + \lambda d_k \qquad \lambda \in (0, 1]$$

such that a "merit function" will have a lower function value at the new point. Here, the augmented Lagrange function (Schittkowski 1986) is used as the merit function.

When optimality is not achieved, B_k is updated according to the modified BFGS formula (Powell 1978). Note that this algorithm may generate infeasible points during the solution process. Therefore, if feasibility must be maintained for intermediate points, this function may not be suitable. For more theoretical and practical details, see Stoer (1985), Schittkowski (1980, 1983, 1986) and Gill et al. (1985).

Examples

Example 1

The problem

min
$$F(x) = (x_1 - 2)^2 + (x_2 - 1)^2$$

subject to
 $g_1(x) = x_1 - 2x_2 + 1 = 0$
 $g_2(x) = -x_1^2 / 4 - x_2^2 + 1 \ge 0$

is solved.

#include <imsl.h>

#define M 2
#define ME 1
#define N 2

Chapter 8: Optimization

min_con_nonlin • 427

```
void main()
                           ibtype = 0;
         int
         float
                           *x;
                       fcn(int, int, int, float[], int[], float*, float[]);
    xlb[N] = {-1.0e6, -1.0e6};
    xub[N] = {1.0e6, 1.0e6};
         void
         static float
         static float
         x = imsl_f_min_con_nonlin(fcn, M, ME, N, ibtype, xlb, xub, 0);
         imsl_f_write_matrix ("The solution is", 1, N, x, 0);
}
                              /* Himmelblau problem 1 */
void fcn(int m, int me, int n, float x[], int active[], float *f,
          float g[])
{
         float
                           tmp1, tmp2;
         tmp1 = x[0] - 2.0e0;
         tmp2 = x[1] - 1.0e0;
         *f = tmp1 * tmp1 + tmp2 * tmp2;
         if (active[0])
                  g[0] = x[0] - 2.0e0 * x[1] + 1.0e0;
         if (active[1])
                  g[1] = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;
         return;
}
```

Output

The solution is 1 2 0.8229 0.9115

Example 2

The previous example is solved with an initial guess (2.0, 2.0).

```
#include <imsl.h>
```

```
2
#define M
#define ME
                      1
#define N
                      2
void main()
{
           int
                                  ibtype = 0;
           float
                                  *x;
                                  fcn(int, int, int, float[], int[], float*,
           void
                                       float[]);
           void
                                  grad(int, int, int, float[], int[], float,
                                 float[], float[], float[]);
    float[], float[]);
xguess[N] = {2.0e0, 2.0e0};
xlb[N] = {-1.0e6, -1.0e6};
xub[N] = {1.0e6, 1.0e6};
           static float
           static float
           static float
```

```
x = imsl_f_min_con_nonlin(fcn, M, ME, N, ibtype, xlb, xub,
                                     IMSL_XGUESS, xguess,
                                     IMSL_GRADIENT, grad,
                                     0);
        imsl_f_write_matrix ("The solution is", 1, N, x, 0);
}
                               /* Himmelblau problem 1 */
void fcn(int m, int me, int n, float x[], int active[],
         float *f, float g[])
{
                          tmp1, tmp2;
        float
        tmp1 = x[0] - 2.0e0;
        tmp2 = x[1] - 1.0e0;
        *f = tmp1 * tmp1 + tmp2 * tmp2;
        if (active[0])
                 g[0] = x[0] - 2.0e0 * x[1] + 1.0e0;
        if (active[1])
                 g[1] = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;
        return;
}
void grad(int m, int me, int mmax, int n, float x[], int active[],
          float f, float g[], float df[], float dg[])
{
        df[0] = 2.0 * (x[0] - 2.0);
        df[1] = 2.0 * (x[1] - 1.0);
        if (active[0]) {
             dg[0] = 1.0;
             dg[1] = -2.0;
       }
        if (active[1]) {
            dg[2] = -0.5 * x[0]; 
dg[3] = -2.0 * x[1];
       }
        return;
}
            Output
The solution is
     1
                  2
0.8229
             0.9114
            Warning Errors
             IMSL_TOO_MANY_ITN
                                           Maximum number of iterations exceeded.
            Fatal Errors
                                           Search direction uphill.
             IMSL_UPHILL_DIRECTION
                                           Line search took more than five function calls.
             IMSL_TOO_MANY_LINESEARCH
                                           Search direction is close to zero.
             IMSL_NO_PROGRESS_MADE
```

min_con_nonlin • 429

IMSL_QP_INCONSISTENT

The constraints for the QP subproblem are inconsistent.

Chapter 9: Special Functions

Routines

9.1

9.2

Error and Gamma Functions	
Error Functions	
Error functionerf	433
Complementary error functionerfc	434
Inverse error functionerf_inverse	436
Inverse complementary error functionerfc_inverse	437
Beta functionbeta	439
Logarithmic beta functionlog_beta	441
Incomplete beta functionbeta_incomplete	442
Gamma Functions	
Gamma function gamma	443
Logarithmic gamma functionlog_gamma	445
Incomplete gamma functiongamma_incomplete	446
Bessel Functions	
Bessel function J0 bessel_J0	448
Bessel function J1 bessel_J1	450
Bessel function Jnbessel_Jx	451
Bessel function Y0bessel_Y0	453
Bessel function Y1bessel_Y1	455
Bessel function Ynbessel_Yx	456
Bessel function I0 bessel_I0	458
Bessel function e- x I0(x) bessel_exp_I0	459
Bessel function I1 bessel_I1	460
Bessel function $e^{- x }I_1(x)$ bessel_exp_l1	461
Bessel function In bessel_lx	462
Bessel function K0bessel_K0	464
Bessel function exK0(x)bessel_exp_K0	466
Bessel function K1bessel_K1	467
Bessel function exK1(x)bessel_exp_K1	468
Bessel function Knbessel_Kx	470

9.3	Elliptic Integrals	
	Complete elliptic integral of the first kindelliptic_integral_K	471
	Complete elliptic integral of the second kindelliptic_integral_E	472
	Carlson's elliptic integral of the first kindelliptic_integral_RF	473
	Carlson's elliptic integral of the second kind elliptic_integral_RD	474
	Carlson's elliptic integral of the third kindelliptic_integral_RJ	476
	Special case of Carlson's elliptic integral elliptic_integral_RC	477
9.4	Fresnel Integrals	
•••	Cosine Fresnel integralfresnel_integral_C	478
	Sine Fresnel integral	479
9.5	Airy Functions	
	Airy functionairy_Ai	480
	Airy function of the second findairy_Bi	481
	Derivative of the Airy functionairy_Ai_derivative	482
	Derivative of the Airy function of	
	the second kindairy_Bi_derivative	483
9.6	Kelvin Functions	
9.0	Kelvin function ber of the first kind, order 0kelvin_ber0	484
	Kelvin function bei of the first kind, order 0	485
	Kelvin function ker of the second kind, order 0	486
	Kelvin function kei of the second kind, order 0	487
	Derivative of the Kelvin function ber	488
	Derivative of the Kelvin function bei	489
	Derivative of the Kelvin function ker	490
	Derivative of the Kelvin function kei	491
		401
9.7	Statistical Functions Normal (Gaussian) distribution function	492
	Inverse normal distribution functionnormal_inverse_cdf	492
	Chi-squared distribution functionchi_squared_cdf	494
	Inverse chi-squared	495
	distribution functionchi_squared_inverse_cdf	497
	F distribution function	497
	Inverse F distribution functionF inverse cdf	490 501
	Student's t distribution function	502
	Inverse of the Student's t distribution functiont inverse cdf	502
		504 505
	Gamma distribution function	505
	Binomial distribution functionbinomial_cdf	
	Hypergeometric distribution function hypergeometric_cdf Poisson distribution function	509 510
	Beta distribution function	510
	Inverse beta distribution function	512
	Bivariate normal distribution functionbivariate_normal_cdf	513
		014

erf

Evaluates the real error function erf(x).

Synopsis

#include <imsl.h>
float imsl_f_erf (float x)

The type *double* procedure is imsl_d_erf.

Required Arguments

 $float \propto$ (Input) Point at which the error function is to be evaluated.

Return Value

The value of the error function erf(x).

Description

The error function erf(x) is defined to be

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

All values of *x* are legal.

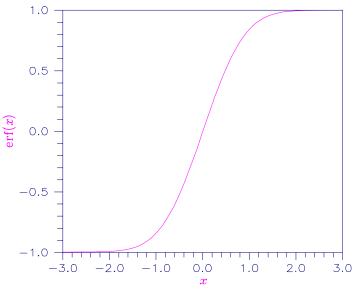


Figure 9-1 Plot of erf(x)

```
Evaluate the error function at x = 1/2.
```

```
#include <imsl.h>
```

Output

erf(0.500000) = 0.520500

erfc

Evaluates the real complementary error function $\operatorname{erfc}(x)$.

Synopsis

#include <imsl.h>

```
float imsl_f_erfc (float x)
```

The type *double* procedure is imsl_d_erfc.

Required Arguments

 $float \propto$ (Input) Point at which the complementary error function is to be evaluated.

Return Value

The value of the complementary error function $\operatorname{erfc}(x)$.

Description

The complementary error function erfc(x) is defined to be

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt$$

The argument x must not be so large that the result underflows. Approximately, x should be less than

$$\left[-\ln\left(\sqrt{\pi}s\right)\right]^{1/2}$$

where *s* is the smallest representable floating-point number.

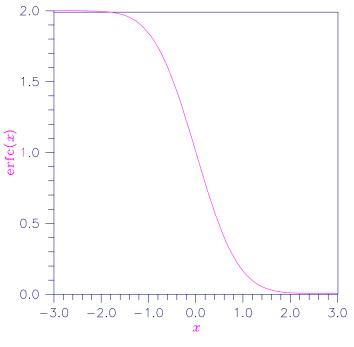


Figure 9-2 Plot of erfc(*x*)

Evaluate the error function at x = 1/2.

#include <imsl.h>

Output

erfc(0.500000) = 0.479500

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW

The argument *x* is so large that the result underflows.

erf_inverse

Evaluates the real inverse error function $erf^{-1}(x)$.

Synopsis

#include <imsl.h>

float imsl_f_erf_inverse (float x)

The type *double* procedure is imsl_d_erf_inverse.

Required Arguments

float x (Input)

Point at which the inverse error function is to be evaluated. It must be between -1 and 1.

Return Value

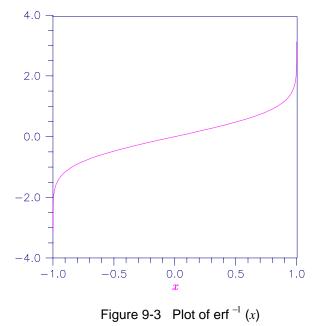
The value of the inverse error function $erf^{-1}(x)$.

Description

The inverse error function $\operatorname{erf}^{-1}(x)$ is such that $x = \operatorname{erf}(y)$, where

$$\operatorname{erf}(y) = \frac{2}{\sqrt{\pi}} \int_0^y e^{-t^2} dt$$

The inverse error function is defined only for -1 < x < 1.



```
Evaluate the inverse error function at x = 1/2.
#include <imsl.h>
```

```
main()
{
   float x = 0.5;
   float ans;
   ans = imsl_f_erf_inverse(x);
   printf("inverse erf(%f) = %f\n", x, ans);
}
```

Output

inverse erf(0.500000) = 0.476936

Warning Errors

IMSL_LARGE_ABS_ARG_WARN	The answer is less accurate than half precision because $ x $ is too large.
Fatal Errors	
IMSL_REAL_OUT_OF_RANGE	The inverse error function is defined only for $-1 < x < 1$.

erfc_inverse

Evaluates the real inverse complementary error function $\operatorname{erfc}^{-1}(x)$.

Synopsis

#include <imsl.h>
float imsl_f_erfc_inverse (float x)

The type *double* procedure is imsl_d_erfc_inverse.

Required Arguments

```
float x (Input)
```

Point at which the inverse complementary error function is to be evaluated. The argument *x* must be in the range 0 < x < 2.

Return Value

The value of the inverse complementary error function.

Description

The inverse complementary error function $y = \operatorname{erfc}^{-1}(x)$ is such that $x = \operatorname{erfc}(y)$ where $\operatorname{erfc}(y) = \frac{2}{\sqrt{\pi}} \int_{y}^{\infty} e^{-t^{2}} dt$

Chapter 9: Special Functions

erfc_inverse • 437

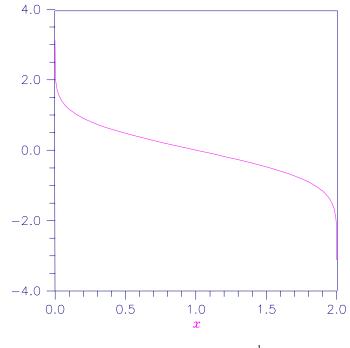


Figure 9-4 Plot of $erfc^{-1}(x)$

Evaluate the inverse complementary error function at x = 1/2. #include <imsl.h>

```
main()
{
    float x = 0.5;
    float ans;
    ans = imsl_f_erfc_inverse(x);
    printf("inverse erfc(%f) = %f\n", x, ans);
}
```

Output

inverse erfc(0.500000) = 0.476936

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW

The argument x must not be so large that the result underflows. Very approximately, x should be less than

$$2 - \sqrt{\epsilon / (4\pi)}$$

where $\boldsymbol{\epsilon}$ is the machine precision.

438 • erfc_inverse

IMSL C/Math/Library

Warning Errors

IMSL_LARGE_ARG_WARN	$ x $ should be less than $1/\sqrt{\varepsilon}$ where ε is the machine precision, to prevent the answer from being less accurate than half precision.
Fatal Errors	
IMSL_ERF_ALGORITHM	The algorithm failed to converge.
IMSL_SMALL_ARG_OVERFLOW	The computation of $e^{x^{-}}$ erfc x must not overflow.
IMSL_REAL_OUT_OF_RANGE	The function is defined only for $0 < x < 2$.

beta

Evaluates the real beta function $\beta(x, y)$.

Synopsis

#include <imsl.h>
float imsl_f_beta (float x, float y)
The type double procedure is imsl_d_beta.

Required Arguments

 $float \propto$ (Input) Point at which the beta function is to be evaluated. It must be positive.

float y (Input) Point at which the beta function is to be evaluated. It must be positive.

Return Value

The value of the beta function β (*x*, *y*). If no result can be computed, NaN is returned.

Description

The beta function, $\beta(x, y)$, is defined to be

$$\beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

The beta function requires that x > 0 and y > 0. It underflows for large arguments.

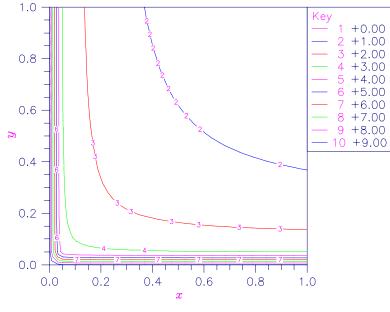


Figure 9-5 Plot of $\beta(x,y)$

Evaluate the beta function β (0.5, 0.2).

#include <imsl.h>

Output

beta(0.500000, 0.200000) = 6.268653

Alert Errors

IMSL_BETA_UNDERFLOW	The arguments must not be so large that the result underflows.	
Fatal Errors		
IMSL_ZERO_ARG_OVERFLOW	One of the arguments is so close to zero that the result overflows.	

log_beta

Evaluates the logarithm of the real beta function $\ln \beta(x, y)$.

Synopsis

#include <imsl.h>

float imsl_f_log_beta (float x, float y)

The type *double* procedure is imsl_d_log_beta.

Required Arguments

float x (Input) Point at which the logarithm of the beta function is to be evaluated. It must be positive.

float y (Input)

Point at which the logarithm of the beta function is to be evaluated. It must be positive.

Return Value

The value of the logarithm of the beta function $\beta(x, y)$.

Description

The beta function, $\beta(x, y)$, is defined to be

$$\beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

and imsl_f_log_beta returns $\ln \beta(x, y)$.

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for very large arguments.

Example

Evaluate the log of the beta function $\ln \beta(0.5, 0.2)$.

```
#include <imsl.h>
```

Output

 $\log beta(0.500000, 0.200000) = 1.835562$

Warning Errors

IMSL_X_IS_TOO_CLOSE_TO_NEG_1

The result is accurate to less than one precision because the expression -x/(x + y) is too close to -1.

beta_incomplete

Evaluates the real incomplete beta function $I_x = \beta_x(a,b)/\beta(a,b)$.

Synopsis

#include <imsl.h>

float imsl_f_beta_incomplete (float x, float a, float b)

The type *double* procedure is imsl_d_beta_incomplete.

Required Arguments

float x	(Input) Point at which the incomplete beta function is to be evaluated.
<i>float</i> a	(Input) Point at which the incomplete beta function is to be evaluated.
<i>float</i> b	(Input) Point at which the incomplete beta function is to be evaluated.

Return Value

The value of the incomplete beta function.

Description

The incomplete beta function is defined to be

$$I_x(a,b) = \frac{\beta_x(a,b)}{\beta(a,b)} = \frac{1}{\beta(a,b)} \int_0^x t^{a-1} (1-t)^{b-1} dt$$

The incomplete beta function requires that $0 \le x \le 1$, a > 0, and b > 0. It underflows for sufficiently small *x* and large *a*. This underflow is not reported as an error. Instead, the value zero is returned.

gamma

Evaluates the real gamma function $\Gamma(x)$.

Synopsis

#include <imsl.h>

float imsl_f_gamma (float x)

The type *double* procedure is imsl_d_gamma.

Required Arguments

float x (Input)

Point at which the gamma function is to be evaluated.

Return Value

The value of the gamma function $\Gamma(x)$.

Description

The gamma function, $\Gamma(x)$, is defined to be

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows for $x \ll 0$ and overflows for large x. It also overflows for values near negative integers.

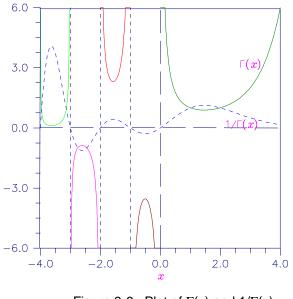


Figure 9-6 Plot of $\Gamma(x)$ and $1/\Gamma(x)$

Output

Gamma(1.500000) = 0.886227

Alert Errors

IMSL_SMALL_ARG_UNDERFLOW

does not underflow. The underflow limit occurs
first for arguments close to large negative half
integers. Even though other arguments away from
these half integers may yield machine-
representable values of $\Gamma(x)$, such arguments are
considered illegal. Users who need such values
should use the $\log\Gamma(x)$ function
imsl_f_log_gamma.

The argument *x* must be large enough that $\Gamma(x)$

Warning Errors

0	
IMSL_NEAR_NEG_INT_WARN	The result is accurate to less than one-half precision because x is too close to a negative integer.
Fatal Errors	
IMSL_ZERO_ARG_OVERFLOW	The argument for the gamma function is too close to zero.
IMSL_NEAR_NEG_INT_FATAL	The argument for the function is too close to a negative integer.
IMSL_LARGE_ARG_OVERFLOW	The function overflows because x is too large.
IMSL_CANNOT_FIND_XMIN	The algorithm used to find x_{\min} failed. This error should never occur.
IMSL_CANNOT_FIND_XMAX	The algorithm used to find x_{max} failed. This error should never occur.

log_gamma

Evaluates the logarithm of the absolute value of the gamma function $\log |\Gamma(x)|$.

Synopsis

#include <imsl.h>

float imsl_f_log_gamma (float x)

The type *double* procedure is imsl_d_log_gamma.

Required Arguments

```
float x (Input)
Point at which the logarithm of the absolute value of the gamma function is to be evaluated.
```

Return Value

The value of the logarithm of gamma function, $\log |\Gamma(x)|$.

Description

The logarithm of the absolute value of the gamma function $\log |\Gamma(x)|$ is computed.

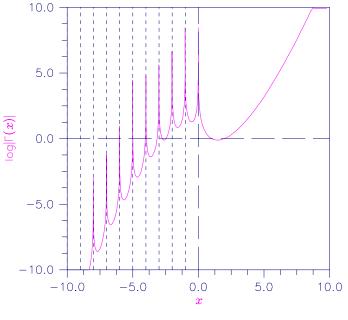


Figure 9-7 Plot of log $|\Gamma(x)|$

Output

 $\log gamma(3.500000) = 1.200974$

Warning Errors

IMSL_NEAR_NEG_INT_WARN	The result is accurate to less than one-half precision because x is too close to a negative integer.
Fatal Errors	
IMSL_NEGATIVE_INTEGER	The argument for the function cannot be a negative integer.
IMSL_NEAR_NEG_INT_FATAL	The argument for the function is too close to a negative integer.
IMSL_LARGE_ABS_ARG_OVERFLOW	x must not be so large that the result overflows.

gamma_incomplete

Evaluates the incomplete gamma function $\gamma(a, x)$.

Synopsis

```
#include <imsl.h>
```

float imsl_f_gamma_incomplete (float a, float x)

The type *double* procedure is imsl_d_gamma_incomplete.

Required Arguments

float a (Input)

Parameter of the incomplete gamma function is to be evaluated. It must be positive.

float x (Input)

Point at which the incomplete gamma function is to be evaluated. It must be nonnegative.

Return Value

The value of the incomplete gamma function $\gamma(a, x)$.

Description

The incomplete gamma function, $\gamma(a, x)$, is defined to be

$$\gamma(a, x) = \int_0^x t^{a-1} e^{-t} dt \qquad \text{for } x > 0$$

The incomplete gamma function is defined only for a > 0. Although $\gamma(a, x)$ is well defined for $x > -\infty$, this algorithm does not calculate $\gamma(a, x)$ for negative x. For large *a* and sufficiently large x, $\gamma(a, x)$ may overflow. $\gamma(a, x)$ is bounded by $\Gamma(a)$, and users may find this bound a useful guide in determining legal values for *a*.

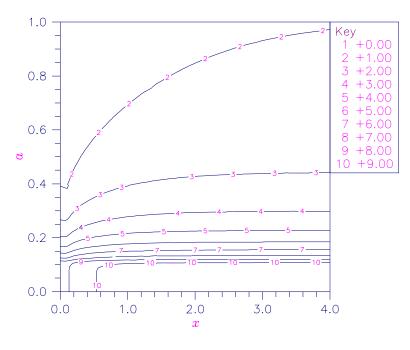


Figure 9-8 Plot of $\gamma(a, x)$

Output

incomplete gamma(1.000000,3.000000) = 0.950213

Fatal Errors

IMSL_NO_CONV_200_TS_TERMS	The function did not converge in 200 terms of Taylor series.
IMSL_NO_CONV_200_CF_TERMS	The function did not converge in 200 terms of the continued fraction.

bessel_J0

Evaluates the real Bessel function of the first kind of order zero $J_0(x)$.

Synopsis

#include <imsl.h>
float imsl_f_bessel_J0 (float x)

The type *double* procedure is imsl_d_bessel_J0.

Required Arguments

```
float x (Input)
```

Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$$

If no solution can be computed, NaN is returned.

Description

Because the Bessel function $J_0(x)$ is oscillatory, its computation becomes inaccurate as |x| increases.



Figure 9-9 Plot of J0 (x) and J1 (x)

Example

The Bessel function $J_0(1.5)$ is evaluated.

Output

JO(1.500000) = 0.511828

Warning Errors

IMSL_LARGE_ABS_ARG_WARN

|x| should be less than $1/\sqrt{\varepsilon}$ where ε is the machine precision, to prevent the answer from being less accurate than half precision.

Chapter 9: Special Functions

bessel_J0 • 449

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL

|x| should be less than $1/\varepsilon$ where ε is the machine precision for the answer to have any precision.

bessel_J1

Evaluates the real Bessel function of the first kind of order one $J_1(x)$.

Synopsis

#include <imsl.h>

float imsl_f_bessel_J1 (float x)

The type *double* procedure is imsl_d_bessel_J1.

Required Arguments

float x (Input) Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$J_1(x) = \frac{1}{\pi} \int_0^{\pi} \cos(\theta - x\sin\theta) d\theta$$

If no solution can be computed, NaN is returned.

Description

Because the Bessel function $J_1(x)$ is oscillatory, its computation becomes inaccurate as |x| increases.

Example

The Bessel function $J_1(1.5)$ is evaluated.

```
#include <imsl.h>
```

Output

```
J1(1.500000) = 0.557937
```

Alert Errors

IMSL_SMALL_ABS_ARG_UNDERFLOW	To prevent $J_1(x)$ from underflowing, either <i>x</i> must be zero, or $ x > 2s$ where <i>s</i> is the smallest representable positive number.
Warning Errors	
IMSL_LARGE_ABS_ARG_WARN	$ x $ should be less than $1/\sqrt{\varepsilon}$ where ε is the machine precision to prevent the answer from being less accurate than half precision.
Fatal Errors	
IMSL_LARGE_ABS_ARG_FATAL	$ x $ should be less than $1/\varepsilon$ where ε is the machine precision for the answer to have any precision.

bessel_Jx

Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

Synopsis

#include <imsl.h>

f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n, ..., 0)

The type *d_complex* function is imsl_z_bessel_Jx.

Required Arguments

float xnu (Input)

The lowest order desired. The argument xnu must be greater than -1/2.

f_complex z (Input)

Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)

Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element *i* contains the value of the Bessel function of order xnu + i for i = 0, ..., n - 1.

Synopsis with Optional Arguments

```
f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n
IMSL_RETURN_USER, f_complex bessel[],
0)
```

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function $J_{\nu}(z)$ is defined to be

$$J_{\nu}(z) = \frac{1}{\pi} \int_{0}^{\pi} \cos(z\sin\theta - \nu\theta) d\theta - \frac{\sin(\nu\pi)}{\pi} \int_{0}^{\infty} e^{z\sinh t - \nu t} dt$$

for $|\arg z| < \frac{\pi}{2}$

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987). This code computes $J_{\nu}(z)$ from the modified Bessel function $I_{\nu}(z)$, using the following relation, with $\rho = e^{i\pi/2}$:

$$Y_{\nu}(z) = \begin{cases} \rho I_{\nu}(z/\rho) & \text{for } -\pi/2 < \arg z \le \pi \\ \rho^3 I_{\nu}(\rho^3 z) & \text{for } -\pi < \arg z \le \pi/2 \end{cases}$$

Example

In this example, $J_{0.3+\nu-1}$ (1.2 + 0.5*i*), $\nu = 1, ..., 4$ is computed and printed. #include <imsl.h>

Output

```
I sub 0.30 ((1.20,0.50)) = (0.774,-0.107)
I sub 1.30 ((1.20,0.50)) = (0.400,0.159)
I sub 2.30 ((1.20,0.50)) = (0.087,0.092)
I sub 3.30 ((1.20,0.50)) = (0.008,0.024)
```

bessel_Y0

Evaluates the real Bessel function of the second kind of order zero $Y_0(x)$.

Synopsis

#include <imsl.h>
float imsl_f_bessel_Y0 (float x)

The type *double* procedure is imsl_d_bessel_Y0.

Required Arguments

 $float \propto (Input)$ Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$Y_0(x) = \frac{1}{\pi} \int_0^{\pi} \sin(x \sin \theta) \, d\theta$$

If no solution can be computed, NaN is returned.

Description

This function is sometimes called the Neumann function, $N_0(x)$, or Weber's function.

Since $Y_0(x)$ is complex for negative x and is undefined at x = 0, imsl_f_bessel_Y0 is defined only for x > 0. Because the Bessel function $Y_0(x)$ is oscillatory, its computation becomes inaccurate as x increases.

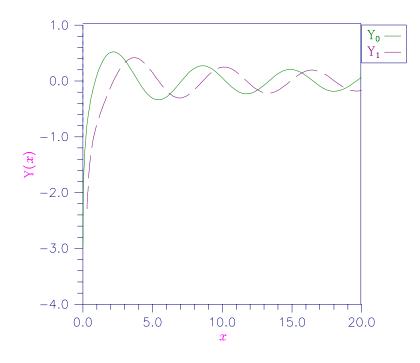


Figure 9-10 Plot of Y0(x) and Y1(x)

Example

The Bessel function $Y_0(1.5)$ is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float    x = 1.5;
    float    ans;
    ans = imsl_f_bessel_Y0(x);
    printf("Y0(%f) = %f\n", x, ans);
}
```

Output

YO(1.500000) = 0.382449

Warning Errors

IMSL_LARGE_ABS_ARG_WARN	$ x $ should be less than $1/\sqrt{\varepsilon}$ where ε is the machine precision to prevent the answer from being less accurate than half precision.
Fatal Errors	
IMSL_LARGE_ABS_ARG_FATAL	$ x $ should be less than $1/\varepsilon$ where ε is the machine precision for the answer to have any precision.

bessel_Y1

Evaluates the real Bessel function of the second kind of order one $Y_1(x)$.

Synopsis

#include <imsl.h>

float imsl_f_bessel_Y1 (float x)

The type *double* procedure is imsl_d_bessel_Y1.

Required Arguments

```
float x (Input)
```

Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$Y_1(x) = -\frac{1}{\pi} \int_0^{\pi} \sin(\theta - x\sin\theta) \, d\theta$$

If no solution can be computed, then NaN is returned.

Description

This function is sometimes called the Neumann function, $N_1(x)$, or Weber's function.

Since $Y_1(x)$ is complex for negative x and is undefined at x = 0, $imsl_f_bessel_Y1$ is defined only for x > 0. Because the Bessel function $Y_1(x)$ is oscillatory, its computation becomes inaccurate as x increases.

Example

The Bessel function $Y_1(1.5)$ is evaluated.

```
#include <imsl.h>
```

Output

Y1(1.500000) = -0.412309

Warning Errors	
IMSL_LARGE_ABS_ARG_WARN	$ x $ should be less than $1/\sqrt{\varepsilon}$ where ε is the machine precision to prevent the answer from being less accurate than half precision.
Fatal Errors	
IMSL_SMALL_ARG_OVERFLOW	The argument <i>x</i> must be large enough $(x > \max(1/b, s))$ where <i>s</i> is the smallest repesentable positive number and <i>b</i> is the largest repesentable number) that $Y_1(x)$ does not overflow.
IMSL_LARGE_ABS_ARG_FATAL	$ x $ should be less than $1/\varepsilon$ where ε is the machine precision for the answer to have any precision.

bessel_Yx

Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.

Synopsis

#include <imsl.h>
f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n, ..., 0)
The type d_complex function is imsl_z_bessel_Yx.

Required Arguments

float xnu (Input) The lowest order desired. The argument xnu must be greater than -1/2.

f_complex z (Input)

Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)

Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element *i* contains the value of the Bessel function of order xnu + i for i = 0, ..., n - 1.

Synopsis with Optional Arguments

```
f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n,
IMSL_RETURN_USER, f_complex bessel[],
0)
```

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function $Y_{v}(z)$ is defined to be

$$Y_{\nu}(z) = \frac{1}{\pi} \int_{0}^{\pi} \sin(z\sin\theta - \nu\theta) \, d\theta - \frac{\sin(\nu\pi)}{\pi} \int_{0}^{\infty} \left[e^{\nu t} + e^{-\nu t} \cos(\nu t) \right] e^{z\sinh t} dt$$

for $|\arg z| < \frac{\pi}{2}$

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987). This code computes $Y_v(z)$ from the modified Bessel functions $I_v(z)$ and $K_v(z)$, using the following relation:

$$Y_{\nu}(z) = e^{(\nu+1)\pi i/2} I_{\nu}(z) - \frac{2}{\pi} e^{-\nu\pi i/2} K_{\nu}(z) \qquad \text{for } -\pi < \arg z \le \frac{\pi}{2}$$

Example

In this example, $Y_{0.3+\nu-1}$ (1.2 + 0.5*i*), $\nu = 1, ..., 4$ is computed and printed.

```
#include <imsl.h>
```

Output

Y sub 0.30 ((1.20,0.50)) = (-0.013,0.380) Y sub 1.30 ((1.20,0.50)) = (-0.716,0.338) Y sub 2.30 ((1.20,0.50)) = (-1.048,0.795) Y sub 3.30 ((1.20,0.50)) = (-1.625,3.684)

bessel_l0

Evaluates the real modified Bessel function of the first kind of order zero $I_0(x)$.

Synopsis

#include <imsl.h>

float imsl_f_bessel_I0 (float x)

The type *double* procedure is imsl_d_bessel_IO.

Required Arguments

```
float x (Input)
```

Point at which the modified Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$I_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos \theta) \, d\theta$$

If no solution can be computed, NaN is returned.

Description

For large |x|, imsl_f_bessel_I0 will overflow.

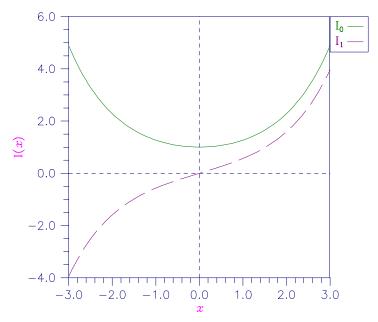


Figure 9-11 Plot of IO(x) and I1(x)

Example

The Bessel function $I_0(1.5)$ is evaluated.

#include <imsl.h>

```
main()
{
    float    x = 1.5;
    float    ans;
    ans = imsl_f_bessel_I0(x);
    printf("I0(%f) = %f\n", x, ans);
}
```

Output

IO(1.500000) = 1.646723

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL

The absolute value of x must not be so large that $e^{|x|}$ overflows.

bessel_exp_l0

Evaluates the exponentially scaled modified Bessel function of the first kind of order zero.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_I0 (float x)

The type *double* function is imsl_d_bessel_exp_I0.

Required Arguments

 $float \propto (Input)$ Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^{|x|} I_0(x)$. If no solution can be computed, NaN is returned.

Description

The Bessel function is $I_0(x)$ is defined to be

$$I_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos \theta) \, d\theta$$

Chapter 9: Special Functions

bessel_exp_I0 • 459

Example

The expression $e^{-4.5}I_0$ (4.5) is computed directly by calling imsl_f_bessel_exp_I0 and indirectly by calling imsl_f_bessel_I0. The absolute difference is printed. For large x, the internal scaling provided by imsl_f_bessel_exp_I0 avoids overflow that may occur in imsl_f_bessel_I0.

```
#include <imsl.h>
#include <imsl.h>
main()
{
    float x = 4.5;
    float ans;
    float error;
    ans = imsl_f_bessel_exp_I0 (x);
    printf("(e**(-4.5))I0(4.5) = %f\n\n", ans);
    error = fabs(ans - (exp(-x)*imsl_f_bessel_I0(x)));
    printf ("Error = %e\n", error);
}
```

Output

```
(e^{*}(-4.5))IO(4.5) = 0.194198
```

Error = 4.898845e-09

bessel_l1

Evaluates the real modified Bessel function of the first kind of order one $I_1(x)$.

Synopsis

```
#include <imsl.h>
float imsl_f_bessel_I1 (float x)
```

The type *double* procedure is imsl_d_bessel_I1.

Required Arguments

```
float x (Input)
```

Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

$$I_1(x) = \frac{1}{\pi} \int_0^{\pi} e^{x \cos \theta} \cos \theta \, d\theta$$

If no solution can be computed, NaN is returned.

Description

For large |x|, imsl_f_bessel_I1 will overflow. It will underflow near zero.

Example

The Bessel function $I_1(1.5)$ is evaluated.

Output

I1(1.500000) = 0.981666

Alert Errors

IMSL_SMALL_ABS_ARG_UNDERFLOW

The argument should not be so close to zero that $I_1(x) \approx x/2$ underflows.

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL

The absolute value of *x* must not be so large that $e^{|x|}$ overflows.

bessel_exp_l1

Evaluates the exponentially scaled modified Bessel function of the first kind of order one.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_I1 (float x)

The type *double* function is imsl_d_bessel_exp_I1.

Required Arguments

float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^{-|x|} I_1(x)$. If no solution can be computed, NaN is returned.

Description

The function imsl_f_bessel_I1 underflows if |x| / 2 underflows. The Bessel function $I_1(x)$ is defined to be

$$I_1(x) = \frac{1}{\pi} \int_0^{\pi} e^{x \cos \theta} \cos \theta \, d\theta$$

Example

The expression $e^{-4.5}I_0(4.5)$ is computed directly by calling imsl_f_bessel_exp_II and indirectly by calling imsl_f_bessel_II. The absolute difference is printed. For large x, the internal scaling provided by imsl_f_bessel_exp_II avoids overflow that may occur in imsl_f_bessel_II.

```
#include <imsl.h>
#include <imsl.h>
main()
{
    float x = 4.5;
    float ans;
    float error;
    ans = imsl_f_bessel_exp_I1 (x);
    printf("(e**(-4.5))I1(4.5) = %f\n\n", ans);
    error = fabs(ans - (exp(-x)*imsl_f_bessel_I1(x)));
    printf ("Error = %e\n", error);
}
```

Output

```
(e**(-4.5))I1(4.5) = 0.170959
Error = 1.469216e-09
```

bessel_lx

Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.

Synopsis

```
#include <imsl.h>
f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n, ..., 0)
The type d_complex function is imsl_z_bessel_Ix.
```

462 • bessel_lx

Required Arguments

```
float xnu (Input)
```

The lowest order desired. Argument xnu must be greater than -1/2.

 $f_complex \ge (Input)$

Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)

Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element *i* contains the value of the Bessel function of order xnu + i for i = 0, ..., n - 1.

Synopsis with Optional Arguments

```
f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n,
       IMSL_RETURN_USER, f_complex bessel[],
       0)
```

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output) Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function $I_{v}(z)$ is defined to be

$$I_{v}(z) = e^{-v\pi i/2} J_{v}(ze^{\pi i/2}) \text{ for } -\pi < \arg z \le \frac{\pi}{2}$$

For large arguments, z, Temme's (1975) algorithm is used to find $I_{y}(z)$. The $I_{y}(z)$ values are recurred upward (if this is stable). This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be accurate.

For moderate and small arguments, Miller's method is used.

Example

In this example, $J_{0.3+\nu-1}$ (1.2 + 0.5*i*), $\nu = 1, ..., 4$ is computed and printed.

```
#include <imsl.h>
```

{

```
main()
   int
               n = 4;
   int
               i;
   float
             xnu = 0.3;
   static f_complex z = \{1.2, 0.5\};
   f_complex *sequence;
   sequence = imsl_c_bessel_Ix(xnu, z, n, 0);
```

```
I sub 0.30 ((1.20,0.50)) = (1.163,0.396)
I sub 1.30 ((1.20,0.50)) = (0.447,0.332)
I sub 2.30 ((1.20,0.50)) = (0.082,0.127)
I sub 3.30 ((1.20,0.50)) = (0.006,0.029)
```

bessel_K0

Evaluates the real modified Bessel function of the third kind of order zero $K_0(x)$.

Synopsis

```
#include <imsl.h>
```

float imsl_f_bessel_K0 (float x)

The type *double* procedure is imsl_d_bessel_K0.

Required Arguments

float x (Input) Point at which the modified Bessel function is to be evaluated. It must be positive.

Return Value

The value of the modified Bessel function

$$K_0(x) = \int_0^\infty \cos(x \sin t) \, dt$$

If no solution can be computed, then NaN is returned.

Description

Since $K_0(x)$ is complex for negative x and is undefined at x = 0, imsl_f_bessel_K0 is defined only for x > 0. For large x, imsl_f_bessel_K0 will underflow.

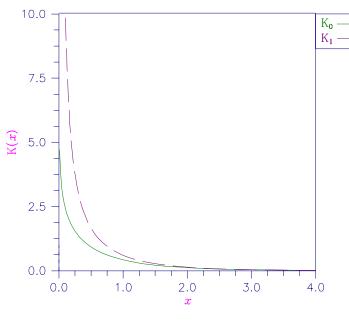


Figure 9-12 Plot of $K_0(x)$ and $K_1(x)$

Example

The Bessel function $K_0(1.5)$ is evaluated.

#include <imsl.h>

```
main()
{
    float    x = 1.5;
    float    ans;
    ans = imsl_f_bessel_K0(x);
    printf("K0(%f) = %f\n", x, ans);
}
```

Output

KO(1.500000) = 0.213806

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW

The argument *x* must not be so large that the result (approximately equal to

$$\sqrt{\pi/(2x)}e^{-x}$$

underflows.

Chapter 9: Special Functions

bessel_exp_K0

Evaluates the exponentially scaled modified Bessel function of the third kind of order zero.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_K0 (float x)

The type *double* function is imsl_d_bessel_exp_K0.

Required Arguments

```
float x (Input)
```

Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^{x}K_{0}(x)$. If no solution can be computed, NaN is returned.

Description

The argument must be greater than zero for the result to be defined. The Bessel function $K_0(x)$ is defined to be

$$K_0(x) = \int_0^\infty \cos(x \sin t) \, dt$$

Example

The expression

 $\sqrt{e}K_0(0.5)$

is computed directly by calling imsl_f_bessel_exp_K0 and indirectly by calling imsl_f_bessel_K0. The absolute difference is printed. For large x, the internal scaling provided by imsl_f_bessel_exp_K0 avoids underflow that may occur in imsl_f_bessel_K0.

```
#include <imsl.h>
#include <math.h>
main()
{
    float x = 0.5;
    float ans;
    float error;
    ans = imsl_f_bessel_exp_K0 (x);
    printf("(e**0.5)K0(0.5) = %f\n\n", ans);
    error = fabs(ans - (exp(x)*imsl_f_bessel_K0(x)));
    printf ("Error = %e\n", error);
}
```

Output

 $(e^{*}0.5)KO(0.5) = 1.524109$

Error = 2.028498e-08

bessel_K1

Evaluates the real modified Bessel function of the third kind of order one $K_1(x)$.

Synopsis

```
#include <imsl.h>
float imsl_f_bessel_K1 (float x)
The type double procedure is imsl_d_bessel_K1.
```

Required Arguments

 $float \propto$ (Input) Point at which the Bessel function is to be evaluated. It must be positive.

Return Value

The value of the Bessel function

$$K_1(x) = \int_0^\infty \sin(x \sin t) \sin t \, dt$$

If no solution can be computed, NaN is returned.

Description

Since $K_1(x)$ is complex for negative x and is undefined at x = 0, imsl_f_bessel_K1 is defined only for x > 0. For large x, imsl_f_bessel_K1 will underflow. See Figure 9-12 for a graph of $K_1(x)$.

Example

The Bessel function $K_1(1.5)$ is evaluated.

#include <imsl.h>

Chapter 9: Special Functions

Output

K1(1.500000) = 0.277388

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW

The argument x must not be so large that the result, approximately equal to,

$$\sqrt{\pi/(2x)}e^{-x}$$

underflows.

Fatal Errors

IMSL_SMALL_ARG_OVERFLOW

The argument *x* must be large enough $(x > \max(1/b, s)$ where *s* is the smallest representable positive number and *b* is the largest repesentable number) that $K_1(x)$ does not overflow.

bessel_exp_K1

Evaluates the exponentially scaled modified Bessel function of the third kind of order one.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_K1 (float x)

The type *double* function is imsl_d_bessel_exp_K1.

Required Arguments

float x (Input)

Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function $e^{x}K_{1}(x)$. If no solution can be computed, NaN is returned.

Description

The result

imsl_f_bessel_exp_K1 =
$$e^x K_1(x) \approx \frac{1}{x}$$

overflows if *x* is too close to zero. The definition of the Bessel function

$$K_1(x) = \int_0^\infty \sin(x \sin t) \sin t \, dt$$

Example

The expression

 $\sqrt{e}K_1(0.5)$

is computed directly by calling imsl_f_bessel_exp_K1 and indirectly by calling imsl_f_bessel_K1. The absolute difference is printed. For large x, the internal scaling provided by imsl_f_bessel_exp_K1 avoids underflow that may occur in imsl_f_bessel_K1.

```
#include <imsl.h>
#include <msth b>
```

#include <math.h>

```
main()
```

```
{
    float x = 0.5;
    float ans;
    float error;
    ans = imsl_f_bessel_exp_K1 (x);
    printf("(e**0.5)K1(0.5) = %f\n\n", ans);
    error = fabs(ans - (exp(x)*imsl_f_bessel_K1(x)));
    printf ("Error = %e\n", error);
}
```

Output

```
(e^{**0.5})K1(0.5) = 2.731010
Error = 5.890406e-08
```

bessel_Kx

Evaluates a sequence of modified Bessel functions of the third kind with real order and complex arguments.

Synopsis

#include <imsl.h>

f_complex *imsl_c_bessel_Kx (float xnu, f_complex z, int n, ..., 0)

The type *d_complex* function is imsl_z_bessel_Jx.

Required Arguments

float xnu (Input)

The lowest order desired. The argument xnu must be greater than -1/2.

 $f_complex z$ (Input)

Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)

Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element *i* contains the value of the Bessel function of order xnu + i for i = 0, ..., n - 1.

Synopsis with Optional Arguments

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function $K_{v}(z)$ is defined to be

$$K_{v}(z) = \frac{\pi}{2} e^{v\pi i/2} \left[i J_{v}(iz) - Y_{v}(iz) \right] \quad \text{for } -\pi < \arg z \le \frac{\pi}{2}$$

This function is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For moderate or large arguments, *z*, Temme's (1975) algorithm is used to find $K_v(z)$. This involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not be accurate. For small *z*, a Neumann series is used to compute $K_v(z)$. Upward recurrence of the $K_v(z)$ is always stable.

Example

In this example, $K_{0.3+\nu-1}$ (1.2 + 0.5*i*), $\nu = 1, ..., 4$ is computed and printed. #include <imsl.h> main() { int n = 4;i; int xnu = 0.3; float static f_complex $z = \{1.2, 0.5\};$ f_complex *sequence; sequence = imsl_c_bessel_Kx(xnu, z, n, 0); for (i = 0; i < n; i++)printf("K sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n", xnu+i, z.re, z.im, sequence[i].re, sequence[i].im); } Output

K sub 0.30 ((1.20,0.50)) = (0.246,-0.200)K sub 1.30 ((1.20,0.50)) = (0.336,-0.362)K sub 2.30 ((1.20,0.50)) = (0.587,-1.126)K sub 3.30 ((1.20,0.50)) = (0.719,-4.839)

elliptic_integral_K

Evaluates the complete elliptic integral of the kind K(x).

Synopsis

#include <imsl.h>
float imsl_f_elliptic_integral_K (float x)
The type double function is imsl_d_elliptic_integral_K.

Required Arguments

 $float \propto (Input)$ Argument for which the function value is desired.

Return Value

The complete elliptic integral K(x).

Description

The complete elliptic integral of the first kind is defined to be

$$K(x) = \int_0^{\pi/2} \frac{d\theta}{\left[1 - x\sin^2\theta\right]^{1/2}} \text{ for } 0 \le x < 1$$

Chapter 9: Special Functions

elliptic_integral_K • 471

The argument x must satisfy $0 \le x < 1$; otherwise, imsl_f_elliptic_integral_K returns imsl_f_machine(2), the largest representable floating-point number.

The function K(x) is computed using the routine $imsl_f_elliptic_integral_RF$ (page 473) and the relation $K(x) = R_F(0, 1 - x, 1)$.

Example

The integral K(0) is evaluated.

```
#include <imsl.h>
main()
{
    float x = 0.0;
    float ans;
    x = imsl_f_elliptic_integral_K (x);
    printf ("K(0.0) = %f\n", x);
}
```

Output

K(0.0) = 1.570796

elliptic_integral_E

Evaluates the complete elliptic integral of the second kind E(x).

Synopsis

```
#include <imsl.h>
```

float imsl_f_elliptic_integral_E (float x)

The type *double* function is imsl_d_elliptic_integral_E.

Required Arguments

 $float \propto$ (Input) Argument for which the function value is desired.

Return Value

The complete elliptic integral E(x).

Description

The complete elliptic integral of the second kind is defined to be

$$E(x) = \int_0^{\pi/2} \left[1 - x \sin^2 \theta \right]^{1/2} d\theta \text{ for } 0 \le x < 1$$

472 • elliptic_integral_E

The argument x must satisfy $0 \le x < 1$; otherwise, imsl_f_elliptic_integral_E returns imsl_f_machine(2), the largest representable floating-point number.

The function E(x) is computed using the routine imsl_f_elliptic_integral_RF (page 473) and imsl_f_elliptic_integral_RD (page 474). The computation is done using the relation

$$E(x) = R_F(0, 1-x, 1) - \frac{x}{3}R_D(0, 1-x, 1)$$

Example

The integral E(0.33) is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = 0.33;
    float ans;
    x = imsl_f_elliptic_integral_E (x);
    printf ("E(0.33) = %f\n", x);
}
```

Output

E(0.33) = 1.431832

elliptic_integral_RF

Evaluates Carlson's elliptic integral of the first kind $R_F(x, y, z)$.

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RF (float x, float y, float z)

The type *double* function is imsl_d_elliptic_integral_RF.

Required Arguments

```
float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative.
float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.
```

```
float z (Input)
Third variable of the incomplete elliptic integral. It must be nonnegative.
```

Return Value

The complete elliptic integral $R_F(x, y, z)$

Description

Carlson's elliptic integral of the first kind is defined to be

$$R_F(x, y, z) = \frac{1}{2} \int_0^{\infty} \frac{dt}{\left[(t+x)(t+y)(t+z) \right]^{1/2}}$$

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, x + z, and y + z must be greater than or equal to 5s. Should any of these conditions fail, imsl_f_elliptic_integral_RF is set to b. Here, $b = imsl_f_machine(2)$ is the largest and $s = imsl_f_machine(1)$ is the smallest representable number.

The function imsl_f_elliptic_integral_RF is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

The integral $R_F(0, 1, 2)$ is computed.

```
#include <imsl.h>
```

```
main()
{
    float x = 0.0;
    float y = 1.0;
    float z = 2.0;
    float ans;
    x = imsl_f_elliptic_integral_RF (x, y, z);
    printf ("RF(0, 1, 2) = %f\n", x);
}
```

Output

RF(0, 1, 2) = 1.311029

elliptic_integral_RD

Evaluates Carlson's elliptic integral of the second kind $R_D(x, y, z)$.

Synopsis

```
#include <imsl.h>
float imsl_f_elliptic_integral_RD (float x, float y, float z)
The type double function is imsl_d_elliptic_integral_RD.
```

474 • elliptic_integral_RD

Required Arguments

<i>float</i> x	(Input) First variable of the incomplete elliptic integral. It must be nonnegative.
float y	(Input) Second variable of the incomplete elliptic integral. It must be nonnegative.
<i>float</i> z	(Input)

Third variable of the incomplete elliptic integral. It must be positive.

Return Value

The complete elliptic integral $R_D(x, y, z)$

Description

Carlson's elliptic integral of the first kind is define to be

$$R_D(x, y, z) = \frac{3}{2} \int_0^\infty \frac{dt}{\left[(t+x)(t+y)(t+z)^3 \right]^{1/2}}$$

The arguments must be nonnegative and less than or equal to $0.69(-ln\epsilon)^{1/9}s^{-2/3}$ where $\epsilon = imsl_f_machine(4)$ is the machine precision, $s = imsl_f_machine(1)$ is the smallest representable positive number. Furthermore, x + y and z must be greater than max $\{3s^{2/3}, 3/b^{2/3}\}$, where $b = imsl_f_machine(2)$ is the largest floating point number. If any of these conditions are false, then $imsl_f_elliptic_integral_RD$ returns b.

The function imsl_f_elliptic_integral_RD is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

The integral $R_D(0, 2, 1)$ is computed.

```
#include <imsl.h>
main()
{
    float x = 0.0;
    float y = 2.0;
    float z = 1.0;
    float ans;
    x = imsl_f_elliptic_integral_RD (x, y, z);
    printf ("RD(0, 2, 1) = %f\n", x);
}
```

Output

RD(0, 2, 1) = 1.797210

Chapter 9: Special Functions

elliptic_integral_RJ

Evaluates Carlson's elliptic integral of the third kind $R_J(x, y, z, \rho)$

Synopsis

#include <imsl.h>

```
float imsl_f_elliptic_integral_RJ (float x, float y, float z, float rho)
The type double function is imsl_d_elliptic_integral_RJ.
```

Required Arguments

float x (Input)

First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)

Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)

Third variable of the incomplete elliptic integral. It must be positive.

float rho (Input)

Fourth variable of the incomplete elliptic integral. It must be positive.

Return Value

The complete elliptic integral $R_J(x, y, z, \rho)$

Description

Carlson's elliptic integral of the third kind is defined to be

$$R_J(x, y, z, \rho) = \frac{3}{2} \int_0^\infty \frac{dt}{\left[(t+x)(t+y)(t+z)(t+\rho)^2 \right]^{1/2}}$$

The arguments must be nonnegative. In addition, x + y, x + z, y + z and ρ must be greater than or equal to $(5s)^{1/3}$ and less than or equal to $0.3(b/5)^{1/3}$, where $s = \text{imsl_f_machine}(1)$ is the smallest representable floating-point number. Should any of these conditions fail, $\text{imsl_f_elliptic_integral_RJ}$ is set to $b = \text{imsl_f_machine}(2)$, the largest floating-point number.

The function imsl_f_elliptic_integral_RJ is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

```
The integral R<sub>J</sub>(2, 3, 4, 5) is computed.
#include <imsl.h>
main()
{
    float x = 2.0;
    float y = 3.0;
    float z = 4.0;
    float rho = 5.0;
    float ans;
    x = imsl_f_elliptic_integral_RJ (x, y, z, rho);
    printf ("RJ(2, 3, 4, 5) = %f\n", x);
}
```

Output

RJ(2, 3, 4, 5) = 0.142976

elliptic_integral_RC

Evaluates an elementary integral from which inverse circular functions, logarithms and inverse hyperbolic functions can be computed.

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RC (float x, float y)

The type *double* function is imsl_d_elliptic_integral_RC.

Required Arguments

float x (Input)

First variable of the incomplete elliptic integral. It must be nonnegative and must satisfy the conditions given below.

float y (Input)

Second variable of the incomplete elliptic integral. It must be positive and must satisfy the conditions given below.

Return Value

The elliptic integral $R_C(x, y)$.

Description

Carlson's elliptic integral of the third kind is defined to be

$$R_{C}(x, y) = \frac{1}{2} \int_{0}^{\infty} \frac{dt}{\left[(t+x)(t+y)^{2} \right]^{1/2}}$$

The argument x must be nonnegative, y must be positive, and x + y must be less than or equal to b/5 and greater than or equal to 5s. If any of these conditions are false, the imsl_f_elliptic_integral_RC is set to b. Here,

 $b = imsl_f_machine(2)$ is the largest and $s = imsl_f_machine(1)$ is the smallest representable floating-point number.

The function imsl_f_elliptic_integral_RC is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

```
The integral R<sub>C</sub>(2.25, 2) is computed.
#include <imsl.h>
main()
{
    float x = 2.25;
    float y = 2.0;
    float ans;
    x = imsl_f_elliptic_integral_RC (x, y);
    printf ("RC(2.25, 2.0) = %f\n", x);
}
```

Output

RC(2.25, 2.0) = 0.693147

fresnel_integral_C

Evaluates the cosine Fresnel integral.

Synopsis

```
#include <imsl.h>
```

float imsl_f_fresnel_integral_C (float x)

The type *double* function is imsl_d_fresnel_integral_C.

Required Arguments

float x (Input)

Argument for which the function value is desired.

478 • fresnel_integral_C

Return Value

The cosine Fresnel integral.

Description

The cosine Fresnel integral is defined to be

$$C(x) = \int_{0}^{x} \cos(\frac{\pi}{2}t^2) dt$$

Example

The Fresnel integral C(1.75) is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = 1.75;
    float ans;
    x = imsl_f_fresnel_integral_C (x);
    printf ("C(1.75) = %f\n", x);
}
```

Output

C(1.75) = 0.321935

fresnel_integral_S

Evaluates the sine Fresnel integral.

Synopsis

```
#include <imsl.h>
float imsl_f_fresnel_integral_S (float x)
The type double function is imsl_d_fresnel_integral_S.
```

Required Arguments

 $float \propto$ (Input) Argument for which the function value is desired.

Return Value

The sine Fresnel integral.

Description

The sine Fresnel integral is defined to be

$$S(x) = \int_{0}^{x} \sin(\frac{\pi}{2}t^2) dt$$

Example

```
The Fresnel integral S(1.75) is evaluated.
#include <imsl.h>
main()
{
    float x = 1.75;
    float ans;
    x = imsl_f_fresnel_integral_S (x);
    printf ("S(1.75) = %f\n", x);
}
```

Output

S(1.75) = 0.499385

airy_Ai

Evaluates the Airy function.

Synopsis

#include <imsl.h>

float imsl_f_airy_Ai (float x)

The type *double* function is imsl_d_airy_Ai.

Required Arguments

```
float x (Input)
```

Argument for which the function value is desired.

Return Value

The Airy function evaluated at x, Ai(x).

Description

The airy function Ai(x) is defined to be

$$Ai(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos(xt + \frac{1}{3}t^{3}) dt = \sqrt{\frac{x}{3\pi^{2}}} K_{1/3}(\frac{2}{3}x^{3/2})$$

The Bessel function $K_{\nu}(x)$ is defined on page 470.

If $x < -1.31\epsilon^{-2/3}$, then the answer will have no precision. If $x < -1.31\epsilon^{-1/3}$, the answer will be less accurate than half precision. Here $\epsilon = \text{imsl_f_machine}(4)$ is the machine precision.

Finally, *x* should be less than x_{\max} so the answer does not underflow. Very approximately, $x_{\max} = \{-1.5 \ln s\}^{2/3}$, where $s = \operatorname{imsl_f_machine}(1)$, the smallest representable positive number.

Example

In this example, Ai(-4.9) is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = -4.9;
    float ans;
    x = imsl_f_airy_Ai (x);
    printf ("Ai(-4.9) = %f\n", x);
}
```

Output

Ai(-4.9) = 0.374536

airy_Bi

Evaluates the Airy function of the second kind.

Synopsis

#include <imsl.h>

```
float imsl_f_airy_Bi (float x)
```

The type double function is imsl_d_airy_Bi.

Required Arguments

float x (Input)

Argument for which the function value is desired.

Return Value

The Airy function of the second kind evaluated at x, Bi(x).

Chapter 9: Special Functions

Description

The airy function Bi(x) is defined to be

$$\operatorname{Bi}(x) = \frac{1}{\pi} \int_{0}^{\infty} \exp(xt - \frac{1}{3}t^{3}) dt + \frac{1}{\pi} \int_{0}^{\infty} \sin(xt + \frac{1}{3}t^{3}) dt$$

It can also be expressed in terms of modified Bessel functions of the first kind, $I_{\nu}(x)$, and Bessel functions of the first kind $J_{\nu}(x)$ (see **bessel_Ix** and **bessel_Jx**:

Bi(x) =
$$\sqrt{\frac{x}{3}} \left[I_{-1/3}(\frac{2}{3}x^{3/2}) + I_{1/3}(\frac{2}{3}x^{3/2}) \right]$$
 for $x > 0$

and

Bi(x) =
$$\sqrt{\frac{-x}{3}} \left[J_{-1/3}(\frac{2}{3}/x)^{3/2}) - J_{1/3}(\frac{2}{3}/x)^{3/2} \right]$$
 for $x < 0$

Let $\varepsilon = \text{imsl_f_machine}(4)$, the machine precision. If $x < -1.31\varepsilon^{-2/3}$, then the answer will have no precision. If $x < -1.31\varepsilon^{-1/3}$, the answer will be less accurate than half precision. In addition, *x* should not be so large that $exp[(2/3)x^{3/2}]$ overflows.

Example

In this example, Bi(-4.9) is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = -4.9;
    float ans;
    x = imsl_f_airy_Bi (x);
    printf ("Bi(-4.9) = %f\n", x);
}
```

Output

Bi(-4.9) = -0.057747

airy_Ai_derivative

Evaluates the derivative of the Airy function.

Synopsis

```
#include <imsl.h>
float imsl_f_airy_Ai_derivative (float x)
```

482 • airy_Ai_derivative

The type *double* function is imsl_d_airy_Ai_derivative.

Required Arguments

```
float x (Input)
```

Argument for which the function value is desired.

Return Value

The derivative of the Airy function.

Description

The airy function Ai'(x) is defined to be the derivative of the Airy function, Ai(x) (see page 480). If $x < -1.31\epsilon^{-2/3}$, then the answer will have no precision. If $x < -1.31\epsilon^{-1/3}$, the answer will be less accurate than half precision. Here $\epsilon = imsl_f_machine(4)$ is the machine precision. Finally, x should be less than x_{max} so that the answer does not underflow. Very approximately, $x_{max} = \{-1.51 \ln s\}$, where $s = imsl_f_machine(1)$, the smallest representable positive number.

Example

In this example, Ai'(-4.9) is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = -4.9;
    float ans;
    x = imsl_f_airy_Ai_derivative (x);
    printf ("Ai'(-4.9) = %f\n", x);
}
```

Output

Ai'(-4.9) = 0.146958

airy_Bi_derivative

Evaluates the derivative of the Airy function of the second kind.

Synopsis

```
#include <imsl.h>
float imsl_f_airy_Bi_derivative (float x)
The type double function is imsl_d_airy_Bi_derivative.
```

airy_Bi_derivative • 483

Required Arguments

```
float \propto (Input)
Argument for which the function value is desired.
```

Return Value

The derivative of the Airy function of the second kind.

Description

The airy function Bi'(x) is defined to be the derivative of the Airy function of the second kind, Bi(x) (see page 481). If $x < -1.31\varepsilon^{-2/3}$, then the answer will have no precision. If $x < -1.31\varepsilon^{-1/3}$, the answer will be less accurate than half precision. Here $\varepsilon = imsl_f_machine(4)$ is the machine precision. In addition, x should not be so large that $exp[(2/3)x^{3/2}]$ overflows.

Example

In this example, Bi'(-4.9) is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = -4.9;
    float ans;
    x = imsl_f_airy_Bi_derivative (x);
    printf ("Bi'(-4.9) = %f\n", x);
}
```

Output

Bi'(-4.9) = 0.827219

kelvin_ber0

Evaluates the Kelvin function of the first kind, ber, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ber0 (float x)

The type double function is imsl_d_kelvin_ber0.

Required Arguments

float x (Input)

Argument for which the function value is desired.

Return Value

The Kelvin function of the first kind, ber, of order zero evaluated at *x*.

Description

The Kelvin function $ber_0(x)$ is defined to be $\Re J_0(xe^{3\pi i/4})$. The Bessel function $J_0(x)$ is defined

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$$

The function imsl_f_kelvin_ber0 is based on the work of Burgoyne (1963).

Example

In this example, ber_0 (0.4) is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = 0.4;
    float ans;
    x = imsl_f_kelvin_ber0 (x);
    printf ("ber0(0.4) = %f\n", x);
}
```

Output

ber0(0.4) = 0.999600

kelvin_bei0

Evaluates the Kelvin function of the first kind, bei, of order zero.

Synopsis

```
#include <imsl.h>
```

float imsl_f_kelvin_bei0 (float x)

The type *double* function is imsl_d_kelvin_bei0.

Required Arguments

float x (Input)

Argument for which the function value is desired.

Return Value

The Kelvin function of the first kind, bei, of order zero evaluated at x.

Chapter 9: Special Functions

Description

The Kelvin function $bie_0(x)$ is defined to be $\Im J_0(xe^{3\pi i/4})$. The Bessel function $J_0(x)$ is defined

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$$

The function imsl_f_kelvin_bei0 is based on the work of Burgoyne (1963).

In imsl_f_kelvin_bei0, *x* must be less than 119.

Example

In this example, $bei_0(0.4)$ is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = 0.4;
    float ans;
    x = imsl_f_kelvin_bei0 (x);
    printf ("bei0(0.4) = %f\n", x);
}
```

Output

bei0(0.4) = 0.039998

kelvin_ker0

Evaluates the Kelvin function of the second kind, ker, of order zero.

Synopsis

```
#include <imsl.h>
```

float imsl_f_kelvin_ker0 (float x)

The type *double* function is imsl_d_kelvin_ker0.

Required Arguments

 $float \propto$ (Input) Argument for which the function value is desired.

Return Value

The Kelvin function of the second kind, ker, of order zero evaluated at x.

Description

The modified Kelvin function $\ker_0(x)$ is defined to be $\Re K_0(xe^{\pi i/4})$. The Bessel function $K_0(x)$ is defined

$$K_0(x) = \int_0^\infty \cos(x \sin t) \, dt$$

The function imsl_f_kelvin_ker0 is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If $x \ge 119$, then zero is returned.

Example

In this example, $ker_0(0.4)$ is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = 0.4;
    float ans;
    x = imsl_f_kelvin_ker0 (x);
    printf ("ker0(0.4) = %f\n", x);
}
```

Output

ker0(0.4) = 1.062624

kelvin_kei0

Evaluates the Kelvin function of the second kind, kei, of order zero.

Synopsis

```
#include <imsl.h>
```

float imsl_f_kelvin_kei0 (float x)

The type *double* function is imsl_d_kelvin_kei0.

Required Arguments

 $float \propto$ (Input) Argument for which the function value is desired.

Return Value

The Kelvin function of the second kind, kei, of order zero evaluated at x.

The modified Kelvin function $\text{kei}_0(x)$ is defined to be $\Im K_0(xe^{\pi i/4})$. The Bessel function $K_0(x)$ is defined

$$K_0(x) = \int_0^\infty \cos(x \sin t) \, dt$$

The function imsl_f_kelvin_kei0 is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If $x \ge 119$, zero is returned.

Example

In this example, $kei_0(0.4)$ is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = 0.4;
    float ans;
    x = imsl_f_kelvin_kei0 (x);
    printf ("kei0(0.4) = %f\n", x);
}
```

Output

kei0(0.4) = -0.703800

kelvin_ber0_derivative

Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Synopsis

```
#include <imsl.h>
```

float imsl_f_kelvin_ber0_derivative (float x)

The type *double* function is imsl_d_kelvin_ber0_derivative.

Required Arguments

```
float \propto (Input)
Argument for which the function value is desired.
```

Return Value

The derivative of the Kelvin function of the first kind, ber, of order zero evaluated at x.

The function $ber_0'(x)$ is defined to be

$$\frac{d}{dx}$$
ber₀(x)

The function imsl_f_kelvin_ber0_derivative is based on the work of Burgoyne (1963).

If |x| > 119, NaN is returned.

Example

In this example, $ber_0'(0.6)$ is evaluated.

```
#include <imsl.h>
main()
{
    float x = 0.6;
    float ans;
    x = imsl_f_kelvin_ber0_derivative (x);
    printf ("ber0'(0.6) = %f\n", x);
}
```

Output ber0'(0.6) = -0.013498

kelvin_bei0_derivative

Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Synopsis

```
#include <imsl.h>
float imsl_f_kelvin_bei0_derivative (float x)
The type double function is imsl_d_kelvin_bei0_derivative.
```

Required Arguments

 $float \propto (Input)$ Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the first kind, bei, of order zero evaluated at x.

The function $bei_0'(x)$ is defined to be

$$\frac{d}{dx}$$
 bei₀(x)

The function imsl_f_kelvin_bei0_derivative is based on the work of Burgoyne (1963).

If |x| > 119, NaN is returned.

Example

In this example, $bei_0'(0.6)$ is evaluated.

```
#include <imsl.h>
main()
{
    float x = 0.6;
    float ans;
    x = imsl_f_kelvin_bei0_derivative (x);
    printf ("bei0'(0.6) = %f\n", x);
}
```

Output

bei0'(0.6) = 0.299798

kelvin_ker0_derivative

Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Synopsis

```
#include <imsl.h>
```

float imsl_f_kelvin_ker0_derivative (float x)

The type *double* function is imsl_d_kelvin_ker0_derivative.

Required Arguments

 $float \propto$ (Input) Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the second kind, ker, of order zero evaluated at x.

The function $\ker_0'(x)$ is defined to be

$$\frac{d}{dx} \ker_0(x)$$

The function imsl_f_kelvin_ker0_derivative is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If $x \ge 119$, zero is returned.

Example

In this example, $\ker'_0(0.6)$ is evaluated.

#include <imsl.h>

```
main()
{
    float x = 0.6;
    float ans;
    x = imsl_f_kelvin_ker0_derivative (x);
    printf ("ker0'(0.6) = %f\n", x);
}
```

Output

```
ker0'(0.6) = -1.456538
```

kelvin_kei0_derivative

Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_kei0_derivative (float x)

The type *double* function is imsl_d_kelvin_kei0_derivative.

Required Arguments

 $float \propto$ (Input) Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the second kind, kei, of order zero evaluated at *x*.

The function $\text{kei}_0'(x)$ is defined to be

$$\frac{d}{dx}$$
 kei₀(x)

The function imsl_f_kelvin_kei0_derivative is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If $x \ge 119$, zero is returned.

Example

In this example, $\text{kei}_0'(0.6)$ is evaluated.

```
#include <imsl.h>
```

```
main()
{
    float x = 0.6;
    float ans;
    x = imsl_f_kelvin_kei0_derivative (x);
    printf ("kei0'(0.6) = %f\n", x);
}
```

Output

kei0'(0.6) = 0.348164

normal_cdf

Evaluates the standard normal (Gaussian) distribution function.

Synopsis

```
#include <imsl.h>
float imsl_f_normal_cdf (float x)
The type double function is imsl_d_normal_cdf.
```

Required Arguments

 $float \propto$ (Input) Point at which the normal distribution function is to be evaluated.

Return Value

The probability that a normal random variable takes a value less than or equal to *x*.

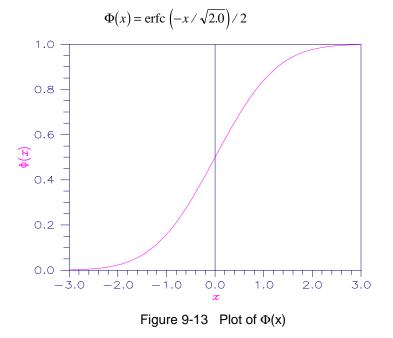
The function $imsl_f_normal_cdf$ evaluates the distribution function, Φ , of a standard normal (Gaussian) random variable; that is,

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

The value of the distribution function at the point x is the probability that the random variable takes a value less than or equal to x.

The standard normal distribution (for which $imsl_f_normal_cdf$ is the distribution function) has mean of 0 and variance of 1. The probability that a normal random variable with mean μ and variance σ^2 is less than y is given by $imsl_f_normal_cdf$ evaluated at $(y - \mu)/\sigma$.

 $\Phi(x)$ is evaluated by use of the complementary error function, imsl_f_erfc. The relationship is:



Example

Suppose *X* is a normal random variable with mean 100 and variance 225. This example finds the probability that *X* is less than 90 and the probability that *X* is between 105 and 110.

#include <imsl.h>
main()
{
 float p, x1, x2;

Chapter 9: Special Functions

normal_cdf • 493

```
x1 = (90.0-100.0)/15.0;
p = imsl_f_normal_cdf(x1);
printf("The probability that X is less than 90 is %6.4f\n\n", p);
x1 = (105.0-100.0)/15.0;
x2 = (110.0-100.0)/15.0;
p = imsl_f_normal_cdf(x2) - imsl_f_normal_cdf(x1);
printf("The probability that X is between 105 and 110 is %6.4f\n", p);
}
```

Output

The probability that X is less than 90 is 0.2525The probability that X is between 105 and 110 is 0.1169

normal_inverse_cdf

Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis

#include <imsl.h>

float imsl_f_normal_inverse_cdf (float p)

The type *double* procedure is imsl_d_normal_inverse_cdf.

Required Arguments

float p (Input)

Probability for which the inverse of the normal distribution function is to be evaluated. The argument p must be in the open interval (0.0, 1.0).

Return Value

The inverse of the normal distribution function evaluated at p. The probability that a standard normal random variable takes a value less than or equal to imsl_f_normal_inverse_cdf is p.

Description

The function imsl_f_normal_inverse_cdf evaluates the inverse of the distribution function, Φ , of a standard normal (Gaussian) random variable; that is, imsl_f_normal_inverse_cdf(p) = $\Phi^{-1}(p)$ where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

The value of the distribution function at the point x is the probability that the random variable takes a value less than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.

The function imsl_f_normal_inverse_cdf(*p*) is evaluated by use of minimax rational-function approximations for the inverse of the error function. General descriptions of these approximations are given in Hart et al. (1968) and Strecok (1968). The rational functions used in imsl_f_normal_inverse_cdf are described by Kinnucan and Kuki (1968).

Example

This example computes the point such that the probability is 0.9 that a standard normal random variable is less than or equal to this point.

Output

The 90th percentile of a standard normal is 1.2816.

chi_squared_cdf

Evaluates the chi-squared distribution function.

Synopsis

```
#include <imsl.h>
```

float imsl_f_chi_squared_cdf (float chi_squared, float df)

The type *double* function is imsl_d_chi_squared_cdf.

Required Arguments

float chi_squared (Input) Argument for which the chi-squared distribution function is to be evaluated.

float df (Input) Number of degrees of freedom of the chi-squared distribution. The argument df must be greater than or equal to 0.5.

Return Value

The probability that a chi-squared random variable takes a value less than or equal to chi_squared.

The function $imsl_f_chi_squared_cdf$ evaluates the distribution function, *F*, of a chi-squared random variable $x = chi_squared$ with v = df. Then,

$$F(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^x e^{-t/2} t^{\nu/2-1} dt$$

where $\Gamma(\cdot)$ is the gamma function. The value of the distribution function at the point *x* is the probability that the random variable takes a value less than or equal to *x*.

For v > 65, imsl_f_chi_squared_cdf uses the Wilson-Hilferty approximation (Abramowitz and Stegun 1964, Equation 26.4.17) to the normal distribution, and function imsl_f_normal_cdf is used to evaluate the normal distribution function.

For $v \le 65$, imsl_f_chi_squared_cdf uses series expansions to evaluate the distribution function. If x < max (v/2, 26), imsl_f_chi_squared_cdf uses the series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the asymptotic expansion 6.5.32 in Abramowitz and Stegun.

Example

Suppose *X* is a chi-squared random variable with 2 degrees of freedom. This example finds the probability that *X* is less than 0.15 and the probability that *X* is greater than 3.0.

#include <imsl.h>

```
void main()
{
                chi_squared = 0.15;
   float
               df = 2.0;
   float
   float
               p;
        = imsl_f_chi_squared_cdf(chi_squared, df);
   q
   printf("%s %s %6.4f\n", "The probability that chi-squared",
           "with 2 df is less than 0.15 is", p);
   chi_squared = 3.0;
        = 1.0 - imsl_f_chi_squared_cdf(chi_squared, df);
   р
   printf("%s %s %6.4f\n", "The probability that chi-squared",
           "with 2 df is greater than 3.0 is", p);
}
```

Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Informational Errors

```
IMSL_ARG_LESS_THAN_ZERO The input argument, chi_squared, is less than zero.
```

Alert Errors

IMSL_NORMAL_UNDERFLOW

Using the normal distribution for large degrees of freedom, underflow would have occurred.

chi_squared_inverse_cdf

Evaluates the inverse of the chi-squared distribution function.

Synopsis

#include <imsl.h>

float imsl_f_chi_squared_inverse_cdf (float p, float df)

The type *double* function is imsl_d_chi_squared_inverse_cdf.

Required Arguments

float p (Input)

Probability for which the inverse of the chi-squared distribution function is to be evaluated. The argument p must be in the open interval (0.0, 1.0).

float df (Input)

Number of degrees of freedom of the chi-squared distribution. The argument df must be greater than or equal to 0.5.

Return Value

The inverse of the chi-squared distribution function evaluated at p. The probability that a chi-squared random variable takes a value less than or equal to <code>imsl_f_chi_squared_inverse_cdf</code> is p.

Description

The function $imsl_f_chi_squared_inverse_cdf$ evaluates the inverse distribution function of a chi-squared random variable with v = df and with probability p. That is, it determines $x = imsl_f_chi_squared_inverse_cdf(p,df)$ such that

$$p = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^x e^{-t/2} t^{\nu/2-1} dt$$

where $\Gamma(\cdot)$ is the gamma function. The probability that the random variable takes a value less than or equal to *x* is *p*.

For v < 40, imsl_f_chi_squared_inverse_cdf uses bisection (if $v \le 2$ or p > 0.98) or regula falsi to find the point at which the chi-squared distribution function is equal to p. The distribution function is evaluated using function imsl_f_chi_squared_cdf.

For $40 \le v < 100$, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.18) to the normal distribution is used. The function

imsl_f_normal_cdf is used to evaluate the inverse of the normal distribution function. For $v \ge 100$, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.

Example

In this example, the 99-th percentage point is calculated for a chi-squared random variable with two degrees of freedom. The same calculation is made for a similar variable with 64 degrees of freedom.

```
#include <imsl.h>
```

```
void main ()
{
    float    df, x;
    float    p = 0.99;
    df = 2.0;
    x = imsl_f_chi_squared_inverse_cdf(p, df);
    printf("For p = .99 with 2 df, x = %7.3f.\n", x);
    df = 64.0;
    x = imsl_f_chi_squared_inverse_cdf(p,df);
    printf("For p = .99 with 64 df, x = %7.3f.\n", x);
}
```

Output

For p = .99 with 2 df, x = 9.210. For p = .99 with 64 df, x = 93.217.

Warning Errors

IMSL_UNABLE_TO_BRACKET_VALUE	The bounds that enclose <i>p</i> could not be found. An approximation for imsl_f_chi_squared_inverse_cdf is returned.
IMSL_CHI_2_INV_CDF_CONVERGENCE	The value of the inverse chi-squared could not be found within a specified number of iterations. An approximation for imsl_f_chi_squared_inverse_cdf is returned.

F_cdf

Evaluates the *F* distribution function.

Synopsis

```
#include <imsl.h>
float imsl_f_F_cdf (float f, float df_denominator, float df_numerator)
```

The type *double* function is imsl_d_F_cdf.

Required Arguments

float f (Input)

Point at which the F distribution function is to be evaluated.

float df_numerator (Input)

The numerator degrees of freedom. The argument df_numerator must be positive.

float df_denominator (Input)

The denominator degrees of freedom. The argument df_denominator must be positive.

Return Value

The probability that an F random variable takes a value less than or equal to the input point, f.

Description

The function imsl_f_F_cdf evaluates the distribution function of a Snedecor's *F* random variable with df_numerator and df_denominator. The function is evaluated by making a transformation to a beta random variable and then by evaluating the incomplete beta function. If *X* is an *F* variate with v₁ and v₂ degrees of freedom and $Y = (v_1 X)/(v_2 + v_1 X)$, then *Y* is a beta variate with parameters $p = v_1/2$ and $q = v_2/2$.

The function $imsl_f_F_cdf$ also uses a relationship between F random variables that can be expressed as follows:

 $F_F(f, v_1, v_2) = 1 - F_F(1/f, v_2, v_1)$ where F_F is the distribution function for an F random variable.

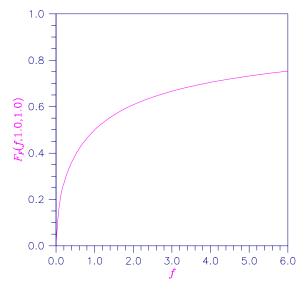


Figure 9-14 Plot of F_F (f, 1.0, 1.0)

Example

This example finds the probability that an *F* random variable with one numerator and one denominator degree of freedom is greater than 648.

```
#include <imsl.h>
```

```
main()
{
    float p;
    float F = 648.0;
    float df_numerator = 1.0;
    float df_denominator = 1.0;
    p = 1.0 - imsl_f_F_cdf(F,df_numerator, df_denominator);
    printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate",
                     "is greater than 648 is", p);
}
```

Output

The probability that an F(1,1) variate is greater than 648 is 0.0250.

F_inverse_cdf

Evaluates the inverse of the F distribution function.

Synopsis

#include <imsl.h>

The type *double* procedure is imsl_d_F_inverse_cdf.

Required Arguments

float p (Input)

Probability for which the inverse of the *F* distribution function is to be evaluated. The argument p must be in the open interval (0.0, 1.0).

- float df_denominator (Input)
 Denominator degrees of freedom. Argument df_denominator must be
 positive.

Return Value

The value of the inverse of the *F* distribution function evaluated at p. The probability that an *F* random variable takes a value less than or equal to $imsl_f_F_inverse_cdf$ is p.

Description

The function $imsl_f_F_inverse_cdf$ evaluates the inverse distribution function of a Snedecor's *F* random variable with $v_1 = df_numerator$ numerator degrees of freedom and $v_2 = df_denominator$ denominator degrees of freedom. The function is evaluated by making a transformation to a beta random variable and then by evaluating the inverse of an incomplete beta function. If *X* is an *F* variate with v_1 and v_2 degrees of freedom and $Y = (v_1, X)/(v_2 + v_1 X)$, then *Y* is a beta variate with parameters $p = v_1/2$ and $q = v_2/2$. If $P \le 0.5$, $imsl_f_F_inverse_cdf$ uses this relationship directly; otherwise, it also uses a relationship between *F* random variables that can be expressed as follows:

$$F_F(f, v_1, v_2) = 1 - F_F(1/f, v_2, v_1)$$

Example

In this example, the 99-th percentage point is calculated for an F random variable with seven degrees of freedom. The same calculation is made for a similar variable with one degree of freedom.

```
#include <imsl.h>
main()
{
    float df_denominator = 1.0;
    float df_numerator = 7.0;
    float f;
    float f;
    float p = 0.99;
    f = imsl_f_F_inverse_cdf(p, df_numerator, df_denominator);
    printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}
```

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors

```
IMSL_F_INVERSE_OVERFLOWFunction imsl_f_F_inverse_cdf is set to<br/>machine infinity since overflow would occur upon<br/>modifying the inverse value for the F distribution<br/>with the result obtained from the inverse beta<br/>distribution.
```

t_cdf

Evaluates the Student's *t* distribution function.

Synopsis

#include <imsl.h>
float imsl_f_t_cdf (float t, float df)

The type *double* function is imsl_d_t_cdf.

Required Arguments

```
float t (Input)
```

Argument for which the Student's *t* distribution function is to be evaluated.

float df (Input)

Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value

The probability that a Student's t random variable takes a value less than or equal to the input t.

Description

The function $imsl_f_t_cdf$ evaluates the distribution function of a Student's *t* random variable with $v_1 = df$ degrees of freedom. If the square of *t* is greater than or equal to v, the relationship of a *t* to an *F* random variable (and subsequently, to a beta random variable) is exploited, and percentage points from a beta distribution are used. Otherwise, the method described by Hill (1970) is used. If v is not an integer, if v is greater than 19, or if v is greater than 200, a Cornish-Fisher expansion is used to evaluate the distribution function. If v is less than 20 and |t| is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a series given by Hill (1970) that converges well for large values of *t* is used.

Example

This example finds the probability that a t random variable with six degrees of freedom is greater in absolute value than 2.447. The fact that t is symmetric about zero is used.

```
#include <imsl.h>
```

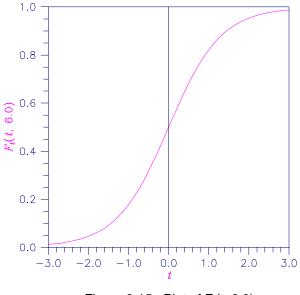


Figure 9-15 Plot of $F_t(t, 6.0)$

t_inverse_cdf

Evaluates the inverse of the Student's *t* distribution function.

Synopsis

#include <imsl.h>

float imsl_f_t_inverse_cdf (float p, float df)

The type *double* function is imsl_d_t_inverse_cdf.

Required Arguments

float p (Input)

Probability for which the inverse of the Student's *t* distribution function is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)

Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value

The inverse of the Student's *t* distribution function evaluated at p. The probability that a Student's *t* random variable takes a value less than or equal to <code>imsl_f_t_inverse_cdf</code> is p.

The function $imsl_f_t_inverse_cdf$ evaluates the inverse distribution function of a Student's *t* random variable with v = df degrees of freedom. If v equals 1 or 2, the inverse can be obtained in closed form. If v is between 1 and 2, the relationship of a *t* to a beta random variable is exploited, and the inverse of the beta distribution is used to evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values of v greater than 2, Hill's algorithm inverts an integrated expansion in $1/(1 + t^2/v)$ of the *t* density. For larger values, an asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Example

This example finds the 0.05 critical value for a two-sided *t* test with six degrees of freedom.

```
#include <imsl.h>
```

```
void main()
{
    float    df = 6.0;
    float    p = 0.975;
    float    t;
    t = imsl_f_t_inverse_cdf(p,df);
    printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}
```

Output

The two-sided t(6) 0.05 critical value is 2.447

Informational Errors

IMSL_OVERFLOW

Function imsl_f_t_inverse_cdf is set to machine infinity since overflow would occur upon modifying the inverse value for the *F* distribution with the result obtained from the inverse beta distribution.

gamma_cdf

Evaluates the gamma distribution function.

Synopsis

```
#include <imsl.h>
float imsl_f_gamma_cdf (float x, float a)
The type double procedure is imsl_d_gamma_cdf.
```

Required Arguments

```
float x (Input)
```

Argument for which the gamma distribution function is to be evaluated.

float a (Input)

The shape parameter of the gamma distribution. This parameter must be positive.

Return Value

The probability that a gamma random variable takes a value less than or equal to x.

Description

The function imsl_f_gamma_cdf evaluates the distribution function, *F*, of a gamma random variable with shape parameter *a*, that is,

$$F(x) = \frac{1}{\Gamma(a)} \int_0^x e^{-t} t^{a-1} dt$$

where $\Gamma(\cdot)$ is the gamma function. (The gamma function is the integral from zero to infinity of the same integrand as above). The value of the distribution function at the point *x* is the probability that the random variable takes a value less than or equal to *x*.

The gamma distribution is often defined as a two-parameter distribution with a scale parameter b (which must be positive) or even as a three-parameter distribution in which the third parameter c is a location parameter.

In the most general case, the probability density function over (c, ∞) is

$$f(t) = \frac{1}{b^{a} \Gamma(a)} e^{-(t-c)/b} (x-c)^{a-1}$$

If *T* is such a random variable with parameters *a*, *b*, and *c*, the probability that $T \le t_0$ can be obtained from imsl_f_gamma_cdf by setting $x = (t_0 - c)/b$.

If x is less than a or if x is less than or equal to 1.0, imsl_f_gamma_cdf uses a series expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz and Stegun 1964.)

Example

Let *X* be a gamma random variable with a shape parameter of four. (In this case, it has an *Erlang distribution* since the shape parameter is an integer.) This example finds the probability that *X* is less than 0.5 and the probability that *X* is between 0.5 and 1.0.

```
#include <imsl.h>
```

```
main()
{
    float p, x;
```

```
float a = 4.0;
x = 0.5;
p = imsl_f_gamma_cdf(x,a);
printf("The probability that X is less than 0.5 is %6.4f\n", p);
x = 1.0;
p = imsl_f_gamma_cdf(x,a) - p;
printf("The probability that X is between 0.5 and 1.0 is %6.4f\n", p);
}
```

Output

The probability that X is less than 0.5 is 0.0018 The probability that X is between 0.5 and 1.0 is 0.0172 $\,$

Informational Errors

IMSL_LESS_THAN_ZERO

The input argument, x, is less than zero.

Fatal Errors

IMSL_X_AND_A_TOO_LARGE

The function overflows because *x* and *a* are too large.

binomial_cdf

Evaluates the binomial distribution function.

Synopsis

#include <imsl.h>

float imsl_f_binomial_cdf (int k, int n, float p)

The type *double* procedure is imsl_d_binomial_cdf.

Required Arguments

- *int* k (Input) Argument for which the binomial distribution function is to be evaluated.
- *int* n (Input) Number of Bernoulli trials.
- float p (Input) Probability of success on each trial.

Return Value

The probability that k or fewer successes occur in n independent Bernoulli trials, each of which has a probability p of success.

The function $imsl_f_binomial_cdf$ evaluates the distribution function of a binomial random variable with parameters *n* and *p*. It does this by summing probabilities of the random variable taking on the specific values in its range. These probabilities are computed by the recursive relationship

$$Pr(X = j) = \frac{(n+1-j)p}{j(1-p)} Pr(X = j-1)$$

To avoid the possibility of underflow, the probabilities are computed forward from zero if *k* is not greater than $n \times p$; otherwise, they are computed backward from *n*. The smallest positive machine number, ε , is used as the starting value for summing the probabilities, which are rescaled by $(1 - p)^n \varepsilon$ if forward computation is performed and by $p^n \varepsilon$ if backward computation is done.

For the special case of p is zero, $imsl_f_binomial_cdf$ is set to 1; and for the case p is 1, $imsl_f_binomial_cdf$ is set to 1 if k = n and is set to zero otherwise.

Example

Suppose *X* is a binomial random variable with an n = 5 and a p = 0.95. This example finds the probability that *X* is less than or equal to three.

```
#include <imsl.h>
```

Output

```
Pr(x <= 3) = 0.0226
```

Informational Errors

IMSL_LESS_THAN_ZERO	The input argument, k , is less than zero.
IMSL_GREATER_THAN_N	The input argument, k , is greater than the number of
	Bernoulli trials, <i>n</i> .

hypergeometric_cdf

Evaluates the hypergeometric distribution function.

Synopsis

#include <imsl.h>

float imsl_f_hypergeometric_cdf (int k, int n, int m, int l)

The type *double* procedure is imsl_d_hypergeometric_cdf.

Required Arguments

int k (Input)

Argument for which the hypergeometric distribution function is to be evaluated.

- *int* n (Input) Sample size n must be greater than or equal to k.
- *int* m (Input) Number of defectives in the lot.

int 1 (Input)

Lot size 1 must be greater than or equal to n and m.

Return Value

The probability that k or fewer defectives occur in a sample of size n drawn from a lot of size l that contains m defectives.

Description

The function $imsl_f_hypergeometric_cdf$ evaluates the distribution function of a hypergeometric random variable with parameters *n*, *l*, and *m*. The hypergeometric random variable *x* can be thought of as the number of items of a given type in a random sample of size *n* that is drawn without replacement from a population of size *l* containing *m* items of this type. The probability function is

$$Pr(x=j) = \frac{\binom{m}{j}\binom{l-m}{n-j}}{\binom{l}{n}} \quad \text{for } j = i, i+1, \dots, \min(n,m)$$

where i = max (0, n - l + m).

If k is greater than or equal to i and less than or equal to min (n, m), imsl_f_hypergeometric_cdf sums the terms in this expression for j going from i up to k. Otherwise, 0 or 1 is returned, as appropriate.

To avoid rounding in the accumulation, imsl_f_hypergeometric_cdf performs the summation differently, depending on whether *k* is greater than the mode of the

distribution, which is the greatest integer in (m + 1) (n + 1)/(l + 2).

Example

Suppose *X* is a hypergeometric random variable with n = 100, l = 1000, and m = 70. This example evaluates the distribution function at 7.

```
#include <imsl.h>
```

```
void main()
ł
               k = 7;
    int
               1 = 1000;
   int
   int
               m = 70;
               n = 100;
   int
   float
              p;
   p = imsl_f_hypergeometric_cdf(k,n,m,l);
   printf("\nPr (x <= 7) = %6.4f", p);
}
           Output
```

```
Pr (x <= 7) = 0.599
```

Informational Errors

IMSL_LESS_THAN_ZERO	The input argument, k , is less than zero.
IMSL_K_GREATER_THAN_N	The input argument, k , is greater than the sample size.

Fatal Errors

```
IMSL_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to n and m.
```

poisson_cdf

Evaluates the Poisson distribution function.

Synopsis

```
#include <imsl.h>
```

float imsl_f_poisson_cdf (int k, float theta)

The type *double* function is imsl_d_poisson_cdf.

Required Arguments

int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)

Mean of the Poisson distribution. Argument theta must be positive.

Return Value

The probability that a Poisson random variable takes a value less than or equal to k.

Description

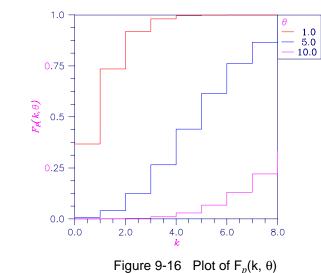
The function imsl_f_poisson_cdf evaluates the distribution function of a Poisson random variable with parameter theta. The mean of the Poisson random variable, theta, must be positive. The probability function (with $\theta = \text{theta}$) is

$$f(x) = e^{-\theta} \theta^{x} / x!$$
, for $x = 0, 1, 2, ...$

The individual terms are calculated from the tails of the distribution to the mode of the distribution and summed. The function imsl_f_poisson_cdf uses the recursive relationship

$$f(x+1) = f(x)\theta/(x+1)$$
, for $x = 0, 1, 2, ..., k-1$

with $f(0) = e^{-\theta}$.



Example

Suppose *X* is a Poisson random variable with $\theta = 10$. This example evaluates the probability that $X \le 7$.

#include <imsl.h>

void main()

{

int k = 7; float theta = 10.0; float p; p = imsl_f_poisson_cdf(k, theta);

```
printf("Pr(x <= 7) = %6.4f\n", p);
}</pre>
```

Output

Pr(x <= 7) = 0.2202

Informational Errors

IMSL_LESS_THAN_ZERO The input argument, *k*, is less than zero.

beta_cdf

Evaluates the beta probability distribution function.

Synopsis

```
#include <imsl.h>
```

float imsl_f_beta_cdf (float x, float pin, float qin)

The type *double* function is imsl_d_beta_cdf.

Required Arguments

float x (Input)

Argument for which the beta probability distribution function is to be evaluated.

float pin (Input)

First beta distribution parameter. Argument pin must be positive.

float qin (Input)

Second beta distribution parameter. Argument qin must be positive.

Return Value

The probability that a beta random variable takes on a value less than or equal to x.

Description

Function imsl_f_beta_cdf evaluates the distribution function of a beta random variable with parameters pin and qin. This function is sometimes called the incomplete beta ratio and with p = pin and q = qin, is denoted by $I_x(p, q)$. It is given by

$$I_x(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \int_0^x t^{p-1} (1-t)^{q-1} dt$$

where $\Gamma(\cdot)$ is the gamma function. The value of the distribution function by $I_x(p, q)$ is the probability that the random variable takes a value less than or equal to *x*.

The integral in the expression above is called the incomplete beta function and is denoted by $\beta_x(p, q)$. The constant in the expression is the reciprocal of the beta function (the incomplete function evaluated at one) and is denoted by $\beta(p, q)$.

Function beta_cdf uses the method of Bosten and Battiste (1974).

Example

Suppose *X* is a beta random variable with parameters 12 and 12. (*X* has a symmetric distribution.) This example finds the probability that *X* is less than 0.6 and the probability that *X* is between 0.5 and 0.6. (Since *X* is a symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsl.h>

Output

The probability that X is less than 0.6 is 0.8364 The probability that X is between 0.5 and 0.6 is 0.3364

beta_inverse_cdf

Evaluates the inverse of the beta distribution function.

Synopsis

```
#include <imsl.h>
```

float imsl_f_beta_inverse_cdf (float p, float pin, float qin)

The type *double* function is imsl_d_beta_inverse_cdf.

Required Arguments

float p (Input)

Probability for which the inverse of the beta distribution function is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

float pin (Input)

First beta distribution parameter. Argument pin must be positive.

float qin (Input)

Second beta distribution parameter. Argument qin must be positive.

Return Value

Function imsl_f_beta_inverse_cdf evaluates the inverse distribution function of a beta random variable with parameters pin and qin.

Description

With P = p, p = p in, and q = q in, function imsl_f_beta_inverse_cdf returns x such that

$$P = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \int_0^x t^{p-1} (1-t)^{q-1} dt$$

where $\Gamma(\cdot)$ is the gamma function. The probability that the random variable takes a value less than or equal to *x* is *P*.

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) This example finds the value x such that the probability that $X \le x$ is 0.9. #include <imsl.h>

Output

X is less than 0.6299 with probability 0.9.

bivariate_normal_cdf

Evaluates the bivariate normal distribution function.

Synopsis

#include <imsl.h>

514 • bivariate_normal_cdf

IMSL C/Math/Library

float imsl_f_bivariate_normal_cdf (float x, float y, float rho)

The type *double* function is imsl_d_bivariate_normal_cdf.

Required Arguments

float x (Input)

The *x*-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float y (Input)

The *y*-coordinate of the point for which the bivariate normal distribution function is to be evaluated.

float rho (Input)

Correlation coefficient.

Return Value

The probability that a bivariate normal random variable with correlation rho takes a value less than or equal to x and less than or equal to y.

Example

Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variancecovariance matrix

1.0	0.9
0.9	1.0

This example finds the probability that X is less than -2.0 and Y is less than 0.0. #include <imsl.h>

Output

The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228 $\,$

Chapter 10: Statistics and Random Number Generation

Routines

10.1	Statistics	
	Univariate summary statistics simple_statistics	519
	One-way frequency tabletable_oneway	524
	Chi-squared one-sample goodness-of-fit testchi_squared_test	528
	Correlation covariances	536
	Multiple linear regressionregression	541
	Polynomial regressionpoly_regression	549
	Numerical rankingranks	557
10.2	Random Numbers	
	Retrieve the current value of the seedrandom_seed_get	563
	Initialize a random seedrandom_seed_set	564
	Select the uniform (0, 1) generatorrandom_option	565
	Generate pseudorandom numbersrandom_uniform	566
	Generate pseudorandom normal numbersrandom_normal	568
	Generate pseudorandom Poisson numbers random_poisson	570
	Generate pseudorandom gamma numbers random_gamma	571
	Generate pseudorandom betarandom_beta	573
	Generate pseudorandom	
	standard exponentialrandom_exponential	575

Usage Notes

Statistics

The functions in this section can be used to compute some common univariate summary statistics, perform a one-sample goodness-of-fit test, produce measures of correlation, perform multiple and polynomial regression analysis, and compute ranks (or a transformation of the ranks, such as normal or exponential scores). The user is referred to the individual functions for additional information.

Overview of Random Number Generation

"Random Numbers" describes functions for the generation of random numbers and of random samples and permutations. These functions are useful for applications in Monte Carlo or simulation studies. Before using any of the random number generators, the generator must be initialized by selecting a *seed* or starting value. This can be done by calling the function imsl_random_seed_set. If the user does not select a seed, one is generated using the system clock. A seed needs to be selected only once in a program, unless two or more separate streams of random numbers are maintained. There are other utility functions in this chapter for selecting the form of the basic generator, for restarting simulations, and for maintaining separate simulation streams.

In the following discussions, the phrases "random numbers," "random deviates," "deviates," and "variates" are used interchangeably. The phrase "pseudorandom" is sometimes used to emphasize that the numbers generated are really not "random," since they result from a deterministic process. The usefulness of pseudorandom numbers is derived from the similarity, in a statistical sense, of samples of the pseudorandom numbers to samples of observations from the specified distributions. In short, while the pseudorandom numbers are completely deterministic and repeatable, they *simulate* the realizations of independent and identically distributed random variables.

The Basic Uniform Generator

The random number generators in this chapter use a multiplicative congruential method. The form of the generator is

$$x_i = cx_{i-1} \mod (2^{31} - 1).$$

Each x_i is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root modulo $2^{31} - 1$ (which is a prime), then the generator will have a maximal period of $2^{31} - 2$. There are several other considerations, however. See Knuth (1981) for a good general discussion. The possible values for c in the IMSL generators are 16807, 397204094, and 950706376. The selection is made by the function <code>imsl_random_ option</code>. The choice of 16807 will result in the fastest execution time, but other evidence suggests that the performance of 950706376 is best among these three choices (Fishman and Moore 1982). If no selection is made explicitly, the functions use the multiplier 16807, which has been in use for some time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function imsl_f_random_uniform. This function is *portable* in the sense that, given the same seed, it produces the same sequence in all computer/compiler environments.

Shuffled Generators

The user also can select a shuffled version of these generators using $imsl_random_option$. The shuffled generators use a scheme due to Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) numbers resulting from the simple multiplicative congruential generator. Then, for each x_i from the simple generator, the low-order bits of x_i are used to select a random integer, j, from

1 to 128. The *j*-th entry in the table is then delivered as the random number, and x_i , after being scaled into the unit interval, is inserted into the *j*-th position in the table. This scheme is similar to that of Bays and Durham (1976), and their analysis is applicable to this scheme as well.

Setting the Seed

The seed of the generator can be set in imsl_random_seed_set and can be retrieved by imsl_random_seed_get. Prior to invoking any generator in this section, the user can call imsl_random_seed_set to initialize the seed, which is an integer variable with a value between 1 and 2147483647. If it is not initialized by imsl_random_seed_set, a random seed is obtained from the system clock. Once it is initialized, the seed need not be set again.

If the user wishes to restart a simulation, imsl_random_seed_get can be used to obtain the final seed value of one run to be used as the starting value in a subsequent run. Also, if two simultaneous random number streams are desired in one run, imsl_random_seed_set and imsl_random_seed_get can be used before and after the invocations of the generators in each stream.

simple_statistics

Computes basic univariate statistics.

Synopsis

#include <imsl.h>

The type *double* procedure is imsl_d_simple_statistics.

Required Arguments

int n_observations (Input) The number of observations.

int n_variables (Input) The number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the data matrix.

Return Value

A pointer to a matrix containing some simple statistics for each of the columns in x. If MEDIAN and MEDIAN_AND_SCALE are not used as optional arguments, the size of the matrix is 14 by n_variables. The columns of this matrix correspond to the columns of x and the rows contain the following statistics:

Row	Statistic
0	the mean
1	the variance
2	the standard deviation
3	the coefficient of skewness
4	the coefficient of excess (kurtosis)
5	the minimum value
6	the maximum value
7	the range
8	the coefficient of variation (when defined)
	If the coefficient of variation is not defined, zero is returned.
9	the number of observations (the counts)
10	a lower confidence limit for the mean (assuming normality)
	The default is a 95 percent confidence interval.
11	an upper confidence limit for the mean (assuming normality)
12	a lower confidence limit for the variance (assuming normality)
	The default is a 95 percent confidence interval.
13	an upper confidence limit for the variance (assuming normality)

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_CONFIDENCE_MEANS, float confidence_means (Input)

The confidence level for a two-sided interval estimate of the means (assuming normality) in percent. Argument confidence_means must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level c, set confidence_means = 100.0 - 2(100 - c). If

IMSL_CONFIDENCE_MEANS is not specified, a 95 percent confidence interval is computed.

- IMSL_CONFIDENCE_VARIANCES, *float* confidence_variances (Input) The confidence level for a two-sided interval estimate of the variances (assuming normality) in percent. The confidence intervals are symmetric in probability (rather than in length). For a one-sided confidence interval with confidence level *c*, set confidence_means = 100.0 - 2(100 - c). If IMSL_CONFIDENCE_VARIANCES is not specified, a 95 percent confidence interval is computed.
- IMSL_X_COL_DIM, int x_col_dim (Input)
 The column dimension of array x.
 Default: x_col_dim = n_variables
- IMSL_STAT_COL_DIM, int stat_col_dim (Input)

The column dimension of the returned value array, or if IMSL_RETURN_USER is specified, the column dimension of array simple_statistics. Default: stat_col_dim = n_variables

IMSL_MEDIAN, or

IMSL_MEDIAN_AND_SCALE

Exactly one of these optional arguments can be specified in order to indicate the additional simple robust statistics to be computed. If IMSL_MEDIAN is specified, the medians are computed and stored in one additional row (row number 14) in the returned matrix of simple statistics. If IMSL_MEDIAN_AND_SCALE is specified, the medians, the medians of the absolute deviations from the medians, and a simple robust estimate of scale are computed, then stored in three additional rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

IMSL_RETURN_USER, float simple_statistics[] (Output)

Store the matrix of statistics in the user-provided array simple_statistics. If neither IMSL_MEDIAN nor IMSL_MEDIAN_AND_SCALE is specified, the matrix is 14 by n_variables. If IMSL_MEDIAN is specified, the matrix is 15 by n_variables. If IMSL_MEDIAN_AND_SCALE is specified, the matrix is 17 by n_variables.

Description

For the data in each column of *x*, imsl_f_simple_statistics computes the sample mean, variance, minimum, maximum, and other basic statistics. It also computes confidence intervals for the mean and variance (under the hypothesis that the sample is from a normal population).

The definitions of some of the statistics are given below in terms of a single variable x of which the *i*-th datum is x_i .

Mean

$$\overline{x} = \frac{\sum x_i}{n}$$

Variance

$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$$

Skewness

$$\frac{\sum (x_i - \overline{x})^3 / n}{\left[\sum (x_i - \overline{x})^2 / n\right]^{3/2}}$$

Excess or Kurtosis

$$\frac{\sum (x_i - \overline{x})^4 / n}{\left[\sum (x_i - \overline{x})^2 / n\right]^2} - 3$$

Minimum

$$x_{min} = min(x_i)$$

Maximum

$$x_{max} = max(x_i)$$

Range

 $x_{max} - x_{min}$

Coefficient of Variation

 s / \overline{x} for $\overline{x} \neq 0$

Median

median $\{x_i\} = \begin{cases} \text{middle } x_i \text{ after sorting if } n \text{ is odd} \\ \text{average of middle two } x_i \text{ 's if } n \text{ is even} \end{cases}$

522 • simple_statistics

Median Absolute Deviation

$$MAD = median\left\{\left|x_{i} - median\left\{x_{j}\right\}\right|\right\}$$

Simple Robust Estimate of Scale

MAD /
$$\Phi^{-1}(3/4)$$

where $\Phi^{-1}(3/4) \approx 0.6745$ is the inverse of the standard normal distribution function evaluated at 3/4. This standardizes MAD in order to make the scale estimate consistent at the normal distribution for estimating the standard deviation (Huber 1981, pp. 107-108).

Example

This example uses data from Draper and Smith (1981). There are five variables and 13 observations.

```
#include <imsl.h>
```

```
#define N_VARIABLES
                                                 5
#define N_OBSERVATIONS
                                                 13
main()
{
      float
                         *simple_statistics;
                         x[] = {7., 26., 6., 60., 78.5,
1., 29., 15., 52., 74.3,
11., 56., 8., 20., 104.3,
11., 31., 8., 47., 87.6,
      float
                                    7., 52., 6., 33., 95.9,

      11., 55., 9., 22., 109.2,

      3., 71., 17., 6., 102.7,

      1., 31., 22., 44., 72.5,

      2., 54., 18., 22., 93.1,

                                   21., 47., 4., 26., 115.9,
                                    1., 40., 23., 34., 83.8,
                                  11., 66., 9., 12., 113.3,
10., 68., 8., 12., 109.4};
Labels[] = {"means", "variances", "std. dev",
      char
                         *row_labels[] =
                                                     "skewness", "kurtosis", "minima",
                                                     "maxima", "ranges", "C.V.", "counts",
                                                    "lower mean", "upper mean",
"lower var", "upper var"};
      simple_statistics = imsl_f_simple_statistics(N_OBSERVATIONS,
                                                                             N_VARIABLES, x, 0);
      imsl_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
                                      simple_statistics,
                                      IMSL_ROW_LABELS, row_labels,
IMSL_WRITE_FORMAT, "%7.3f",
                                      0);
```

}

Output

	1	2	3	4	5
means	7.462	48.154	11.769	30.000	95.423
variances	34.603	242.141	41.026	280.167	226.314
std. dev	5.882	15.561	6.405	16.738	15.044
skewness	0.688	-0.047	0.611	0.330	-0.195
kurtosis	0.075	-1.323	-1.079	-1.014	-1.342
minima	1.000	26.000	4.000	6.000	72.500
maxima	21.000	71.000	23.000	60.000	115.900
ranges	20.000	45.000	19.000	54.000	43.400
C.V.	0.788	0.323	0.544	0.558	0.158
counts	13.000	13.000	13.000	13.000	13.000
lower mean	3.907	38.750	7.899	19.885	86.332
upper mean	11.016	57.557	15.640	40.115	104.514
lower var	17.793	124.512	21.096	144.065	116.373
upper var	94.289	659.817	111.792	763.434	616.688

* * * Statistics * * *

table_oneway

Tallies observations into a one-way frequency table.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_table_oneway.

Required Arguments

int n_observations (Input)

Number of observations.

```
float x[] (Input)
```

Array of length n_observations containing the observations.

int n_intervals (Input)

Number of intervals (bins).

Return Value

Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments

#include <imsl.h>

524 • table_oneway

```
IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound,
IMSL_CUTPOINTS, float cutpoints[],
IMSL_CLASS_MARKS, float class_marks[],
IMSL_RETURN_USER, float table_oneway[],
0)
```

Optional Arguments

IMSL_CLASS_MARKS, float class_marks[] (Input)
None, or exactly one, of these four optional arguments can be specified in
order to define the intervals or bins for the one-way table. If none is specified,
or if IMSL_DATA_BOUNDS is specified, n_intervals, intervals of equal
length, are used with the initial interval starting with the minimum value in
x and the last interval ending with the maximum value in x. The initial interval
is closed on the left and right. The remaining intervals are open on the left and
closed on the right. When IMSL_DATA_BOUNDS is explicitly specified, the
minimum and maximum values in x are output in minimum and maximum.
With this option, each interval is of (maximum-minimum)/ n_intervals
length. If IMSL_KNOWN_BOUNDS is specified, two semi-infinite intervals are
used as the initial and last interval. The initial interval is closed on the right
and includes lower_bound as its right endpoint. The last interval is open on
the left and includes all values greater than upper_ bound. The remaining
n_intervals - 2 intervals are each of length

 $\frac{upper_bound - lower_bound}{n_intervals - 2}$

and are open on the left and closed on the right. Argument n_intervals must be greater than or equal to three for this option. If IMSL_CLASS_MARKS is specified, equally spaced class marks in ascending order must be provided in the array class_marks of length n_intervals. The class marks are the midpoints of each of the n_intervals, and each interval is taken to have length class_marks[1] - class_marks[0]. The argument n_intervals must be greater than or equal to two for this option. If IMSL_ CUTPOINTS is specified, cutpoints (boundaries) must be provided in the array cutpoints of length n_intervals - 1. This option allows unequal interval lengths. The initial interval is closed on the right and includes the initial cutpoint as its right endpoint. The last interval is open on the left and includes all values greater than the last cutpoint. The remaining n_intervals - 2 intervals are open on the left and closed on the right. The argument n_interval must be greater than or equal to three for this option.

```
IMSL_RETURN_USER, float table[] (Output)
```

Counts are stored in the user-supplied array table of length n_intervals.

Examples

Example 1

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981). They are the measurements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive years.

```
#include <imsl.h>
main()
{
    int
             n_intervals=10;
    int
             n observations=30;
    float
             *table;
             x[] = \{0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
    float
                     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
                    1.89, 0.90, 2.05;
    table = imsl_f_table_oneway (n_observations, x, n_intervals, 0);
    imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
  }
             Output
                                    counts
          1
                        2
                                     3
                                                   4
                                                                 5
                                                                               6
          4
                                     5
                                                   5
                                                                 3
                        8
                                                                               1
          7
                                     9
                                                  10
                        8
          3
                        0
                                     0
                                                   1
             Example 2
             This example selects IMSL_KNOWN_BOUNDS and sets lower_bound = 0.5 and
             upper_bound = 4.5 so that the eight interior intervals each have width
             (4.5 - 0.5)/(10 - 2) = 0.5. The 10 intervals are (-\infty, 0.5], (0.5, 1.0], \dots, (4.0, .5], (0.5, 1.0), \dots, (4.0, .5]
             and (4.5, \infty].
#include <imsl.h>
main()
{
    int
             n_observations=30;
    int
             n intervals=10;
    float
             *table;
    float.
             lower_bound=0.5, upper_bound=4.5;
             float
                     1.89, 0.90, 2.05;
    table = imsl_f_table_oneway (n_observations, x, n_intervals,
                                     IMSL_KNOWN_BOUNDS, lower_bound,
                                     upper_bound, 0);
    imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
 }
```

•••					
		counts			
1	2	3	4	5	6
2	7	6	б	4	2
7	8	9	10		
2	0	0	1		

Example 3

Output

This example inputs 10 class marks 0.25, 0.75, 1.25, ..., 4.75. This defines the class intervals $(0.0, 0.5], (0.5, 1.0], \dots, (4.0, 4.5], (4.5, 5.0]$. Note that unlike the previous example, the initial and last intervals are the same length as the remaining intervals.

```
#include <imsl.h>
main()
```

```
{
```

}

{

```
int
         n_intervals=10;
int
         n_observations=30;
double
         *table;
         double
                4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
double
         class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25, 2.75,
                         3.25, 3.75, 4.25, 4.75};
table = imsl_d_table_oneway (n_observations, x, n_intervals,
                         IMSL_CLASS_MARKS, class_marks,
                         0);
imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
```

Output

		counts			
1	2	3	4	5	б
2	7	б	6	4	2
7	8	9	10		
2	0	0	1		

Example 4

This example inputs nine cutpoints 0.5, 1.0, 1.5, 2.0, ..., 4.5 to define the same 10 intervals as in Example 3. Here again, the initial and last intervals are semi-infinite intervals.

```
#include <imsl.h>
main()
                n_intervals=10;
    int
    int
                n_observations=30;
    double
                *table;
                x[] = \{0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
    double
                       3.37,\ 2.20,\ 3.00,\ 3.09,\ 1.51,\ 2.10,\ 0.52,\ 1.62,
                       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
                       4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
```

```
cutpoints[] = \{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5\};
    double
    table = imsl_d_table_oneway (n_observations, x, n_intervals,
                                   IMSL_CUTPOINTS, cutpoints,
                                   0);
    imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}
            Output
                          counts
             2
7
1
                          3
                                       4
                                                    5
                                                                 б
                                                    4
                                                                 2
2
                          6
                                       6
```

10

1

chi_squared_test

8

0

7

2

Performs a chi-squared goodness-of-fit test.

9

0

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_chi_squared_test.

Required Arguments

```
float user_proc_cdf (float y) (Input)
        User-supplied function that returns the hypothesized, cumulative distribution
      function at the point y.
int n_observations (Input)
        The number of data elements input in x.
int n_categories (Input)
        The number of cells into which the observations are to be tallied.
```

float x[] (Input)
 Array with n_observations components containing the vector of data
 elements for this test.

Return Value

The *p*-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments

#include <imsl.h>

528 • chi_squared_test

float imsl_f_chi_squared_test (float *user_proc_cdf(), int n_observations, *int* n_categories, *float* x[], IMSL_N_PARAMETERS_ESTIMATED, *int* n_parameters, IMSL_CUTPOINTS, float **p_cutpoints, IMSL_CUTPOINTS_USER, *float* cutpoints[], IMSL_CUTPOINTS_EQUAL, IMSL_CHI_SQUARED, float *chi_squared, IMSL_DEGREES_OF_FREEDOM, float *df, IMSL_FREQUENCIES, float frequencies[], IMSL_BOUNDS, *float* lower_bound, *float* upper_bound, IMSL_CELL_COUNTS, float **p_cell_counts, IMSL_CELL_COUNTS_USER, float cell_counts[], IMSL_CELL_EXPECTED, float **p_cell_expected, IMSL_CELL_EXPECTED_USER, float cell_expected[], IMSL_CELL_CHI_SQUARED, *float* **p_cell_chi_squared, IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[], 0)

Optional Arguments

IMSL_N_PARAMETERS_ESTIMATED, *int* n_parameters (Input) The number of parameters estimated in computing the cumulative distribution function.

IMSL_CUTPOINTS, float **p_cutpoints (Output)
The address of a pointer to the cutpoints array. On return, the pointer is
initialized (through a memory allocation request to malloc), and the array is
stored there. Typically, float *p_cutpoints is declared; &p_cutpoints is
used as an argument to this function; and free(p_cutpoints) is used to
free this array.

IMSL_CUTPOINTS_USER, float cutpoints[] (Input or Output)

Array with n_categories – 1 components containing the vector of cutpoints defining the cell intervals. The intervals defined by the cutpoints are such that the lower endpoint is not included, and the upper endpoint is included in any interval. If IMSL_CUTPOINTS_EQUAL is specified, equal probability cutpoints are computed and returned in cutpoints.

IMSL_CUTPOINTS_EQUAL

If IMSL_CUTPOINTS_USER is specified, then equal probability cutpoints can still be used if, in addition, the IMSL_CUTPOINTS_EQUAL option is specified. If IMSL_CUTPOINTS_USER is not specified, equal probability cutpoints are used by default.

IMSL_BOUNDS, *float* lower_bound, *float* upper_bound (Input)

If IMSL_BOUNDS is specified, then lower_bound is the lower bound of the range of the distribution, and upper_bound is the upper bound of this range. If lower_bound = upper_bound, a range on the whole real line is used (the default). If the lower and upper endpoints are different, points outside the range of these bounds are ignored. Distributions conditional on a range can be specified when IMSL_BOUNDS is used. By convention, lower_bound is excluded from the first interval, but upper_bound is included in the last interval.

IMSL_CELL_COUNTS, float **p_cell_counts (Output)

The address of a pointer to an array containing the cell counts. The cell counts are the observed frequencies in each of the n_categories cells. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_cell_counts is declared; &p_cell_counts is used as an argument to this function; and free(p_cell_counts) is used to free this array.

IMSL_CELL_EXPECTED, float **p_cell_expected (Output)
The address of a pointer to the cell expected values. The expected value of a
cell is the expected count in the cell given that the hypothesized distribution is
correct. On return, the pointer is initialized (through a memory allocation
request to malloc), and the array is stored there. Typically, float
*p_cell_expected is declared; &p_cell_expected is used as an
argument to this function; and free(p_cell_expected) is used to free this
array.

IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared (Output)
The address of a pointer to an array of length n_categories containing the
cell contributions to chi-squared. On return, the pointer is initialized (through
a memory allocation request to malloc), and the array is stored there.
Typically, float *p_cell_chi_squared is declared;
&p_cell_chi_squared is used as an argument to this function; and
free(p_cell_chi_squared) is used to free this array.

IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
 If specified, the cell contributions to chi-squared are returned in the array
 cell_chi_squared provided by the user.

Description

The function imsl_f_chi_squared_test performs a chi-squared goodness-of-fit test that a random sample of observations is distributed according to a specified theoretical cumulative distribution. The theoretical distribution, which may be continuous, discrete, or a mixture of discrete and continuous distributions, is specified via the user-defined function user_proc_cdf. Because the user is allowed to give a range for the observations, a test conditional upon the specified range is performed.

Argument n_categories gives the number of intervals into which the observations are to be divided. By default, equiprobable intervals are computed by <code>imsl_f_chi_squared_test</code>, but intervals that are not equiprobable can be specified (through the use of optional argument IMSL_CUTPOINTS).

Regardless of the method used to obtain the cutpoints, the intervals are such that the lower endpoint is not included in the interval, while the upper endpoint is always included. If the cumulative distribution function has discrete elements, then user-provided cutpoints should always be used since imsl_f_chi_squared_test cannot determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are $-\infty$ and $+\infty$, respectively. If IMSL_BOUNDS is specified, the endpoints are defined by the user via the two arguments lower_bound and upper_bound.

A tally of counts is maintained for the observations in x as follows. If the cutpoints are specified by the user, the tally is made in the interval to which x_i belongs using the endpoints specified by the user. If the cutpoints are determined by $imsl_f_chi_squared_test$, then the cumulative probability at x_i , $F(x_i)$, is computed via the function user_proc_cdf. The tally for x_i is made in interval number $\left| mF(x_i) + 1 \right|$ where $m = n_c$ categories and $\lfloor \cdot \rfloor$

is the function that takes the greatest integer that is no larger than the argument of the function. Thus, if the computer time required to calculate the cumulative distribution function is large, user-specified cutpoints may be preferred to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chisquared approximation may be suspect. A warning message to this effect is issued in this case, as well as when an expected value is less than 5.

Programming Notes

The user must supply a function user_proc_cdf with calling sequence user_proc_cdf(y), that returns the value of the cumulative distribution function at any point y in the (optionally) specified range. Many of the cumulative distribution functions in Chapter 9, "Special Functions," can be used for user_proc_cdf, either directly, if the calling sequence is correct, or indirectly, if, for example, the sample means and standard deviations are to be used in computing the theoretical cumulative distribution function.

Examples

Example 1

This example illustrates the use of imsl_f_chi_squared_test on a randomly generated sample from the normal distribution. One-thousand randomly generated observations are tallied into 10 equiprobable intervals. The null hypothesis that the sample is from a normal distribution is specified by use of the imsl_f_normal_cdf as the hypothesized distribution function. In this example, the null hypothesis is not rejected.

```
#include <imsl.h>
```

```
#define SEED
                                123457
#define N_CATEGORIES
                                    10
                                  1000
#define N_OBSERVATIONS
main()
{
    float
                *x, p_value;
    imsl_random_seed_set(SEED);
                                 /* Generate Normal deviates */
    x = imsl_f_random_normal (N_OBSERVATIONS, 0);
                                 /* Perform chi squared test */
    p_value = imsl_f_chi_squared_test (imsl_f_normal_cdf, N_OBSERVATIONS,
                                       N_CATEGORIES, x, 0);
                                /* Print results */
    printf ("p value %7.4f\n", p_value);
}
```

```
Output
```

p value 0.1546

Example 2

In this example, some optional arguments are used for the data in the initial example.

```
#include <imsl.h>
```

```
#define SEED
                            123457
#define N_CATEGORIES
                                10
#define N_OBSERVATIONS
                              1000
main()
{
            *cell_counts, *cutpoints, *cell_chi_squared;
   float
   float
            chi_squared_statistics[3], *x;
            char
   imsl_random_seed_set(SEED);
                             /* Generate Normal deviates */
   x = imsl_f_random_normal (N_OBSERVATIONS, 0);
                             /* Perform chi squared test */
   chi_squared_statistics[2] =
       imsl_f_chi_squared_test (imsl_f_normal_cdf,
              N_OBSERVATIONS, N_CATEGORIES, x,
```

532 • chi_squared_test

```
IMSL_CUTPOINTS, & cutpoints,
                  IMSL_CELL_COUNTS, &cell_counts,
                  IMSL_CELL_CHI_SQUARED, &cell_chi_squared,
                  IMSL_CHI_SQUARED, &chi_squared_statistics[0],
                  IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
                  0);
                                     /* Print results */
    imsl_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
                            chi_squared_statistics,
                            IMSL_ROW_LABELS, stat_row_labels,
                            0);
    imsl_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1, cutpoints, 0);
imsl_f_write_matrix ("Cell Counts", 1, N_CATEGORIES, cell_counts,
                     0);
    imsl_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
                     N_CATEGORIES, cell_chi_squared,
                     0);
}
```

Output

Chi Squared Statistics

13.18 9.00 0.15			
3 -0.524	4 -0.253	5 -0.000	6 0.253
9 1.282			
Cell Cou	ints		
3	4	5	б
89	92	83	87
9	10		
121	99		
Contributions	to Chi-Squa	red	
3	4	5	6
1.21	0.64	2.89	1.69
9	10		
4.41	0.01		
	9.00 0.15 Cut Poir -0.524 9 1.282 Cell Cou 3 89 9 121 Contributions 3 1.21 9	9.00 0.15 Cut Points 3 4 -0.524 -0.253 9 1.282 Cell Counts 3 4 89 92 9 10 121 99 Contributions to Chi-Squa 3 4 1.21 0.64 9 10	9.00 0.15 Cut Points 3 4 5 -0.524 -0.253 -0.000 9 1.282 Cell Counts 3 4 5 89 92 83 9 10 121 99 Contributions to Chi-Squared 3 4 5 1.21 0.64 2.89 9 10

Example 3

In this example, a discrete Poisson random sample of size 1000 with parameter $\theta = 5.0$ is generated via function imsl_f_random_poisson (page 570). In the call to imsl_f_chi_squared_test, function imsl_f_poisson_cdf (see page 510) is used as function user_proc_cdf.

#include <imsl.h>

#define SEED 123457

chi_squared_test • 533

```
#define N_CATEGORIES
                                  10
#define N_PARAMETERS_ESTIMATED
                                   0
#define N_NUMBERS
                                1000
#define THETA
                                  5.0
float
                user_proc_cdf(float);
main()
ł
    int
                i, *poisson;
                cell_statistics[3][N_CATEGORIES];
    float
                chi_squared_statistics[3], x[N_NUMBERS];
cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
7.5, 8.5, 9.5};
    float
    float
    char
               *cell_row_labels[] = {"count", "expected count",
                                       "cell chi-squared"};
    char
               *cell_col_labels[] = {"Poisson value", "0", "1", "2",
               "3", "4", "5", "6", "7", "8", "9"};
*stat_row_labels[] = {"chi-squared", "degrees of freedom",
    char
                                       "p-value"};
    imsl_random_seed_set(SEED);
                                   /* Generate the data */
    poisson = imsl_random_poisson(N_NUMBERS, THETA, 0);
                                  /* Copy data to a floating point vector*/
    for (i = 0; i < N_NUMBERS; i++)
         x[i] = poisson[i];
    chi_squared_statistics[2] =
      imsl_f_chi_squared_test(user_proc_cdf, N_NUMBERS, N_CATEGORIES, x,
                 IMSL_CUTPOINTS_USER,
                                               cutpoints,
                 IMSL_CELL_COUNTS_USER,
                                               &cell_statistics[0][0],
                 IMSL_CELL_EXPECTED_USER,
                                               &cell_statistics[1][0],
                 IMSL_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
                 IMSL_CHI_SQUARED,
                                                &chi_squared_statistics[0],
                 IMSL_DEGREES_OF_FREEDOM,
                                               &chi_squared_statistics[1],
                 0);
                                  /* Print results */
    imsl_f_write_matrix("\nChi-squared statistics\n", 3, 1,
                          &chi_squared_statistics[0],
                          IMSL_ROW_LABELS,
                                                stat_row_labels,
                          0);
    imsl_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
                          &cell_statistics[0][0],
                          IMSL_ROW_LABELS,
                                                cell_row_labels,
                          IMSL_COL_LABELS,
                                                cell_col_labels,
                          0);
}
float user_proc_cdf(float k)
ł
                     cdf_v;
    float
    cdf_v = imsl_f_poisson_cdf ((int) k, THETA);
    return cdf_v;
}
```

Output

Chi-squared statistics

chi-squared			10.48
degrees	of	freedom	9.00
p-value			0.31

Cell Statistics

Poisson value	0	1	2	3	4
count	41.0	94.0	138.0	158.0	150.0
expected count	40.4	84.2	140.4	175.5	175.5
cell chi-squared	0.0	1.1	0.0	1.7	3.7
Poisson value	5	6	7	8	9
count	159.0	116.0	75.0	37.0	32.0
expected count	146.2	104.4	65.3	36.3	31.8
cell chi-squared	1.1	1.3	1.4	0.0	0.0

Warning Errors

An expected value is less than 1.
An expected value is less than 5.
All observations contain missing values.
The function user_proc_cdf is not a cumulative distribution function. The value at the lower bound must be nonnegative, and the value at the upper bound must not be greater than one.
The function user_proc_cdf is not a cumulative distribution function. The probability of the range of the distribution is not positive.
The function user_proc_cdf is not a cumulative distribution function. Its evaluation at an element in x is inconsistent with either the evaluation at the lower or upper bound.
The function user_proc_cdf is not a cumulative distribution function. Its evaluation at a cutpoint is inconsistent with either the evaluation at the lower or upper bound.

Chapter 10: Statistics and Random Number Generation

chi_squared_test • 535

An error has occurred when inverting the cumulative distribution function. This function must be continuous and defined over the whole real line.

covariances

Computes the sample variance-covariance or correlation matrix.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_covariances.

Required Arguments

int n_observations (Input) The number of observations.

```
int n_variables (Input)
The number of variables.
```

float x[] (Input)
 Array of size n_observations × n_variables containing the matrix of
 data.

Return Value

If no optional arguments are used, $imsl_f_covariances$ returns a pointer to an $n_variables \times n_variables$ matrix containing the sample variance-covariance matrix of the observations. The rows and columns of this matrix correspond to the columns of x.

Synopsis with Optional Arguments

#include <imsl.h>

```
float *imsl_f_covariances (int n_observations, int n_variables, float
    x[],
    IMSL_X_COL_DIM, int x_col_dim,
    IMSL_VARIANCE_COVARIANCE_MATRIX,
    IMSL_CORRECTED_SSCP_MATRIX,
    IMSL_CORRELATION_MATRIX,
    IMSL_STDEV_CORRELATION_MATRIX,
    IMSL_MEANS, float **p_means,
    IMSL_MEANS_USER, float means[],
    IMSL_COVARIANCE_COL_DIM, int covariance_col_dim,
    IMSL_RETURN_USER, float covariance[],
    0)
```

536 • covariances

Optional Arguments

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_VARIANCE_COVARIANCE_MATRIX, or

IMSL_CORRECTED_SSCP_MATRIX, or

IMSL_CORRELATION_MATRIX, or

- IMSL_STDEV_CORRELATION_MATRIX
 - Exactly one of these options can be used to specify the type of matrix to be computed.

Keyword	Type of Matrix
IMSL_VARIANCE_COVARIANCE_MATRIX	variance-covariance matrix (default)
IMSL_CORRECTED_SSCP_MATRIX	corrected sums of squares and crossproducts matrix
IMSL_CORRELATION_MATRIX	correlation matrix
IMSL_STDEV_CORRELATION_MATRIX	correlation matrix except for the diagonal elements which are the standard deviations

IMSL_MEANS, float **p_means (Output)

The address of a pointer to the array containing the means of the variables in x. The components of the array correspond to the columns of x. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_means is declared; &p_means is used as an argument to this function; and free(p_means) is used to free this array.

IMSL_MEANS_USER, float means[] (Output)

Calculate the n_variables means and store them in the memory provided by the user. The elements of means correspond to the columns of x.

- IMSL_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
 The column dimension of array covariance, if IMSL_RETURN_USER is
 specified, or the column dimension of the return value otherwise.
 Default: covariance_col_dim = n_variables
- IMSL_RETURN_USER, float covariance[] (Output)
 If specified, the output is stored in the array covariance of size
 n_variables × n_variables provided by the user.

Description

The function imsl_f_covariances computes estimates of correlations, covariances, or sums of squares and crossproducts for a data matrix x. The means, (corrected) sums

of squares, and (corrected) sums of crossproducts are computed using the method of provisional means. Let

$$\overline{x}_{ki}$$

denote the mean based on *i* observations for the *k*-th variable, and let c_{jki} denote the sum of crossproducts (or sum of squares if j = k) based on *i* observations. Then, the method of provisional means finds new means and sums of crossproducts as follows:

The means and crossproducts are initialized as:

$$\overline{x}_{k0} = 0.0$$
 $k = 1, ..., p$
 $c_{jk0} = 0.0$ $j, k = 1, ..., p$

where *p* denotes the number of variables. Letting $x_{k,i+1}$ denote the *k*-th variable on observation *i* + 1, each new observation leads to the following updates for

$$\overline{x}_{ki}$$

and c_{jki} using update constant r_{i+1} :

$$\begin{aligned} r_{i+1} &= \frac{1}{i+1} \\ \overline{x}_{k,i+1} &= \overline{x}_{ki} + (x_{k,i+1} - \overline{x}_{ki})r_{i+1} \\ c_{jk,i+1} &= c_{jki} + (x_{j,i+1} - \overline{x}_{ji})(x_{k,i+1} - \overline{x}_{ki})(1 - r_{i+1}) \end{aligned}$$

Usage Notes

The function imsl_f_covariances uses the following definition of a sample mean:

$$\overline{x}_k = \frac{\sum_{i=1}^n x_{ki}}{n}$$

where *n* is the number of observations. The following formula defines the sample covariance, s_{jk} , between variables *j* and *k*:

$$s_{jk} = \frac{\sum_{i=1}^{n} (x_{ji} - \bar{x}_{j}) (x_{ki} - \bar{x}_{k})}{n-1}$$

The sample correlation between variables *j* and *k*, r_{jk} , is defined as follows:

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}s_{kk}}}$$

538 • covariances

Examples

Example 1

The first example illustrates the use of imsl_f_covariances for the first 50 observations in the Fisher iris data (Fisher 1936). Note in this example that the first variable is constant over the first 50 observations.

#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

```
main()
{
```

{	imsl_f_writ Out The	<pre>1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,</pre>	5.1, 3.5, 1. 4.7, 3.2, 1. 5.0, 3.6, 1. 4.6, 3.4, 1. 4.4, 2.9, 1. 5.4, 3.7, 1. 4.8, 3.0, 1. 5.4, 3.9, 1. 5.7, 3.8, 1. 5.4, 3.4, 1. 5.4, 3.4, 1. 5.4, 3.4, 1. 5.2, 3.4, 1. 5.2, 3.4, 1. 5.2, 3.4, 1. 5.2, 4.1, 1. 4.8, 3.1, 1. 5.2, 4.1, 1. 5.5, 3.5, 1. 4.4, 3.0, 1. 5.1, 3.8, 1. 5.1, 3.8, 1. 5.1, 3.8, 1. 5.3, 3.7, 1. ariances (N_ e default ca ARIABLES, N_ L_PRINT_UPPE	3, .2, 1.0, 4, .2, 1.0, 4, .2, 1.0, 4, .2, 1.0, 5, .2, 1.0, 4, .1, 1.0, 2, .2, 1.0, 3, .4, 1.0, 7, .3, 1.0, 7, .2, 1.0, 0, .2, 1.0, 6, .4, 1.0, 5, .2, 1.0, 6, .4, 1.0, 5, .2, 1.0, 5, .2, 1.0, 3, .2, 1.0, 3, .2, 1.0, 3, .2, 1.0, 3, .2, 1.0, 3, .2, 1.0, 3, .2, 1.0, 5, .2, 1.0, 3, .2, 1.0, 5, .2, 1.0, 3, .2, 1.0, 5, .2, 1.0, 3, .2, 1.0, 5, .2, 1.0, 5, .2, 1.0, 3, .2, 1.0, 5, .2, 1.0, 0, 0, .2, 1.0, 5, .2, 1.0, 5, .2, 1.0, 5, .2, 1.0, 5, .2, 1.0, 5, .2, 1.0, 0, 0, .2, 1.0, 5, .2, 1.0, 0, 0, .2, 1.0, 5, .2, 1.0, 0, 0, .2, 1.0, 5, .2, 1.0, 0, 0, .2, 0, 0,	4.6, 3.1, 5.4, 3.9, 5.0, 3.4, 4.9, 3.1, 4.8, 3.4, 4.3, 3.0, 5.7, 4.4, 5.1, 3.5, 5.1, 3.8, 5.1, 3.7, 5.1, 3.3, 5.0, 3.0, 5.2, 3.5, 4.7, 3.2, 5.4, 3.4, 5.5, 4.2, 5.0, 3.2, 4.9, 3.6, 5.1, 3.4, 4.5, 2.3, 5.0, 3.5, 4.8, 3.0, 4.6, 3.2, 5.0, 3.3, 5.0, 3.3, 5.0, 3.3, 5.0, 3.3, 5.0, 3.5, 4.8, 3.0, 4.6, 3.2, 5.0, 3.3, 5.0, 3.5, 5.1, 3.4, 5.0, 3.5, 5.1, 3.4, 5.1, 5.2, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4	<pre>1.5, .2, 1.7, .4, 1.5, .2, 1.5, .1, 1.6, .2, 1.1, .1, 1.5, .4, 1.4, .3, 1.5, .4, 1.7, .5, 1.6, .2, 1.5, .4, 1.7, .5, 1.6, .2, 1.5, .4, 1.4, .2, 1.5, .4, 1.4, .2, 1.4, .1, 1.5, .2, 1.4, .3, 1.6, .6, 1.4, .3, 1.4, .2, 1.4, .2}; LES, x, 0); ces",</pre>
1 2 3 4 5	1 0.0000	2 0.0000 0.1242	3 0.0000 0.0992 0.1437	4 0.0000 0.0164 0.0117 0.0302	5 0.0000 0.0103 0.0093 0.0061 0.0111	

Example 2

This example illustrates the use of some optional arguments in imsl_f_covariances. Once again, the first 50 observations in the Fisher iris data are used.

```
#include <imsl.h>
                           5
#define N_VARIABLES
#define N_OBSERVATIONS
                          50
main()
ł
    char
                 *title;
                 *means, *correlations;
    float
                  \mathbf{x}[] = \begin{cases} 1.0, 5.1, 3.5, 1.4, .2, \\ 1.0, 4.7, 3.2, 1.3, .2, \end{cases} 
    float
                                                    1.0, 4.9, 3.0, 1.4, .2,
                                                    1.0, 4.6,
                                                               3.1, 1.5, .2,
                         1.0, 5.0, 3.6, 1.4, .2,
                                                    1.0, 5.4, 3.9, 1.7, .4,
                         1.0, 4.6, 3.4, 1.4, .3,
                                                    1.0, 5.0, 3.4, 1.5, .2,
                         1.0, 4.4, 2.9, 1.4, .2,
                                                    1.0, 4.9, 3.1, 1.5, .1,
                         1.0, 5.4, 3.7, 1.5, .2,
                                                    1.0, 4.8, 3.4, 1.6, .2,
                         1.0, 4.8, 3.0, 1.4, .1,
                                                    1.0, 4.3, 3.0, 1.1, .1,
                         1.0, 5.8, 4.0, 1.2, .2,
                                                    1.0, 5.7, 4.4, 1.5, .4,
                         1.0, 5.4, 3.9, 1.3, .4,
                                                    1.0, 5.1, 3.5, 1.4, .3,
                         1.0, 5.7, 3.8, 1.7, .3,
                                                    1.0, 5.1, 3.8, 1.5, .3,
                         1.0, 5.4, 3.4, 1.7, .2,
                                                    1.0, 5.1, 3.7, 1.5, .4,
                         1.0, 5.1, 3.3, 1.7, .5,
                                                    1.0, 5.0, 3.0, 1.6, .2,
                         1.0, 5.0, 3.4, 1.6, .4,
                                                    1.0, 5.2, 3.5, 1.5, .2,
                         1.0, 5.2, 3.4, 1.4, .2,
                                                    1.0, 4.7, 3.2, 1.6, .2,
                         1.0, 4.8, 3.1, 1.6, .2,
                                                    1.0, 5.4, 3.4, 1.5, .4,
                         1.0, 5.2, 4.1, 1.5, .1,
                                                    1.0, 5.5, 4.2, 1.4, .2,
                         1.0, 4.9, 3.1, 1.5, .2,
1.0, 5.5, 3.5, 1.3, .2,
                                                    1.0, 5.0, 3.2, 1.2, .2,
1.0, 4.9, 3.6, 1.4, .1,
                         1.0, 4.4, 3.0, 1.3, .2,
                                                    1.0, 5.1, 3.4, 1.5, .2,
                         1.0, 5.0, 3.5, 1.3, .3,
                                                    1.0, 4.5, 2.3, 1.3, .3,
                         1.0, 4.4, 3.2, 1.3, .2,
                                                    1.0, 5.0, 3.5, 1.6, .6,
                         1.0, 5.1, 3.8, 1.9, .4,
1.0, 5.1, 3.8, 1.6, .2,
                                                    1.0, 5.0, 3.3, 1.4, .2};
                         1.0, 5.3, 3.7, 1.5, .2,
    correlations = imsl_f_covariances (N_OBSERVATIONS,
                       N_VARIABLES-1, x+1,
                        IMSL_STDEV_CORRELATION_MATRIX,
                       IMSL_X_COL_DIM, N_VARIABLES,
                       IMSL_MEANS, &means,
                        0);
    imsl_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
    title = "Correlations with Standard Deviations on the Diagonal\n";
    imsl_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
                           correlations, IMSL_PRINT_UPPER,
                           0);
}
            Output
           Means
                 2
                              3
    1
                                           4
5.006
             3.428
                          1.462
                                       0.246
```

Correlations with Standard Deviations on the Diagonal

	1	2	3	4
1	0.3525	0.7425	0.2672	0.2781
2		0.3791	0.1777	0.2328
3			0.1737	0.3316
4				0.1054

Warning Errors

IMSL_CONSTANT_VARIABLE

Correlations are requested, but the observations on one or more variables are constant. The corresponding correlations are set to NaN.

regression

Fits a multiple linear regression model using least squares.

Synopsis

#include <imsl.h>

```
float *imsl_f_regression (int n_observations, int n_independent, float
x[], float y[], ..., 0)
```

The type *double* function is imsl_d_regression.

Required Arguments

```
int n_observations (Input)
The number of observations.
```

- *int* n_independent (Input) The number of independent (explanatory) variables.
- float x[] (Input)

Array of size $n_{observations \times n_{independent}}$ containing the matrix of independent (explanatory) variables.

float y[] (Input)
 Array of length n_observations containing the dependent (response)
 variable.

Return Value

If the optional argument IMSL_NO_INTERCEPT is not used, imsl_f_regression returns a pointer to an array of length n_independent + 1 containing a least-squares solution for the regression coefficients. The estimated intercept is the initial component of the array.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_regression (int n_observations, int n_independent, float x[], float y[], IMSL_X_COL_DIM, int x_col_dim, IMSL_NO_INTERCEPT, IMSL_TOLERANCE, *float* tolerance, IMSL_RANK, int *rank, IMSL_COEF_COVARIANCES, float **p_coef_covariances, IMSL_COEF_COVARIANCES_USER, float coef_covariances[], IMSL_COV_COL_DIM, int cov_col_dim, IMSL_X_MEAN, float **p_x_mean, IMSL_X_MEAN_USER, float x_mean[], IMSL_RESIDUAL, *float* **p_residual, IMSL_RESIDUAL_USER, float residual[], IMSL_ANOVA_TABLE, float **p_anova_table, IMSL_ANOVA_TABLE_USER, float anova_table[], IMSL_RETURN_USER, float coefficients[], 0)

Optional Arguments

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of x.
Default: x_col_dim = n_independent

IMSL_NO_INTERCEPT

By default, the fitted value for observation *i* is

 $\hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k$

where $k = n_independent$. If IMSL_NO_INTERCEPT is specified, the intercept term

$\hat{\boldsymbol{\beta}}_0$

is omitted from the model.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence. For
imsl_f_regression, tolerance = 100 × imsl_f_machine(4) is the
default choice. For imsl_d_regression,
tolerance = 100 × imsl_d_machine(4) is the default. See
imsl_f_machine (page 635).

IMSL_RANK, *int* *rank (Output)

The rank of the fitted model is returned in *rank.

IMSL_COEF_COVARIANCES, float **p_coef_covariances (Output)

The address of a pointer to the $m \times m$ array containing the estimated variances and covariances of the estimated regression coefficients. Here, m is the number of regression coefficients in the model. If IMSL_NO_INTERCEPT is specified, $m = n_independent$; otherwise, $m = n_independent + 1$. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_coef_covariances is declared; &p_coef_covariances is used as an argument to this function; and free(p_coef_covariances) is used to free this array.

- IMSL_COEF_COVARIANCES_USER, *float* coef_covariances[] (Output) If specified, coef_covariances is an array of length $m \times m$ containing the estimated variances and covariances of the estimated coefficients where *m* is the number of regression coefficients in the model.
- IMSL_COV_COL_DIM, int cov_col_dim (Input)
 The column dimension of array coef_covariance.
 Default: cov_col_dim = m where m is the number of regression coefficients
 in the model.

IMSL_X_MEAN, float **p_x_mean (Output)

The address of a pointer to the array containing the estimated means of the independent variables. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_x_mean is declared; &p_x_mean is used as an argument to this function; and free(p_x_mean) is used to free this array.

- IMSL_X_MEAN_USER, float x_mean[] (Output)
 If specified, x_mean is an array of length n_independent provided by the
 user. On return, x_mean contains the means of the independent variables.
- IMSL_RESIDUAL, float **p_residual (Output)

The address of a pointer to the array containing the residuals. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_residual is declared; &p_residual is used as argument to this function; and free(p_residual) is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
 If specified, residual is an array of length n_observations provided by
 the user. On return, residual contains the residuals.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)

The address of a pointer to the array containing the analysis of variance table. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_anova_table is declared; &p_anova_table is used as argument to this function; and free(p_anova_table) is used to free this array.

Element	Analysis of Variance Statistics	
0	degrees of freedom for the model	
1	degrees of freedom for error	
2	total (corrected) degrees of freedom	
3	sum of squares for the model	
4	sum of squares for error	
5	total (corrected) sum of squares	
6	model mean square	
7	error mean square	
8	overall F-statistic	
9	<i>p</i> -value	
10	R^2 (in percent)	
11	adjusted R^2 (in percent)	
12	estimate of the standard deviation	
13	overall mean of <i>y</i>	
14	coefficient of variation (in percent)	

The analysis of variance statistics are given as follows:

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
 If specified, the 15 analysis of variance statistics listed above are computed
 and stored in the array anova_table provided by the user.

IMSL_RETURN_USER, float coefficients[] (Output)

If specified, the least-squares solution for the regression coefficients is stored in array coefficients provided by the user. If IMSL_NO_INTERCEPT is specified, the array requires $m = n_independent$ units of memory; otherwise, the number of units of memory required to store the coefficients is $m = n_independent + 1$.

Description

The function imsl_f_regression fits a multiple linear regression model with or without an intercept. By default, the multiple linear regression model is

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \varepsilon_i$ $i = 1, 2, \ldots, n$

where the observed values of the y_i 's (input in y) are the responses or values of the dependent variable; the x_{i1} 's, x_{i2} 's, ..., x_{ik} 's (input in x) are the settings of the *k* (input in n_independent) independent variables; β_0 , β_1 , ..., β_k are the regression coefficients whose estimated values are to be output by imsl_f_regression; and the ε_i 's are independently distributed normal errors each with mean zero and variance σ^2 . Here, *n* is the number of rows in the augmented matrix (x,y), i.e., *n* equals n_observations. Note that by default, β_0 is included in the model.

The function $imsl_f_regression$ computes estimates of the regression coefficients by minimizing the sum of squares of the deviations of the observed response y_i from the fitted response

 \hat{y}_i

for the *n* observations. This minimum sum of squares (the error sum of squares) is output as one of the analysis of variance statistics if IMSL_ANOVA_TABLE (or IMSL_ANOVA_TABLE_USER) is specified and is computed as

$$SSE = \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2$$

Another analysis of variance statistic is the total sum of squares. By default, the total sum of squares is the sum of squares of the deviations of y_i from its mean

$$\overline{y}$$

the so-called corrected total sum of squares. This statistic is computed as

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

When IMSL_NO_INTERCEPT is specified, the total sum of squares is the sum of squares of y_i , the so-called *uncorrected total sum of squares*. This is computed as

$$SST = \sum_{i=1}^{n} y_i^2$$

See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analysis, and many examples.

In order to compute a least-squares solution, $imsl_f_regression$ performs an orthogonal reduction of the matrix of regressors to upper-triangular form. The reduction is based on one pass through the rows of the augmented matrix (x, y) using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156–162; Gentleman 1974.) This method has the advantage that the loss of accuracy resulting from forming the crossproduct matrix used in the normal equations is avoided.

By default, the current means of the dependent and independent variables are used to internally center the data for improved accuracy. Let x_i be a column vector containing the *j*-th row of data for the independent variables. Let $\overline{x_i}$ represent the mean vector for the independent variables given the data for rows 1, 2, ..., *i*. The current mean vector is defined to be

$$\overline{x}_i = \frac{\sum_{j=1}^i x_j}{i}$$

Chapter 10: Statistics and Random Number Generation

The *i*-th row of data has \bar{x}_i subtracted from it and is then weighted by i/(i-1). Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the following formula for the sum of squares and crossproducts matrix:

$$\sum_{i=1}^{n} (x_i - \overline{x}_n) (x_i - \overline{x}_n)^T = \sum_{i=2}^{n} \frac{i}{i-1} (x_i - \overline{x}_i) (x_i - \overline{x}_i)^T$$

An orthogonal reduction on the centered matrix is computed. When the final computations are performed, the intercept estimate and the first row and column of the estimated covariance matrix of the estimated coefficients are updated (if IMSL_COEF_COVARIANCES or IMSL_COEF_COVARIANCES_USER is specified) to reflect the statistics for the original (uncentered) data. This means that the estimate of the intercept is for the uncentered data.

As part of the final computations, imsl_regression checks for linearly dependent regressors. In particular, linear dependence of the regressors is declared if any of the following three conditions are satisfied:

- A regressor equals zero.
- Two or more regressors are constant.
- ٠

$$\sqrt{1-R_{i\cdot 1,2,\ldots,i-1}^2}$$

is less than or equal to tolerance. Here, $R_{i:1,2,\ldots,i-1}$ is the multiple correlation coefficient of the *i*-th independent variable with the first i-1 independent variables. If no intercept is in the model, the "multiple correlation" coefficient is computed without adjusting for the mean.

On completion of the final computations, if the *i*-th regressor is declared to be linearly dependent upon the previous i - 1 regressors, then the *i*-th coefficient estimate and all elements in the *i*-th row and *i*-th column of the estimated variance-covariance matrix of the estimated coefficients (if IMSL_COEF_COVARIANCES or IMSL_COEF_COVARIANCES_USER is specified) are set to zero. Finally, if a linear dependence is declared, an informational (error) message, code IMSL_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1

A regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$
 $i = 1, 2, ..., 9$

is fitted to data taken from Maindonald (1984, pp. 203–204). #include <imsl.h>

```
#define INTERCEPT
                         1
#define N_INDEPENDENT
                         3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9
main()
{
    float
                *coefficients;
                x[][N_INDEPENDENT] = \{7.0, 5.0, 6.0,
    float
                                       2.0,-1.0, 6.0,
                                       7.0, 3.0, 5.0,
                                       -3.0, 1.0, 4.0,
                                       2.0, -1.0, 0.0,
                                       2.0, 1.0, 7.0,
                                       -3.0,-1.0, 3.0,
                                       2.0, 1.0, 1.0,
                                       2.0, 1.0, 4.0\};
                y[] = \{7.0, -5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0\};
    float
    coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
                                       (float *)x, y, 0);
    imsl_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
                         coefficients,
                         IMSL_COL_NUMBER_ZERO,
                         0);
}
            Output
```

```
Least-Squares Coefficients
0 1 2 3
7.733 -0.200 2.333 -1.667
```

Example 2

A weighted least-squares fit is computed using the model

 $y_i = \beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$ i = 1, 2, ..., 4

and weights $1/i^2$ discussed by Maindonald (1984, pp. 67–68). In order to compute the weighted least-squares fit, using an ordinary least-squares function (imsl_f_regression), the regressors (including the column of ones for the intercept term) and the responses must be transformed prior to invocation of imsl_f_regression. Specifically, the *i*-th response and regressors are multiplied by a square root of the *i*-th weight. IMSL_NO_INTERCEPT must be specified since the column of ones corresponding to the intercept term in the untransformed model is transformed by the weights and is regarded as an additional independent variable.

In the example, IMSL_ANOVA_TABLE is specified. The minimum sum of squares for error in terms of the original untransformed regressors and responses for this weighted regression is

SSE =
$$\sum_{i=1}^{4} w_i (y_i - \hat{y}_i)^2$$

regression • 547

where $w_i = 1/i^2$. Also, since IMSL_NO_INTERCEPT is specified, the uncorrected total sum-of-squares terms of the original untransformed responses is

$$SST = \sum_{i=1}^{4} w_i y_i^2$$

```
#include <imsl.h>
#include <math.h>
#define N_INDEPENDENT
                         3
#define N_COEFFICIENTS N_INDEPENDENT
#define N_OBSERVATIONS 4
main()
{
    int
                i, j;
                 *coefficients, w, anova_table[15], power;
    float
                x[][N_INDEPENDENT] = {1.0, -2.0, 0.0,
1.0, -1.0, 2.0,
    float
                                        1.0, 2.0, 5.0,
                                        1.0, 7.0, 3.0;
                 y[] = \{-3.0, 1.0, 2.0, 6.0\};
    float
                 *anova_row_labels[] = {
    char
                    "degrees of freedom for regression",
                    "degrees of freedom for error",
                    "total (uncorrected) degrees of freedom",
                    "sum of squares for regression",
                    "sum of squares for error",
                    "total (uncorrected) sum of squares",
                    "regression mean square",
                    "error mean square", "F-statistic",
                    "p-value", "R-squared (in percent)",
                    "adjusted R-squared (in percent)",
                    "est. standard deviation of model error",
                    "overall mean of y",
                    "coefficient of variation (in percent)"};
    power = 0.0;
    for (i = 0; i < N_OBSERVATIONS; i++) {
        power += 1.0;
                                  /* The square root of the weight */
        w = sqrt(1.0 / (power*power));
                                  /* Transform response */
        y[i] *= w;
                                  /* Transform regressors */
        for (j = 0; j < N_INDEPENDENT; j++)</pre>
            x[i][j] *= w;
    }
    coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
                                       (float *)x, y,
                                       IMSL_NO_INTERCEPT,
                                       IMSL_ANOVA_TABLE_USER,
                                       anova_table, 0);
    imsl_f_write_matrix("Least-Squares Coefficients", 1,
    N_COEFFICIENTS, coefficients, 0);
imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
                         anova_table, IMSL_ROW_LABELS, anova_row_labels,
```

Output

}

Least-Squares Coefficients 3 1 2 0.748 -1.431 0.658 * * * Analysis of Variance * * * degrees of freedom for regression 3.00 degrees of freedom for error 1.00 total (uncorrected) degrees of freedom 4.00 10.93 sum of squares for regression sum of squares for error 1.01 total (uncorrected) sum of squares 11.94 regression mean square 3.64 error mean square 1.01 3.60 F-statistic p-value 0.37 R-squared (in percent) 91.52 adjusted R-squared (in percent) 66.08 est. standard deviation of model error 1.01 overall mean of y -0.08 coefficient of variation (in percent) -1207.73

Warning Errors

IMSL_RANK_DEFICIENT

The model is not full rank. There is not a unique least-squares solution.

poly_regression

Performs a polynomial least-squares regression.

Synopsis

#include <imsl.h>

The type *double* procedure is imsl_d_poly_regression.

Required Arguments

int n_observations (Input)
 The number of observations.
float x[] (Input)
 Array of length n_observations containing the independent variable.
float y[] (Input)
 Array of length n_observations containing the dependent variable.
int degree (Input)
 The degree of the polynomial.

Chapter 10: Statistics and Random Number Generation

poly_regression • 549

Return Value

A pointer to the vector of size degree + 1 containing the coefficients of the fitted polynomial. If a fit cannot be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_poly_regression (int n_observations, float xdata[], float ydata[], *int* degree, IMSL_WEIGHTS, float weights[], IMSL_SSQ_POLY, float **p_ssq_poly, IMSL_SSQ_POLY_USER, float ssq_poly[], IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim, IMSL_SSQ_LOF, float **p_ssq_lof, IMSL_SSQ_LOF_USER, float ssq_lof[], IMSL_SSQ_LOF_COL_DIM, *int* ssq_lof_col_dim, IMSL_X_MEAN, *float* *x_mean, IMSL_X_VARIANCE, float *x_variance, IMSL_ANOVA_TABLE, *float* **p_anova_table, IMSL_ANOVA_TABLE_USER, float anova_table[], IMSL_DF_PURE_ERROR, int *df_pure_error, IMSL_SSQ_PURE_ERROR, *float* *ssq_pure_error, IMSL_RESIDUAL, *float* **p_residual, IMSL_RESIDUAL_USER, float residual[], IMSL_RETURN_USER, float coefficients[], 0)

Optional Arguments

IMSL_WEIGHTS, float weights[] (Input)

Array with n_observations components containing the vector of weights for the observation. If this option is not specified, all observations have equal weights of one.

IMSL_SSQ_POLY, float **p_ssq_poly (Output)

The address of a pointer to the array containing the sequential sums of squares and other statistics. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_ssq_poly is declared; &p_ssq_poly is used as an argument to this function; and free(p_ssq_poly) is used to free this array. Row *i* corresponds to x^i , i = 1, ..., degree, and the columns are described as follows:

Column	Description
1	degrees of freedom
2	sums of squares
3	F-statistic
4	<i>p</i> -value

IMSL_SSQ_POLY_USER, float ssq_poly[] (Output)

Array of size degree × 4 containing the sequential sums of squares for a polynomial fit described under optional argument IMSL_SSQ_POLY.

IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
The column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

IMSL_SSQ_LOF, float **p_ssq_lof (Output)

The address of a pointer to the array containing the lack-of-fit statistics. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, *float* *p_ssq_lof is declared; &p_ssq_lof is used as an argument to this function; and free(p_ssq_lof) is used to free this array. Row *i* corresponds to x^i , i = 1, ..., degree, and the columns are described in the following table.

Column	Description	
1	degrees of freedom	
2	lack-of-fit sums of squares	
3	F-statistic for testing lack-of-fit for a polynomial model of degree i	
4	<i>p</i> -value for the test	

IMSL_SSQ_LOF_USER, float ssq_lof[] (Output)

Array of size degree × 4 containing the matrix of lack-of-fit statistics described under optional argument IMSL_SSQ_LOF.

- IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
 The column dimension of ssq_lof.
 Default: ssq_lof_col_dim = 4
- IMSL_X_VARIANCE, *float* *x_variance (Output) The variance of *x*.
- IMSL_ANOVA_TABLE, float **p_anova_table (Output)
 The address of a pointer to the array containing the analysis of variance table.
 On return, the pointer is initialized (through a memory allocation request to

Element	Analysis of Variance Statistic
0	degrees of freedom for the model
1	degrees of freedom for error
2	total (corrected) degrees of freedom
3	sum of squares for the model
4	sum of squares for error
5	total (corrected) sum of squares
6	model mean square
7	error mean square
8	overall F-statistic
9	<i>p</i> -value
10	R^2 (in percent)
11	adjusted R^2 (in percent)
12	estimate of the standard deviation
13	overall mean of <i>y</i>
14	coefficient of variation (in percent)

malloc), and the array is stored there. Typically, *float* *p_anova_table is declared; &p_anova_table is used as an argument to this function; and free(p_anova_table) is used to free this array.

IMSL_SSQ_PURE_ERROR, *float* *ssq_pure_error (Output) If specified, the sums of squares for pure error are returned in ssq_pure_error.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the
pointer is initialized (through a memory allocation request to malloc), and the
array is stored there. Typically, float *p_residual is declared;
&p_residual is used as an argument to this function; and
free(p_residual)is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output) If specified, residual is an array of length n_observations provided by the user. On return, residual contains the residuals.

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
Array of size 15 containing the analysis variance statistics listed under
optional argument IMSL_ANOVA_TABLE.

IMSL_DF_PURE_ERROR, int *df_pure_error (Output)
 If specified, the degrees of freedom for pure error are returned in
 df_pure_error.

IMSL_RETURN_USER, float coefficients[] (Output)

If specified, the least-squares solution for the regression coefficients is stored in array coefficients of size degree + 1 provided by the user.

Description

The function $imsl_f_poly_regression$ computes estimates of the regression coefficients in a polynomial (curvilinear) regression model. In addition to the computation of the fit, $imsl_f_poly_regression$ computes some summary statistics. Sequential sums of squares attributable to each power of the independent variable (stored in ssq_poly) are computed. These are useful in assessing the importance of the higher order powers in the fit. Draper and Smith (1981, pp. 101–102) and Neter and Wasserman (1974, pp. 278–287) discuss the interpretation of the sequential sums of squares. The statistic R^2 is the percentage of the sum of squares of *y* about its mean explained by the polynomial curve. Specifically,

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{1} - \bar{y})^{2}} 100\%$$

where \hat{y}_i is the fitted y value at x_i and \overline{y} is the mean of y. This statistic is useful in assessing the overall fit of the curve to the data. R^2 must be between 0% and 100%, inclusive. $R^2 = 100\%$ indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed using orthogonal polynomials as the regressor variables. This reparameterization of the polynomial model in terms of orthogonal polynomials has the advantage that the loss of accuracy resulting from forming powers of the *x*-values is avoided. All results are returned to the user for the original model (power form).

The function imsl_f_poly_regression is based on the algorithm of Forsythe (1957). A modification to Forsythe's algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A discussion of Forsythe's algorithm and Shampine's modification appears in Kennedy and Gentle (1980, pp. 342–347).

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp. 279–285). The data set contains the response variable *y* measuring coffee sales (in hundred gallons) and the number of self-service coffee dispensers. Responses for 14 similar cafeterias are in the data set. A graph of the results also is given.

```
#define DEGREE 2
#define NOBS 14
main()
{
   float *coefficients;
```

#include <imsl.h>

Output

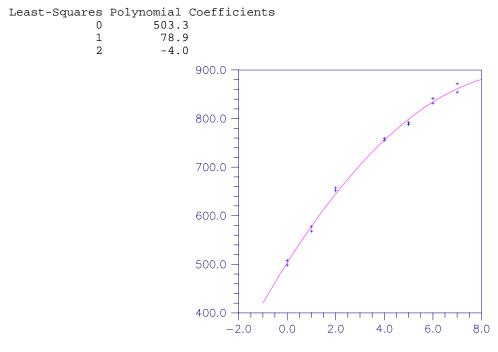


Figure 10-1 A Polynomial Fit

Example 2

This example is a continuation of the initial example. Here, many optional arguments are used.

```
#include <stdio.h>
#include <imsl.h>
#define DEGREE 2
#define NOBS 14
void main()
{
    int iset = 1, dfpe;
```

554 • poly_regression

IMSL C/Math/Library

```
float
float
float
           y[] = \{508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
                  758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
           *coef_rlab[2];
char
           *coef_clab[] = {" ", "intercept", "linear", "quadratic"};
*stat_clab[] = {" ", "Degrees of\nFreedom",
char
char
                            "Sum of\nSquares", "\nF-Statistic",
                           "\np-value"};
char
           *anova_rlab[] = {
               "degrees of freedom for regression",
               "degrees of freedom for error"
               "total (corrected) degrees of freedom",
               "sum of squares for regression",
               "sum of squares for error",
               "total (corrected) sum of squares",
               "regression mean square",
               "error mean square", "F-statistic",
               "p-value", "R-squared (in percent)",
               "adjusted R-squared (in percent)",
               "est. standard deviation of model error",
               "overall mean of y",
               "coefficient of variation (in percent)"};
coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE,
                                        IMSL_SSQ_POLY, &sspoly,
                                        IMSL_SSQ_LOF, &sslof,
                                        IMSL_ANOVA_TABLE, & anova,
                                        IMSL_DF_PURE_ERROR, &dfpe,
                                        IMSL_SSO_PURE_ERROR, &sspe,
                                        0);
imsl_write_options(-1, &iset);
imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
                    1, DEGREE + 1, coefficients,
                    IMSL_COL_LABELS, coef_clab, 0);
coef_rlab[0] = coef_clab[2];
coef_rlab[1] = coef_clab[3];
imsl_f_write_matrix("Sequential Statistics", DEGREE, 4, sspoly,
                    IMSL_COL_LABELS, stat_clab,
                    IMSL_ROW_LABELS, coef_rlab,
                    IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
                    0);
imsl_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, sslof,
                    IMSL_COL_LABELS, stat_clab,
                    IMSL_ROW_LABELS, coef_rlab,
                    IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
                    0);
imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
                                                           anova,
                    IMSL_ROW_LABELS, anova_rlab,
                    IMSL_WRITE_FORMAT, "%9.2f",
                    0);
        Output
                 Least-Squares Polynomial Coefficients
                                    linear
                                              quadratic
                     intercept
```

}

503.3 78.9 -4.0

Sequential Statistics

	Degrees of	Sum of		
	Freedom	Squares	F-Statistic	p-value
linear	1.0	220644.2	3415.8	0.0000
quadratic	1.0	4387.7	67.9	0.0000

Lack-of-Fit Statistics				
	Degrees of	Sum of		
	Freedom	Squares	F-Statistic	p-value
linear	5.0	4793.7	22.0	0.0004
quadratic	4.0	405.9	2.3	0.1548

* * * Analysis of Variance * * *

degrees of freedom for regression degrees of freedom for error	2.00 11.00
total (corrected) degrees of freedom	13.00
sum of squares for regression	225031.94
sum of squares for error	710.55
total (corrected) sum of squares	225742.48
regression mean square	112515.97
error mean square	64.60
F-statistic	1741.86
p-value	0.00
R-squared (in percent)	99.69
adjusted R-squared (in percent)	99.63
est. standard deviation of model error	8.04
overall mean of y	710.99
coefficient of variation (in percent)	1.13

Warning Errors

IMSL_CONSTANT_YVALUES	The <i>y</i> values are constant. A zero-order polynomial is fit. High order coefficients are set to zero.
IMSL_FEW_DISTINCT_XVALUES	There are too few distinct <i>x</i> values to fit the desired degree polynomial. High order coefficients are set to zero.
IMSL_PERFECT_FIT	A perfect fit was obtained with a polynomial of degree less than degree. High order coefficients are set to zero.
Fatal Errors	
IMSL_NONNEG_WEIGHT_REQUEST_2	All weights must be nonnegative.
IMSL_ALL_OBSERVATIONS_MISSING	Each (<i>x</i> , <i>y</i>) point contains NaN (not a number). There are no valid data.
IMSL_CONSTANT_XVALUES	The <i>x</i> values are constant.

ranks

Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis

#include <imsl.h>

float *imsl_f_ranks (int n_observations, float x[], ..., 0)

The type *double* function is imsl_d_ranks.

Required Arguments

int n_observations (Input) The number of observations.

Return Value

A pointer to a vector of length n_observations containing the rank (or optionally, a transformation of the rank) of each observation.

Synopsis with Optional Arguments

```
#include <imsl.h>
float* imsl_f_ranks (int n_observations, float x[],
    IMSL_AVERAGE_TIE,
    IMSL_HIGHEST,
    IMSL_LOWEST,
    IMSL_FUZZ, float fuzz_value,
    IMSL_FUZZ, float fuzz_value,
    IMSL_BLOM_SCORES,
    IMSL_BLOM_SCORES,
    IMSL_UAN_DER_WAERDEN_SCORES,
    IMSL_EXPECTED_NORMAL_SCORES,
    IMSL_SAVAGE_SCORES,
    IMSL_RETURN_USER, float ranks[],
    0)
```

Optional Arguments

IMSL_AVERAGE_TIE, or IMSL_HIGHEST, or IMSL_LOWEST, or

IMSL_RANDOM_SPLIT

Exactly one of these optional arguments may be used to change the method used to assign a score to tied observations.

Keyword	Method
IMSL_AVERAGE_TIE	average of the scores of the tied observations (default)
IMSL_HIGHEST	highest score in the group of ties
IMSL_LOWEST	lowest score in the group of ties
IMSL_RANDOM_SPLIT	tied observations are randomly split using a random number generator.

IMSL_FUZZ, float fuzz_value (Input)

Value used to determine when two items are tied. If abs(x[i]-x[j]) is less than or equal to fuzz_value, then x[i] and x[j] are said to be tied. The default value for fuzz_value is 0.0.

IMSL_RANKS, or

 $\texttt{IMSL_BLOM_SCORES}, or$

 $\texttt{IMSL_TUKEY_SCORES}, or$

IMSL_VAN_DER_WAERDEN_SCORES, or

IMSL_EXPECTED_NORMAL_SCORES, or

IMSL_SAVAGE_SCORES

Exactly one of these optional arguments may be used to specify the type of values returned.

Keyword	Result
IMSL_RANKS	ranks (default)
IMSL_BLOM_SCORES	Blom version of normal scores
IMSL_TUKEY_SCORES	Tukey version of normal scores
IMSL_VAN_DER_WAERDEN_SCORES	Van der Waerden version of normal scores
IMSL_EXPECTED_NORMAL_SCORES	expected value of normal order statistics (For tied observations, the average of the expected normal scores.)
IMSL_SAVAGE_SCORES	Savage scores (the expected value of exponential order statistics)

IMSL_RETURN_USER, float ranks[] (Output)

If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation of the ranks) of the data in x. If x[i] has the smallest value among the values in x and there is no other element in x with this value, then ranks[i] = 1. If both x[i] and x[j] have the same smallest value, then the output value depends upon the option used to break ties.

Keyword	Result
IMSL_AVERAGE_TIE	ranks[i] = ranks[j] = 1.5
IMSL_HIGHEST	ranks[i] = ranks[j] = 2.0
IMSL_LOWEST	ranks[i] = ranks [j] = 1.0
IMSL_RANDOM_SPLIT	ranks[i] = 1.0 and ranks[j] = 2.0
	or, randomly,
	ranks[i] = 2.0 and ranks[j] = 1.0

When the ties are resolved randomly, the function imsl_f_random_uniform is used to generate random numbers. Different results may occur from different executions of the program unless the "seed" of the random number generator is set explicitly by use of the function imsl_random_seed_set (page 564).

The Scores

Normal and other functions of the ranks can optionally be returned. Normal scores can be defined as the expected values, or approximations to the expected values, of order statistics from a normal distribution. The simplest approximations are obtained by evaluating the inverse cumulative normal distribution function, imsl_f_normal_inverse_cdf, at the ranks scaled into the open interval (0,1). In the

Blom version (see Blom 1958), the scaling transformation for the rank r_i ($1 \le r_i \le n$ where *n* is the sample size, n_observations) is $(r_i - 3/8)/(n + 1/4)$. The Blom normal score corresponding to the observation with rank r_i is

$$\Phi^{-1}(\frac{r_i - 3/8}{n + 1/4})$$

where $\Phi(\cdot)$ is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if x[i] equals x[j] (within fuzz_value) and their value is the *k*-th smallest in the data set, the Blom normal scores are determined for ranks of *k* and *k* + 1. Then, these normal scores are averaged or selected in the manner specified. (Whether the transformations are made first or ties are resolved first makes no difference except when IMSL_AVERAGE is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank r_i is $(r_i - 1/3)/(n + 1/3)$. The Tukey normal score corresponding to the observation with rank r_i is

$$\Phi^{-1}(\frac{r_i - 1/3}{n + 1/3})$$

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation for the rank r_i is $r_i/(n + 1)$. The Van der Waerden normal score corresponding to the observation with rank r_i is

$$\Phi^{-1}(\frac{r_i}{n+1})$$

Ties are handled in the same way as for the Blom normal scores.

When option IMSL_EXPECTED_NORMAL_SCORES is used, the output values are the expected values of the normal order statistics from a sample of size n_observations. If the value in x[i] is the *k*-th smallest, then the value output in ranks[i] is $E(z_k)$ where $E(\cdot)$ is the expectation operator, and z_k is the *k*-th order statistic in a sample of size n_observations from a standard normal distribution. Ties are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a sample of size n_observations. These values are called Savage scores because of their use in a test discussed by Savage (1956) (see Lehmann 1975). If the value in x[i] is the *k*-th smallest, then the value output in ranks[i] is $E(y_k)$ where y_k is the *k*-th order statistic in a sample of size n_observations from a standard exponential distribution. The expected value of the *k*-th order statistic from an exponential sample of size *n* (n_observations) is

$$\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{n-k+1}$$

Ties are handled in the same way as for the Blom normal scores.

30

Examples

Example 1

The data for this example, from Hinkley (1977), contains 30 observations. Note that the fourth and sixth observations are tied, and that the third and twentieth observations are tied.

```
#include <imsl.h>
```

```
#define N_OBSERVATIONS
```

main()
{

```
Output
```

}

		Ranł	s		
1	2	3	4	5	6
5.0	18.0	6.5	11.5	21.0	11.5
7	8	9	10	11	12
2.0	15.0	29.0	24.0	27.0	28.0
13	14	15	16	17	18
16.0	23.0	3.0	17.0	13.0	1.0
19	20	21	22	23	24
4.0	6.5	26.0	19.0	10.0	14.0
25	26	27	28	29	30
30.0	25.0	9.0	20.0	8.0	22.0

Example 2

This example uses all of the score options with the same data set, which contains some ties. Ties are handled in several different ways in this example.

```
#include <imsl.h>
```

```
#define N OBSERVATIONS
                                     30
void main()
{
                  fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
    float
                  x[] = \{0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
    float
                          3.37,\ 2.20,\ 3.00,\ 3.09,\ 1.51,\ 2.10,\ 0.52,\ 1.62,
                          1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
                  4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
*row_labels[] = {"Blom", "Tukey", "Van der Waerden",
"Expected Value"};
    char
                                     /* Blom scores using largest ranks */
                                     /* for ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                   IMSL_HIGHEST,
                   IMSL_BLOM_SCORES,
                   IMSL_RETURN_USER,
                                          &score[0][0],
                   0);
                                     /* Tukey normal scores using smallest */
                                     /* ranks for ties */
    imsl_f_ranks(N_OBSERVATIONS, x,
                   IMSL_LOWEST,
                   IMSL_TUKEY_SCORES,
```

```
IMSL_RETURN_USER, &score[1][0],
             0);
                            /* Van der Waerden scores using */
                            /* randomly resolved ties */
imsl_random_seed_set(123457);
imsl_f_ranks(N_OBSERVATIONS, x,
             IMSL_RANDOM_SPLIT,
             IMSL_VAN_DER_WAERDEN_SCORES,
             IMSL_RETURN_USER, &score[2][0],
             0);
                             /* Expected value of normal order */
                            /* statistics using averaging to */
                            /* break ties */
imsl_f_ranks(N_OBSERVATIONS, x,
             IMSL_EXPECTED_NORMAL_SCORES,
             IMSL_RETURN_USER, &score[3][0],
             0);
imsl_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
                    (float *)score,
                    IMSL_ROW_LABELS, row_labels,
                    0);
                            /* Savage scores using averaging */
                            /* to break ties */
ranks = imsl_f_ranks(N_OBSERVATIONS, x,
                     IMSL_SAVAGE_SCORES,
                     0);
imsl_f_write_matrix("Expected values of exponential order "
                    "statistics", 1,
                    N_OBSERVATIONS, ranks,
                    0);
```

```
}
```

Output

		Normal Order	Statistics		
	1	2	3	4	5
Blom	-1.024	0.209	-0.776	-0.294	0.473
Tukey	-1.020	0.208	-0.890	-0.381	0.471
Van der Waerden	-0.989	0.204	-0.753	-0.287	0.460
Expected Value	-1.026	0.209	-0.836	-0.338	0.473
	6	7	8	9	10
Blom	-0.294	-1.610	-0.041	1.610	0.776
Tukey	-0.381	-1.599	-0.041	1.599	0.773
Van der Waerden	-0.372	-1.518	-0.040	1.518	0.753
Expected Value	-0.338	-1.616	-0.041	1.616	0.777
	11	12	13	14	15
Blom	1.176	1.361	0.041	0.668	-1.361
Tukey	1.171	1.354	0.041	0.666	-1.354
Van der Waerden	1.131	1.300	0.040	0.649	-1.300
Expected Value	1.179	1.365	0.041	0.669	-1.365
	16	17	18	19	20
Blom	0.125	-0.209	-2.040	-1.176	-0.776
Tukey	0.124	-0.208	-2.015	-1.171	-0.890
Van der Waerden	0.122	-0.204	-1.849	-1.131	-0.865
Expected Value	0.125	-0.209	-2.043	-1.179	-0.836

Blom Tukey Van der Waerden Expected Value	21 1.024 1.020 0.989 1.026	22 0.294 0.293 0.287 0.294	23 -0.473 -0.471 -0.460 -0.473	24 -0.125 -0.124 -0.122 -0.125	25 2.040 2.015 1.849 2.043
Blom Tukey Van der Waerden Expected Value	26 0.893 0.890 0.865 0.894	27 -0.568 -0.566 -0.552 -0.568	28 0.382 0.381 0.372 0.382	29 -0.668 -0.666 -0.649 -0.669	30 0.568 0.566 0.552 0.568
Expe	ected value	es of exponent	tial order s	tatistics	
1	2	3	4	5	6
0.179	0.892	0.240	0.474	1.166	0.474
7	8	9	10	11	12
0.068	0.677	2.995	1.545	2.162	2.495
13	14	15	16	17	18
0.743	1.402	0.104	0.815	0.555	0.033
19	20	21	22	23	24
0.141	0.240	1.912	0.975	0.397	0.614
25	26	27	28	29	30
3.995	1.712	0.350	1.066	0.304	1.277

random_seed_get

Retrieves the current value of the seed used in the IMSL random number generators.

Synopsis

#include <imsl.h>
int imsl_random_seed_get ()

Return Value

The value of the seed.

Description

The function imsl_random_seed_get retrieves the current value of the "seed" used in the random number generators. A reason for doing this would be to restart a simulation, using imsl_random_seed_set to reset the seed.

Example

This example illustrates the statements required to restart a simulation using imsl_random_seed_get and imsl_random_seed_set. Also, the example shows that restarting the sequence of random numbers at the value of the seed last generated is the same as generating the random numbers all at once.

```
#include <imsl.h>
#define
            N RANDOM
                         5
main()
{
    int
                seed = 123457;
    float
                *r1, *r2, *r;
    imsl_random_seed_set(seed);
    r1 = imsl_f_random_uniform(N_RANDOM, 0);
    imsl_f_write_matrix ("First Group of Random Numbers", 1,
                         N_RANDOM, r1, 0);
    seed = imsl_random_seed_get();
    imsl_random_seed_set(seed);
    r2 = imsl_f_random_uniform(N_RANDOM, 0);
    imsl_f_write_matrix ("Second Group of Random Numbers", 1,
                         N_RANDOM, r2, 0);
    imsl_random_seed_set(123457);
    r = imsl_f_random_uniform(2*N_RANDOM, 0);
    imsl_f_write_matrix ("Both Groups of Random Numbers", 1,
                         2*N_RANDOM, r, 0);
}
```

Output

1 0.9662	First Group 2 0.2607	of Random 3 0.7663	Numbers 4 0.5693	5 0.8448	
	Second Group	of Random	Numbers		
1	2	3	4	5	
0.0443	0.9872	0.6014	0.8964	0.3809	
	Both	Groups of R	andom Number	S	
1	2	3	4	5	6
0.9662	0.2607	0.7663	0.5693	0.8448	0.0443
7	8	9	10		
0.9872	0.6014	0.8964	0.3809		

random_seed_set

Initializes a random seed for use in the IMSL random number generators.

Synopsis

```
#include <imsl.h>
void imsl_random_seed_set (int seed)
```

 $564 \bullet random_seed_set$

Required Arguments

int seed (Input)

The seed of the random number generator. The argument seed must be in the range (0, 2147483646). If seed is zero, a value is computed using the system clock. Hence, the results of programs using the IMSL random number generators will be different at various times.

Description

The function imsl_random_seed_set is used to initialize the seed used in the IMSL random number generators. The form of the generators is

$$x_i \equiv c x_{i-1} \mod (2^{31} - 1)$$

The value of x_0 is the seed. If the seed is not initialized prior to invocation of any of the routines for random number generation by calling imsl_random_seed_set, the seed is initialized via the system clock. The seed can be reinitialized to a clock-dependent value by calling imsl_random_seed_set with seed set to 0.

The effect of imsl_random_seed_set is to set some global values used by the random number generators.

A common use of imsl_random_seed_set is in conjunction with imsl_random_seed_get to restart a simulation.

Example

See function imsl_random_seed_get (page 563).

random_option

Selects the uniform (0,1) multiplicative congruential pseudorandom number generator.

Synopsis

```
#include <imsl.h>
void imsl_random_option (int generator_option)
```

Required Arguments

int generator_option (Input)

Indicator of the generator. The random number generator is a multiplicative congruential generator with modulus $2^{31} - 1$. Argument generator_option is used to choose the multiplier and whether or not shuffling is done.

generator_option	Generator
1	multiplier 16807 used
2	multiplier 16807 used with shuffling
3	multiplier 397204094 used
4	multiplier 397204094 used with shuffling
5	multiplier 950706376 used
6	multiplier 950706376 used with shuffling

Description

The IMSL uniform pseudorandom number generators use a multiplicative congruential method, with or without shuffling. The value of the multiplier and whether or not to use shuffling are determined by imsl_random_option. The description of function imsl_f_random_uniform may provide some guidance in the choice of the form of the generator. If no selection is made explicitly, the generators use the multiplier 16807 without shuffling. This form of the generator has been in use for some time (Lewis et al. 1969).

Example

The C statement

 $imsl_random_option(1)$

selects the simple multiplicative congruential generator with multiplier 16807. Since this is the same as the default, this statement has no effect unless imsl_random_option had previously been called in the same program to select a different generator.

random_uniform

Generates pseudorandom numbers from a uniform (0,1) distribution.

Synopsis

#include <imsl.h>
float *imsl_f_random_uniform (int n_random, ..., 0)
The type double function is imsl_d_random_uniform.

Required Arguments

```
int n_random (Input)
Number of random numbers to generate.
```

566 • random_uniform

Return Value

A pointer to a vector of length n_random containing the random uniform (0, 1) deviates.

Synopsis with Optional Arguments

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)

If specified, the array of length n_random containing the random uniform (0, 1) deviates is returned in the user-provided array r.

Description

The function $imsl_f_random_uniform$ generates pseudorandom numbers from a uniform (0, 1) distribution using a multiplicative congruential method. The form of the generator is

 $x_i \equiv c x_{i-1} \mod (2^{31} - 1)$

Each x_i is then scaled into the unit interval (0,1). The possible values for c in the generators are 16807, 397204094, and 950706376. The selection is made by the function imsl_random_option. The choice of 16807 will result in the fastest execution time. If no selection is made explicitly, the functions use the multiplier 16807.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The function imsl_random_option can be used to select the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table is filled with the first 128 uniform (0, 1) numbers resulting from the simple multiplicative congruential generator. Then, for each x_i from the simple generator, the low-order bits of x_i are used to select a random integer, j, from 1 to 128. The j-th entry in the table is then delivered as the random number; and x_i , after being scaled into the unit interval, is inserted into the j-th position in the table.

The values returned by $imsl_f_random_uniform$ are positive and less than 1.0. Some values returned may be smaller than the smallest relative spacing, however. Hence, it may be the case that some value, for example r[i], is such that 1.0 - r[i] = 1.0.

Deviates from the distribution with uniform density over the interval (*a*, *b*) can be obtained by scaling the output from imsl_f_random_uniform. The following

statements (in single precision) would yield random deviates from a uniform (a, b) distribution.

```
float *r;
r = imsl_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i]*(b-a) + a;</pre>
```

Example

In this example, imsl_f_random_uniform is used to generate five pseudorandom uniform numbers. Since imsl_random_option is not called, the generator used is a simple multiplicative congruential one with a multiplier of 16807.

```
#include <imsl.h>
#include <stdio.h>
#define N_RANDOM 5
void main()
{
    float *r;
```

imsl_random_seed_set(123457);

}

Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

random_normal

Generates pseudorandom numbers from a standard normal distribution using an inverse CDF method.

Synopsis

```
#include <imsl.h>
float *imsl_f_random_normal (int n_random, ..., 0)
The type double function is imsl_d_random_normal.
```

Required Arguments

```
int n_random (Input)
Number of random numbers to generate.
```

Return Value

A pointer to a vector of length n_random containing the random standard normal deviates. To release this space, use free.

568 • random_normal

Synopsis with Optional Arguments

```
#include <imsl.h>
```

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)
Pointer to a vector of length n_random that will contain the generated random
standard normal deviates.

Description

Function imsl_f_random_normal generates pseudorandom numbers from a standard normal (Gaussian) distribution using an inverse CDF technique. In this method, a uniform (0, 1) random deviate is generated. Then, the inverse of the normal distribution function is evaluated at that point, using the function imsl_f_normal_inverse_cdf.

Deviates from the normal distribution with mean mean and standard deviation std_dev can be obtained by scaling the output from $imsl_f_random_normal$. The following statements (in single precision) would yield random deviates from a normal (mean, std_dev^2) distribution.

```
float *r;
r = imsl_f_random_normal (n_random, 0);
for (i=0; i<n_random; i++)
r[i] = r[i]*std_dev + mean;
```

Example

In this example, imsl_f_random_normal is used to generate five pseudorandom deviates from a standard normal distribution.

```
#include <imsl.h>
#define N RANDOM
                        5
void main()
{
                seed = 123457;
    int
    int
               n_random = N_RANDOM;
    float
                *r;
    imsl_random_seed_set (seed);
    r = imsl_f_random_normal(n_random, 0);
    printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
           "Standard normal random deviates",
           r[0], r[1], r[2], r[3], r[4]);
}
```

Output

Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145

Remark

The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The function imsl_random_option can be used to select the form of the generator.

random_poisson

Generates pseudorandom numbers from a Poisson distribution.

Synopsis

```
#include <imsl.h>
int *imsl_random_poisson (int n_random, float theta, ..., 0)
```

Required Arguments

int n_random (Input) Number of random numbers to generate. *float* theta (Input)

Mean of the Poisson distribution. The argument theta must be positive.

Return Value

If no optional arguments are used, imsl_random_poisson returns a pointer to a vector of length n_random containing the random Poisson deviates. To release this space, use free.

Synopsis with Optional Arguments

Optional Arguments

IMSL_RETURN_USER, int r[] (Output)

If specified, the vector of length n_random of random Poisson deviates is returned in the user-provided array r.

Description

The function imsl_random_poisson generates pseudorandom numbers from a Poisson distribution with positive mean theta. The probability function (with θ = theta) is

 $f(x) = (e^{-\theta} \theta^x)/x!,$ for x = 0, 1, 2, ...

570 • random_poisson

If theta is less than 15, imsl_random_poisson uses an inverse CDF method; otherwise, the PTPE method of Schmeiser_and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used. The PTPE method uses a composition of four regions, a triangle, a parallelogram, and two negative exponentials. In each region except the triangle, acceptance/rejection is used. The execution time of the method is essentially insensitive to the mean of the Poisson.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The function imsl_random_option can be used to select the form of the generator.

Example

In this example, imsl_random_poisson is used to generate five pseudorandom deviates from a Poisson distribution with mean equal to 0.5.

```
#include <imsl.h>
```

```
#define N_RANDOM
                       5
void main()
{
    int
                *r;
    int
                seed = 123457;
                theta = 0.5;
    float
    imsl_random_seed_set (seed);
    r = imsl_random_poisson (N_RANDOM, theta, 0);
    imsl_i_write_matrix ("Poisson(0.5) random deviates", 1, 5, r, 0);
}
            Output
Poisson(0.5) random deviates
```

random_gamma

3 4

0

1

5

1

2

0

1

2

Generates pseudorandom numbers from a standard gamma distribution.

Synopsis

```
#include <imsl.h>
float *imsl_f_random_gamma (int n_random, float a, ..., 0)
The type double procedure is imsl_d_random_gamma.
```

Required Arguments

```
int n_random (Input)
Number of random numbers to generate.
```

float a (Input)

The shape parameter of the gamma distribution. This parameter must be positive.

Return Value

If no optional arguments are used, imsl_f_random_gamma returns a pointer to a vector of length n_random containing the random standard gamma deviates. To release this space, use free.

Synopsis with Optional Arguments

0)

Optional Arguments

IMSL_USER_RETURN, float r[] (Output)

If specified, the vector of length n_random containing the random standard gamma deviates is returned in the user-provided array r.

Description

The function imsl_f_random_gamma generates pseudorandom numbers from a gamma distribution with shape parameter *a* and unit scale parameter. The probability density function is

$$f(x) = \frac{1}{\Gamma(a)} x^{a-1} e^{-x} \quad \text{for } x \ge 0$$

Various computational algorithms are used depending on the value of the shape parameter *a*. For the special case of a = 0.5, squared and halved normal deviates are used; and for the special case of a = 1.0, exponential deviates are generated. Otherwise, if *a* is less than 1.0, an acceptance-rejection method due to Ahrens, described in Ahrens and Dieter (1974), is used. If *a* is greater than 1.0, a ten-region rejection procedure developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and scale parameter b can be generated by using imsl_f_random_gamma and then multiplying each entry in r by b. The following statements (in single precision) would yield random deviates from a gamma (a, b) distribution.

```
float *r;
r = imsl_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;</pre>
```

The Erlang distribution is a standard gamma distribution with the shape parameter having a value equal to a positive integer; hence, imsl_f_random_gamma generates pseudorandom deviates from an Erlang distribution with no modifications required.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The function imsl_random_option can be used to select the form of the generator.

Example

In this example, imsl_f_random_gamma is used to generate five pseudorandom deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0.

```
#include <imsl.h>
```

```
void main()
{
    int seed = 123457;
    int n_random = 5;
    float a = 3.0;
    float *r;
    imsl_random_seed_set(seed);
    r = imsl_f_random_gamma(n_random, a, 0);
    imsl_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}
```

Output

Gamma(3) random deviates 1 2 3 4 5 6.843 3.445 1.853 3.999 0.779

random_beta

Generates pseudorandom numbers from a beta distribution.

Synopsis

#include <imsl.h>

float *imsl_f_random_beta (float n_random, float pin, float qin, ..., 0)

The type *double* function is imsl_d_random_beta.

Required Arguments

int n_random (Input) Number of random numbers to generate.

float pin (Input) First beta distribution parameter. Argument pin must be positive.

float qin (Input) Second beta distribution parameter. Argument qin must be positive.

Return Value

If no optional arguments are used, imsl_f_random_beta returns a pointer to a vector of length n_random containing the random standard beta deviates. To release this space, use free.

Synopsis with Optional Arguments

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)

If specified, the vector of length n_random containing the random standard beta deviates is returned in r.

Description

The function imsl_f_random_beta generates pseudorandom numbers from a beta distribution with parameters pin and qin, both of which must be positive. With p = pin and q = qin, the probability density function is

$$f(x) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^{p-1} (1-x)^{q-1} \qquad \text{for } 0 \le x \le 1$$

where $\Gamma(\cdot)$ is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is used. If either p or q is less than 1 and the other is greater than 1, the method of Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng (1978), which requires very little setup time, is used if n_random is less than 4; and algorithm B4PE of Schmeiser and Babu (1980) is used if n_random is greater than or equal to 4. Note that for p and q both greater than 1, calling imsl_f_random_beta in a loop getting less than 4 variates on each call will not yield the same set of deviates as calling imsl_f_random_beta once and getting all the deviates at once.

The values returned in r are less than 1.0 and greater than ε where ε is the smallest positive number such that $1.0 - \varepsilon$ is less than 1.0.

The function imsl_random_seed_set can be used to initialize the seed of the random number generator. The function imsl_random_option can be used to select the form of the generator.

Example

In this example, imsl_f_random_beta is used to generate five pseudorandom beta (3, 2) variates.

```
#include <imsl.h>
```

```
main()
{
    int n_random = 5;
    int seed = 123457;
    float pin = 3.0;
    float qin = 2.0;
    float *r;
    imsl_random_seed_set (seed);
    r = imsl_f_random_beta (n_random, pin, qin, 0);
    imsl_f_write_matrix("Beta (3,2) random deviates", 1, n_random, r, 0);
}
```

Output

	Beta (3,2)	random dev	iates	
1	2	3	4	5
0.2814	0.9483	0.3984	0.3103	0.8296

random_exponential

Generates pseudorandom numbers from a standard exponential distribution.

Synopsis

#include <imsl.h>

float *imsl_f_random_exponential (int n_random, ..., 0)

The type *double* function is imsl_d_random_exponential.

Required Arguments

int n_random (Input) Number of random numbers to generate.

Return Value

A pointer to an array of length n_random containing the random standard exponential deviates.

Synopsis with Optional Arguments

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)

If specified, the array of length n_random containing the random standard exponential deviates is returned in the user-provided array r.

Description

Function imsl_f_random_exponential generates pseudorandom numbers from a standard exponential distribution. The probability density function is $f(x) = e^{-x}$, for x > 0. Function imsl_random_exponential uses an antithetic inverse CDF technique; that is, a uniform random deviate U is generated, and the inverse of the exponential cumulative distribution function is evaluated at 1.0 - U to yield the exponential deviate.

Deviates from the exponential distribution with mean θ can be generated by using imsl_f_random_exponential and then multiplying each entry in r by θ .

Example

In this example, imsl_f_random_exponential is used to generate five pseudorandom deviates from a standard exponential distribution.

```
#include <imsl.h>
#define N_RANDOM
                    5
main()
{
                    seed = 123457;
    int
                    n_random = N_RANDOM;
    int
    float
                    *r;
    imsl_random_seed_set(seed);
    r = imsl_f_random_exponential(n_random, 0);
    printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
           "Exponential random deviates",
           r[0], r[1], r[2], r[3], r[4]);
}
```

Output

Exponential random deviates: 0.0344 1.3443 0.2662 0.5633 0.1686

Chapter 11: Printing Functions

Routines

Print a matrix or vectorwrite_matrix	577
Set the page width and lengthpage	583
Set the printing options write_options	584

write_matrix

Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis

#include <imsl.h>

void imsl_f_write_matrix (char *title, int nra, int nca, float a[], ..., 0)

For int a[], use imsl_i_write_matrix.

For double a[], use imsl_d_write_matrix.

For f_complex a[], use imsl_c_write_matrix.

For d_complex a[], use imsl_z_write_matrix.

Required Arguments

char *title (Input)
 The matrix title. Use \n within a title to create a new line. Long titles are
 automatically wrapped.

int nra (Input) The number of rows in the matrix.

int nca (Input) The number of columns in the matrix.

float a[] (Input)

Array of size $nra \times nca$ containing the matrix to be printed.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_write_matrix (char *title, int nra, int nca, float a[], IMSL_TRANSPOSE, IMSL_A_COL_DIM, *int* a_col_dim, IMSL_PRINT_ALL, IMSL_PRINT_LOWER, IMSL_PRINT_UPPER, IMSL_PRINT_LOWER_NO_DIAG, IMSL_PRINT_UPPER_NO_DIAG, IMSL_WRITE_FORMAT, char *fmt, IMSL_ROW_LABELS, char *rlabel[], IMSL_NO_ROW_LABELS, IMSL_ROW_NUMBER, IMSL_ROW_NUMBER_ZERO, IMSL_COL_LABELS, char *clabel[], IMSL_NO_COL_LABELS, IMSL_COL_NUMBER, IMSL_COL_NUMBER_ZERO, IMSL_RETURN_STRING, char **string, IMSL_WRITE_TO_CONSOLE, 0)

Optional Arguments

IMSL_TRANSPOSE Print a^T. IMSL_A_COL_DIM, int a_col_dim (Input) The column dimension of a. Default: a_col_dim = nca IMSL_PRINT_ALL, or IMSL_PRINT_LOWER, or IMSL_PRINT_UPPER, or IMSL_PRINT_LOWER_NO_DIAG, or

IMSL_PRINT_UPPER_NO_DIAG

Exactly one of these optional arguments can be specified in order to indicate that either a triangular part of the matrix or the entire matrix is to be printed. If omitted, the entire matrix is printed.

Keyword	Action
IMSL_PRINT_ALL	The entire matrix is printed (the default).
IMSL_PRINT_LOWER	The lower triangle of the matrix is printed, including the diagonal.
IMSL_PRINT_UPPER	The upper triangle of the matrix is printed, including the diagonal.
IMSL_PRINT_LOWER_NO_DIAG	The lower triangle of the matrix is printed, without the diagonal.
IMSL_PRINT_UPPER_NO_DIAG	The upper triangle of the matrix is printed, without the diagonal.

IMSL_WRITE_FORMAT, char *fmt (Input)

Character string containing a list of C conversion specifications (formats) to be used when printing the matrix. Any list of C conversion specifications suitable for the data type may be given. For example, fmt = "\$10.3f" specifies the conversion character f for the entire matrix. (For the conversion character f, the matrix must be of type *float*, *double*, *f_complex*, or *d_complex*). Alternatively, fmt = "\$10.3e\$10.3f\$10.3f\$10.3f\$10.3f" specifies the conversion character e for columns 1 and 2 and the conversion character f for columns 3, 4, and 5. (For *complex* matrices, two conversion specifications are required for each column of the matrix so the conversion character e is used in column 1. The conversion character f is used in column 2 and the real part of column 3.) If the end of fmt is encountered and if some columns of the matrix remain, format control continues with the first conversion specification in fmt.

Aside from restarting the format from the beginning, other exceptions to the usual C formatting rules are as follows:

- Characters not associated with a conversion specification are not allowed. For example, in the format fmt = "1%d2%d", the characters 1 and 2 are not allowed and result in an error.
- 2. A conversion character d can be used for floating-point values (matrices of type *float*, *double*, *f_complex*, or *d_complex*). The integer part of the floating-point value is printed.
- For printing numbers whose magnitudes are unknown, the conversion character g is useful; however, the decimal points will generally not be aligned when printing a column of numbers. The w (or W) conversion character is a special conversion character used by this function to select a conversion specification so that the decimal points will be aligned. The conversion specification ending with w is specified as "%n.dw". Here, n is the field width and d is the number of significant digits generally printed. Valid values for n are 3, 4, ..., 40. Valid values for d are 1, 2, ..., n-2. If fmt specifies one conversion specification ending with w, all elements of a are examined to determine one conversion specification for printing.

If fmt specifies more than one conversion specification, separate conversion specifications are generated for each conversion specification ending with w. Set fmt = "10.4w" if you want a single conversion specification selected automatically with field width 10 and with four significant digits.

IMSL_NO_ROW_LABELS, or

IMSL_ROW_NUMBER, or

IMSL_ROW_NUMBER_ZERO, or

IMSL_ROW_LABELS, char *rlabel[] (Input)

If IMSL_ROW_LABELS is specified, rlabel is a vector of length nra containing pointers to the character strings comprising the row labels. Here, nra is the number of rows in the printed matrix. Use \n within a label to create a new line. Long labels are automatically wrapped. If no row labels are desired, use the IMSL_NO_ROW_LABELS optional argument. If the numbers 1, 2, ..., nra are desired, use the IMSL_ROW_NUMBER optional argument. If the numbers 1, 2, ..., nra – 1 are desired, use the IMSL_ROW_NUMBER_ZERO optional argument. If none of these optional arguments is used, the numbers 1, 2, 3, ..., nra are used for the row labels by default whenever nra > 1. If nra = 1, the default is no row labels.

IMSL_NO_COL_LABELS, or

IMSL_COL_NUMBER, or

IMSL_COL_NUMBER_ZERO, or

IMSL_COL_LABELS, char *clabel[] (Input)

If IMSL_COL_LABELS is specified, clabel is a vector of length nca + 1 containing pointers to the character strings comprising the column headings. The heading for the row labels is clabel[0], and clabel[i], i = 1, ..., nca, is the heading for the i-th column. Use \n within a label to create a new line. Long labels are automatically wrapped. If no column labels are desired, use the IMSL_NO_COL_LABELS optional argument. If the numbers 1, 2, ..., nca, are desired, use the IMSL_COL_NUMBER optional argument. If the numbers 0, 1, ..., nca - 1 are desired, use the IMSL_COL_NUMBER_ZERO optional argument. If none of these optional arguments is used, the numbers 1, 2, 3, ..., nca are used for the column labels by default whenever nca > 1. If nca = 1, the default is no column labels.

IMSL_RETURN_STRING, char **string (Output)

The address of a pointer to a NULL-terminated string containing the matrix to be printed. Lines are new-line separated and the last line does not have a trailing new-line character. Typically *char* *string is declared, and &string is used as the argument.

IMSL_WRITE_TO_CONSOLE

This matrix is printed to a console window. If a console has not been allocated, a default console (80×24 , white on black, no scrollbars) is created.

Description

The function $imsl_write_matrix$ prints a real rectangular matrix (stored in *a*) with optional row and column labels (specified by rlabel and clabel, respectively, regardless of whether *a* or a^T is printed). An optional format, fmt, may be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the upper or lower triangles of a matrix via the IMSL_TRIANGLE option. Generally, the IMSL_TRIANGLE option is used with symmetric matrices, but this is not required. Vectors can be printed by specifying a row or column dimension of 1.

Output is written to the file specified by the function imsl_output_file, Chapter 12, "Utilities." The default output file is standard output (corresponding to the file pointer stdout).

A page width of 78 characters is used. Page width and page length can be reset by invoking function imsl_page (page 583).

Horizontal centering, the method for printing large matrices, paging, the method for printing NaN (Not a Number), and whether or not a title is printed on each page can be selected by invoking function imsl_write_options (page 584).

Examples

Example 1

This example is representative of the most common situation in which no optional arguments are given.

```
#include <imsl.h>
#define NRA
                3
#define NCA
                4
main()
{
    int
                i, j;
    f_complex
                a[NRA][NCA];
    for (i = 0; i < NRA; i++) {
        for (j = 0; j < NCA; j++) {
            a[i][j].re = (i+1+(j+1)*0.1);
            a[i][j].im = -a[i][j].re+100;
        }
    }
                                 /* Write matrix */
    imsl_c_write_matrix ("matrix\na", NRA, NCA, (f_complex *)a, 0);
}
```

Output

					matrix				
					a				
			1			2			3
1	(1.1,	98.9)	(1.2,	98.8)	(1.3,	98.7)
2	(2.1,	97.9)	(2.2,	97.8)	(2.3,	97.7)
3	(3.1,	96.9)	(3.2,	96.8)	(3.3,	96.7)
			4						
1	(1.4,	98.6)						
2	(2.4,	97.6)						
3	(3.4,	96.6)						

Example 2

In this example, some of the optional arguments available in the write_matrix functions are demonstrated.

#include <imsl.h>

```
#define NRA
                 3
#define NCA
                 4
main()
{
                 i, j;
    int
                 a[NRA][NCA];
    float
                 *fmt = "%10.6W";
    char
                 *rlabel[] = { "row 1", "row 2", "row 3"};
*clabel[] = { "", "col 1", "col 2", "col 3", "col 4"};
    char
    char
    for (i = 0; i < NRA; i++) {
        for (j = 0; j < NCA; j++) {
             a[i][j] = (i+1+(j+1)*0.1);
         }
    }
                                    /* Write matrix */
    imsl_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
                           IMSL_WRITE_FORMAT, fmt,
                           IMSL_ROW_LABELS, rlabel,
                           IMSL_COL_LABELS, clabel,
                            IMSL_PRINT_UPPER_NO_DIAG,
                           0);
}
```

Output

			matrix	
			a	
		col 2	col 3	col 4
row	1	1.2	1.3	1.4
row	2		2.3	2.4
row	3			3.4

Example 3

In this example, a row vector of length four is printed.

```
#include <imsl.h>
#define NRA
                 1
#define NCA
                 4
main()
{
    int
                 i;
                a[NCA];
    float
                 *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};
    char
    for (i = 0; i < NCA; i++) {
         a[i] = i + 1;
    }
                                  /* Write matrix */
    imsl_f_write_matrix ("matrix\na", NRA, NCA, a,
                          IMSL_COL_LABELS, clabel,
                          0);
}
            Output
                     matrix
                        а
                  col 2
                              col 3
                                           col 4
     col 1
         1
                      2
                                   3
                                               4
```

page

Sets or retrieves the page width or length.

Synopsis

#include <imsl.h>

void imsl_page (Imsl_page_options option, int *page_attribute)

Required Arguments

Imsl_page_options option (Input)

Option giving which page attribute is to be set or retrieved. The possible values are:

option	Description
IMSL_SET_PAGE_WIDTH	Set the page width.
IMSL_GET_PAGE_WIDTH	Retrieve the page width.
IMSL_SET_PAGE_LENGTH	Set the page length.
IMSL_GET_PAGE_LENGTH	Retrieve the page length.

int *page_attribute (Input, if the attribute is set; Output, otherwise)
The value of the page attribute to be set or retrieved. The page width is the
number of characters per line of output (default 78), and the page length is
the number of lines of output per page (default 60). Ten or more characters per
line and 10 or more lines per page are required.

Example

The following example illustrates the use of imsl_page to set the page width to 40 characters. The IMSL function imsl_f_write_matrix is then used to print a 3×4 matrix *A*, where $a_{ij} = i + j/10$.

```
#include <imsl.h>
#define NRA
                 3
#define NCA
                 4
main()
{
    int
                 i, j, page_attribute;
                 a[NRA][NCA];
    float
    for (i = 0; i < NRA; i++) {
         for (j = 0; j < NCA; j++) {
a[i][j] = (i+1) + (j+1)/10.0;
         }
    }
    page_attribute = 40;
    imsl_page(IMSL_SET_PAGE_WIDTH, &page_attribute);
    imsl_f_write_matrix("a", NRA, NCA, (float *)a, 0);
}
             Output
                    а
```

	1	2	3	
1	1.1	1.2	1.3	
2	2.1	2.2	2.3	
3	3.1	3.2	3.3	
	4			
1	1.4			
2	2.4			
3	3.4			

write_options

Sets or retrieves an option for printing a matrix.

Synopsis

#include <imsl.h>

void imsl_write_options (Imsl_write_options option, int* option_value)

Required Arguments

Imsl_write_options option (Input)

Option giving the type of the printing attribute to set or retrieve.

option for Setting	option for Retrieving	Attribute Description
IMSL_SET_DEFAULTS		Use the default settings for all parameters
IMSL_SET_CENTERING	IMSL_GET_CENTERING	Horizontal centering
IMSL_SET_ROW_WRAP	IMSL_GET_ROW_WRAP	Row wrapping
IMSL_SET_PAGING	IMSL_GET_PAGING	Paging
IMSL_SET_NAN_CHAR	IMSL_GET_NAN_CHAR	Method for printing NaN (not a number)
IMSL_SET_TITLE_PAGE	IMSL_GET_TITLE_PAGE	Whether or not titles appear on each page
IMSL_SET_FORMAT	IMSL_GET_FORMAT	Default format for real and complex numbers

int *option_value (Input, if option is to be set; Output, otherwise)
The value of the option attribute selected by option. The values to be used
when setting attributes are described in a table in the description section.

Description

The function imsl_write_options allows the user to set or retrieve an option for printing a matrix. Options controlled by imsl_write_options are horizontal centering, method for printing large matrices, paging, method for printing NaN (not a number), method for printing titles, and the default format for real and complex numbers. (NaN can be retrieved by functions imsl_f_machine and imsl_d_machine, Chapter 12, "Utilities.")

The values that may be used for the attributes are as follows:

Option	Value	Meaning
CENTERING	0	Matrix is left justified.
	1	Matrix is centered.
ROW_WRAP	0	A complete row is printed before the next row is printed. Wrapping is used if necessary.
	m	Here <i>m</i> is a positive integer. Let n_1 be the maximum number of columns that fit across the page, as determined by the widths in the conversion specifications starting with column 1. First, columns 1 through n_1 are printed for rows 1 through <i>m</i> . Let n_2 be the maximum number of columns that fit across the page, starting with column $n_1 + 1$. Second, columns n_1+1 through $n_1 + n_2$ are printed for rows 1 through <i>m</i> . This continues until the last columns are printed for rows 1 through <i>m</i> . Printing continues in this fashion for the next <i>m</i> rows, etc.
PAGING	-2	No paging occurs.
	-1	Paging is on. Every invocation of a imsl_f_write_matrix function begins on a new page, and paging occurs within each invocation as is needed.
	0	Paging is on. The first invocation of a imsl_f_write_matrix function begins on a new page, and subsequent paging occurs as is needed. Paging occurs in the second and all subsequent calls to a imsl_f_write_matrix function only as needed.
	k	Turn paging on and set the number of lines printed on the current page to <i>k</i> lines. If <i>k</i> is greater than or equal to the page length, then the first invocation of a <code>imsl_f_write_matrix</code> function begins on a new page. In any case, subsequent paging occurs as is needed.
NAN_CHAR	0	is printed for NaN.
	1	A blank field is printed for NaN.
TITLE_PAGE	0	Title appears only on first page.
	1	Title appears on the first page and all continuation pages.
FORMAT	0	Format is "%10.4x".
	1	Format is "%12.6w".
	2	Format is "%22.5e".

The w conversion character used by the FORMAT option is a special conversion character that can be used to automatically select a pretty C conversion specification ending in either e, f, or d. The conversion specification ending with w is specified as "n.dw". Here, n is the field width, and d is the number of significant digits generally printed.

The function imsl_write_options can be invoked repeatedly before using a write_matrix function to print a matrix. The matrix printing functions retrieve the values set by imsl_write_options to determine the printing options. It is not necessary to call imsl_write_options if a default value of a printing option is desired. The defaults are as follows:

Option	Default Value	
CENTERING	0	Left justified
ROW_WRAP	1000	Lines before wrapping
PAGING	-2	No paging
NAN_CHAR	0	
TITLE_PAGE	0	Title appears only on the first page
FORMAT	0	%10.4w

Example

The following example illustrates the effect of imsl_write_options when printing a 3×4 real matrix A with IMSL function imsl_f_write_matrix, where $a_{ij} = i + j/10$. The first call to imsl_write_options sets horizontal centering so that the matrix is printed centered horizontally on the page. In the next invocation of imsl_f_write_matrix, the left-justification option has been set via function imsl_write_options, so the matrix is left justified when printed.

```
#include <imsl.h>
```

```
#define NRA
                4
#define NCA
                3
main()
{
    int
                i, j, option_value;
    float
                a[NRA][NCA];
    for (i = 0; i < NRA; i++) {
        for (j = 0; j < NCA; j++) {
            a[i][j] = (i+1) + (j+1)/10.0;
        }
    }
                                 /* Activate centering option */
    option_value = 1;
    imsl_write_options (IMSL_SET_CENTERING, &option_value);
                                 /* Write a matrix */
```

Output

		a			
			1	2	3
		1	1.1	1.2	1.3
		2	2.1	2.2	2.3
		3	3.1	3.2	3.3
		4	4.1	4.2	4.3
		_			
		a			
	1	2	3		
1	1.1	1.2	1.3		
2	2.1	2.2	2.3		
3	3.1	3.2	3.3		
4	4.1	4.2	4.3		

Chapter 12: Utilities

Routines

12.1	Set Output Files Set output filesoutput_file Get library version and license numberversion	590 591
12.2	Time and Date ctime CPU time used	592 593 594
12.3	Error Handling Error message optionserror_options Get error codeerror_code	595 598
12.4	Constants Natural and mathematical constants constant Integer machine constantsmachine (integer) Float machine constantsmachine (float)	599 603 605
12.5	Sort float vectorsort Sort integer vectorsort (integer)	607 610
12.6	Computing Vector Norms Compute various normsvector_norm	612
12.7	Linear Algebra Support Vector-Vector, Matrix-Vector, and Matrix-Matrix-Multiplication	
	Real Matrixmat_mul_rect Complex matrixmat_mul_rect (complex) Real band matrixmat_mul_rect_band Complex band matrixmat_mul_rect_band (complex) Real coordinate matrixmat_mul_rect_coordinate Complex coordinate matrixmat_mul_rect_coordinate (complex)	614 618 621 625 630 634

Vector-Vector, Matrix-Vector, and	
Matrix-Matrix-Addition	
Real band matrix mat_add_band	639
Complex band matrixmat_add_band (complex)	642
Real coordinate matrix mat_add_coordinate	646
Complex coordinate matrix mat_add_coordinate (complex)	649
Matrix Norm	
Real matrixmatrix norm	653
Real band matrixmatrix norm band	654
Real coordinate matrix	657
Test Matrices of Class	
Real matrix	660
Complex matrix	662
Real matrix	664
Complex generate_test_coordinate (complex)	668

output_file

Sets the output file or the error message output file.

Synopsis with Optional Arguments

```
#include <imsl.h>
void imsl_output_file(
    IMSL_SET_OUTPUT_FILE, FILE *ofile,
    IMSL_GET_OUTPUT_FILE, FILE **pofile,
    IMSL_SET_ERROR_FILE, FILE *efile,
    IMSL_GET_ERROR_FILE, FILE **pefile,
    0)
```

Optional Arguments

IMSL_SET_OUTPUT_FILE, FILE *ofile (Input)
Set the output file to ofile.
Default: ofile = stdout

IMSL_GET_OUTPUT_FILE, FILE **pfile (Output)
 Set the FILE pointed to by pfile to the current output file.

IMSL_SET_ERROR_FILE, FILE *efile (Input)
 Set the error message output file to efile.
 Default: efile = stderr

IMSL_GET_ERROR_FILE, FILE **pefile (Output)
 Set the FILE pointed to by pefile to the error message output file.

Description

This function allows the file used for printing by IMSL routines to be changed.

Example

```
This example opens the file myfile and changes the output file to this new file. The function imsl_f_write_matrix then writes to this file.
```

Output

x 1 3	(default	file) 2 2	3 1
x	(myfile)	File myfile	
1		2	3
3		2	1

version

Returns integer information describing the version of the library, serial number, operating system, and compiler.

Synopsis

```
#include <imsl.h>
char* imsl_version (Imsl_keyword code)
```

Required Arguments

Imsl_keyword code (Input)

Index indicating which value is to be returned. It must be IMSL_LIBRARY_VERSION, IMSL_OS_VERSION, IMSL_COMPILER_VERSION, or IMSL_LICENSE_NUMBER.

Return Value

The requested value is returned. If code is out of range, then NULL is returned. Use free to release the returned string.

Description

The function imsl_version returns information describing the version of this library, the version of the operating system under which it was compiled, the compiler used, and the IMSL number.

Example

This example prints all the values returned by imsl_version on a particular machine. The output is omitted because the results are system dependent.

```
#include <imsl.h>
```

```
main()
{
    char *library_version, *os_version;
    char *compiler_version, *license_number;
    library_version = imsl_version(IMSL_LIBRARY_VERSION);
    os_version = imsl_version(IMSL_OS_VERSION);
    compiler_version = imsl_version(IMSL_COMPILER_VERSION);
    license_number = imsl_version(IMSL_LICENSE_NUMBER);
    printf("Library version = %s\n", library_version);
    printf("OS version = %s\n", os_version);
    printf("Compiler version = %s\n", compiler_version);
    printf("Serial number = %s\n", license_number);
}
```

ctime

Returns the number of CPU seconds used.

Synopsis

```
#include <imsl.h>
```

double imsl_ctime ()

Return Value

The number of CPU seconds used so far by the program.

Example

The CPU time needed to compute

$$\sum_{k=0}^{1,000,000} k$$

is obtained and printed. The time needed is, of course, machine dependent. The CPU time needed will also vary slightly from run to run on the same machine.

```
Output
```

sum = 500000500000.000000
time = 2.260000

date_to_days

Computes the number of days from January 1, 1900, to the given date.

Synopsis

#include <imsl.h>
int imsl_date_to_days (int day, int month, int year)

Required Arguments

int day (Input) Day of the input date.

int month (Input) Month of the input date.

int year (Input)

Year of the input date. The year 1950 would correspond to the year 1950 A.D., and the year 50 would correspond to year 50 A.D.

Return Value

Number of days from January 1, 1900, to the given date. If negative, it indicates the number of days prior to January 1, 1900.

Description

The function imsl_date_to_days returns the number of days from January 1, 1900, to the given date. The function imsl_date_to_days returns negative values for days prior to January 1, 1900. A negative year can be used to specify B.C. Input dates in

year 0 and for October 5, 1582, through October 14, 1582, inclusive, do not exist; consequently, in these cases, imsl_date_to_days issues a terminal error.

The beginning of the Gregorian calendar was the first day after October 4, 1582, which became October 15, 1582. Prior to that, the Julian calendar was in use.

Example

The following example uses imsl_date_to_days to compute the number of days from January 15, 1986, to February 28, 1986.

```
#include <imsl.h>
```

```
main()
{
    int day0, day1;
    day0 = imsl_date_to_days(15, 1, 1986);
    day1 = imsl_date_to_days(28, 2, 1986);
    printf("Number of days = %d\n", day1 - day0);
}
```

Output

Number of days = 44

days_to_date

Gives the date corresponding to the number of days since January 1, 1900.

Synopsis

#include <imsl.h>

void imsl_days_to_date (int days, int *day, int *month, int *year)

Required Arguments

- int days (Input) Number of days since January 1, 1900.
- *int* *day (Output) Day of the output date.
- int *month (Output) Month of the output date.

```
int *year (Output)
```

Year of the output date. The year 1950 would correspond to the year 1950 A.D., and the year 50 would correspond to year 50 A.D.

Description

The function imsl_days_to_date computes the date corresponding to the number of days since January 1, 1900. For a negative input value of days, the date computed is prior to January 1, 1900. This function is the inverse of function imsl_date_to_days (see page 593).

The beginning of the Gregorian calendar was the first day after October 4, 1582, which became October 15, 1582. Prior to that, the Julian calendar was in use.

Example

The following example uses imsl_days_to_date to compute the date for the 100th day of 1986. This is accomplished by first using IMSL function imsl_date_to_days (see page 593) to get the "day number" for December 31, 1985.

```
#include <imsl.h>
```

```
main()
```

{

}

Output

Day 100 of 1986 is (day-month-year) 10-4-1986

error_options

Sets various error handling options.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

```
void imsl_error_options (
    IMSL_SET_PRINT, Imsl_error type, int setting,
    IMSL_SET_STOP, Imsl_error type, int setting,
    IMSL_SET_TRACEBACK, Imsl_error type, int setting,
    IMSL_GET_PRINT, Imsl_error type, int *psetting,
    IMSL_GET_STOP, Imsl_error type, int *psetting,
    IMSL_GET_TRACEBACK, Imsl_error type, int *psetting,
    IMSL_GET_TRACEBACK, Imsl_error type, int *psetting,
    IMSL_GET_ERROR_FILE, FILE *file,
    IMSL_GET_ERROR_FILE, FILE **pfile,
    IMSL_ERROR_MSG_PATH, char *path,
    IMSL_ERROR_MSG_NAME, char *name,
    IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc,
    0)
```

Optional Arguments

- IMSL_SET_PRINT, Imsl_error type, int setting (Output)
 Printing of type type error messages is turned off if setting is 0; otherwise,
 printing is turned on.
 Default: Printing turned on for IMSL_WARNING, IMSL_FATAL,
 IMSL_TERMINAL, IMSL_FATAL_IMMEDIATE, and
 IMSL_WARNING_IMMEDIATE messages
- IMSL_SET_STOP, Imsl_error type, int setting (Input)
 Stopping on type type error messages is turned off if setting is 0;
 otherwise, stopping is turned on.
 Default: Stopping turned on for IMSL_FATAL, IMSL_TERMINAL, and
 IMSL_FATAL_IMMEDIATE messages
- IMSL_SET_TRACEBACK, Imsl_error type, int setting (Input)
 Printing of a traceback on type type error messages is turned off if
 setting is 0; otherwise, printing of the traceback turned on.
 Default: Traceback turned off for all message types
- IMSL_FULL_TRACEBACK, int setting (Input)
 Only documented functions are listed in the traceback if setting is 0;
 otherwise, internal function names also are listed.
 Default: Full traceback turned off
- IMSL_GET_PRINT, Imsl_error type, int *psetting (Output)
 Sets the integer pointed to by psetting to the current setting for printing of
 type type error messages.
- IMSL_GET_STOP, Imsl_error type, int *psetting (Output)
 Sets the integer pointed to by psetting to the current setting for stopping on
 type type error messages.
- IMSL_GET_TRACEBACK, Imsl_error type, int *psetting (Output)
 Sets the integer pointed to by psetting to the current setting for printing of a
 traceback for type type error messages.
- IMSL_SET_ERROR_FILE, FILE *file (Input)
 Sets the error output file.
 Default: file = stderr
- IMSL_GET_ERROR_FILE, FILE **pfile (Output)
 Sets the FILE * pointed to by pfile to the error output file.

IMSL_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-separated
list of directories to be searched for the file containing the error messages.
Default: system dependent

IMSL_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file = "imslerror.bin"

```
IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the form
void print_proc (Imsl_error type, long code,
char *function_name, char *message).
```

In this case, type is the error message type number (IMSL_FATAL, etc.), code is the error message code number (IMSL_MAJOR_VIOLATION, etc.), function_name is the name of the function setting the error, and message is the error message to be printed. If print_proc is NULL, then the default error printing function is used.

Return Value

The return value for this function is void.

Description

This function allows the error handling system to be customized.

Examples

Example 1

In this example, the IMSL_TERMINAL print setting is retrieved. Next, stopping on IMSL_TERMINAL errors is turned off, output to standard output is redirected, and an error is deliberately caused by calling imsl_error_options with an illegal value.

```
#include <imsl.h>
#include <stdio.h>
main()
{
    int
                 setting;
                                /* Turn off stopping on IMSL_TERMINAL */
                                /\,\star\, error messages and write error \,\star\,/\,
                                /* messages to standard output */
    imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
                        IMSL_SET_ERROR_FILE, stdout,
                        0);
                                /* Call imsl_error_options() with */
                                /* an illegal value */
    imsl_error_options(-1);
                                /* Get setting for IMSL_TERMINAL */
    imsl_error_options(IMSL_GET_PRINT, IMSL_TERMINAL, &setting,
                        0);
    printf("IMSL_TERMINAL error print setting = %d\n", setting);
}
```

Output

*** TERMINAL Error from imsl_error_options. There is an error with *** argument number 1. This may be caused by an incorrect number of *** values following a previous optional argument name.

IMSL_TERMINAL error print setting = 1

Chapter 12: Utilities

Example 2

```
In this example, IMSL's own error printing function has been substituted for the standard function. Only the first four lines are printed below.
```

```
#include <imsl.h>
#include <stdio.h>
void
             print_proc(Imsl_error, long, char*, char*);
main()
{
                            /* Turn off tracebacks on IMSL_TERMINAL */
                            /* error messages and use a custom */
                           /* print function */
    imsl_error_options(IMSL_ERROR_PRINT_PROC, print_proc,
                       0);
                            /* Call imsl_error_options() with an */
                            /* illegal value */
    imsl_error_options(-1);
}
void print_proc(Imsl_error type, long code, char *function_name,
                char *message)
{
    printf("Error message type %d\n", type);
    printf("Error code %d\n", code);
    printf("From function %s\n", function_name);
    printf("%s\n", message);
}
```

Output

Error message type 5 Error code 103 From function imsl_error_options There is an error with argument number 1. This may be caused by an incorrect number of values following a previous optional argument name.

error_code

Gets the code corresponding to the error message from the last function called.

Synopsis

#include <imsl.h>

```
long imsl_error_code ()
```

Return Value

This function returns the error message code from the last IMSL function called. The include file imsl.h defines a name for each error code.

Example

This example turns off stopping on IMSL_TERMINAL error messages and generates an error by calling imsl_error_options with an illegal value for IMSL_SET_PRINT. The error message code number is retrieved and printed. In imsl.h, IMSL_INTEGER_OUT_OF_RANGE is defined to be 132.

```
#include <imsl.h>
#include <stdio.h>
main()
{
               code;
    long
                                 /* Turn off stopping IMSL_TERMINAL */
                                 /* messages and print error messages */
                                 /* on standard output. */
    imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
                       IMSL_SET_ERROR_FILE, stdout,
                       0);
                                 /* Call imsl_error_options() with */
                                /* an illegal value */
    imsl_error_options(IMSL_SET_PRINT, 100, 0,
                       0);
                                 /* Get the error message code */
    code = imsl_error_code();
    printf("error code = %d\n", code);
}
```

Output

```
*** TERMINAL Error from imsl_error_options."type" must be between 1 and 5,
*** but "type" = 100.
error code = 132
```

constant

Returns the value of various mathematical and physical constants.

Synopsis

#include <imsl.h>

float imsl_f_constant (char name, char unit)

The type *double* function is imsl_d_constant.

Required Arguments

char *name (Input)

Character string containing the name of the desired constant. The case of the character string name does not matter. The names "PI", "Pi", "pi", "pi", and "pi" are equivalent. Spaces and underscores are allowed and ignored.

char *unit (Input)

Character string containing the units of the desired constant. If NULL, then Système International d'Unités (SI) units are assumed. The case of the character string unit does not matter. The names "METER", "Meter" and "meter" are equivalent. unit has the form U1*U2*...*Um/V1/.../Vn, where Ui and Vi are the names of basic units or are the names of basic units raised to a power. Basic units must be separated by * or /. Powers are indicated by ^, as in "m^2" for m². Examples are, "METER*KILOGRAM/SECOND", "M*KG/S", "METER", or "M/KG^2".

Return Value

By default, imsl_f_constant returns the desired constant. If no value can be computed, NaN is returned.

Description

The names allowed are listed in the following table. Values marked with a ‡ are exact (to machine precision). The references in the right-hand column are indicated by the code numbers: [1] for Cohen and Taylor (1986), [2] for Liepman (1964), and [3] for precomputed mathematical constants.

Name	Description	Value	Reference
amu	Atomic mass unit	$1.6605655 \times 10^{-27} \text{ kg}$	1
ATM	Standard atm pressure	$1.01325 \times 10^5 \text{ N/m}^2 \ddagger$	2
AU	Astronomical unit	$1.496 \times 10^{11} \text{ m}$	
Avogadro	Avogadro's number, N	6.022045×10^{23} 1/mole	1
Boltzman	Boltzman's constant, k	$1.380662 \times 10^{-23} \text{ J/K}$	1
С	Speed of light, c	2.997924580×10^8 m/s	1
Catalan	Catalan's constant	0.915965 ‡	3
Е	Base of natural logs, e	2.718 ‡	3
ElectronCharge	Electron charge, e	$1.6021892 \times 10^{-19} \text{ C}$	1
ElectronMass	Electron mass, m_e	$9.109534 \times 10^{-31} \text{ kg}$	1
ElectronVolt	ElectronVolt, ev	1.6021892 x10 ⁻¹⁹ J	1
Euler	Euler's constant, γ	0.577 ‡	3
Faraday	Faraday constant, F	9.648456×10^4 C/mole	1
FineStructure	Fine structure, α	7.2973506×10^{-3}	1
Gamma	Euler's constant, γ	0.577 ‡	3
Gas	Gas constant, R_0	8.31441 J/mole/K	1

Name	Description	Value	Reference
Gravity	Gravitational constant, G	$6.6720 \times 10^{-11} \text{ N m}^2/\text{kg}^2$	1
Hbar	Planck's constant/ 2π	$1.0545887 \times 10^{-34} \text{ J s}$	1
PerfectGasVolume	Std vol ideal gas	$2.241383 \times 10^{-2} \text{ m}^3/\text{mole}$	1
Pi	Ρί, π	3.141 ‡	3
Planck	Planck's constant, h	$6.626176 \times 10^{-34} \text{ J s}$	1
ProtonMass	Proton mass, M_p	$1.6726485 \times 10^{-27} \text{ kg}$	1
Rydberg	Rydberg's constant, R_{∞}	$1.097373177 \times 10^7/m$	1
Speedlight	Speed of light, c	2.997924580×10^8 m/s	1
StandardGravity	Standard g	9.80665 m/s ² ‡	2
StandardPressure	Standard atm pressure	$1.01325 \times 10^5 \text{ N/m}^2 \ddagger$	2
StefanBoltzman	Stefan-Boltzman, σ	$5.67032 \times 10^{-8} W/K^4/m^2$	1
WaterTriple	Triple point of water	$2.7316 \times 10^2 \text{ K}$	2

The units allowed are as follows:

Unit	Description
Time	day, hour = hr, min, minute, $s = sec = second$, year
Frequency	Hertz = Hz
Mass	AMU, g = gram, lb = pound, ounce = oz, slug
Distance	Angstrom, AU, feet = foot, in = inch, m = meter = metre, micron, mile, mill, parsec, yard
Area	acre
Volume	1 = liter=litre
Force	dyne, N = Newton
Energy	BTU, Erg, J = Joule
Work	W = watt
Pressure	ATM = atmosphere, bar
Temperature	degC = Celsius, degF = Fahrenheit, degK = Kelvin
Viscosity	poise, stoke
Charge	Abcoulomb, C = Coulomb, statcoulomb
Current	A = ampere, abampere, statampere
Voltage	Abvolt, $V = volt$

Unit	Description
Magnetic induction	T = Telsa, Wb = Weber
Other units	I, farad, mole, Gauss, Henry, Maxwell, Ohm

The following metric prefixes may be used with the above units. The one or two letter prefixes may only be used with one letter unit abbreviations.

а	atto	10^{-18}	d	deci	10^{-1}
f	femto	10^{-15}	dk	deca	10^{2}
р	pico	10^{-12}	k	kilo	10^{3}
n	nano	10 ⁻⁹		myria	10^{4}
u	micro	10^{-6}		mega	10^{6}
m	milli	10^{-3}	g	giga	10^{9}
С	centi	10^{-2}	t	tera	10 ¹²

There is no one letter unit abbreviation for myria or mega since m means milli.

Examples

Example 1

In this example, Euler's constant γ is obtained and printed. Euler's constant is defined to be

$$\gamma = \lim_{n \to \infty} \left[\sum_{k=1}^{n-1} \frac{1}{k} - \ln n \right]$$

Output

```
gamma = 0.577216
```

Example 2

In this example, the speed of light is obtained using several different units.

```
#include <stdio.h>
#include <imsl.h>
main()
{
                  speed_light;
    float
                               /* Get speed of light in meters/second */
    speed_light = imsl_f_constant("Speed Light", "meter/second");
    printf("speed of light = %g meter/second\n", speed_light);
                              /* Get speed of light in miles/second */
    speed_light = imsl_f_constant("Speed Light", "mile/second");
printf("speed of light = %g mile/second\n", speed_light);
                               /* Get speed of light in */
                               /* centimeters/nanosecond */
    speed_light = imsl_f_constant("Speed Light", "cm/ns");
    printf("speed of light = %g cm/ns\n", speed_light);
}
```

Output

speed of light = 2.99792e+08 meter/second speed of light = 186282 mile/second speed of light = 29.9793 cm/ns

Warning Errors

IMSL_MASS_TO_FORCE

A conversion of units of mass to units of force was required for consistency.

machine (integer)

Returns integer information describing the computer's arithmetic.

Synopsis

```
#include <imsl.h>
```

int imsl_i_machine (int n)

Required Arguments

int n (Input) Index indicating which value is to be returned. It must be between 0 and 12.

Return Value

The requested value is returned. If n is out of range, then NaN is returned.

Description

The function imsl_i_machine returns information describing the computer's arithmetic. This can be used to make programs machine independent.

imsl_1_machine(0) = Number of bits per byte

Chapter 12: Utilities

machine (integer) • 603

Assume that integers are represented in M-digit, base-A form as

$$\sigma \sum_{k=0}^{M} x_k A^k$$

where σ is the sign and $0 \le x_k < A$ for k = 0, ..., M. Then,

n	Definition
0	<i>C</i> , bits per character
1	<i>A</i> , the base
2	M_s , the number of base-A digits in a <i>short int</i>
3	A^{M_s} – 1, the largest short int
4	M_l , the number of base-A digits in a <i>long int</i>
5	A^{M_1} – 1, the largest <i>long int</i>

Assume that floating-point numbers are represented in N-digit, base B form as

$$\sigma B^E \sum_{k=1}^N x_k B^{-k}$$

where σ is the sign and $0 \le x_k < B$ for k = 1, ..., N for and $E_{\min} \le E \le E_{\max}$. Then,

n	Definition
6	<i>B</i> , the base
7	N_{f} ; the number of base- <i>B</i> digits in <i>float</i>
8	E_{min_f} , the smallest <i>float</i> exponent
9	E_{max_f} , the largest <i>float</i> exponent
10	N_d , the number of base- <i>B</i> digits in <i>double</i>
11	E_{min_d} , the smallest double exponent
12	E_{max_d} , the largest double exponent

Example

This example prints all the values returned by imsl_i_machine on a machine with IEEE (Institute for Electrical and Electronics Engineer) arithmetic.

```
#include <imsl.h>
```

main()

{

int n, ans; for (n = 0; n <= 12; n++) { ans = imsl_i_machine(n);

```
printf("imsl_i_machine(%d) = %d\n", n, ans);
}
```

Output

```
imsl_i_machine(0) = 8
imsl_i_machine(1) = 2
imsl_i_machine(2) = 15
imsl_i_machine(3) = 32767
imsl_i_machine(4) = 31
imsl_i_machine(5) = 2147483647
imsl_i_machine(6) = 2
imsl_i_machine(7) = 24
imsl_i_machine(8) = -125
imsl_i_machine(9) = 128
imsl_i_machine(10) = 53
imsl_i_machine(11) = -1021
imsl_i_machine(12) = 1024
```

machine (float)

Returns information describing the computer's floating-point arithmetic.

Synopsis

```
#include <imsl.h>
```

```
float imsl_f_machine (int n)
```

The type *double* function is imsl_d_machine.

Required Arguments

```
int n (Input)
```

Index indicating which value is to be returned. The index must be between 1 and 8.

Return Value

The requested value is returned. If n is out of range, then NaN is returned.

Description

The function imsl_f_machine returns information describing the computer's floating-point arithmetic. This can be used to make programs machine independent. In addition, some of the functions are also important in setting missing values (see below).

Assume that *float* numbers are represented in N_f -digit, base B form as

$$\sigma B^E \sum_{k=1}^{N_f} x_k B^{-k}$$

where σ is the sign, $0 \le x_k < B$ for $k = 1, 2, ..., N_f$, and

Chapter 12: Utilities

$$E_{min_f} \leq E \leq E_{max_f}$$

Note that $B = \text{imsl_i_machine}(6)$, $N_f = \text{imsl_i_machine}(7)$,

 $E_{min_f} = imsl_i_machine(8)$

and

$$E_{max_{\epsilon}} = \text{imsl}_i \text{_machine}(9)$$

The ANSI/IEEE Std 754-1985 standard for binary arithmetic uses NaN (not a number) as the result of various otherwise illegal operations, such as computing 0/0. On computers that do not support NaN, a value larger than imsl_d_machine(2) is returned for imsl_f_machine(6). On computers that do not have a special representation for infinity, imsl_f_machine(2) returns the same value as imsl_f_machine(7).

The function imsl_f_machine is def	fined by the following table:
------------------------------------	-------------------------------

n	Definition
1	$B^{E_{min_f}-1}$, the smallest positive number
2	$B^{E_{max_f}}$ (1 – B^{-N_f}), the largest number
3	B^{-N_f} , the smallest relative spacing
4	B^{1-N_f} , the largest relative spacing
5	$\log_{10}(B)$
6	NaN (not a number)
7	positive machine infinity
8	negative machine infinity

The function $imsl_d_machine$ retrieves machine constants which define the computer's double arithmetic. Note that for *double* $B = imsl_i_machine(6)$, $N_d = imsl_i_machine(10)$,

$$E_{min_{\epsilon}} = \text{imsl}_i \text{machine}(11)$$

and

$$E_{max_{\epsilon}} = imsl_i machine(12)$$

Missing values in IMSL functions are always indicated by NaN (Not a Number). This is imsl_f_machine(6) in single precision and imsl_d_machine(6) in double. There is no missing-value indicator for integers. Users will almost always have to convert from their missing value indicators to NaN.

Example

```
This example prints all eight values returned by imsl_f_machine and by imsl_d_machine on a machine with IEEE arithmetic.
```

```
#include <imsl.h>
main()
{
    int
                n;
    float
                fans;
    double
                dans;
    for (n = 1; n <= 8; n++) {
        fans = imsl_f_machine(n);
        printf("imsl_f_machine(%d) = %g\n", n, fans);
    }
    for (n = 1; n \le 8; n++) {
        dans = imsl_d_machine(n);
        printf("imsl_d_machine(%d) = %g\n", n, dans);
    }
}
```

Output

```
imsl_f_machine(1) = 1.17549e-38
imsl_f_machine(2) = 3.40282e+38
imsl_f_machine(3) = 5.96046e-08
imsl_f_machine(4) = 1.19209e-07
imsl_f_machine(5) = 0.30103
imsl_f_machine(6) = NaN
imsl_f_machine(7) = Inf
imsl_f_machine(8) = -Inf
imsl_d_machine(1) = 2.22507e-308
imsl_d_machine(2) = 1.79769e+308
imsl_d_machine(3) = 1.11022e-16
imsl_d_machine(4) = 2.22045e-16
imsl_d_machine(5) = 0.30103
imsl_d_machine(6) = NaN
imsl_d_machine(7) = Inf
imsl_d_machine(8) = -Inf
```

sort

Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.

Synopsis

```
#include <imsl.h>
float *imsl_f_sort (int n, float *x, ..., 0)
The type double function is imsl_d_sort.
```

Required Arguments

```
int n (Input)
The length of the input vector.
```

```
float *x (Input)
Input vector to be sorted.
```

Return Value

A vector of length n containing the values of the input vector x sorted into ascending order. If an error occurs, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

Optional Arguments

IMSL_ABSOLUTE Sort x by absolute value.

IMSL_PERMUTATION, *int* **perm (Output) Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, *int* perm_user[] (Output) Return the sort permutation in user-supplied space.

IMSL_RETURN_USER, *float* $_{Y}[$] (Output) Return the sorted data in user-supplied space.

Description

By default, $imsl_f_sort$ sorts the elements of x into ascending order by algebraic value. The vector is divided into two parts by choosing a central element T of the vector. The first and last elements of x are compared with T and exchanged until the three values appear in the vector in ascending order. The elements of the vector are rearranged until all elements greater than or equal to the central element appear in the second part of the vector and all those less than or equal to the central element appear in the first part. The upper and lower subscripts of one of the segments are saved, and the process continues iteratively on the other segment. When one segment is finally sorted, the process begins again by retrieving the subscripts of another unsorted portion of the vector. On completion, $x_j \le x_i$ for j < i. If the option IMSL_ABSOLUTE is selected, the elements of x are sorted into ascending order by absolute value. If we denote the return vector by y, on completion, $|y_j| \le |y_i|$ for j < i.

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the array x is returned. That is, after the initialization of $perm_i = i$, the elements of perm are moved in the same manner as are the elements of x.

Examples

Example 1

In this example, an input vector is sorted algebraically.

Output

 Sorted vector

 1
 2
 3
 4

 -2
 1
 3
 4

Example 2

This example sorts an input vector by absolute value and prints the result stored in userallocated space.

Output

 Sorted vector

 1
 2
 3
 4

 1
 -2
 3
 4

sort (integer)

Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned.

Synopsis

#include <imsl.h>

int *imsl_i_sort (int n, int *x, ..., 0)

Required Arguments

- *int* n (Input) The length of the input vector.
- *int* *x (Input) Input vector to be sorted.

Return Value

A vector of length n containing the values of the input vector x sorted into ascending order. If an error occurs, then NULL is returned.

Synopsis with Optional Arguments

```
#include <imsl.h>
int *imsl_i_sort (int, n int *x,
    IMSL_ABSOLUTE,
    IMSL_PERMUTATION, int **perm,
    IMSL_PERMUTATION_USER, int perm_user[],
    IMSL_RETURN_USER, int y[],
    0)
```

Optional Arguments

```
IMSL_ABSOLUTE
    Sort x by absolute value.
IMSL_PERMUTAION, int **perm (Output)
    Return a pointer to the sort permutation.
IMSL_PERMUTATION_USER, int perm_user[] (Output)
    Return the sort permutation in user-supplied space.
```

IMSL_RETURN_USER, *int* y[] (Output)

Return the sorted data in user-supplied space.

Description

By default, $imsl_i_sort$ sorts the elements of x into ascending order by algebraic value. The vector is divided into two parts by choosing a central element T of the vector. The first and last elements of x are compared with T and exchanged until the three values appear in the vector in ascending order. The elements of the vector are rearranged until all elements greater than or equal to the central element appear in the second part of the vector and all those less than or equal to the central element appear in the first part. The upper and lower subscripts of one of the segments are saved, and the process continues iteratively on the other segment. When one segment is finally sorted, the process begins again by retrieving the subscripts of another unsorted portion of the vector. On completion, $x_j \le x_i$ for j < i. If the option IMSL_ABSOLUTE is selected, the elements of x are sorted into ascending order by absolute value. If we denote the return vector by y, on completion, $|y_i| \le |y_i|$ for j < i.

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the array x is returned. That is, after the initialization of $perm_i = i$, the elements of perm are moved in the same manner as are the elements of x.

Examples

Example 1

In this example, an input vector is sorted algebraically.

```
#include <stdio.h>
#include <imsl.h>
main()
{
    int x[] = {1, 3, -2, 4};
    int           *sorted_result;
    int           n;
        n = 4;
        sorted_result = imsl_i_sort (n, x, 0);
        imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}
```

Output

Sorted vector 1 2 3 4 -2 1 3 4

Example 2

This example sorts an input vector by absolute value and prints the result stored in userallocated space.

```
#include <stdio.h>
#include <imsl.h>
main()
{
    int x[] = \{1, 3, -2, 4\};
        sorted_result[4];
    int
    int
             n;
    n = 4;
    imsl_i_sort (n, x,
              IMSL_ABSOLUTE,
              IMSL_RETURN_USER, sorted_result,
              0);
    imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}
            Output
```

```
Sorted vector
1 2 3 4
1 -2 3 4
```

vector_norm

Computes various norms of a vector or the difference of two vectors.

Synopsis

#include <imsl.h>

float imsl_f_vector_norm (int n, float *x, ..., 0)

The type *double* function is imsl_d_vector_norm.

Required Arguments

int n (Input)

The length of the input vector(s).

float *x (Input)

Input vector for which the norm is to be computed

Return Value

The requested norm of the input vector. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

612 • vector_norm

Description

By default, imsl_f_vector_norm computes the Euclidean norm

$$\left(\sum_{i=0}^{n-1} x_i^2\right)^{\frac{1}{2}}$$

If the option IMSL_ONE_NORM is selected, the 1-norm

$$\sum_{i=0}^{n-1} |x_i|$$

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

 $\max |x_i|$

is returned. In the case of the infinity norm, the program also returns the index of the element with maximum modulus. If IMSL_SECOND_VECTOR is selected, then the norm of x - y is computed.

Examples

Example 1

In this example, the Euclidean norm of an input vector is computed.

Output

Euclidean norm of x = 5.477226

Chapter 12: Utilities

Example 2

This example computes max $|x_i - y_i|$ and prints the norm and index.

```
#include <stdio.h>
#include <imsl.h>
main()
{
    float x[] = \{1.0, 3.0, -2.0, 4.0\};
    float y[] = \{4.0, 2.0, -1.0, -5.0\};
    float norm;
    int
          index;
    int
          n;
    n = sizeof(x)/sizeof(*x);
    norm = imsl_f_vector_norm (n, x,
                IMSL_SECOND_VECTOR, y,
                IMSL_INF_NORM, &index, 0);
    printf("Infinity norm of x-y = %f ", norm);
    printf("at location %d\n", index);
}
```

Output

Infinity norm of x-y = 9.000000 at location 3

mat_mul_rect

Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product.

Synopsis

#include <imsl.h>

float *imsl_f_mat_mul_rect (char *string, ..., 0)

The type *double* procedure is imsl_d_mat_mul_rect.

Required Arguments

char *string (Input) String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. This is always a pointer to a *float*, even if the result is a single number. To release this space, use free. If no answer was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_mat_mul_rect (char *string, IMSL_A_MATRIX, int nrowa, int ncola, float a[], IMSL_A_COL_DIM, int a_col_dim, IMSL_B_MATRIX, int nrowb, int ncolb, float b[], IMSL_B_COL_DIM, int b_col_dim, IMSL_X_VECTOR, int nx, float *x, IMSL_Y_VECTOR, int ny, float *y, IMSL_RETURN_USER, float ans[], IMSL_RETURN_COL_DIM, int return_col_dim, 0)

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, float a[] (Input) The nrowa \times ncola matrix *A*. IMSL_A_COL_DIM, *int* a_col_dim (Input) The column dimension of A. Default: a_col_dim = ncola IMSL_B_MATRIX, int nrowb, int ncolb, float b[] (Input) The nrowb \times ncolb matrix A. IMSL_B_COL_DIM, int b_col_dim (Input) The column dimension of *B*. Default: b_col_dim = ncolb IMSL_X_VECTOR, int nx, float *x (Input) The vector *x* of size nx. IMSL_Y_VECTOR, int ny, float *y (Input) The vector *y* of size ny. IMSL_RETURN_USER, float ans[] (Output) A user-allocated array containing the result. IMSL_RETURN_COL_DIM, int return_col_dim (Input) The column dimension of the answer. Default: return_col_dim = the number of columns in the answer

Description

This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple product according to the specification given by string. For example, if "A * x" is given, Ax is computed. In string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with trans, indicating transpose. The vectors x and y are treated as $n \times 1$ matrices.

If string contains only one item, such as "x" or "trans(A)", then a copy of the array, or its transpose, is returned. If string contains one multiplication, such as "A*x" or "B*A", then the indicated product is returned. Some other legal values for string are "trans(y)*A", "A*trans(B)", "x*trans(y)", or "trans(x)*y".

The matrices and/or vectors referred to in string must be given as optional arguments. If string is "B*x", then IMSL_B_MATRIX and IMSL_X_VECTOR must be given.

Example

Let

$$A = \begin{bmatrix} 1 & 2 & 9 \\ 5 & 4 & 7 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 7 & 4 \\ 9 & 1 \end{bmatrix} \quad x = \begin{bmatrix} 7 \\ 2 \\ 1 \end{bmatrix} \quad y = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$$

The arrays A^{T} , Ax, $x^{T}A^{T}$, AB, $B^{T}A^{T}$, $x^{T}y$, xy^{T} , and $x^{T}Ay$ are computed and printed.

#include <imsl.h>

```
main()
{
    float
                 A[] = \{1, 2, 9,
                         5, 4, 7};
                 B[] = \{3, 2,
    float
                         7, 4,
                         9, 1};
                  \begin{array}{l} x[] = \{7, 2, 1\}; \\ y[] = \{3, 4, 2\}; \end{array} 
    float
    float
                  *ans;
    float
    ans = imsl_f_mat_mul_rect("trans(A)",
                                 IMSL_A_MATRIX, 2, 3, A,
                                 (0);
    imsl_f_write_matrix("trans(A)", 3, 2, ans, 0);
    ans = imsl_f_mat_mul_rect("A*x",
                                 IMSL_A_MATRIX, 2, 3, A,
                                 IMSL_X_VECTOR, 3, x,
                                 0);
    imsl_f_write_matrix("A*x", 1, 2, ans, 0);
    ans = imsl_f_mat_mul_rect("trans(x)*trans(A)",
                                 IMSL_A_MATRIX, 2, 3, A,
                                 IMSL_X_VECTOR, 3, x,
                                 0);
    imsl_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);
    ans = imsl_f_mat_mul_rect("A*B",
                                 IMSL_A_MATRIX, 2, 3, A,
                                 IMSL_B_MATRIX, 3, 2, B,
                                 0);
    imsl_f_write_matrix("A*B", 2, 2, ans, 0);
    ans = imsl_f_mat_mul_rect("trans(B)*trans(A)",
                                 IMSL_A_MATRIX, 2, 3, A,
```

616 • mat_mul_rect

```
IMSL_B_MATRIX, 3, 2, B,
                       0);
imsl_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);
ans = imsl_f_mat_mul_rect("trans(x)*y",
                       IMSL_X_VECTOR, 3, x,
                       IMSL_Y_VECTOR, 3, y,
                       0);
imsl_f_write_matrix("trans(x)*y", 1, 1, ans, 0);
ans = imsl_f_mat_mul_rect("x*trans(y)",
                       IMSL_X_VECTOR, 3, x,
                       IMSL_Y_VECTOR, 3, y,
                       0);
imsl_f_write_matrix("x*trans(y)", 3, 3, ans, 0);
IMSL_X_VECTOR, 2, x,
                       IMSL_Y_VECTOR, 3, y,
                       0);
imsl_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
```

3 14

Output

}

1 2 3	trans(A) 1 2 9	2 5 4 7	
	A*x 1	2	
	20	50	
	trans(x)*trans		
	1 20	2 50	
1 2	A*B 1 98 106	2 19 33	
	trans(B)*trans		
1 2	1 98 19	2 106 33	
tr	ans(x)*y 31		
		ans(y)	
1	1 21	2 28	

```
2
               6
                              8
                                             4
3
               3
                              4
trans(x) * A*y
          293
```

mat_mul_rect (complex)

Computes the transpose of a matrix, the conjugate-transpose of a matrix, a matrixvector product, a matrix-matrix product, the bilinear form, or any triple product.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_mul_rect (char *string, ..., 0)

2

The type *d_complex* function is imsl_z_mat_mul_rect.

Required Arguments

char *string (Input) String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. This is always a pointer to a *f_complex*, even if the result is a single number. To release this space, use free. If no answer was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h> f_complex *imsl_c_mat_mul_rect (char *string, IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a, IMSL_A_COL_DIM, *int* a_col_dim, IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b, IMSL_B_COL_DIM, *int* b_col_dim, IMSL_X_VECTOR, int nx, f_complex *x, IMSL_Y_VECTOR, int ny, f complex *y, IMSL_RETURN_USER, f_complex ans[], IMSL_RETURN_COL_DIM, int return_col_dim, 0)

Optional Arguments

IMSL_A_MATRIX, *int* nrowa, *int* ncola, *f_complex* *a (Input) The nrowa \times ncola matrix *A*.

IMSL_A_COL_DIM, <i>int</i> a_col_dim (Input) The column dimension of A. Default: a_col_dim = ncola
IMSL_B_MATRIX, <i>int</i> nrowb, <i>int</i> ncolb, <i>f_complex</i> *b (Input) The nrowb × ncolb matrix B.
IMSL_B_COL_DIM, <i>int</i> b_col_dim (Input) The column dimension of <i>B</i> . Default: b_col_dim = ncolb
IMSL_X_VECTOR, int nx, $f_complex *x$ (Input) The vector x of size nx.
IMSL_Y_VECTOR, int ny, $f_complex *_y$ (Input) The vector y of size ny.
IMSL_RETURN_USER, <i>f_complex</i> ans[] (Output) A user-allocated array containing the result.
<pre>IMSL_RETURN_COL_DIM, int return_col_dim (Input) The column dimension of the answer. Default: return_col_dim = the number of columns in the answer</pre>

Description

This function computes a matrix-vector product, a matrix-matrix product, a bilinear form of a matrix, or a triple product according to the specification given by string. For example, if "A*x" is given, Ax is computed. In string, the matrices A and B and the vectors x and y can be used. Any of these four names can be used with trans, indicating transpose, or with ctrans, indicating conjugate (or Hermitian) transpose. The vectors x and y are treated as $n \times 1$ matrices.

If string contains only one item, such as "x" or "trans(A)", then a copy of the array, or its transpose, is returned. If string contains one multiplication, such as "A*x" or "B*A", then the indicated product is returned. Some other legal values for string are "trans(y)*A", "A*ctrans(B)", "x*trans(y)", or "ctrans(x)*y".

The matrices and/or vectors referred to in string must be given as optional arguments. If string is "B*x", then IMSL_B_MATRIX and IMSL_X_VECTOR must be given.

Example

Let

$$A = \begin{bmatrix} 1+4i & 2+3i & 9+6i \\ 5+2i & 4-3i & 7+i \end{bmatrix} \quad B = \begin{bmatrix} 3-6i & 2+4i \\ 7+3i & 4-5i \\ 9+2i & 1+3i \end{bmatrix}$$
$$x = \begin{bmatrix} 7+4i \\ 2+2i \\ 1-5i \end{bmatrix} \quad y = \begin{bmatrix} 3+4i \\ 4-2i \\ 2+3i \end{bmatrix}$$

```
#include <imsl.h>
```

```
main()
{
                  A[] = \{\{1,4\}, \{2,3\}, \{9,6\}, \\ \{5,2\}, \{4,-3\}, \{7,1\}\};
    f_complex
                  B[] = \left\{ \left\{ 3, -6 \right\}, \left\{ 2, 4 \right\}, \\ \left\{ 7, 3 \right\}, \left\{ 4, -5 \right\}, \\ \left\{ 9, 2 \right\}, \left\{ 1, 3 \right\} \right\}; \right\}
    f_complex
                  f_complex
    f_complex
    f_complex
                  *ans;
    ans = imsl_c_mat_mul_rect("ctrans(A)",
                                   IMSL_A_MATRIX, 2, 3, A,
                                   0);
    imsl_c_write_matrix("ctrans(A)", 3, 2, ans, 0);
    ans = imsl_c_mat_mul_rect("A*x",
                                   IMSL_A_MATRIX, 2, 3, A,
                                   IMSL_X_VECTOR, 3, x,
                                   0);
    imsl_c_write_matrix("A*x", 1, 2, ans, 0);
    ans = imsl_c_mat_mul_rect("trans(x)*trans(A)",
                                   IMSL_A_MATRIX, 2, 3, A,
                                   IMSL_X_VECTOR, 3, x,
                                   0);
    imsl_c_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);
    ans = imsl_c_mat_mul_rect("A*B",
                                   IMSL_A_MATRIX, 2, 3, A,
                                   IMSL_B_MATRIX, 3, 2, B,
                                   0);
    imsl_c_write_matrix("A*B", 2, 2, ans, 0);
    ans = imsl_c_mat_mul_rect("ctrans(B)*trans(A)",
                                   IMSL_A_MATRIX, 2, 3, A,
                                   IMSL_B_MATRIX, 3, 2, B,
                                   0);
    imsl_c_write_matrix("ctrans(B)*trans(A)", 2, 2, ans, 0);
    ans = imsl_c_mat_mul_rect("trans(x)*y",
                                   IMSL_X_VECTOR, 3, x,
                                   IMSL_Y_VECTOR, 3, y,
                                   0);
    imsl_c_write_matrix("trans(x)*y", 1, 1, ans, 0);
    ans = imsl_c_mat_mul_rect("x*ctrans(y)",
                                   IMSL_X_VECTOR, 3, x,
                                   IMSL_Y_VECTOR, 3, y,
                                   0);
    imsl_c_write_matrix("x*ctrans(y)", 3, 3, ans, 0);
}
```

620 • mat_mul_rect (complex)

	Output					
1 (2 (3 (1, 2, 9,	ctrans(A) 1 -4) (-3) (-6) (5, 4, 7,	2 -2) 3) -1)		
(28,	A*x 1 3) (53,	2 2)		
(tr 28,	ans(x)*trans(# 1 3) (A) 53,	2 2)		
1 (2 (101, 125,	A*B 1 105) (-10) (0, 7,	2 47) 14)		
1 (ct 95,	rans(B)*trans(1 69) ((A) 87,	2-2)		
1 (2 (38, trans(x)*y	5) (59,	-28)		
(34,	37)	x*ctrans(y	2		3
1 (2 (3 (37, 14, -17,	-16) (-2) (-19) (20, 4, 14,	30) (12) (-18) (26, 10, -13,	-13) -2) -13)

mat_mul_rect_band

Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in band form.

Synopsis

```
#include <imsl.h>
```

float *imsl_f_mat_mul_rect_band (char *string, ..., 0)

The equivalent *double* function is imsl_d_mat_mul_rect_band.

Required Arguments

char *string (Input) String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication is returned. To release this space, use free.

Chapter 12: Utilities

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_A_MATRIX, *int* nrowa, *int* ncola, *int* nlca, *int* nuca, *float* *a (Input) The sparse matrix

 $A \in \Re^{nrowa \times ncola}$

IMSL_B_MATRIX, *int* nrowb, *int* ncolb, *int* nlcb, *int* nucb, *float* *b (Input) The sparse matrix

 $B \in \Re^{\operatorname{nrowb} \times \operatorname{xnolb}}$

- IMSL_X_VECTOR, *int* nx, *float* *x, (Input) The vector x of length nx.
- IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result, (Output)

If the function imsl_f_mat_mul_rect_band returns data for a band matrix, use this option to retrieve the number of lower and upper codiagonals of the return matrix.

Description

The function $imsl_f_mat_mul_rect_band$ computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in band format. The operation performed is specified by string. For example, if "A*x" is given, Ax is computed. In string, the matrices A and B and the vector x can be used. Any of these names can be used with trans, indicating transpose. The vector x is treated as a dense $n \times 1$ matrix. If string contains only one item, such as "x" or "trans(A)", then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional arguments. Therefore, if string is "A*x", then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

Examples

Example 1

Consider the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -3 & 1 & -2 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

After storing *A* in band format, multiply *A* by $x = (1, 2, 3, 4)^{T}$ and print the result.

```
#include <imsl.h>
main()
{
         float a[] = \{0.0, -1.0, -2.0, 2.0,
                 2.0, 1.0, -1.0, 1.0,
-3.0, 0.0, 2.0, 0.0};
         float x[] = \{1.0, 2.0, 3.0, 4.0\};
         int n = 4;
         int nuca = 1;
         int nlca = 1;
         float *b;
                          /* Set b = A*x */
         b = imsl_f_mat_mul_rect_band ("A*x",
                 IMSL_A_MATRIX, n, n, nlca, nuca, a,
                 IMSL_X_VECTOR, n, x,
                 0);
         imsl_f_write_matrix ("Product, Ax", 1, n, b, 0);
}
             Output
```

	Product,	Ax	
1	2	3	4
0	-7	5	10

Example 2

This example uses the power method to determine the dominant eigenvector of E(100, 10). The same computation is performed by using imsl_f_eig_sym. The iteration stops when the component-wise absolute difference between the dominant eigenvector found by imsl_f_eig_sym and the eigenvector at the current iteration is less than the square root of machine unit roundoff.

```
#include <imsl.h>
#include <math.h>
void main()
{
                             i;
        int
        int
                             j;
        int
                             k;
        int
                            n;
        int
                            c;
        int
                            nz;
        int
                            index;
        int
                             start;
        int
                            stop;
        float
                            *a;
        float
                            *z;
                            *q;
        float
        float
                            *dense_a;
        float
                            *dense_evec;
        float
                            *dense_eval;
        float
                            norm;
        float
                            *evec;
        float
                             error;
        float
                             tolerance;
        n = 100;
        c = 10;
        tolerance = sqrt(imsl_f_machine(4));
        error = 1.0;
        evec = (float*) malloc (n*sizeof(*evec));
        z = (float*) malloc (n*sizeof(*z));
        q = (float*) malloc (n*sizeof(*q));
        dense_a = (float*) calloc (n*n, sizeof(*dense_a));
        a = imsl_f_generate_test_band (n, c, 0);
                         /* Convert to dense format,
                            starting with upper triangle */
        start = c;
        for (i=0; i<c; i++, start--)</pre>
                for (k=0, j=start; j<n; j++, k++)</pre>
                         dense_a[k*n + j] = a[i*n + j];
                         /* Convert diagonal */
        for (j=0; j<n; j++)
                        dense_a[j*n + j] = a[c*n + j];
                         /* Convert lower triangle */
        stop = n-1;
        for (i=c+1; i<2*c+1; i++, stop--)</pre>
                for (k=i-c, j=0; j<stop; j++, k++)
                         dense_a[k*n + j] = a[i*n + j];
                         /* Determine dominant eigenvector by a dense method
*/
        dense_eval = imsl_f_eig_sym (n, dense_a,
```

624 • mat_mul_rect_band

```
IMSL_VECTORS, &dense_evec,
        0);
for (i=0; i<n; i++) evec[i] = dense_evec[n*i];</pre>
                 /* Normalize */
norm = imsl_f_vector_norm (n, evec, 0);
for (i=0; i<n; i++) evec[i] /= norm;</pre>
for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);</pre>
                 /* Do power method */
while (error > tolerance) {
        imsl_f_mat_mul_rect_band ("A*x",
                IMSL_A_MATRIX, n, n, c, c, a,
                 IMSL_X_VECTOR, n, q,
                 IMSL_RETURN_USER_VECTOR, z,
                 0);
                 /* Normalize */
        norm = imsl_f_vector_norm (n, z, 0);
        for (i=0; i<n; i++) q[i] = z[i]/norm;</pre>
                 /* Compute maximum absolute error between any
                    two elements */
        error = imsl_f_vector_norm (n, q,
                IMSL_SECOND_VECTOR, evec,
                IMSL_INF_NORM, &index,
                 0);
printf ("Maximum absolute error = %e\n", error);
```

Output

}

Maximum absolute error = 3.367960e-04

mat_mul_rect_band (complex)

Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices of complex type and stored in band form.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_mul_rect_band (char *string, ..., 0)

The equivalent *d_complex* function is imsl_z_mat_mul_rect_band.

Required Arguments

char *string (Input) String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

```
void *imsl_c_mat_mul_rect_band (char *string,
    IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca,
        f_complex *a,
    IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb,
        f_complex *b,
    IMSL_X_VECTOR, int nx, f_complex *x,
    IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result,
        int *nuc_result,
    IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
    0)
```

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, f_complex *a
 (Input)
 The sparse matrix

$A \in \Re^{nrowa \times ncola}$

IMSL_B_MATRIX, *int* nrowb, *int* ncolb, *int* nlcb, *int* nucb, *f_complex* *b (Input) The sparse matrix

$B \in \Re^{\text{nrowb} \times \text{xnolb}}$

IMSL_X_VECTOR, *int* nx, $f_complex *x$, (Input) The vector x of length nx.

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result, (Output)

If the function imsl_c_mat_mul_rect_band returns data for a band matrix, use this option to retrieve the number of lower and upper codiagonals of the return matrix.

Description

The function $imsl_c_mat_mul_rect_band$ computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in band format. The operation performed is specified by string. For example, if "A*x" is given, Ax is computed. In string, the matrices A and B and the vector x can be used. Any of these names can be used with trans, indicating transpose. The vector x is treated as a dense $n \times 1$ matrix. If string contains only one item, such as "x" or "trans(A)", then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional arguments. Therefore, if string is "A*x", then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

Examples

Example 1

Let

$$A = \begin{bmatrix} -2 & 4 & 0 & 0\\ 6+i & -0.5+3i & -2+2i & 0\\ 0 & 1+i & 3-3i & -4-i\\ 0 & 0 & 2i & 1-i \end{bmatrix}$$

and

$$x = \begin{bmatrix} 3\\ -1+i\\ 3\\ -1+i \end{bmatrix}$$

This example computes the product *Ax*.

```
#include <imsl.h>
main()
{
            int
                                n = 4;
                                nlca = 1;
            int
            int
                               nuca = 1;
            f_complex
                               *b;
                                     /* Note that a is in band storage mode */
            f_complex
                                a[] =
                          \{\{0.0, 0.0\}, \{4.0, 0.0\}, \{-2.0, 2.0\}, \{-4.0, -1.0\}, \{-2.0, -3.0\}, \{-0.5, 3.0\}, \{3.0, -3.0\}, \{1.0, -1.0\}, \{6.0, 1.0\}, \{1.0, 1.0\}, \{0.0, 2.0\}, \{0.0, 0.0\}\}; 
            f_complex
                              x[] =
                         \{\{3.0, 0.0\}, \{-1.0, 1.0\}, \{3.0, 0.0\}, \{-1.0, 1.0\}\};
```

Chapter 12: Utilities

```
}
```

Output

Product, Ax 1 2 3 (-10.0, -5.0) (9.5, 5.5) (12.0, -12.0) 4 (0.0, 8.0)

Example 2

Using the same matrix A and vector x given in the last example, the products Ax, A^Tx , A^Hx and AA^H are computed.

#include <imsl.h>

```
main()
{
          int
                           n = 4;
          int
                           nlca = 1;
          int
                           nuca = 1;
                           *b;
          f_complex
          f_complex
                           *z;
          int
                            i;
          int
                            nlca_z;
          int
                            nuca_z;
                                /* Note that a is in band storage mode */
          f_complex
                           a[] =
                      \{\{0.0, 0.0\}, \{4.0, 0.0\}, \{-2.0, 2.0\}, \{-4.0, -1.0\}, \{-2.0, -3.0\}, \{-0.5, 3.0\}, \{3.0, -3.0\}, \{1.0, -1.0\}, \{6.0, 1.0\}, \{1.0, 1.0\}, \{0.0, 2.0\}, \{0.0, 0.0\}\}; 
          f_complex
                           x[] =
                     \{\{3.0, 0.0\}, \{-1.0, 1.0\}, \{3.0, 0.0\}, \{-1.0, 1.0\}\};
                                /* Set b = A*x */
          b = imsl_c_mat_mul_rect_band ("A*x",
                     IMSL_A_MATRIX, n, n, nlca, nuca, a,
                     IMSL_X_VECTOR, n, x,
                     0);
          imsl_c_write_matrix ("Ax", 1, n, b, 0);
          free(b);
```

/* Set b = trans(A)*x */ b = imsl_c_mat_mul_rect_band ("trans(A)*x", IMSL_A_MATRIX, n, n, nlca, nuca, a, IMSL_X_VECTOR, n, x, 0); imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b, 0); free(b); /* Set b = ctrans(A)*x */ b = imsl_c_mat_mul_rect_band ("ctrans(A)*x", IMSL_A_MATRIX, n, n, nlca, nuca, a, IMSL_X_VECTOR, n, x, 0); imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b, 0); free(b); /* Set z = A*ctrans(A) */z = imsl_c_mat_mul_rect_band ("A*ctrans(A)", IMSL_A_MATRIX, n, n, nlca, nuca, a, IMSL_X_VECTOR, n, x, IMSL_RETURN_MATRIX_CODIAGONALS, &nlca_z, &nuca_z, 0); imsl_c_write_matrix("A*ctrans(A)", nlca_z+nuca_z+1, n, z, 0); Output Ax 3 1 2 (-10.0, -5.0) (9.5, 5.5) (12.0, -12.0) 4 (0.0, 8.0) trans(A)x 1 2 3 -0.5) (7.0, (-13.0, -4.0) (12.5, -15.0) 4 -12.0, -1.0) (ctrans(A)x 1 2 3 (-11.0, 16.0) (18.5, -0.5) (15.0, 11.0) 4 3.0) (-14.0, A*ctrans(A) 1 2 3

}

1 (2 (3 (4 (5 (0.00, 0.00, 29.00, -17.00, 4.00,	0.00) (0.00) (0.00) (28.00) (4.00) (0.00, -17.00, 54.25, -9.50, 4.00,	0.00) -28.00) 0.00) -3.50) -4.00)	(((4.00, -9.50, 37.00, -9.00, 0.00,	-4.00) 3.50) 0.00) 11.00) 0.00)
1 (2 (3 (4 (5 (4.00, -9.00, 6.00, 0.00, 0.00,	$\begin{array}{c} 4\\ 4.00)\\ -11.00)\\ 0.00)\\ 0.00)\\ 0.00)\\ 0.00)\end{array}$					

mat_mul_rect_coordinate

Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product for all matrices stored in sparse coordinate form.

Synopsis

#include <imsl.h>

void *imsl_f_mat_mul_rect_coordinate (char *string, ..., 0)

The equivalent *double* function is imsl_d_mat_mul_rect_coordinate.

Required Arguments

char *string (Input) String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. If the result is a vector, the return type is pointer to *float*. If the result of the multiplication is a sparse matrix, the return type is pointer to *Imsl_f_sparse_elem*. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

```
void *imsl_f_mat_mul_rect_coordinate (char *string,
    IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_f_sparse_elem
    *a,
    IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_f_sparse_elem
    *b,
    IMSL_X_VECTOR, int nx, float *x,
    IMSL_RETURN_MATRIX_SIZE, int *size,
    IMSL_RETURN_USER_VECTOR, float vector_user[],
    0)
```

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_f_sparse_elem *a
 (Input)
 The sparse matrix

 $A \in \Re^{nrowa \times ncola}$

with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_f_sparse_elem *b
 (Input)
 The sparse matrix

ie sparse matrix

 $B \in \Re^{\text{nrowb} \times \text{xnolb}}$

with nzb nonzero elements.

IMSL_X_VECTOR, *int* nx, *float* *x, (Input) The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)

If the function imsl_f_mat_mul_rect_coordinate returns a vector of type *Imsl_f_sparse_elem*, use this option to retrieve the length of the return vector, i.e. the number of nonzero elements in the sparse matrix generated by the requested computations.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)

If the result of the computation in a vector, return the answer in the user supplied sparse vector_user. It's size depends on the computation.

Description

The function $imsl_f_mat_mul_rect_coordinate$ computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in coordinate representation. The operation performed is specified by string. For example, if "A*x" is given, Ax is computed. In string, the matrices A and B and the vector x can be used. Any of these names can be used with trans, indicating transpose. The vector x is treated as a dense $n \times 1$ matrix.

If string contains only one item, such as "x" or "trans(A)", then a copy of the array, or its transpose is returned. Some multiplications, such as "A*trans(A)" or "trans(x)*B", will produce a sparse matrix in coordinate format as a result. Other products such as "B*x" will produce a pointer to a floating type, containing the resulting vector.

The matrices and/or vector referred to in string must be given as optional arguments. Therefore, if string is "A*x", then IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

Examples

Example 1

{

}

In this example, a sparse matrix in coordinate form is multipled by a vector.

```
#include <imsl.h>
main()
        Imsl_f_sparse_elem a[] = {0, 0, 10.0,
                                   1, 1, 10.0,
                                   1, 2, -3.0,
                                  1, 3, -1.0,
                                   2, 2, 15.0,
                                  3, 0, -2.0,
3, 3, 10.0,
                                   3, 4, -1.0,
                                   4, 0, -1.0,
                                   4, 3, -5.0,
                                   4, 4, 1.0,
                                   4, 5, -3.0,
5, 0, -1.0,
                                   5, 1, -2.0,
                                   5, 5, 6.0};
                       b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
        float
        int
                       n = 6;
                       nz = 15;
        int
        float
                       *x;
                          /* Set x = A*b */
        x = imsl_f_mat_mul_rect_coordinate ("A*x",
                 IMSL_A_MATRIX, n, n, nz, a,
                 IMSL_X_VECTOR, n, b,
                 0);
        imsl_f_write_matrix ("Product Ab", 1, n, x, 0);
```

Output

Product Ab								
1	2	3	4	5	6			
100	-98	675	344	-302	162			

Example 2

This example uses the power method to determine the dominant eigenvector of E(100, 10). The same computation is performed by using imsl_f_eig_sym. The iteration stops when the component-wise absolute difference between the dominant eigenvector found by imsl_f_eig_sym and the eigenvector at the current iteration is less than the square root of machine unit roundoff.

632 • mat mul rect coordinate

```
#include <imsl.h>
#include <math.h>
void main()
        int
                             i;
        int
                             n;
        int
                             c;
        int
                             nz;
        int
                             index;
        Imsl_f_sparse_elem *a;
        float
                            *z;
        float
                            *q;
        float
                            *dense_a;
        float
                            *dense_evec;
        float
                            *dense_eval;
        float
                            norm;
        float
                            *evec;
        float
                             error;
        float
                             tolerance;
        n = 100;
        c = 10;
        tolerance = sqrt(imsl_f_machine(4));
        error = 1.0;
        evec = (float*) malloc (n*sizeof(*evec));
        z = (float*) malloc (n*sizeof(*z));
        q = (float*) malloc (n*sizeof(*q));
        dense_a = (float*) calloc (n*n, sizeof(*dense_a));
        a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
                 /* Convert to dense format */
        for (i=0; i<nz; i++)</pre>
                dense_a[a[i].col + n*a[i].row] = a[i].val;
                 /* Determine dominant eigenvector by a dense method */
        dense_eval = imsl_f_eig_sym (n, dense_a,
                IMSL_VECTORS, &dense_evec,
                0);
        for (i=0; i<n; i++) evec[i] = dense_evec[n*i];</pre>
                 /* Normalize */
        norm = imsl_f_vector_norm (n, evec, 0);
        for (i=0; i<n; i++) evec[i] /= norm;</pre>
        for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);</pre>
                /* Do power method */
        while (error > tolerance) {
                imsl_f_mat_mul_rect_coordinate ("A*x",
                         IMSL_A_MATRIX, n, n, nz, a,
                         IMSL_X_VECTOR, n, q,
                         IMSL_RETURN_USER_VECTOR, z,
                         0);
```

{

```
Maximum absolute error = 3.368035e-04
```

mat_mul_rect_coordinate (complex)

Computes the transpose of a matrix, a matrix-vector produce, or a matrix-matrix product for all matrices stored in sparse coordinate form.

Synopsis

#include <imsl.h>
void *imsl_c_mat_mul_rect_coordinate (char *string, ..., 0)
The equivalent double function is imsl_d_mat_mul_rect_coordinate.

Required Arguments

char *string (Input) String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. If the result is a vector, the return type is pointer to $f_complex$. If the result of the multiplication is a sparse matrix, the return type is pointer to $Imsl_c_sparse_elem$.

Synopsis with Optional Arguments

```
#include <imsl.h>
```

```
IMSL_RETURN_MATRIX_SIZE, int *size,
IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
0)
```

Optional Arguments

The sparse matrix

 $A \in C^{nrowa \times ncola}$

with nza nonzero elements.

The sparse matrix

 $B \in C^{\operatorname{nrowb} \times \operatorname{xnolb}}$

with nzb nonzero elements.

- IMSL_X_VECTOR, int nx, f_complex *x, (Input)
 The vector x of length nx.
- IMSL_RETURN_MATRIX_SIZE, int *size, (Output)

If the function imsl_c_mat_mul_rect_coordinate returns a vector of type *Imsl_c_sparse_elem*, use this option to retrieve the length of the return vector, i.e. the number of nonzero elements in the sparse matrix generated by the requested computations.

Description

The function $imsl_c_mat_mul_rect_coordinate$ computes a matrix-matrix product or a matrix-vector product, where the matrices are specified in coordinate representation. The operation performed is specified by string. For example, if "A*x" is given, Ax is computed. In string, the matrices A and B and the vector x can be used. Any of these names can be used with trans or ctrans, indicating transpose and conjugate transpose, respectively. The vector x is treated as a dense $n \times 1$ matrix.

If string contains only one item, such as "x" or "trans(A)", then a copy of the array, or its transpose is returned. Some multiplications, such as "A*ctrans(A)" or "trans(x)*B", will produce a sparse matrix in coordinate format as a result. Other products such as "B*x" will produce a pointer to a complex type, containing the resulting vector.

The matrix and/or vector referred to in string must be given as optional arguments. Therefore, if string is "A*x", IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

To release this space, use free.

Examples

Example 1

Let

$$A = \begin{bmatrix} 10+7i & 0 & 0 & 0 & 0 & 0 \\ 0 & 3+2i & -3 & -1+2i & 0 & 0 \\ 0 & 0 & 4+2i & 0 & 0 & 0 \\ -2-4i & 0 & 0 & 1+6i & -1+3i & 0 \\ -5+4i & 0 & 0 & -5 & 12+2i & -7+7i \\ -1+12i & -2+8i & 0 & 0 & 0 & 3+7i \end{bmatrix}$$

and

$$x^{T} = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)$$

This example computes the product Ax.

```
#include <imsl.h>
```

```
main()
{
             Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
                                                    \begin{array}{c} 1, 0, 0, (10.0, 1.0) \\ 1, 1, \{3.0, 2.0\}, \\ 1, 2, \{-3.0, 0.0\}, \\ 1, 3, \{-1.0, 2.0\}, \\ 2, 2, \{4.0, 2.0\}, \\ 3, 0, \{-2.0, -4.0\}, \\ 2, 2, \{1.0, -6.0\}, \end{array}
                                                     3, 3, {1.0, 6.0},
                                                     3, 4,
                                                               \{-1.0, 3.0\},\
                                                     4, 0, {-5.0, 4.0},
                                                     4, 3, {-5.0, 0.0},
4, 4, {12.0, 2.0},
                                                     4, 5, {-7.0, 7.0},
5, 0, {-1.0, 12.0},
                                    b[] = \{\{1.0, 1.0\}, \{2.0, 2.0\}, \{3.0, 3.0\}, \{4.0, 4.0\}, \{5.0, 5.0\}, \{6.0, 6.0\}\};
             f_complex
             int
                                    n = 6;
             int
                                   nz = 15;
             f_complex
                                   *x;
                                        /* Set x = A*b */
             x = imsl_c_mat_mul_rect_coordinate ("A*x",
                          IMSL_A_MATRIX, n, n, nz, a,
                          IMSL_X_VECTOR, n, b,
                          0);
             imsl_c_write_matrix ("Product Ab", 1, n, x, 0);
}
```

```
Output
```

			Product Ab			
		1		2		3
(3,	17) (-19,	5)	(6,	18)
		4		5		б
(-38,	32) (-63,	49)	(-57,	83)

Example 2

Using the same matrix A and vector x given in the last example, the products Ax, $A^{T}x$, $A^{H}x$ and AA^{H} are computed.

```
#include <imsl.h>
```

```
main()
{
```

```
Imsl_c_sparse_elem *z;
Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
                            1, 1, {3.0, 2.0},
1, 2, {-3.0, 0.0},
                            1, 3, {-1.0, 2.0},
                            2, 2, \{4.0, 2.0\},\
                            3, 0,
                                    \{-2.0, -4.0\},\
                            3, 3, {1.0, 6.0},
3, 4, {-1.0, 3.0},
4, 0, {-5.0, 4.0},
                             4, 3,
                                    \{-5.0, 0.0\},\
                             4, 4, {12.0, 2.0},
                            \begin{array}{c} 4, 5, \{-7.0, 7.0\}, \\ 5, 0, \{-1.0, 12.0\}, \\ 5, 1, \{-2.0, 8.0\}, \end{array}
                f_complex
int
                n = 6;
int
                nz = 15;
int
                nz_z;
int
                i;
f_complex
               *b;
                   /* Set b = A*x */
b = imsl_c_mat_mul_rect_coordinate ("A*x",
         IMSL_A_MATRIX, n, n, nz, a,
         IMSL_X_VECTOR, n, x,
         0);
imsl_c_write_matrix ("Ax", 1, n, b, 0);
free(b);
                   /* Set b = trans(A)*x */
b = imsl_c_mat_mul_rect_coordinate ("trans(A)*x",
         IMSL_A_MATRIX, n, n, nz, a,
```

```
IMSL_X_VECTOR, n, x,
       0);
imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b, 0);
free(b);
              /* Set b = ctrans(A)*x */
b = imsl_c_mat_mul_rect_coordinate ("ctrans(A)*x",
       IMSL_A_MATRIX, n, n, nz, a,
       IMSL_X_VECTOR, n, x,
       0);
imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b, 0);
free(b);
              /* Set z = A*ctrans(A) */
z = imsl_c_mat_mul_rect_coordinate ("A*ctrans(A)",
       IMSL_A_MATRIX, n, n, nz, a,
       IMSL_X_VECTOR, n, x,
       IMSL_RETURN_MATRIX_SIZE, &nz_z,
       0);
printf("n\t t\t z = A*ctrans(A)\n'n";
for (i=0; i<nz_z; i++)</pre>
```

```
Output
```

}

			Ax			
		1		2		3
(3,	17) (-19,	5) (б,	18)
		4		5		6
(-38,	32) (-63,	49) (-57,	83)

				trans(A)x				
(-112,	1 54)	(-58,	2 46)	(0,	3 12)
(-51,	4 5)	(34,	5 78)	(-94,	6 60)
		1		ctrans(A)x	0			2
(54,	1 -112)	(46,	2 -58)	(12,	3 0)
(5,	4 -51)	(78,	5 34)	(60,	6 -94)

z = A*ctrans(A)

mat_add_band

Adds two band matrices, both in band storage mode, $C \leftarrow \alpha A + \beta B$.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_mat_add_band.

Required Arguments

```
int n (Input)
The order of the matrices A and B.
int nlca (Input)
Number of lower codiagonals of A.
int nuca (Input)
Number of upper codiagonals of A.
```

Chapter 12: Utilities

float alpha (Input)

Scalar multiplier for A.

float a[] (Input)

An *n* by *n* band matrix with *nlca* lower codiagonals and *nuca* upper codiagonals stored in band mode with dimension (nlca + nuca + 1) by *n*.

int nlcb (Input)

Number of lower codiagonals of *B*.

- *int* nucb (Input) Number of upper codiagonals of *B*.
- float beta (Input) Scalar multiplier for B.
- float b[] (Input)

An *n* by *n* band matrix with *nlcb* lower codiagonals and *nucb* upper codiagonals stored in band mode with dimension (nlcb + nucb + 1) by *n*.

- *int* *nlcc (Output) Number of lower codiagonals of *C*.
- *int* *nucc (Output) Number of upper codiagonals of *C*.

Return Value

A pointer to an array of type *float* containing the computed sum. NULL is returned in the event of an error or if the return matrix has no nonzero elements.

Synopsis with Optional Arguments

Optional Arguments

```
IMSL_A_TRANSPOSE,

Replace A with A^T in the expression \alpha A + \beta B.

IMSL_B_TRANSPOSE,

Replace B with B^T in the expression \alpha A + \beta B.
```

```
IMSL_SYMMETRIC,
```

A, B and C are stored in band symmetric storage mode.

Description

The function $imsl_f_mat_add_band$ forms the sum $\alpha A + \beta B$, given the scalars α and β , and, the matrices A and B in band format. The transpose of A and/or B may be used during the computation if optional arguments are specified. Symmetric storage mode may be used if the optional argument is specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower codiagonals, *nlcc*, will be equal to 0.

If the return matrix equals NULL, the return value for the number of lower codiagonals, nlcc, will be equal to -1 and the number of upper codiagonals, nucc, will be equal to 0.

Examples

Example 1

Add two real matrices of order 4 stored in band mode. Matrix *A* has one upper codiagonal and one lower codiagonal. Matrix *B* has no upper codiagonals and two lower codiagonals.

```
#include <imsl.h>
```

```
void main()
{
         float a[] = \{0.0, 2.0, 3.0, -1.0,
                         1.0, 1.0, 1.0, 1.0,
         \begin{array}{c} 0.0, \ 3.0, \ 4.0, \ 0.0\};\\ \texttt{float b[]} = \left\{ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \end{array} \right.
                        1.0, -2.0, 1.0, 0.0,
                       -1.0, 2.0, 0.0, 0.0;
         int
                     nucb = 0, nlcb = 2;
         int
                     nuca = 1, nlca = 1;
         int
                     nucc, nlcc;
                     n = 4, m;
         int
         float
                    alpha = 1.0, beta = 1.0;
                    *c;
         float
         c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
                                      nlcb, nucb, beta, b,
                                      &nlcc, &nucc, 0);
         m = nlcc + nucc + 1;
         imsl_f_write_matrix("C = A + B", m, n, c, 0);
         free(c);
}
                        C = A + B
                          2
                                                          4
              1
                                           3
1
              0
                            2
                                           3
                                                         -1
2
              4
                            4
                                           4
                                                          4
                           1
3
                                         5
                                                         0
              1
                           2
                                         0
                                                         0
4
             -1
```

Example 2

Compute 4*A + 2*B, where

```
A = \begin{bmatrix} 3 & 4 & 0 & 0 \\ 4 & 2 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}
#include <imsl.h>
void main()
{
           float a[] = \{0.0, 4.0, 3.0, 1.0, 3.0, 2.0, 1.0, 2.0\};
           float b[] = \{0.0, 2.0, 3.0, 1.0\}
                              5.0, 1.0, 2.0, 2.0;;
           int
                      nuca = 1, nlca = 1;
           int
                      nucb = 1, nlcb = 1;
                      n = 4, m, nlcc, nucc;
           int
           float alpha = 4.0, beta = 2.0;
           float *c;
           c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
                                              nlcb, nucb, beta, b,
                                              &nlcc, &nucc,
                                              IMSL_SYMMETRIC, 0);
           m = nucc + nlcc + 1;
           imsl_f_write_matrix("C = 4*A + 2*B\n", m, n, c, 0);
           free(c);
}
                 Output
                        C = 4 * A + 2 * B
```

2 1 3 1 0 20 18 6 2 22 10 12 8

mat_add_band (complex)

Adds two band matrices, both in band storage mode, $C \leftarrow \alpha A + \beta B$.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex alpha, f_complex a[], int nlcb, int nucb, f_complex beta, f_complex b[], *int* *nlcc, *int* *nucc, ..., 0)

4

The type *double* function is imsl_z_mat_add_band.

642 • mat_add_band (complex)

```
Required Arguments
int n (Input)
        The order of the matrices A and B.
int nlca (Input)
        Number of lower codiagonals of A.
int nuca (Input)
        Number of upper codiagonals of A.
f_complex alpha (Input)
        Scalar multiplier for A.
f_complex a[] (Input)
        An n by n band matrix with nlca lower codiagonals and nuca upper
        codiagonals stored in band mode with dimension (nlca + nuca + 1) by n.
int nlcb (Input)
        Number of lower codiagonals of B.
int nucb (Input)
        Number of upper codiagonals of B.
f_complex beta (Input)
        Scalar multiplier for B.
f_complex b[] (Input)
        An n by n band matrix with nlcb lower codiagonals and nucb upper
        codiagonals stored in band mode with dimension (nlcb + nucb + 1) by n.
int *nlcc (Output)
        Number of lower codiagonals of C.
int *nucc (Output)
        Number of upper codiagonals of C.
Return Value
```

A pointer to an array of type $f_complex$ containing the computed sum. In the event of an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex
alpha, f_complex a[], int nlcb, int nucb, f_complex beta, f_complex
b[], int *nlcc, int *nucc,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
IMSL_SYMMETRIC,
0)
```

Optional Arguments

IMSL_A_TRANSPOSE, Replace A with A^T in the expression $\alpha A + \beta B$.
IMSL_B_TRANSPOSE, Replace <i>B</i> with B^T in the expression $\alpha A + \beta B$.
IMSL_A_CONJUGATE_TRANSPOSE, Replace A with A^H in the expression $\alpha A + \beta B$.
IMSL_B_CONJUGATE_TRANSPOSE, Replace <i>B</i> with B^H in the expression $\alpha A + \beta B$.
IMSL SYMMETRIC.

Matrix A, B, and C are stored in band symmetric storage mode.

Description

The function $imsl_c_mat_add_band$ forms the sum $\alpha A + \beta B$, given the scalars α and β , and the matrices A and B in band format. The transpose or conjugate transpose of A and/or B may be used during the computation if optional arguments are specified. Symmetric storage mode may be used if the optional argument is specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower codiagonals, *nlcc*, will be equal to 0.

If the return matrix equals NULL, the return value for the number of lower codiagonals, nlcc, will be equal to -1 and the number of upper codiagonals, nucc, will be equal to 0.

Examples

Example 1

Add two complex matrices of order 4 stored in band mode. Matrix *A* has one upper codiagonal and one lower codiagonal. Matrix *B* has no upper codiagonals and two lower codiagonals.

#include <imsl.h>

```
void main()
{
                   f_complex a[] =
                                                \begin{array}{c} \left\{ \left\{ 0.0, \ 0.0 \right\}, \ \left\{ 2.0, \ 1.0 \right\}, \ \left\{ 3.0, \ 3.0 \right\}, \ \left\{ -1.0, \ 0.0 \right\}, \\ \left\{ 1.0, \ 1.0 \right\}, \ \left\{ 1.0, \ 3.0 \right\}, \ \left\{ 1.0, \ -2.0 \right\}, \ \left\{ 1.0, \ 5.0 \right\}, \\ \left\{ 0.0, \ 0.0 \right\}, \ \left\{ 3.0, \ -2.0 \right\}, \ \left\{ 4.0, \ 0.0 \right\}, \ \left\{ 0.0, \ 0.0 \right\}; \end{array} \right\} 
                   f_complex b[] =
                                               \{\{3.0, 1.0\}, \{3.0, 5.0\}, \{3.0, -1.0\}, \{3.0, 1.0\},\
                                                 \{1.0, -3.0\}, \{-2.0, 0.0\}, \{1.0, 2.0\}, \{0.0, 0.0\}, \{-1.0, 4.0\}, \{2.0, 1.0\}, \{0.0, 0.0\}, \{0.0, 0.0\}\};
                   int
                                              nucb = 0, nlcb = 2;
                   int
                                             nuca = 1, nlca = 1;
                   int
                                              nucc, nlcc;
                                             n = 4, m;
                   int
                   f_complex *c;
                   f_complex alpha = {1.0, 0.0};
```

644 • mat_add_band (complex)

```
f_complex beta = {1.0, 0.0};
        c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
                                 nlcb, nucb, beta, b,
                                 &nlcc, &nucc, 0);
        m = nlcc + nucc + 1;
        imsl_c_write_matrix("C = A + B", m, n, c, 0);
        free(c);
}
            Output
                                   C = A + B
                                                   2
                        1
                                                                             3
            Ο,
                        0)
                                                                            3)
1 (
                                      2,
                                                  1) (
                                                                3,
                            (
                                                                4,
            4,
                                      4,
2 (
                        2)
                                                  8) (
                                                                            -3)
                           (
3 (
            1,
                       -3) (
                                      1,
                                                 -2) (
                                                                 5,
                                                                            2)
                                                                            0)
4 (
                                      2,
           -1,
                        4)
                           (
                                                  1) (
                                                                 Ο,
                         4
           -1,
                        0)
1 (
2 (
            4,
                        6)
3 (
                        0)
            Ο,
4 (
            Ο,
                        0)
```

```
Example 2
```

Compute

$$(3+2i)A^{H} + (4+i)B^{H}$$

where

	2 + 3i	1 + 3i	0	0		1 + 2i	5+i	0	0
4 —	0 6+	6+2i	3+i	0	and <i>B</i> =	4+i	1+3i	2+3i	0
A =	0	0	4+i	2+5i		0	2+3i	3+2i	4+2i
	0	0	0	1+2i		0	0	2+6i	1+4i

#include <imsl.h>

```
void main()
{
                                                               f_complex a[] =
                                                                                                                                                                                        \begin{array}{l} \{ \{0.0, \ 0.0\}, \ \{1.0, \ 3.0\}, \ \{3.0, \ 1.0\}, \ \{2.0, \ 5.0\}, \\ \{2.0, \ 3.0\}, \ \{6.0, \ 2.0\}, \ \{4.0, \ 1.0\}, \ \{1.0, \ 2.0\} \}; \end{array} 
                                                               f_complex b[] =
                                                                                                                                                                                        \{ \{0.0, 0.0\}, \{5.0, 1.0\}, \{2.0, 3.0\}, \{4.0, 2.0\}, \\ \{1.0, 2.0\}, \{1.0, 3.0\}, \{3.0, 2.0\}, \{1.0, 4.0\}, \\ \{1.0, 2.0\}, \{1.0, 3.0\}, \{3.0, 2.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{3.0, 2.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{3.0, 2.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{1.0, 3.0\}, \{3.0, 2.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 4.0\}, \\ \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0, 3.0\}, \{1.0,
                                                                                                                                                                                              \{4.0, 1.0\}, \{2.0, 3.0\}, \{2.0, 6.0\}, \{0.0, 0.0\};
                                                                                                                                                  nuca = 1, nlca = 0;
nucb = 1, nlcb = 1;
n = 4, m, nlcc, nucc;
                                                              int
                                                              int
                                                              int
                                                              f_complex *c;
                                                              f_complex alpha = {3.0, 2.0};
                                                              f_{complex} beta = {4.0, 1.0};
                                                              c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
                                                                                                                                                                                                                                                            nlcb, nucb, beta, b,
```

```
&nlcc, &nucc,
                                 IMSL_A_CONJUGATE_TRANSPOSE,
                                 IMSL_B_CONJUGATE_TRANSPOSE, 0);
        m = nlcc + nucc + 1;
        imsl_c_write_matrix("C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)\n",
                m, n, c, 0);
        free(c);
}
            Output
                   C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)
                        1
                                                  2
                                                                            3
                                                                         -10)
                       0) (
                                                0) (
1 (
            Ο,
                                     17,
                                                              11,
                                     29,
2 (
           18,
                     -12) (
                                                -5) (
                                                              28,
                                                                          0)
3 (
           30,
                      -6) (
                                     22,
                                                -7) (
                                                              34,
                                                                         -15)
                        4
1 (
           14,
                     -22)
2 (
           15,
                     -19)
3 (
            Ο,
                       0)
```

mat_add_coordinate

Performs element-wise addition on two real matrices stored in coordinate format, $C \leftarrow \alpha A + \beta B$.

Synopsis

#include <imsl.h>

```
Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float
alpha, Imsl_f_sparse_elem a[], int nz_b, float beta,
Imsl_f_sparse_elem b[], int *nz_c, ..., 0)
```

The type *double* function is imsl_d_mat_add_coordinate.

Required Arguments

int n (Input)

The order of the matrices A and B.

int nz_a (Input)

Number of nonzeros in the matrix A.

```
float alpha (Input)
Scalar multiplier for A.
```

Imsl_f_sparse_elem a[] (Input)

Vector of length nz_a containing the location and value of each nonzero entry in the matrix *A*.

int nz_b (Input)

Number of nonzeros in the matrix *B*.

646 • mat_add_coordinate

```
float beta (Input)
Scalar multiplier for B.
```

Imsl_f_sparse_elem b[] (Input) Vector of length nz_b containing the location and value of each nonzero entry in the matrix *B*.

int *nz_c (Output) The number of nonzeros in the sum $\alpha A + \beta B$.

Return Value

A pointer to an array of type *Imsl_f_sparse_elem* containing the computed sum. In the event of an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

IMSL_A_TRANSPOSE, Replace A with A^T in the expression $\alpha A + \beta B$. IMSL_B_TRANSPOSE, Replace B with B^T in the expression $\alpha A + \beta B$.

Description

The function $imsl_f_mat_add_coordinate$ forms the sum $\alpha A + \beta B$, given the scalars α and β , and the matrices A and B in coordinate format. The transpose of A and/or B may be used during the computation if optional arguments are specified. The method starts by storing A in a linked list data structure, and performs the multiply by α . Next the data in matrix B is traversed and if the coordinates of a nonzero element correspond to those of a nonzero element in A, that entry in the linked list is updated. Otherwise, a new node in the linked list is created. The multiply by β occurs at this time. Lastly, the linked list representation of C is converted to coordinate representation, omitting any elements that may have become zero through cancellation.

Examples

Example 1

Add two real matrices of order 4 stored in coordinate format. Matrix A has five nonzero elements. Matrix B has seven nonzero elements.

```
#include <imsl.h>
void main ()
{
        Imsl_f\_sparse\_elem a[] = \{0, 0, 3,
                                   3, 1, 3};
        Imsl_f_sparse_elem b[] = \{0, 1, -2,
                                    0, 3, 1,
                                   1, 0, 3,
                                    2, 2, 5,
2, 3, 1,
                                    3, 0, 4,
                                    3, 1, 3};
                                   nz_a = 5, nz_b = 7, nz_c;
n = 4, i;
        int
        int
        float
                                   alpha = 1.0, beta = 1.0;
        Imsl_f_sparse_elem
                                    *c;
        c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
                                 nz_b, beta, b, &nz_c, 0);
        printf(" row column value\n");
        for (i = 0; i < nz_c; i++)
             printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);
        free(c);
```

```
}
```

Output

row	column	value
0	0	3.00
0	1	-2.00
1	0	3.00
1	2	5.00
2	0	1.00
2	2	5.00
2	3	1.00
3	0	4.00
3	1	6.00

Example 2

```
Compute 2 * A^T + 2 * B^T, where

A = \begin{bmatrix} 3 & 0 & 0 & -1 \\ 0 & 0 & 5 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -2 & 0 & 1 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 5 & 1 \\ 4 & 3 & 0 & 0 \end{bmatrix}
```

#include <imsl.h>

void main ()

{

Imsl_f_sparse_elem a[] = {0, 0, 3,

648 • mat_add_coordinate

```
0, 3, -1,
1, 2, 5,
                                     2, 0, 1,
                                     3, 1, 3};
        Imsl_f_sparse_elem b[] = \{0, 1, -2,
                                     0, 3, 1,
                                     1, 0, 3,
                                     2, 2, 5,
                                     2, 3, 1,
                                     3, 0, 4,
                                     3, 1, 3};
        int
                                     nz_a = 5, nz_b = 7, nz_c;
                                     n = 4, i;
        int
                                     alpha = 2.0, beta = 2.0;
        float
        Imsl_f_sparse_elem
                                     *c;
        c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
                                   nz_b, beta, b, &nz_c,
                                   IMSL_A_TRANSPOSE,
                                   IMSL_B_TRANSPOSE, 0);
        printf(" row column value\n");
for (i = 0; i < nz_c; i++)</pre>
             printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);
        free(c);
            Output
row column value
```

0	0	6.00
0	1	6.00
0	2	2.00
0	3	8.00
1	0	-4.00
1	3	12.00
2	1	10.00
2	2	10.00
3	2	2.00

}

mat_add_coordinate (complex)

Performs element-wise addition on two complex matrices stored in coordinate format, $C \leftarrow \alpha A + \beta B$.

Synopsis

#include <imsl.h>

The type *double* function is imsl_z_mat_add_coordinate.

Chapter 12: Utilities

```
Required Arguments
int n (Input)
         The order of the matrices A and B.
int nz a (Input)
        Number of nonzeros in the matrix A.
f_complex alpha (Input)
        Scalar multiplier for A.
Imsl_c_sparse_elem a[] (Input)
         Vector of length nz_a containing the location and value of each nonzero entry
        in the matrix A.
int nz_b (Input)
        Number of nonzeros in the matrix B.
f_complex beta (Input)
        Scalar multiplier for B.
Imsl_c_sparse_elem b[] (Input)
         Vector of length nz_b containing the location and value of each nonzero entry
        in the matrix B.
int *nz_c (Output)
         The number of nonzeros in the sum \alpha A + \beta B.
```

Return Value

A pointer to an array of type *Imsl_c_sparse_elem* containing the computed sum. In the event of an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a,
    f_complex alpha, Imsl_c_sparse_elem a[], int nz_b, f_complex beta,
    Imsl_c_sparse_elem b[], int *nz_c,
    IMSL_A_TRANSPOSE,
    IMSL_B_TRANSPOSE,
    IMSL_A_CONJUGATE_TRANSPOSE,
    IMSL_B_CONJUGATE_TRANSPOSE,
    0)
```

Optional Arguments

```
IMSL_A_TRANSPOSE,
Replace A with A^T in the expression \alpha A + \beta B.
IMSL_B_TRANSPOSE,
Replace B with B^T in the expression \alpha A + \beta B.
```

650 • mat_add_coordinate (complex)

```
IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with A^H in the expression \alpha A + \beta B.
```

IMSL_B_CONJUGATE_TRANSPOSE, Replace *B* with B^H in the expression $\alpha A + \beta B$.

Description

The function $imsl_c_mat_add_coordinate$ forms the sum $\alpha A + \beta B$, given the scalars α and β , and the matrices A and B in coordinate format. The transpose or conjugate transpose of A and/or B may be used during the computation if optional arguments are specified. The method starts by storing A in a linked list data structure, and performs the multiply by α . Next the data in matrix B is traversed and if the coordinates of a nonzero element correspond to those of a nonzero element in A, that entry in the linked list is updated. Otherwise, a new node in the linked list is created. The multiply by β occurs at this time. Lastly, the linked list representation of C is converted to coordinate representation, omitting any elements that may have become zero through cancellation.

Examples

Example 1

Add two complex matrices of order 4 stored in coordinate format. Matrix *A* has five nonzero elements. Matrix *B* has seven nonzero elements.

```
#include <imsl.h>
```

```
void main ()
{
       1, 2, 5, -1,
                              2, 0, 1, 2,
                              3, 1, 3, 0};
       1, 0, 3, 0,
                              2, 2, 5, 2,
                              2, 3, 1, 4,
                              3, 0, 4, 0,
                              3, 1, 3, -2};
nz_a = 5, nz_b = 7, nz_c;
       int
       int
                              n = 4, i;
       f_complex
                              alpha = \{1.0, 0.0\}, beta = \{1.0, 0.0\};
       Imsl_c_sparse_elem
                              *c;
       c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
                            nz_b, beta, b, &nz_c, 0);
       printf(" row column
                             value\n");
       for (i = 0; i < nz_c; i++)
           printf("%3d %5d %8.2f %8.2f\n",
                  c[i].row, c[i].col, c[i].val.re, c[i].val.im);
```

free(c);

Output

row	column	val	ue
0	0	3.00	4.00
0	1	-2.00	1.00
1	0	3.00	0.00
1	2	5.00	-1.00
2	0	1.00	2.00
2	2	5.00	2.00
2	3	1.00	4.00
3	0	4.00	0.00
3	1	6.00	-2.00

Example 2

Compute $2+3i*A^T + 2-i*B^T$, where

	3 + 4i	0	0	-1+2i		0	-2 + i	0	1-2i
4	0	0	5-i	0	and D	3+0i	0	0	0
A =	1 + 2i	0	0	0	and $B =$	0	0	5 + 2i	1+4i
	0	3+0i	0	0	and <i>B</i> =	4 + 0i	3-2i	0	0

#include <imsl.h>

```
void main ()
{
```

```
Imsl_c_sparse_elem a[] = \{0, 0, 3, 4,
                              0, 3, -1, 2,
1, 2, 5, -1,
2, 0, 1, 2,
3, 1, 3, 0};
Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
                              0, 3, 1, -2,
                              1, 0, 3, 0,
                              2, 2, 5, 2,
2, 3, 1, 4,
                              3, 0, 4, 0,
                              3, 1, 3, -2};
nz_a = 5, nz_b = 7, nz_c;
int
int
                              n = 4, i;
                              alpha = \{2.0, 3.0\}, beta = \{2.0, -1.0\};
f_complex
Imsl_c_sparse_elem
                              *c;
c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
                            nz_b, beta, b, &nz_c,
                            IMSL_A_TRANSPOSE,
                            IMSL_B_TRANSPOSE, 0);
printf(" row column
                             value\n");
for (i = 0; i < nz_c; i++)</pre>
     printf("%3d %5d %8.2f %8.2f\n",
              c[i].row, c[i].col, c[i].val.re, c[i].val.im);
```

}

free(c);

Output

row	column	va	lue
0	0	-6.00	17.00
0	1	6.00	-3.00
0	2	-4.00	7.00
0	3	8.00	-4.00
1	0	-3.00	4.00
1	3	10.00	2.00
2	1	13.00	13.00
2	2	12.00	-1.00
3	0	-8.00	-4.00
3	2	6.00	7.00

matrix_norm

Computes various norms of a rectangular matrix.

Synopsis

#include <imsl.h>

float imsl_f_matrix_norm (int m, int n, float a[], ..., 0)

The type *double* function is imsl_d_matrix_norm.

Required Arguments

int m (Input) The number of rows in matrix A.

int n (Input) The number of columns in matrix A.

float a[] (Input) Matrix for which the norm will be computed.

Return Value

The requested norm of the input matrix. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments

Chapter 12: Utilities

matrix_norm • 653

}

Description

By default, imsl_f_matrix_norm computes the Frobenius norm

$$\|A\|_{2} = \left[\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{ij}^{2}\right]^{\frac{1}{2}}$$

If the option IMSL_ONE_NORM is selected, the 1-norm

$$\|A\|_{1} = \max_{0 \le j \le n-1} \sum_{i=0}^{m-1} |A_{ij}|$$

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

$$||A||_{\infty} = \max_{0 \le i \le m-1} \sum_{j=0}^{n-1} |A_{ij}|$$

is returned.

Example

Compute the Frobenius norm, infinity norm, and one norm of matrix A.

#include <imsl.h>

```
void main()
ł
       5.0, -2.0, 7.0, 6.0,
                   4.0, 3.0, 4.0, 0.0};
       int
                   m = 5, n = 4;
       float
                   frobenius_norm, inf_norm, one_norm;
       frobenius_norm = imsl_f_matrix_norm(m, n, a, 0);
       inf_norm = imsl_f_matrix_norm(m, n, a, IMSL_INF_NORM, 0);
       one_norm = imsl_f_matrix_norm(m, n, a, IMSL_ONE_NORM, 0);
       printf("Frobenius norm = %f\n", frobenius_norm);
       printf("Infinity norm = %f\n", inf_norm);
       printf("One norm
                         = %f\n", one_norm);
}
```

Output

Frobenius norm = 15.684387 Infinity norm = 20.000000 One norm = 17.000000

matrix_norm_band

Computes various norms of a matrix stored in band storage mode.

Synopsis

#include <imsl.h>

float imsl_f_matrix_norm_band (*int* n, *float* a[], *int* nlc, *int* nuc, ..., 0) The type *double* function is imsl_d_matrix_norm_band.

Required Arguments

<i>int</i> n (Input)	
The order of matrix .	A.
float a[] (Input) Matrix for which the	norm will be computed.
int nlc (Input)	

Number of lower codiagonals of A.

int nuc (Input) Number of upper codiagonals of A.

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

```
IMSL_ONE_NORM,
Compute the 1-norm of matrix A,
IMSL_INF_NORM,
Compute the infinity norm of matrix A,
```

IMSL_SYMMETRIC,

Matrix *A* is stored in band symmetric storage mode.

Description

By default, imsl_f_matrix_norm_band computes the Frobenius norm

$$\|A\|_{2} = \left[\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{ij}^{2}\right]^{\frac{1}{2}}$$

If the option IMSL_ONE_NORM is selected, the 1-norm

$$\|A\|_{1} = \max_{0 \le j \le n-1} \sum_{i=0}^{m-1} |A_{ij}|$$

1

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

$$||A||_{\infty} = \max_{0 \le i \le m-1} \sum_{j=0}^{n-1} |A_{ij}|$$

is returned.

Examples

Example 1

#include <imsl.h>

Compute the Frobenius norm, infinity norm, and one norm of matrix *A*. Matrix *A* is stored in band storage mode.

```
void main()
{
          float a[] = {0.0, 2.0, 3.0, -1.0,
1.0, 1.0, 1.0, 1.0,
                          0.0, 3.0, 4.0, 0.0;
          int
                          nlc = 1, nuc = 1;
                          n = 4;
          int
          float
                          frobenius_norm, inf_norm, one_norm;
          frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc, 0);
          inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
                                                IMSL_INF_NORM, 0);
          one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
                                                IMSL_ONE_NORM, 0);
         printf("Frobenius norm = %f\n", frobenius_norm);
printf("Infinity norm = %f\n", inf_norm);
printf("One norm = %f\n", one_norm);
}
```

Output

Frobenius norm = 6.557438

656 • matrix_norm_band

Infinity norm = 5.000000 One norm = 8.000000

Example 2

Compute the Frobenius norm, infinity norm, and one norm of matrix *A*. Matrix *A* is stored in symmetric band storage mode.

```
#include <imsl.h>
void main()
ł
        float a[] = \{0.0, 0.0, 7.0, 3.0, 1.0, 4.0,
                     0.0, \ 5.0, \ 1.0, \ 2.0, \ 1.0, \ 2.0,
                     1.0, 2.0, 4.0, 6.0, 3.0, 1.0};
        int
                     nlc = 2, nuc = 2;
        int
                     n = 6;
        float
                     frobenius_norm, inf_norm, one_norm;
        frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
                                       IMSL_SYMMETRIC, 0);
        inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
                                       IMSL_INF_NORM,
                                       IMSL_SYMMETRIC, 0);
        one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
                                       IMSL_ONE_NORM,
                                       IMSL_SYMMETRIC, 0);
        printf("Frobenius norm = %f\n", frobenius_norm);
        printf("Infinity norm = %f\n", inf_norm);
        printf("One norm
                               = %f\n", one_norm);
}
            Output
```

Frobenius norm = 16.941074 Infinity norm = 16.000000 One norm = 16.000000

matrix_norm_coordinate

Computes various norms of a matrix stored in coordinate format.

Synopsis

#include <imsl.h>

The type *double* function is imsl_d_matrix_norm_coordinate.

Chapter 12: Utilities

Required Arguments

int m (Input)

The number of rows in matrix A.

- *int* n (Input) The number of columns in matrix A.
- *int* nz (Input) The number of nonzeros in the matrix A.

Imsl_f_sparse_elem a[] (Input) Matrix for which the norm will be computed.

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments

Optional Arguments

```
IMSL_ONE_NORM,
Compute the 1-norm of matrix A.
```

```
IMSL_INF_NORM,
```

Compute the infinity norm of matrix A.

```
IMSL_SYMMETRIC,
```

Matrix A is stored in symmetric coordinate format.

Description

By default, imsl_f_matrix_norm_coordinate computes the Frobenius norm

$$\left\|A\right\|_{2} = \left[\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{ij}^{2}\right]^{\frac{1}{2}}$$

If the option IMSL_ONE_NORM is selected, the 1-norm

$$||A||_{1} = \max_{0 \le j \le n-1} \sum_{i=0}^{m-1} |A_{ij}|$$

658 • matrix_norm_coordinate

IMSL C/Math/Library

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

$$||A||_{\infty} = \max_{0 \le i \le m-1} \sum_{j=0}^{n-1} |A_{ij}|$$

is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix *A*. Matrix *A* is stored in coordinate format.

#include <imsl.h>

```
void main()
{
          Imsl_f_sparse_elem a[] = {0, 0, 10.0,
                                           1, 1, 10.0,
                                           1, 2, -3.0,
                                           1, 3, -1.0,
2, 2, 15.0,
                                           3, 0, -2.0,
                                           3, 3, 10.0,
                                           3, 4, -1.0,
                                           4, 0, -1.0,
                                           \begin{array}{c} 1, & 0, & 1.0, \\ 4, & 3, & -5.0, \\ 4, & 4, & 1.0, \\ 4, & 5, & -3.0, \end{array}
                                           5, 0, -1.0,
                                           5, 1, -2.0,
                                           5, 5, 6.0};
                                           m = 6, n = 6;
          int
          int
                                           nz = 15;
          float
                                           frobenius_norm, inf_norm, one_norm;
          frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a, 0);
          inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
                                                IMSL_INF_NORM, 0);
          one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
                                                IMSL_ONE_NORM, 0);
          printf("Frobenius norm = %f\n", frobenius_norm);
printf("Infinity norm = %f\n", inf_norm);
                                    = %f\n", one_norm);
          printf("One norm
}
               Output
```

Frobenius norm = 24.839485 Infinity norm = 15.00000 One norm = 18.00000

Chapter 12: Utilities

Example 2

Compute the Frobenius norm, infinity norm and one norm of matrix *A*. Matrix *A* is stored in symmetric coordinate format.

```
#include <imsl.h>
void main()
{
        Imsl_f_sparse_elem a[] = {0, 0, 10.0,
                                   0, 2, -1.0,
                                   0, 5, 5.0,
                                   1, 3, 2.0,
                                   1, 4, 3.0,
                                   2, 2, 3.0,
                                   2, 5, 4.0,
                                   4, 4, -1.0,
                                   4, 5, 4.0};
        int
                                   m = 6, n = 6;
        int
                                   nz = 9;
        float
                                   frobenius_norm, inf_norm, one_norm;
        frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a,
                                       IMSL_SYMMETRIC, 0);
        inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
                                       IMSL_INF_NORM,
                                       IMSL_SYMMETRIC, 0);
        one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
                                        IMSL_ONE_NORM,
                                        IMSL_SYMMETRIC, 0);
        printf("Frobenius norm = %f\n", frobenius_norm);
        printf("Infinity norm = %f\n", inf_norm);
        printf("One norm
                               = %f\n", one_norm);
}
            Output
Frobenius norm = 15.874508
```

Infinity norm = 16.00000 One norm = 16.00000

generate_test_band

Generates test matrices of class and E(n, c). Returns in band or band symmetric format.

Synopsis

#include <imsl.h>

float *imsl_f_generate_test_band (int n, int c, ..., 0)

The function imsl_d_generate_test_band is the *double* precision analogue.

660 • generate_test_band

Required Arguments

```
int n (Input)
```

Number of rows in the matrix.

int c (Input)

Parameter used to alter structure, also the number of upper/lower codiagonals.

Return Value

A pointer to a vector of type *float*. To release this space, use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments

Optional Arguments

IMSL_SYMMETRIC_STORAGE, Return matrix stored in band symmetric format.

Description

The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class E(n, c), to which we will generally refer to as *E*-matrices, are symmetric, positive definite matrices of order n with 4 in the diagonal and -1 in the superdiagonal and subdiagonal. In addition there are two bands with -1 at a distance c from the diagonal. More precisely:

$a_{i,i} = 4$	$0 \le i < n$
$a_{i,i+1} = -1$	$0 \le i < n - 1$
$a_{i+1,1} = -1$	$0 \le i < n - 1$
$a_{i,i+c} = -1$	$0 \le i < n - c$
$a_{i+c,i} = -1$	$0 \le i < \mathbf{n} - c$

for any $n \ge 3$ and $2 \le c \le n - 1$.

E-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differential equations.

By default, imsl_f_generate_test_band returns an *E*-matrix in band storage mode. Option IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric storage mode.

Example

This example generates the matrix

```
E(5,3) = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & 0 & -1 \\ 0 & -1 & 4 & -1 & 0 \\ -1 & 0 & -1 & 4 & -1 \\ 0 & -1 & 0 & -1 & 4 \end{bmatrix}
```

and prints the result.

```
#include <imsl.h>
main()
{
        int i;
        int n = 5;
        int c = 3;
        float *a;
        a = imsl_f_generate_test_band (n, c, 0);
        imsl_f_write_matrix ("E(5,3) in band storage", 2*c + 1, n,
                 a, 0);
}
            Output
                    E(5,3) in band storage

\begin{array}{c}
2 \\
0 \\
0 \\
-1 \\
4 \\
1
\end{array}

             1
                                    0
0
-1
4
-1
1
             0
                                                  -1
                                                                -1
                                                 0
                                                                0
2
            0
                                                  -1
4
3
             0
                                                                -1
4
             4
                                                                4
                        -1
                                                  -1
5
            -1
                                                                0
6
            0
                        0
                                     0
                                                  0
                                                                0
7
           -1
                        -1
                                      0
                                                  0
                                                                 0
```

generate_test_band (complex)

Generates test matrices of class $E_c(n, c)$. Returns in band or band symmetric format.

Synopsis

```
#include <imsl.h>
```

```
f_complex *imsl_c_generate_test_band (int n, int c, ..., 0)
```

The function $\mbox{imsl}_z\mbox{generate}\mbox{test}\mbox{band}$ is the double precision analogue.

Required Arguments

int n (Input)

Number of rows in the matrix.

int c (Input)

Parameter used to alter structure, also the number of upper/lower codiagonals

Return Value

A pointer to a vector of type *f*_complex. To release this space, use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

```
void *imsl_c_generate_sparse_test (int n, int c,
IMSL_SYMMETRIC_STORAGE,
0)
```

Optional Arguments

IMSL_SYMMETRIC_STORAGE,

Return matrix stored in band symmetric format.

Description

We use the same nomenclature as Østerby and Zlatev (1982). Test matrices of class E(n, c), to which we will generally refer to as *E*-matrices, are symmetric, positive definite matrices of order n with (6.0, 0.0) in the diagonal, (-1.0, 1.0) in the superdiagonal and (-1.0, -1.0) subdiagonal. In addition there are two bands at a distance c from the diagonal with (-1.0, 1.0) in the upper codiagonal and (-1.0, -1.0) in the lower codiagonal. More precisely:

$a_{i,i} = 6$	$0 \le i < n$
$a_{i,i+1} = -1 - i$	$0 \leq i < n-1$
$a_{i+1,1} = -1 - i$	$0 \leq i < n-1$
$a_{i,i+c} = -1 + i$	$0 \leq i < n-c$
$a_{i+c,i} = -1 + i$	$0 \leq i < n-c$

for any $n \ge 3$ and $2 \le c \le n - 1$.

E-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differential equations.

By default, imsl_c_generate_test_band returns an *E*-matrix in band storage mode. Option IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric storage mode.

Example

This example generates the following matrix and prints the result:

```
E_{c}(5,3) = \begin{bmatrix} 6 & -1-i & 0 & -1+i & 0 \\ -1-i & 6 & -1+i & 0 & -1+i \\ 0 & -1-i & 6 & -1+i & 0 \\ -1-i & 0 & -1-i & 6 & -1+i \\ 0 & -1-i & 0 & -1-i & 6 \end{bmatrix}
#include <imsl.h>
main()
{
          int i;
          int n = 5;
          int c = 3;
          f_complex *a;
          a = imsl_c_generate_test_band (n, c, 0);
          imsl_c_write_matrix ("E(5,3) in band storage", 2*c + 1, n,
                   a, 0);
}
              Output
                                 E(5,3) in band storage
                             1
                                                            2
                                                                                           3
              Ο,
1 (
                          0) (
                                            Ο,
                                                           0) (
                                                                           Ο,
                                                                                          0)
             Ο,
2 (
                          0) (
                                            Ο,
                                                         0) (
                                                                           Ο,
                                                                                         0)
            0,
6,
-1,
0
                                          -1,
6,
-1,
                                                                                         1)
3 (
                          0) (
                                                          1) (
                                                                           -1,
                          0) (
-1) (
0) (
                                                          0) (
-1) (
0) (
                                                                           б,
4 (
                                                                                          0)
5 (
                                                                           -1,
                                                                                         -1)
6 (
              Ο,
                                            Ο,
                                                                           Ο,
                                                                                          0)
7 (
              -1,
                           -1) (
                                            -1,
                                                          -1) (
                                                                           Ο,
                                                                                          0)
                                                             5
                              4
1 (
             -1,
0,
                            1) (
                                             -1,
                                                           1)
2 (
                           0)
                                 (
                                             Ο,
                                                           0)
3 (
                                            -1,
              -1,
                           1) (
                                                          1)
4 (
             б,
                           0) (
                                             б,
                                                           0)
                                             Ο,
5 (
             -1,
                           -1) (
                                                           0)
6 (
              Ο,
                            0)
                                              Ο,
                                                           0)
                                 (
```

generate_test_coordinate

0) (

Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate format.

0)

Synopsis

Ο,

#include <imsl.h>

Imsl_f_sparse_elem *imsl_f_generate_test_coordinate (int n, int c, int *nz, ..., 0)

The function imsl_d_generate_test_coordinate is the *double* precision analogue.

Ο,

664 • generate_test_coordinate

7 (

IMSL C/Math/Library

Required Arguments

```
int n (Input)
Number of rows in the matrix.
int c (Input)
Parameter used to alter structure.
```

int *nz (Output) Length of the return vector.

Return Value

A pointer to a vector of length nz of type *Imsl_f_sparse_elem*. To release this space, use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments

Optional Arguments

```
IMSL_D_MATRIX
Return a matrix of class D(n, c).
Default: Return a matrix of class E(n, c).
```

IMSL_SYMMETRIC_STORAGE,

For coordinate representation, return only values for the diagonal and lower triangle. This option is not allowed if IMSL_D_MATRIX is specified.

Description

We use the same nomenclature as Østerby and Zlatev (1982). Test matrices of class E(n, c), to which we will generally refer to as *E*-matrices, are symmetric, positive definite matrices of order n with 4 in the diagonal and -1 in the superdiagonal and subdiagonal. In addition there are two bands with -1 at a distance c from the diagonal. More precisely

$a_{i,i} = 4$	$0 \le i < n$
$a_{i,i+1} = -1$	$0 \le i < n - 1$
$a_{i+1,1} = -1$	$0 \le i < n - 1$
$a_{i,i+c} = -1$	$0 \le i < n - c$
$a_{i+c,i} = -1$	$0 \le i < n - c$

for any $n \ge 3$ and $2 \le c \le n - 1$.

E-matrices are similar to those obtained from the five-point formula in the discretization of elliptic partial differential equations.

Test matrices of class D(n, c) are square matrices of order n with a full diagonal, three bands at a distance c above the diagonal and reappearing cyclically under the diagonal, and a 10×10 triangle of elements in the upper right corner. More precisely:

$a_{i,i} = 1$	$0 \le i < n$
$a_{i,i+c} = i+2$	$0 \le i < n - c$
$a_{i,i-n+c} = i+2$	$n - c \le i < n$
$a_{i,i+c+1} = -(i+1)$	$0 \le i < n - c - 1$
$a_{i,i-n+c+1} = -(i+1)$	$n - c - 1 \le i < n$
$a_{i,i+c+2} = 16$	$0 \le i < n - c - 2$
$a_{i,i-n+c+2} = 16$	$n - c - 2 \le i < n$
$a_{i,n-11+i+j} = 100j$	$1 \le i < 11 - j, 0 \le j < 10$
> 14 and $1 \le c \le n - 13$	

for any $n \ge 14$ and $1 \le c \le n - 13$.

We now show the sparsity pattern of D(20, 5)

Х					Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	х					х	х	х			х	х	х	х	х	х	х	х	х
		х					x	x	x			х	х	х	х	x	х	х	х
			х					х	x	х			х	х	х	х	х	х	x
				x					x	х	х			х	х	х	х	х	x
					х					х	x	х			х	x	х	x	x
						х					х	х	х			x	х	х	x
							x					х	х	х			х	х	x
								х					х	х	х			х	x
									x					х	х	x			x
										х					х	x	х		
											х					х	х	х	
												х					x	x	x
х													х					x	x
x	х													х				~	x
x	X	х												Λ	х				Λ
Λ	х	х	x												Λ	x			
	л			x												Λ	v		
		Х	X		v												Х	v	
			Х	х	Х													Х	
				Х	Х	Х													Х

By default imsl_f_generate_test_coordinate returns an *E*-matrix in coordinate representation. By specifying the IMSL_SYMMETRIC_STORAGE option, only the diagonal and lower triangle are returned. The scalar nz will contain the number of nonzeros in this representation.

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since *D*-matrices are not symmetric, the IMSL_SYMMETRIC_STORAGE option is not allowed.

Examples

Example 1

This example generates the matrix

$$E(5,3) = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 \\ -1 & 4 & -1 & 0 & -1 \\ 0 & -1 & 4 & -1 & 0 \\ -1 & 0 & -1 & 4 & -1 \\ 0 & -1 & 0 & -1 & 4 \end{bmatrix}$$

and prints the result.

```
#include <imsl.h>
main()
{
        int i;
        int n = 5;
        int c = 3;
        int nz;
        Imsl_f_sparse_elem *a;
        a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
        printf ("row col
                               val\n");
        for (i=0; i<nz; i++)</pre>
                printf (" %d
                                  %d %5.1f\n",
                        a[i].row, a[i].col, a[i].val);
}
```


row	col	val
0	0	4.0
1	1	4.0
2 3	1 2	4.0
3	3	4.0
4	4	4.0
1	0	-1.0
2	1	-1.0
3	2	-1.0
4	3	-1.0
0	1	-1.0
1	2	-1.0
1 2	3	-1.0
3	4	-1.0
3	0	-1.0
4	1	-1.0
0	3	-1.0
1	4	-1.0

Example 2

In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

```
#include <imsl.h>
main()
ł
        int i;
        int n = 5;
        int c = 3;
        int nz;
        Imsl_f_sparse_elem *a;
        a = imsl_f_generate_test_coordinate (n, c, &nz,
                IMSL_SYMMETRIC_STORAGE,
                0);
        printf ("row
                        col
                               val\n");
        for (i=0; i<nz; i++)</pre>
                printf (" %d
                                   %d %5.1f\n",
                        a[i].row, a[i].col, a[i].val);
}
```

Output

row	col	val
0	0	4.0
1	1	4.0
2	2	4.0
3	3	4.0
4	4	4.0
1	0	-1.0
2	1	-1.0
3	2	-1.0
4	3	-1.0
3	0	-1.0
4	1	-1.0

generate_test_coordinate (complex)

Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate or band storage format, where possible.

Synopsis

#include <imsl.h>

void *imsl_c_generate_test_coordinate (int n, int c, int *nz, ..., 0)

The function is imsl_z_generate_test_coordinate is the *double* precision analogue.

Required Arguments

```
int n (Input)
```

Number of rows in the matrix.

- int c (Input) Parameter used to alter structure. int *nz (Output)
 - Length of the return vector.

Return Value

A pointer to a vector of length nz of type *imsl_c_sparse_elem*. To release this space, use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Optional Arguments

```
IMSL_D_MATRIX
```

Return a matrix of class D(n, c). Default: Return a matrix of class E(n, c).

IMSL_SYMMETRIC_STORAGE,

For coordinate representation, return only values for the diagonal and lower triangle. This option is not allowed if IMSL_D_MATRIX is specified.

Description

The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class E(n, c), to which we will generally refer to as *E*-matrices, are symmetric, positive definite matrices of order n with (6.0, 0.0) in the diagonal, (-1.0, 1.0) in the superdiagonal and (-1.0, -1.0) subdiagonal. In addition there are two bands at a distance c from the diagonal with (-1.0, 1.0) in the upper codiagonal and (-1.0, -1.0) in the lower codiagonal. More precisely:

$a_{i,i} = 6$	$0 \le i < n$
$a_{i,i+1} = -1 - i$	$0 \le i < n-1$
$a_{i+1,1} = -1 - i$	$0 \le i < n - 1$
$a_{i,i+c} = -1 + i$	$0 \le i < n - c$
$a_{i+c,i} = -1 + i$	$0 \le i < n - c$
$\sim 2 \sim 10 < < 1$	

for any $n \ge 3$ and $2 \le c \le n - 1$.

Test matrices of class D(n, c) are square matrices of order n with a full diagonal, three bands at a distance c above the diagonal and reappearing cyclically under the diagonal, and a 10×10 triangle of elements in the upper-right corner. More precisely:

$a_{i,i} = 1$	$0 \le i < n$
$a_{i,i+c} = i+2$	$0 \le i < n - c$
$a_{i,i-n+c} = i+2$	$n - c \le i < n$
$a_{i,i+c+1} = -(i+1)$	$0 \le i < n - c - 1$
$a_{i,i+c+1} = -(i+1)$	$n - c - 1 \le i < n$
$a_{i,i+c+2} = 16$	$0 \le i < n - c - 2$
$a_{i,i-n+c+2} = 16$	$n - c - 2 \le i < n$
$a_{i,n-11+i+j} = 100j$	$1 \le i < 11 - j, 0 \le j < 10$
for any $n \ge 14$ and $1 \le c \le n - 13$.	

The sparsity pattern of D(20, 5) is as follows:

		-	-										1						
х					х	х	х			х	х	х	х	х	х	х	х	х	х
	x					х	х	х			х	х	х	х	х	х	х	х	x
		х					х	х	х			х	x	х	х	х	х	х	x
			х					х	х	х			x	х	х	х	х	x	x
				х					х	х	х			х	х	х	х	x	x
					x					x	х	х			x	х	x	х	x
						x					x	х	x			x	x	x	x
							х					x	x	х			x	x	x
							Λ					Λ					Λ		
								Х					Х	Х	Х			х	Х
									х					х	х	х			х
										х					х	х	х		
											х					х	х	х	
												х					х	х	x
х													х					х	x
х	х													х					x
x	х	x													х				
	х	x	x													х			
		x	x	х													х		
			x	x	х													x	
				х	х	х													х

By default imsl_c_generate_test_coordinate returns an *E*-matrix in coordinate representation. By specifying the IMSL_SYMMETRIC_STORAGE option, only the diagonal and lower triangle are returned. The scalar nz will contain the number of non-zeros in this representation.

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since *D*-matrices are not symmetric, the IMSL_SYMMETRIC_STORAGE option is not allowed.

Examples

Example 1

This example generates the matrix

$$E_{c}(5,3) = \begin{bmatrix} 6 & -1-i & 0 & -1+i & 0 \\ -1-i & 6 & -1-i & 0 & -1+i \\ 0 & -1-i & 6 & -1-i & 0 \\ -1-i & 0 & -1-i & 6 & -1+i \\ 0 & -1-i & 0 & -1-i & 6 \end{bmatrix}$$

and prints the result.

```
#include <imsl.h>
main()
{
        int i;
        int n = 5;
        int c = 3;
        int nz;
        Imsl_c_sparse_elem *a;
        a = imsl_c_generate_test_coordinate (n, c, &nz, 0);
        printf ("row col
for (i=0; i<nz; i++)</pre>
                                val\n");
                 printf (" %d
                                  %d (%5.1f, %5.1f)\n",
                         a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}
            Output
```

row	col		val	
0	0	(6.0,	0.0)
1	1	(6.0,	0.0)
2	2	(6.0,	0.0)
3	3	(6.0,	0.0)
4	4	(6.0,	0.0)
1	0	(-1.0,	-1.0)
2	1	(-1.0,	-1.0)
3	2	(-1.0,	-1.0)
4	3	(-1.0,	-1.0)
0	1	(-1.0,	1.0)
1	2	(-1.0,	1.0)
2	3	(-1.0,	1.0)
3	4	(-1.0,	1.0)
3	0	(-1.0,	-1.0)
4	1	(-1.0,	-1.0)
0	3	(-1.0,	1.0)
1	4	(-1.0,	1.0)

Example 2

In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

```
#include <imsl.h>
main()
{
        int i;
        int n = 5;
        int c = 3;
        int nz;
        Imsl_c_sparse_elem *a;
        a = imsl_c_generate_test_coordinate (n, c, &nz,
                IMSL_SYMMETRIC_STORAGE,
                0);
       printf ("row col
                            val\n");
        for (i=0; i<nz; i++)</pre>
               printf (" %d
                                %d (%5.1f, %5.1f)\n",
                       a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}
```

Output

row	col		val	
0	0	(6.0,	0.0)
1	1	(6.0,	0.0)
2	2	(6.0,	0.0)
3	3	(6.0,	0.0)
4	4	(6.0,	0.0)
1	0	(-1.0,	-1.0)
2	1	(-1.0,	-1.0)
3	2	(-1.0,	-1.0)
4	3	(-1.0,	-1.0)
3	0	(-1.0,	-1.0)
4	1	(-1.0,	-1.0)

Reference Material

User Errors

IMSL functions attempt to detect user errors and handle them in a way that provides as much information to the user as possible. To do this, we recognize various levels of severity of errors, and we also consider the extent of the error in the context of the purpose of the function; a trivial error in one situation may be serious in another. Functions attempt to report as many errors as they can reasonably detect. Multiple errors present a difficult problem in error detection because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user's input may be mathematically correct, but because of limitations of the computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the assessed degree of accuracy determines the severity of the error. In cases where the function computes several output quantities, if some are not computable but most are, an error condition exists; and its severity depends on an assessment of the overall impact of the error.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the IMSL C/Math/Library. Each level has an associated PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but they may also be set by the user. The purpose of having multiple error types is to provide independent control of actions to be taken for errors of different levels of severity. Upon return from a Visual Numerics function, exactly one error state exists. (A code 0 "error" is no error.) Even if more than one informational error occurs, only one message is printed (if the PRINT attribute is YES). Multiple errors for which no corrective action within the calling program is reasonable or necessary result in the printing of multiple messages (if the PRINT attribute for their severity level is YES). Errors of any of the severity levels except IMSL_TERMINAL may be informational errors. The include file, imsl.h, defines IMSL_NOTE, IMSL_ALERT, IMSL_WARNING, IMSL_FATAL, IMSL_TERMINAL, IMSL_WARNING_IMMEDIATE, and IMSL_FATAL_IMMEDIATE as an enumerated data type Imsl_error. IMSL_NOTE. A *note* is issued to indicate the possibility of a trivial error or simply to provide information about the computations.

Default attributes: PRINT=NO, STOP=NO.

IMSL_ALERT. An *alert* indicates that a function value has been set to 0 due to underflow.

Default attributes: PRINT=NO, STOP=NO.

IMSL_WARNING. A *warning* indicates the existence of a condition that may require corrective action by the user or calling routine. A warning error may be issued because the results are accurate to only a few decimal places, because some of the output may be erroneous, but most of the output is correct, or because some assumptions underlying the analysis technique are violated. Usually no corrective action is necessary, and the condition can be ignored.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL. A *fatal* error indicates the existence of a condition that may be serious. In most cases, the user or calling routine must take corrective action to recover.

Default attributes: PRINT=YES, STOP=YES.

IMSL_TERMINAL. A *terminal* error is serious. It usually is the result of an incorrect specification, such as specifying a negative number as the number of equations. These errors may also be caused by various programming errors impossible to diagnose correctly in C. The resulting error message may be perplexing to the user. In such cases, the user is advised to compare carefully the actual arguments passed to the function with the dummy argument descriptions given in the documentation. Special attention should be given to checking argument order and data types.

A terminal error is not an informational error, because corrective action within the program is generally not reasonable. In normal usage, execution is terminated immediately when a terminal error occurs. Messages relating to more than one terminal error are printed if they occur.

Default attributes: PRINT=YES, STOP=YES.

IMSL_WARNING_IMMEDIATE. An *immediate warning* error is identical to a warning error, except it is printed immediately.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL_IMMEDIATE. An *immediate fatal* error is identical to a fatal error, except it is printed immediately.

Default attributes: PRINT=YES, STOP=YES.

The user can set PRINT and STOP attributes by calling imsl_error_options as described in Chapter 12, "Utilities."

Errors in Lower-Level Functions

It is possible that a user's program may call an IMSL C/Math/Library function that in turn calls a nested sequence of lower-level functions. If an error occurs at a lower level in such a nest of functions, and if the lower-level function cannot pass the information up to the original user-called function, then a traceback of the functions is produced. The only common situation in which this can occur is when an IMSL C/Math/Library function calls a user-supplied routine that in turn calls another IMSL C/Math/Library function.

Functions for Error Handling

There are two ways in which the user may interact with the error handling system: (1) to change the default actions and (2) to determine the code of an informational error so as to take corrective action. The functions to use are imsl_error_options and imsl_error_code. Function imsl_error_options sets the actions to be taken when errors occur. Function imsl_error_code retrieves the integer code for an informational error. See functions imsl_error_options and imsl_error_code.

Use of Informational Error to Determine Program Action

In the program segment below, the Cholesky factorization of a matrix is to be performed. If it is determined that the matrix is not nonnegative definite (and often this is not immediately obvious), the program is to take a different branch.

Additional Examples

See functions imsl_error_options and imsl_error_code in Chapter 12, "Utilities" for additional examples.

Complex Data Types and Functions

Users can perform computations with complex arithmetic by using predefined data types. These types are available in two floating-point precisions:

- f_complex z for single-precision complex values
- d_complex w for double-precision complex values

Each complex value is a C language *structure* that consists of a pair of real values, the *real* and *imaginary* part of the complex number. To access the real part of a single-precision complex number z, use the subexpression z.re. For the imaginary part, use the subexpression z.im. Use subexpressions w.re and w.im for the real and imaginary

parts of a double-precision complex number *w*. The structure is declared within imsl.h as follows:

```
typedef struct{
    float re;
    float im;
} f_complex;
```

Several standard operations and functions are available for users to perform calculations with complex numbers within their programs. The operations are provided for both single and double precision data types. Notice that even the ordinary arithmetic operations of "+", "-", "*", and "/" must be performed using the appropriate functions.

A uniform prefix name is used as part of the names for the operations and functions. The prefix $imsl_c_$ is used for $f_complex$ data. The prefix $imsl_z_$ is used with $d_complex$ data.

Operation	Function Name	Function Result	Function Argument(s)
z = -x	<pre>z = imsl_c_neg(x)</pre>	f_complex	f_complex
z = x + y	$z = imsl_c_add(x,y)$	f_complex	f_complex (both)
z = x - y	$z = imsl_c_sub(x, y)$	f_complex	f_complex (both)
z = x * y	<pre>z = imsl_c_mul(x,y)</pre>	f_complex	f_complex (both)
z = x / y	$z = imsl_c_div(x,y)$	f_complex	f_complex (both)
$x = = y^a$	<pre>z = imsl_c_eq(x,y)</pre>	int	f_complex (both)
z = x	<pre>z = imsl_cz_convert(x)</pre>	f_complex	d_complex
Drop Precision			

Single-Precision Complex Operations and Functions

^{*a*} Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

Operation	Function Name	Function Result	Function Argument(s)
z = a + ib	<pre>z = imsl_cf_convert(a,b)</pre>	f_complex	float (both)
Ascend Data			
$z = \overline{x}$	<pre>z = imsl_c_conjg(x)</pre>	f_complex	f_complex
a = z	a = imsl_c_abs(z)	float	f_complex
$a = \arg(z)$	a = imsl_c_arg(z)	float	f_complex
$-\pi < a \leq \pi$			
$z = \sqrt{x}$	<pre>z = imsl_c_sqrt(z)</pre>	f_complex	f_complex
$z = \cos(x)$	$z = imsl_c_cos(z)$	f_complex	f_complex
$z = \sin(x)$	$z = imsl_c_sin(z)$	f_complex	f_complex
$z = \exp(x)$	<pre>z = imsl_c_exp(z)</pre>	f_complex	f_complex
$z = \log(x)$	<pre>z = imsl_c_log(z)</pre>	f_complex	f_complex
$z = x^a$	<pre>z = imsl_cf_power(x,a)</pre>	f_complex	f_complex, float
$z = x^{\mathcal{Y}}$	<pre>z = imsl_cc_power(x,y)</pre>	f_complex	f_complex (both)
$c = a^k$	<pre>c = imsl_fi_power(a,k)</pre>	float	float, int
$c = a^b$	<pre>c = imsl_ff_power(a,b)</pre>	float	float (both)
$m = j^k$	<pre>m = imsl_ii_power(j,k)</pre>	int	int (both)

Double-Precision Complex Operations and Functions

Operation	Function Name	Function Result	Function Argument(s)
z = -x	$z = imsl_z_neg(x)$	d_complex	d_complex
z = x + y	<pre>z = imsl_z_add(x,y)</pre>	d_complex	d_complex (both)
z = x - y	$z = imsl_z_sub(x,y)$	d_complex	d_complex(both)
z = x * y	<pre>z = imsl_z_mul(x,y)</pre>	d_complex	d_complex (both)
z = x / y	$z = imsl_z_div(x,y)$	d_complex	d_complex (both)
$x = y^b$	$z = imsl_z_eq(x,y)$	int	d_complex(both)
z = x	<pre>z = imsl_zc_convert(x)</pre>	d_complex	f_complex
Drop Precision			
z = a + ib	<pre>z = imsl_zd_convert(a,b)</pre>	d_complex	double (both)
Ascend Data			

^b Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

Operation	Function Name	Function Result	Function Argument(s)
z = x	<pre>z = imsl_z_conjg(x)</pre>	d_complex	d_complex
a = z	a = imsl_z_abs(z)	double	d_complex
$a = \arg(z)$	<pre>a = imsl_z_arg(z)</pre>	double	d_complex
$-\pi < a \leq \pi$			
$z = \sqrt{x}$	$z = imsl_z_sqrt(z)$	d_complex	d_complex
$z = \cos(x)$	$z = imsl_z_cos(z)$	d_complex	d_complex
$z = \sin(x)$	$z = imsl_z_sin(z)$	d_complex	d_complex
$z = \exp(x)$	$z = imsl_z_exp(z)$	d_complex	d_complex
$z = \log(x)$	$z = imsl_z_log(z)$	d_complex	d_complex
$z = x^a$	<pre>z = imsl_zd_power(x,a)</pre>	d_complex	d_complex, double
$z = x^{y}$	<pre>z = imsl_zz_power(x,y)</pre>	d_complex	d_complex(both)
$c = a^k$	<pre>c = imsl_di_power(a,k)</pre>	double	double, int
$c = a^b$	<pre>c = imsl_dd_power(a,b)</pre>	double	double (both)
$m = j^k$	<pre>m = imsl_ii_power(j,k)</pre>	int	int (both)

The following sample code computes and prints several quantities associated with complex numbers. Note that the quantity

$w = \sqrt{3+4i}$

has a rounding error associated with it. Also the quotient z = (1 + 2i) / (3 + 4i) has a rounding error. The result is acceptable in both cases because the relative errors |w - (2 + 2i)| / |w| and |z * (3 + 4i) - (1 + 2i)| / |(1 + 2i)| are approximately the size of machine precision.

#include <imsl.h>

678 • Complex Data Types and Functions

```
w = imsl_c_sqrt(y);
printf("Square Root: w = sqrt(y) = (%g, %g)\n", w.re, w.im);
                       /* Check results */
z = imsl_c_mul(w,w);
printf("Check:
                 w*w = (%g, %g)\n", z.re, z.im);
isame = imsl_c_eq(y,z);
printf("
                 y == w*w = %d\n", isame);
z = imsl_c_sub(z,y);
printf("Difference: w*w - y = (g, g) = (g, g) * eps\n\n",
      z.re, z.im, z.re/eps, z.im/eps);
                       /* Divide inputs */
z = imsl_c_div(x,y);
printf("Quotient: z = x/y = (\&g, \&g) n", z.re, z.im);
                       /* Check results */
w = imsl_c_sub(x, imsl_c_mul(z, y));
```

Output

}

Data: x = (1, 2) y = (3, 4)Sum: z = x + y = (4, 6)Square Root: w = sqrt(y) = (2, 1)Check: $w^*w = (3, 4)$ $y == w^*w = 0$ Difference: $w^*w - y = (-2.38419e-07, 4.76837e-07) = (-2, 4) * eps$ Quotient: z = x/y = (0.44, 0.08)Check: $w = x - z^*y = (5.96046e-08, 0) = (0.5, 0) * eps$

Appendix A: References

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Ahrens and Dieter

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from gamma, beta, Poisson, and binomial distributions, *Computing*, **12**, 223–246.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local procedures, *Journal of the ACM*, **17**, 589–602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points, *ACM Transactions on Mathematical Software*, **4**, 148–159.

Ashcraft

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse symmetric positive definite systems, Technical Report ETA-TR-51, Engineering Technology Applications Division, Boeing Computer Services, Seattle, Washington.

Ashcraft et al.

Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix methods for large linear systems on vector supercomputers. *Intern. J. Supercomputer Applic.*, **1**(**4**), 10–29.

Atkinson (1979)

Atkinson, A.C. (1979), A family of switching algorithms for the computer generation of beta random variates, *Biometrika*, **66**, 141–145.

Atkinson (1978)

Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

Barnett

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy, *Computer Physics Communication*, **21**, 297–314.

Barrett and Healy

Barrett, J.C., and M. J.R. Healy (1978), A remark on Algorithm AS 6: Triangular decomposition of a symmetric matrix, *Applied Statistics*, **27**, 379–380.

Bays and Durham

Bays, Carter, and S.D. Durham (1976), Improving a poor random number generator, *ACM Transactions on Mathematical Software*, **2**, 59–64.

Blom

Blom, Gunnar (1958), *Statistical Estimates and Transformed Beta-Variables*, John Wiley & Sons, New York.

Boisvert

Boisvert, Ronald (1984), A fourth order accurate fast direct method fo the Helmholtz equation, *Elliptic Problem solvers II*, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando, Florida, 35–44.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio, *Communications of the ACM*, **17**, 156–157.

Brent

Brent, Richard P. (1973), *Algorithms for Minimization without Derivatives*, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Brigham

Brigham, E. Oran (1974), *The Fast Fourier Transform*, Prentice-Hall, Englewood Cliffs, New Jersey.

Burgoyne

Burgoyne, F.D. (1963), Approximations to Kelvin functions, *Mathematics of Computation*, **83**, 295-298.

Carlson

Carlson, B.C. (1979), Computing elliptic integrals by duplication, *Numerische Mathematik*, **33**, 1–16.

Carlson and Notis

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, *ACM Transactions on Mathematical Software*, **7**, 398–403.

Carlson and Foley

Carlson, R.E., and T.A. Foley (1991), The parameter R^2 in multiquadric interpolation, *Computer Mathematical Applications*, **21**, 29–42.

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters, *Communications of the ACM*, **21**, 317–322.

Cohen and Taylor

Cohen, E. Richard, and Barry N. Taylor (1986), *The 1986 Adjustment of the Fundamental Physical Constants*, Codata Bulletin, Pergamon Press, New York.

Cooley and Tukey

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex Fourier series, *Mathematics of Computation*, **19**, 297–301.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, *Applied Statistics*, **17**, 190–192.

Courant and Hilbert

Courant, R., and D. Hilbert (1962), *Methods of Mathematical Physics, Volume II*, John Wiley & Sons, New York, NY.

Craven and Wahba

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, *Numerische Mathematik*, **31**, 377–403.

Crowe et al.

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), *A direct sparse linear equation solver using linked list storage*, IMSL Technical Report 9006, IMSL, Houston.

Davis and Rabinowitz

Davis, Philip F., and Philip Rabinowitz (1984), *Methods of Numerical Integration*, Academic Press, Orlando, Florida.

de Boor

de Boor, Carl (1978), *A Practical Guide to Splines*, Springer-Verlag, New York.

Dennis and Schnabel

Dennis, J.E., Jr., and Robert B. Schnabel (1983), *Numerical Methods for Unconstrained Optimization and Nonlinear Equations*, Prentice-Hall, Englewood Cliffs, New Jersey.

Dongarra et al.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), *LINPACK User's Guide*, SIAM, Philadelphia.

Draper and Smith

Draper, N.R., and H. Smith (1981), *Applied Regression Analysis*, 2nd. ed., John Wiley & Sons, New York.

DuCroz et al.

Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of band matrices using Level-3 BLAS, *Proceedings of CONPAR 90-VAPP IV*, Lecture Notes in Computer Science, Springer, Berlin, 222.

Duff et al.

Duff, I. S., A. M. Erisman, and J. K. Reid (1986), *Direct Methods for Sparse Matrices*, Clarendon Press, Oxford.

Duff and Reid

Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear equations. *ACM Transactions on Mathematical Software*, **9**, 302–325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations. *SIAM Journal on Scientific and Statistical Computing*, **5**, 633–641.

Enright and Pryce

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value methods, *ACM Transactions on Mathematical Software*, **13**, 1–22.

Farebrother and Berry

Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6: Triangular decomposition of a symmetric matrix, *Applied Statistics*, **23**, 477.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, *Annals of Eugenics*, **7**, 179–188.

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of multiplicative congruential random number generators with modulus $2^{31} - 1$, *Journal of the American Statistical Association*, **77**, 129–136.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital computer, *SIAM Journal on Applied Mathematics*, **5**, 74–88.

Franke

Franke, R. (1982), Scattered data interpolation: Tests of some methods, *Mathematics of Computation*, **38**, 181–200.

Garbow et al.

Garbow, B.S., J.M. Boyle, K.J. Dongarra, and C.B. Moler (1977), *Matrix Eigensystem Routines - EISPACK Guide Extension*, Springer–Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of Weeks' method for the inverse Laplace transform problem, *ACM Transactions on Mathematical Software*, **14**, 163–170.

Gautschi

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, *Mathematics of Computation*, **22**, 251–270.

Gear

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear least squares problems, *Applied Statistics*, **23**, 448–454.

George and Liu

George, A., and J.W.H. Liu (1981), *Computer Solution of Large Sparse Positive Definite Systems*, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill and Murray

Gill, Philip E., and Walter Murray (1976), *Minimization subject to bounds on the variables*, NPL Report NAC 92, National Physical Laboratory, England.

Gill et al.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical aspects of nonlinear programming, in *Computational Mathematical Programming*, (edited by K. Schittkowski), NATO ASI Series, **15**, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex quadratic programs, *Mathematical Programming*, **27**, 1–33.

Golub

Golub, G.H. (1973), Some modified matrix eigenvalue problems, *SIAM Review*, **15**, 318–334.

Golub and Van Loan

Golub, G.H., and C.F. Van Loan (1989), *Matrix Computations*, Second Edition, The Johns Hopkins University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1983), *Matrix Computations*, Johns Hopkins University Press, Baltimore, Maryland.

Golub and Welsch

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, *Mathematics of Computation*, **23**, 221–230.

Gregory and Karney

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redfish

Griffin, R., and K A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, *Communications of the ACM*, **13**, 54.

Grosse

Grosse, Eric (1980), Tensor spline approximation, *Linear Algebra and its Applications*, **34**, 29–41.

Guerra and Tapia

Guerra, V., and R. A. Tapia (1974), *A local procedure for error detection and data smoothing*, MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin, Madison.

Hageman and Young

Hageman, Louis A., and David M. Young (1981), *Applied Iterative Methods*, Academic Press, New York.

Hanson

Hanson, Richard J. (1986), Least squares with bounds and linear constraints, *SIAM Journal Sci. Stat. Computing*, **7**, #3.

Hardy

Hardy, R.L. (1971), Multiquadric equations of topography and other irregular surfaces, *Journal of Geophysical Research*, **76**, 1905–1915.

Hart et al.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J.Maehly, Charles K. Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), *Computer Approximations*, John Wiley & Sons, New York.

Healy

Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a symmetric matrix, *Applied Statistics*, **17**, 195–197.

Herraman

Herraman, C. (1968), Sums of squares and products matrix, *Applied Statistics*, **17**, 289–292.

Higham

Higham, Nicholas J. (1988), FORTRAN Codes for estimating the onenorm of a real or complex matrix, with applications to condition estimation, *ACM Transactions on Mathematical Software*, **14**, 381-396.

Hill

Hill, G.W. (1970), Student's *t*-distribution, *Communications of the ACM*, **13**, 617–619.

Hindmarsh

Hindmarsh, A.C. (1974), *GEAR: Ordinary Differential Equation System Solver*, Lawrence Livermore National Laboratory Report UCID-30001, Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, *Applied Statistics*, **26**, 67–69.

Huber

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hull et al.

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), *User's guide for DVERK* — *A subroutine for solving non-stiff ODEs*, Department of Computer Science Technical Report 100, University of Toronto.

Irvine et al.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and smoothing, *Constructive Approximation*, **2**, 129–151.

Jackson et al.

Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical criterion for comparing Runge-Kutta formulas, *SIAM Journal of Numerical Analysis*, **15**, 618–641.

Jenkins

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, *ACM Transactions on Mathematical Software*, **1**, 178–189.

Jenkins and Traub

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic iteration, *SIAM Journal on Numerical Analysis*, **7**, 545–566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration, *Numerishe Mathematik*, **14**, 252–263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, *Communications of the ACM*, **15**, 97–99.

Jöhnk

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-zahlen, *Metrika*, **8**, 5–15.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1973), *The Advanced Theory of Statistics*, Volume 2: *Inference and Relationship*, third edition, Charles Griffin & Company, London, Chapter 30.

Kennedy and Gentle

Kennedy, William J., Jr., and James E. Gentle (1980), *Statistical Computing*, Marcel Dekker, New York.

Kinnucan and Kuki

Kinnucan, P., and H. Kuki (1968), A single precision inverse error function subroutine, Computation Center, University of Chicago.

Knuth

Knuth, Donald E. (1981), *The Art of Computer Programming*, Volume 2: *Seminumerical Algorithms*, 2nd. ed., Addison-Wesley, Reading, Mass.

Learmonth and Lewis

Learmonth, G.P., and P.A.W. Lewis (1973), *Naval Postgraduate School Random Number Generator Package LLRANDOM*, *NPS55LW73061A*, Naval Postgraduate School, Monterey, California.

Lehmann

Lehmann, E.L. (1975), *Nonparametrics: Statistical Methods Based on Ranks*, Holden-Day, San Francisco.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least squares, *Quarterly of Applied Mathematics*, **2**, 164–168.

Leavenworth

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, *Communications of the ACM*, **3**, 602.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number generator for the System/ 360, *IBM Systems Journal*, **8**, 136–146.

Liepman

Liepman, David S. (1964), Mathematical constants, in *Handbook of Mathematical Functions*, Dover Publications, New York.

Liu

Liu, J.W.H. (1987), A collection of routines for an implementation of the *multifrontal method*, Technical Report CS-87-10, Department of Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. *ACM Transactions on Mathematical Software*, **15**, 310-325.

Liu, J.W.H. (1990), *The multifrontal method for sparse matrix solution: theory and practice*, Technical Report CS-90-04, Department of Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse factorization. *ACM Transactions on Mathematical Software*, **12**, 249-264.

Lyness and Giunta

Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion of the Laplace transform, *Mathematics of Computation*, **47**, 313–322.

Madsen and Sincovec

Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software for partial differential equations, *ACM Transactions on Mathematical Software*, **5**, #3, 326–351.

Maindonald

Maindonald, J.H. (1984), *Statistical Computation*, John Wiley & Sons, New York.

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, *SIAM Journal on Applied Mathematics*, **11**, 431–441.

Martin and Wilkinson

Martin, R.S., and J.H. Wilkinson (1971), Reduction of the Symmetric Eigenproblem $Ax = \lambda Bx$ and Related Problems to Standard Form, *Volume II, Linear Algebra Handbook*, Springer, New York.

Martin, R.S., and J.H. Wilkinson (1971), The Modified LR Algorithm for Complex Hessenberg Matrices, *Handbook, Volume II, Linear Algebra*, Springer, New York.

Michelli

Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices and conditionally positive definite functions, *Constructive Approximation*, **2**, 11–22.

Michelli et al.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions, *Numerische Mathematik*, **26**, 279–285.

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained L_p approximation, *Constructive Approximation*, **1**, 93–102.

Moler and Stewart

Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems, *SIAM Journal on Numerical Analysis*, **10**, 241-256.

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), *User Guide for MINPACK-1*, Argonne National Laboratory Report ANL-80-74, Argonne, Illinois.

Müller

Müller, D.E. (1956), A method for solving algebraic equations using an automatic computer, *Mathematical Tables and Aids to Computation*, **10**, 208–215.

Murtagh

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGraw-Hill, New York.

Murty

Murty, Katta G. (1983), *Linear Programming*, John Wiley and Sons, New York.

Neter and Wasserman

Neter, John, and William Wasserman (1974), *Applied Linear Statistical Models*, Richard D. Irwin, Homewood, Illinois.

Neter et al.

Neter, John, William Wasserman, and Michael H. Kutner (1983), *Applied Linear Regression Models*, Richard D. Irwin, Homewood, Illinois.

Østerby and Zlatev

Østerby, Ole, and Zahari Zlatev (1982), Direct Methods for Sparse Matrices, *Lecture Notes in Computer Science*, **157**, Springer-Verlag, New York.

Owen

Owen, D.B. (1962), *Handbook of Statistical Tables*, Addison-Wesley Publishing Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central *t* distribution, *Biometrika*, **52**, 437–446.

Parlett

Parlett, B.N. (1980), *The Symmetric Eigenvalue Problem*, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, *Communications of the ACM*, **13**, 624.

Piessens et al.

Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K. Kahaner (1983), *QUADPACK*, Springer-Verlag, New York.

Powell

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, *Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics*, (edited by G. A. Watson), **630**, Springer-Verlag, Berlin, Germany, 144–157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani, *Mathematical Programming Study*, **25**, 46–61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimizations calculations, DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), *TOLMIN: A fortran package for linearly constrained optimizations calculations*, DAMTP Report NA2, University of Cambridge, England.

Powell, M.J.D. (1983), *ZQPCVX a FORTRAN subroutine for convex quadratic programming*, DAMTP Report 1983/NA17, University of Cambridge, Cambridge, England.

Reinsch

Reinsch, Christian H. (1967), Smoothing by spline functions, *Numerische Mathematik*, **10**, 177–183.

Rice

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New York.

Saad and Schultz

Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, *SIAM Journal of Scientific and Statistical Computing*, **7**, 856-869.

Sallas and Lionti

Sallas, William M., and Abby M. Lionti (1988), Some useful computing formulas for the nonfull rank linear model with linear equality restrictions, IMSL Technical Report 8805, IMSL, Houston.

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics—the two-sample case, *Annals of Mathematical Statistics*, **27**, 590–615.

Schittkowski

Schittkowski, K. (1987), *More test examples for nonlinear programming codes*, Springer-Verlag, Berlin, **74**.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems, (edited by Clyde L. Monma), *Annals of Operations Research*, **5**, 485–500.

Schittkowski, K. (1980), Nonlinear programming codes, *Lecture Notes in Economics and Mathematical Systems*, **183**, Springer-Verlag, Berlin, Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function, *Mathematik Operationsforschung und Statistik, Serie Optimization*, **14**, 197–216.

Schmeiser

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete random variates, in *Computer Science and Statistics: Proceedings of the Fifteenth Symposium on the Interface*, (edited by James E. Gentle), North-Holland Publishing Company, Amsterdam, 154– 160.

Schmeiser and Babu

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via exponential majorizing functions, *Operations Research*, **28**, 917–926.

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), *Poisson Random Variate Generation*, Research Memorandum 81–4, School of Industrial Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser and Lal

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating gamma variates, *Journal of the American Statistical Association*, **75**, 679–682.

Shampine

Shampine, L.F. (1975), Discrete least squares polynomial fits, *Communications of the ACM*, **18**, 179–180.

Shampine and Gear

Shampine, L.F. and C.W. Gear (1979), A user's view of solving stiff ordinary differential equations, *SIAM Review*, **21**, 1–17.

Sincovec and Madsen

Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations, *ACM Transactions on Mathematical Software*, **1**, #3, 232–260.

Singleton

Singleton, T.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage, *Communications of the ACM*, **12**, 185–187.

Smith et al.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler (1976), *Matrix Eigensystem Routines — EISPACK Guide*, Springer-Verlag, New York.

Smith

Smith, P.W. (1990), On knots and nodes for spline interpolation, *Algorithms for Approximation II*, J.C. Mason and M.G. Cox, Eds., Chapman and Hall, New York.

Stewart

Stewart, G.W. (1973), *Introduction to Matrix Computations*, Academic Press, New York.

Stoer

Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear programs, in *Computational Mathematical Programming*, (edited by K. Schittkowski), NATO ASI Series, **15**, Springer-Verlag, Berlin, Germany.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, *Mathematics of Computation*, **22**, 144–158.

Stroud and Secrest

Stroud, A.H., and D.H. Secrest (1963), *Gaussian Quadrature Formulae*, Prentice-Hall, Englewood Cliffs, New Jersey.

Temme

Temme, N.M (1975), On the numerical evaluation of the modified Bessel Function of the third kind, *Journal of Computational Physics*, **19**, 324–337.

Thompson and Barnett

Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions $I_V(z)$ and $K_V(z)$ of real order and complex argument, *Computer Physics Communication*, **47**, 245–257.

Tukey

Tukey, John W. (1962), The future of data analysis, *Annals of Mathematical Statistics*, **33**, 1–67.

Velleman and Hoaglin

Velleman, Paul F., and David C. Hoaglin (1981), *Applications, Basics, and Computing of Exploratory Data Analysis*, Duxbury Press, Boston.

Walker

Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations, *SIAM Journal of Scientific and Statistical Computing*, **9**, 152-163.

Watkins

Watkins, David S., L. Elsner (1991), Convergence of algorithm of decomposition type for the eigenvalue problem, *Linear Algebra Applications*, **143**, pp. 29–47.

Weeks

Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, *J. ACM*, **13**, 419–429.

Appendix B: Alphabetical Summary of Routines

airy_Ai	Evaluates the Airy function.	480
airy_Ai_derivative	Evaluates the derivative of the Airy function	482
airy_Bi	Evaluates the Airy function of the second kind	481
airy_Bi_derivative	Evaluates the derivative of the Airy function of the second kind	483
bessel_exp_I0	Evaluates the exponentially scale modified Bessel function of the first kind of order zero	459
bessel_exp_I1	Evaluates the exponentially scaled modified Bessel function of the first kind of order one	460
bessel_exp_K0	Evaluates the exponentially scaled modified Bessel function of the third kind of order zero	466
bessel_exp_K1	Evaluates the exponentially scaled modified Bessel function of the third kind of order one	468
bessel_I0	Evaluates the real modified Bessel function of the first kind of order zero $IO(x)$	458
bessel_I1	Evaluates the real modified Bessel function of the first kind of order one $I1(x)$	460
bessel_Ix	Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments	462
bessel_J0	Evaluates the real Bessel function of the first kind of order zero $JO(x)$	448
bessel_J1	Evaluates the real Bessel function of the first kind of order one $J1(x)$	450
bessel_Jx	Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments	451
bessel_K0	Evaluates the real modified Bessel function of the third kind of order zero $KO(x)$	464
bessel_K1	Evaluates the real modified Bessel function of the third kind of order one $K1(x)$	467

Appendix B: Alphabetical Summary of Routines • B-1

bessel_Kx	Evaluates a sequence of modified Bessel functions of the third kind with real order and complex arguments	470
bessel_Y0	Evaluates the real Bessel function of the second kind of order zero $YO(x)$	453
bessel_Y1	Evaluates the real Bessel function of the second kind of order one $Y1(x)$	455
bessel_Yx	Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments	456
beta	Evaluates the real beta function $\beta(x, y)$	439
beta_cdf	Evaluates the beta probability distribution function	512
beta_incomplete	Evaluates the real incomplete beta function $Ix = \beta x(a, b)/\beta(a, b)$	442
beta_inverse_cdf	Evaluates the inverse of the beta distribution function	513
binomial_cdf	Evaluates the binomial distribution function	507
bivariate_normal_cdf	Evaluates the bivariate normal distribution function	514
bounded_least_squares	Solves a nonlinear least-squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm	416
chi_squared_cdf	Evaluates the chi-squared distribution function	495
chi_squared_inverse_cdf	Evaluates the inverse of the chi-squared distribution function	497
chi_squared_test	Performs a chi-squared goodness-of-fit test	528
constant	Returns the value of various mathematical and physical constants	599
convolution	Computes the convolution, and optionally, the correlation of two real vectors	342
convolution (complex)	Computes the convolution, and optionally, the correlation of two complex vectors	348
covariances	Computes the sample variance-covariance or correlation matrix	536
ctime	Returns the number of CPU seconds used	592
cub_spline_integral	Computes the integral of a cubic spline	158
cub_spline_interp_e_cnd	Computes a cubic spline interpolant, specifying various endpoint conditions	143
cub_spline_interp_shape	Computes a shape-preserving cubic spline	150
cub_spline_smooth	Computes a smooth cubic spline approximation to noisy data by using cross-validation to estimate the smoothing parameter or by directly choosing the smoothing parameter	203
cub_spline_value	Computes the value of a cubic spline or the value of one of its derivatives	155
date_to_days	Computes the number of days from January 1, 1900, to the given date	593

days_to_date	Gives the date corresponding to the number of days since January 1, 1900	594
eig_gen	Computes the eigenexpansion of a real matrix A	116
eig_gen (complex)	Computes the eigenexpansion of a complex matrix A	118
eig_herm (complex)	Computes the eigenexpansion of a complex Hermitian matrix A	124
eig_sym	Computes the eigenexpansion of a real symmetric matrix A	121
eig_symgen	Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$. <i>A</i> and <i>B</i> are real and symmetric. <i>B</i> is positive definite	127
elliptic_integral_E	Evaluates the complete elliptic integral of the second kind $E(x)$	472
elliptic_integral_K	Evaluates the complete elliptic integral of the kind $K(x)$	471
elliptic_integral_RC	Evaluates an elementary integral from which inverse circular functions, logarithms, and inverse hyperbolic functions can be computed	477
elliptic_integral_RD	Evaluates Carlson's elliptic integral of the second kind $RD(x, y, z)$	474
elliptic_integral_RF	Evaluates Carlson's elliptic integral of the first kind $RF(x, y, z)$	473
elliptic_integral_RJ	Evaluates Carlson's elliptic integral of the third kind $RJ(x, y, z, \rho)$	476
erf	Evaluates the real error function $erf(x)$	433
erf_inverse	Evaluates the real inverse error function $\operatorname{erf-1}(x)$	436
erfc	Evaluates the real complementary error function $\operatorname{erfc}(x)$	434
erfc_inverse	Evaluates the real inverse complementary error function $\operatorname{erfc-1}(x)$	437
error_code	Gets the code corresponding to the error message from the last function called	598
error_options	Sets various error handling options	595
F_cdf	Evaluates the F distribution function	498
F_inverse_cdf	Evaluates the inverse of the F distribution function	501
fast_poisson_2d	Solves Poisson's or Helmholtz's equation on a two- dimensional rectangle using a fast Poisson solver based on the HODIE finite-difference scheme on a uniform mesh	311
fcn_derivative	Computes the first, second or third derivative of a user-supplied function	277

fft_2d_complex	Computes the complex discrete two-dimensional Fourier transform of a complex two-dimensional array	338
fft_complex	Computes the complex discrete Fourier transform of a complex sequence	325
fft_complex_init	Computes the parameters for imsl_c_fft_complex	328
fft_cosine	Computes the discrete Fourier cosine transformation of an even sequence	329
fft_cosine_init	Computes the parameters needed for imsl_f_fft_cosine	332
fft_real	Computes the real discrete Fourier transform of a real sequence	319
fft_real_init	Computes the parameters for imsl_f_fft_real	323
fft_sine	Computes the discrete Fourier sine transformation of an odd sequence	334
fft_sine_init	Computes the parameters needed for imsl_f_fft_sine	336
<pre>fresnel_integral_C</pre>	Evaluates the cosine Fresnel integral	478
fresnel_integral_S	Evaluates the sine Fresnel integral	479
gamma	Evaluates the real gamma function $\Gamma(x)$	443
gamma_cdf	Evaluates the gamma distribution function	505
gamma_incomplete	Evaluates the incomplete gamma function $\gamma(a, x)$	446
gauss_quad_rule	Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions	273
geneig	Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$, with A and B real	130
geneig (complex)	Computes the generalized eigenexpansion of a system $Ax = \lambda Bx$, with A and B complex	133
generate_test_band	Generates test matrices of class $E(n, c)$	660
<pre>generate_test_band (complex)</pre>	Generates test matrices of class $Ec(n, c)$	662
generate_test_coordinate	Generates test matrices of class $D(n, c)$ and $E(n, c)$	664
generate_test_coordinate (complex)	Generates test matrices of class $D(n, c)$ and $E(n, c)$	668
hypergeometric_cdf	Evaluates the hypergeometric distribution function	509
int_fcn	Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules	237
int_fcn_2d	Computes a two-dimensional iterated integral	266
int_fcn_alg_log	Integrates a function with algebraic-logarithmic singularities	245

int_fcn_cauchy	Computes integrals of the form	260
	$\int_{a}^{b} \frac{f(x)}{x-c} dx$	
	in the Cauchy principal value sense	
int_fcn_fourier	Computes a Fourier sine or cosine transform	256
int_fcn_hyper_rect	Integrates a function on a hyper-rectangle	270
int_fcn_inf	Integrates a function over an infinite or semi- infinite interval	248
int_fcn_sing	Integrates a function, which may have endpoint singularities, using a globally adaptive scheme based on Gauss-Kronrod rules	233
int_fcn_sing_pts	Integrates a function with singularity points given	241
int_fcn_smooth	Integrates a smooth function using a nonadaptive rule	263
int_fcn_trig	Integrates a function containing a sine or a cosine factor	252
inverse_laplace	Computes the inverse Laplace transform of a complex function	354
kelvin_bei0	Evaluates the Kelvin function of the first kind, bei, of order zero	485
kelvin_bei0_derivative	Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero	499
kelvin_ber0	Evaluates the Kelvin function of the first kind, ber, of order zero	484
kelvin_ber0_derivative	Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero	488
kelvin_kei0	Evaluates the Kelvin function of the second kind, kei, of order zero	486
kelvin_kei0_derivative	Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero	491
kelvin_ker0	Evaluates the Kelvin function of the second kind, der, of order zero	486
kelvin_ker0_derivative	Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero	490
lin_least_squares_gen	Solves a linear least-squares problem $Ax = b$	84
lin_lsq_lin_constraints	Solves a linear least squares problem with linear constraints	91
lin_prog	Solves a linear programming problem using the revised simplex algorithm	402
lin_sol_def_cg	Solves a real symmetric definite linear system using a conjugate gradient method	78
lin_sol_gen	Solves a real general system of linear equations $Ax = b$	4

lin_sol_gen (complex)	Solves a complex general system of linear equations $Ax = b$	11
lin_sol_gen_band	Solves a real geeral band system of linear equations $Ax=b$	26
lin_sol_gen_band (complex)	Solves a complex general system of linear equations $Ax = b$	31
lin_sol_gen_coordinate	Solves a sparse system of linear equations $Ax = b$	44
lin_sol_gen_coordinate (complex)	Solves a system of linear equations $Ax = b$, with sparse complex coefficient matrix A	54
lin_sol_gen_min_residual	Solves a linear system $Ax = b$ using the restarted generalized minimum residual (GMRES) method	73
lin_sol_nonnegdef	Solves a real symmetric nonnegative definite system of linear equations $Ax = b$	106
lin_sol_posdef	Solves a real symmetric positive definite system of linear equations $Ax = b$	17
<pre>lin_sol_posdef (complex)</pre>	Solves a complex Hermitian positive definite system of linear equations $Ax = b$	22
lin_sol_posdef_band	Solves a real symmetric positive definite system of linear equations $Ax = b$ in band symmetric storage mode	35
lin_sol_posdef_band (complex)	Solves a complex Hermitian positive definite system of linear equations $Ax = b$ in band symmetric storage mode	39
lin_sol_posdef_coordinate	Solves a sparse real symmetric positive definite system of linear equations $Ax = b$	62
lin_sol_posdef_coordinate (complex)	Solves a sparse Hermitian positive definite system of linear equations $Ax = b$	68
lin_svd_gen	Computes the SVD, $A = USVT$, of a real rectangular matrix A	96
lin_svd_gen (complex)	Computes the SVD, $A = USVH$, of a complex rectangular matrix A	101
log_beta	Evaluates the logarithm of the real beta function ln $\beta(x, y)$	441
log_gamma	Evaluates the logarithm of the absolute value of the gamma function log $ \Gamma(x) $	445
machine (float)	Returns information describing the computer's floating-point arithmetic	605
machine (integer)	Returns integer information describing the computer's arithmetic	603
mat_add_band	Adds two band matrices, both in band storage mode, $C \leftarrow \alpha A + \beta B$	639
<pre>mat_add_band (complex)</pre>	Adds two band matrices, both in band storage mode, $C \leftarrow \alpha A + \beta B$	642
<pre>mat_add_coordinate</pre>	Performs element-wise addition of two real matrices stored in coordinate format, $C \leftarrow \alpha A + \beta B$	646
<pre>mat_add_coordinate (complex)</pre>	Performs element-wise addition on two complex matrices stored in coordinate format, $C \leftarrow \alpha A + \beta B$	649

mat_mul_rect	Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product	614
<pre>mat_mul_rect (complex)</pre>	Computes the transpose of a matrix, the conjugate- transpose of a matrix, a matrix-vector product, a matrix-matrix product, the bilinear form, or any triple product	618
mat_mul_rect_band	Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in band form	621
<pre>mat_mul_rect_band (complex)</pre>	Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices of complex type and stored in band form	625
<pre>mat_mul_rect_coordinate</pre>	Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix product, all matrices stored in sparse coordinate form	630
<pre>mat_mul_rect_coordinate (complex)</pre>	Computes the transpose of a matrix, a matrix-vector product or a matrix-matrix product, all matrices stored in sparse coordinate form	634
matrix_norm	Computes various norms of a rectangular matrix	653
matrix_norm_band	Computes various norms of a matrix stored in band storage mode	654
matrix_norm_coordinate	Computes various norms of a matrix stored in coordinate format	657
min_con_gen_lin	Minimizes a general objective function subject to linear equality/inequality constraints	410
min_con_nonlin	Solves a general nonlinear programming problem using the successive quadratic programming algorithm	423
min_uncon	Finds the minimum point of a smooth function $f(x)$ of a single variable using only function evaluations	379
min_uncon_deriv	Finds the minimum point of a smooth function $f(x)$ of a single variable using both function and first derivative evaluations	383
min_uncon_multivar	Minimizes a function $f(x)$ of n variables using a quasi-Newton method	387
nonlin_least_squares	Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm	394
normal_cdf	Evaluates the standard normal (Gaussian) distribution function	492
normal_inverse_cdf	Evaluates the inverse of the standard normal (Gaussian) distribution function	494
ode_adams_gear	Solves a stiff initial-value problem for ordinary differential equations using the Adams-Gear methods	288

ode_runge_kutta	Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method	283
output_file	Sets the output file or the error message output file	590
page	Sets or retrieve the page width or length	583
pde_method_of_lines	Solves a system of partial differential equations of the form $ut + f(x, t, u, ux, uxx)$ using the method of lines	295
poisson_cdf	Evaluates the Poisson distribution function	510
poly_regression	Performs a polynomial least-squares regression	549
quadratic_prog	Solves a quadratic programming problem subject to linear equality or inequality constraints	406
radial_evaluate	Evaluates a radial basis fit	229
radial_scattered_fit	Computes an approximation to scattered data in Rn for $n \ge 2$ using radial basis functions	223
random_beta	Generates pseudorandom numbers from a beta distribution	573
random_exponential	Generates pseudorandom numbers from a standard exponential distribution	575
random_gamma	Generates pseudorandom numbers from a standard gamma distribution	571
random_normal	Generates pseudorandom numbers from a standard normal distribution using an inverse CDF method	568
random_option	Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator	565
random_poisson	Generates pseudorandom numbers from a Poisson distribution	570
random_seed_get	Retrieves the current value of the seed used in the IMSL random number generators	563
random_seed_set	Initializes a random seed for use in the ISML random number generators	564
random_uniform	Generates pseudorandom numbers from a uniform (0, 1) distribution	566
ranks	Computes the ranks, normal scores, or exponential scores for a vector of observations	557
regression	Fits a multiple linear regression model using least squares	541
scattered_2d_interp	Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables	218
simple_statistics	Computes basic univariate statistics	519
sort	Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned	607
sort (integer)	Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by absolute value, and a sort permutation can be returned	610

spline_2d_integral	Evaluates the integral of a tensor-product spline on a rectangular domain	184
spline_2d_interp	Computes a two-dimensional, tensor-product spline interpolant from two-dimensional, tensor-product data	169
spline_2d_least_squares	Computes a two-dimensional, tensor-product spline approximant using least squares	197
spline_2d_value	Computes the value of a tensor-product spline or the value of one of its partial derivatives	180
spline_integral	Computes the integral of a spline	178
spline_interp	Computes a spline interpolant	159
spline_knots	Computes the knots for a spline interpolant	165
spline_least_squares	Computes a least-squares spline approximation	191
spline_lsq_constrained	Computes a least-squares constrained spline approximation	207
spline_value	Computes the value of a spline or the value of one of its derivatives	175
t_cdf	Evaluates the Student's t distribution function	506
t_inverse_cdf	Evaluates the inverse of the Student's <i>t</i> distribution function	504
table_oneway	Tallies observations into a one-way frequency table	524
user_fcn_least_squares	Computes a least-squares fit using user-supplied functions	187
vector_norm	Computes various norms of a vector or the difference of two vectors	612
version	Returns integer information describing the version of the library, license number, operating system, and compiler	591
write_matrix	Prints a rectangular matrix (or vector) stored in contiguous memory locations	577
write_options	Sets or retrieve an option for printing a matrix	584
zeros_fcn	Finds the real zeros of a real function using Müller's method	368
zeros_poly	Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage algorithm	364
<pre>zeros_poly (complex)</pre>	Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub three-stage algorithm	366
zeros_sys_eqn	Solves a system of <i>n</i> nonlinear equations $f(x) = 0$ using a modified Powell hybrid algorithm	373

Index

Α

Adams-Gear method • 290 Airy functions • 482, 483, 484, 485 algebraic-logarithmic singularities • 247 ANSI C • iii approximation • 222 arithmetic • 677

В

backward differentiation formulas • 294 band matrices • 641, 644 band storage mode • 641, 644, 657 Bauer and Fike theorem • 118 Bessel functions • 450, 452, 453, 455, 457, 458, 460, 461, 462, 463, 464, 466, 468, 469, 470, 472 beta distributions • 575 beta functions • 441, 443, 444, 513, 515 binomial functions • 509 bivariate functions • 516 Blom scores • 559

С

Cauchy principal • 262 chi-squared functions • 497, 499 chi-squared goodness-of-fit test • 530 Cholesky factorization • 17, 22, 35, 40, 109, 132 column pivoting • 90 complex arithmetic • xv, 677 complex general band system • 31 complex Hermitian positive definite system • 40 computer's arithmetic • 605 computer's floating-point arithmetic • 607 condition numbers • 118 conjugate gradient method • 81 convolution • 344, 350 coordinate format • 648, 651, 659 correlation • 344, 350 correlation matrix • 538 cosine factor • 254 cosine Fresnel integrals • 480 CPU time • 594 cubic Hermite polynomials • 297 cubic splines • 147, 154, 159, 162, 207 current value of the seed • 565

D

data types • 677 dates and days • 595, 596 decay rates • 284 derivatives • 279 discrete Fourier cosine transformation • 332, 334 discrete Fourier sine transformation • 336, 338 distribution functions • 494, 496, 497, 499, 501, 503, 504, 506, 507, 509, 510, 512, 513, 515, 516

Ε

eigenvalues • 117, 118, 119, 120, 122, 125, 128, 131, 134, 137 eigenvectors • 117, 118, 119, 120, 122, 125, 128, 131, 134, 137 elementary functions • 677 elementary integrals • 479 element-wise addition • 648, 651 elliptic integrals • 473, 474, 475, 476, 478 equality/inequality constraints • 413 equilibrium • 284 error functions • 435, 436, 438, 439 error handling • xv, 597, 600 error messages • 592 errors • 675 Euler's constant • 604 evaluation • 159 even sequence • 332 expected normal scores • 559

F

factorization • 2 fast Fourier transforms • 319, 320, 321, 325, 327, 330, 340 Fourier transform • 258

IMSL C/Math/Library

G

gamma distributions • 573 gamma functions • 445, 447, 448, 507 Gauss quadrature • 275 Gaussian elimination • 7, 14 Gaussian functions • 494, 496 Gauss-Kronrod rules • 235, 239 generalized inverses • 3, 102 GMRES method • 76

Η

Harding, L.J. • 7 Healy's algorithm • 112 Helmholtz's equation • 313 Hermitian matrices • 128 HODIE finite-difference scheme • 313 Householder' s method • 88, 90, 101, 106 hypergeometric functions • 510 hyper-rectangle • 272

I

ill-conditioning • 4
imsl.h include file • iv
infinite interval • 250
initialize random seed • 566
initial-value problems • 283, 290
integration • 182, 188, 235, 239, 243, 247, 250, 254, 258, 262, 265, 268, 272, 275
interpolation • 144, 147, 154, 163, 169, 173, 218
inverse matrix • 11, 17, 22
inversions • 3, 4

J

Jenkins-Traub algorithm • 366, 368

Κ

Kelvin functions • 486, 487, 488, 489, 490, 491, 492, 493

L

lack-of-fit test • 551 least squares • 144 least-squares approximation • 211 least-squares fit • 87, 191, 195, 201, 396, 551 least-squares solutions • 3

ii • Index

Levenberg-Marquardt algorithm • 396 linear constraints • 94 linear equations • 26, 31, 35, 45, 56, 63, 70 linear least squares • 3 linear least-squares problem • 94 linear system solution • 2, 4, 109 loop unrolling and jamming • 7 LU factorization • 4, 11, 26, 31, 45, 56

Μ

mathematical constants • 601 matrices • v, 2, 3, 4, 7, 11, 14, 17, 22, 109, 579 general • v Hermitian • v multiplying • 616 rectangular • v symmetric • v matrix multiply • 620 matrix transpose • 623, 627, 632, 636 matrix-matrix product • 623, 627, 632, 636 matrix-vector produce • 636 matrix-vector product • 623, 627, 632 matrix-vector products • 616, 620 memory allocation • xii method of lines • 297 minimization • 379, 380, 381, 385, 389, 396, 404, 409, 413, 425 Müller's method • 370 multiple right-hand sides • 3

Ν

non-ANSI C • iii nonlinear least squares • 396 norms of a vector • 614 numerical ranking • 559

0

odd sequence • 336 one-way frequency table • 526 order statistics • 559 ordinary differential equations • 283, 285, 290 output files • 592 overflow • xv

Ρ

page size • 585 partial differential equations • 284, 297 partial pivoting • 11, 13 Poisson distributions • 572 Poisson functions • 512 Poisson solver • 313 polynomial functions • 365 polynomials • 142, 145 Powell hybrid algorithm • 375 predator-prey model • 287 printing • 579, 585, 586 pseudorandom numbers • 577

Q

QR factorizations • 3, 87 quadratic programming • 409 quadrature • 233, 234, 235 quasi-Newton method • 389

R

radial-basis fit • 229 radial-basis functions • 222 random number generation • 520 random numbers • 565, 566, 567, 568, 570, 572, 573, 575 rank deficiency • 3 real general band system • 26 real symmetric definite linear system • 81 real symmetric positive definite system • 35 rectangular matrix • 655 regression • 543, 551 restarted generalized minimum residual method • 76 right-hand side data • 4 Runge-Kutta-Verner method • 285

S

Savage scores • 559 scattered data • 218, 222 select random number generator • 567 semi-infinite interval • 250 simplex algorithm • 404 sine factor • 254 sine Fresnel integrals • 481 singular value decomposition • 3 singularity • 4 smooth data • 214 cubic spline interpolant •215 error detection • 214 smoothing • 207 sort • 609, 612 sparse Hermitian positive definite system • 70 sparse real symmetric positive definite system • 63 sparse system • 45 spline interpolant • 163, 169, 173 splines • 142, 143, 145, 162, 179, 182, 184, 188, 195, 201, 211 standard exponential distributions • 577 statistics • 521, 538, 543, 559 stiff systems • 284 storage modes • v successive quadratic programming algorithm • 425 SVD factorization • 99, 104 symbolic factorizations • 63, 70

Т

test matrices • 662, 664, 666, 670 time constants • 284 Tukey scores • 559

U

uncertainty • 4 underflow • xv uniform mesh • 313 univariate • 247 univariate statistics • 521

V

vectors • 579 Verner, J.H. • 287 version • 593

Ζ

zero of a system • 375 zeros of a function • 370

Product Support

Contacting Visual Numerics Support

Users within support warranty may contact Visual Numerics regarding the use of the IMSL C Numerical Libraries. Visual Numerics can consult on the following topics:

- Clarity of documentation
- Possible Visual Numerics-related programming problems
- Choice of IMSL Libraries functions or procedures for a particular problem
- Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting and debugging of your program.

Consultation

Contact Visual Numerics Product Support by faxing 713/781-9260 or by emailing:

- for PC support, pcsupport@houston.vni.com.
- for non-PC support, support@houston.vni.com

Electronic addresses are not handled uniformly across the major networks, and some local conventions for specifying electronic addresses might cause further variations to occur; contact your E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics:

1. Include your serial (or license) number

- 2. Include the product name and version number: IMSL C/Math/Library Version 3.0
- 3. Include compiler and operating system version numbers
- 4. Include the name of the routine for which assistance is needed and a description of the problem