
IMSL

C functions
for
mathematical
applications

C/Math/Library 3.0

User’s Guide

Click here to go to
C/Stat/Library

Quick Tips on How to Use this Online Manual

Click to display only the page.

Click to display both bookmark
and the page.

Click to display both thumbnails
and the page.

Click and drag to page to magnify
the view.

Click to go to the first page.

Click and drag to the page to select text.

Click and drag to page to reduce the view.

Click to go to the last page.

Click to go back to the previous view and
page from which you jumped.

Click to return to the next view.

Click to view the page at 100% zoom.

Click to fit the entire page within the
window.

Click to fit the page width inside the
window.

Click to find part of a word, a complete
word, or multiple words in a active
document.

Double-click to jump to a topic
when the bookmarks are displayed.

Click to jump to a topic when the
bookmarks are displayed.

Click to go to the next page.

Click to go back to the previous page
from which you jumped.

Click and use to drag the page in vertical
direction and to select items on the page.

Printing an online file: Select Print from the File menu to print an online file. The dialog box that opens allows you
to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been deleted
from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for
instance, Chapter 4 in the on-line documentation ends on page 279 and Chapter 5 begins on page 281.

Numbering Pages. When you refer to a page number in the PDF online documentation, be aware that the page
number in the PDF online documentation will not match the page number in the original document. A PDF
publication always starts on page 1, and supports only one page-numbering sequence per file.

Copying text. Click the button and drag to select and copy text.

Viewing Multiple Online Manuals: Select Open from the File menu, and open the .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area in Windows: Drag the double-headed arrow that appears on the area’s border as you
pass over it.

Resizing the Bookmark Area in UNIX: Click and drag the button that appears on the area’s border at the
bottom of the vertical bar.

Jumping to Topics: Throughout the text of this manual, links to chapters and other sections appear in green color
text to indicate that you can jump to them. To return to the page from which you jumped, click the return
back icon on the toolbar. Note: If you zoomed in or out after jumping to a topic, you will return to the
previous zoom view(s) before returning to the page from which you jumped.

Let’s try it, click on the following green color text: Chapter 1: Linear Systems

If you clicked on the green color in the example above, Chapter 1: Linear Systems opened.
To return to this page, click the on the toolbar.

Visual Numerics, Inc.
Corporate Headquarters
1300 W Sam Houston Pkwy., Ste 150
Houston, Texas 77042-4548
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: marketing@houston.vni.com

Visual Numerics
International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL BERSHIRE
RG12 1YQ
UNITED KINGDOM, THE

PHONE: 011 01344 458700
FAX: 011 01344 453743
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles
F-92049 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C.V.
Cerrada de Berna #3
Tercer Piso Col. Juarez
Mexico D. F. C. P. 06000
MEXICO
PHONE: +52-5-514-9730 or 9628
FAX: +52-5-514-4873

Visual Numerics International GmbH
Zettachring 10, D-70567
Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc
GOBANCHO HIKARI Building 4th Floor
14 GOBANCHO CIYODA-KU
Tokyo, 113
JAPAN

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@po.iijnet.or.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-MAPO-DONG, MAPO-GU
Seoul 121-050
Republic of South Korea

PHONE:011 82 2 3273 2632 or 2633
FAX: 011 82 2 3273 2634
e-mail: leevni@chollian.dacom.co.kr

COPYRIGHT NOTICE: Copyright 1990-1999, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL
Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library,
IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual
Numerics, Inc., in the U.S. and other countries. Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems,
Inc. SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc. Silicon Graphics is a registerd
trademark of Silicon Graphics, Inc. IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business
Machines Corporation. HP is a trademark of Hewlett-Packard. Silicon Graphics and IRIX are registered trademarks or trademarks of
Silicon Graphics, Inc. DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks
are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form
without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ll) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is
Visual Numerics, Inc., 1300 W Sam Houston Pkwy., Ste 150, Houston, Texas 77042.

IMSL Fortran and C
Application Development Tools

IMSL C/Math/Library Contents • i

Contents

Volume I

Introduction iii

Chapter 1: Linear Systems 1

Chapter 2: Eigensystem Analysis 113

Chapter 3: Interpolation and Approximation 137

Chapter 4: Quadrature 231

Chapter 5: Differential Equations 281

Chapter 6: Transforms 317

Chapter 7: Nonlinear Equations 363

Chapter 8: Optimization 377

Chapter 9: Special Functions 431

Chapter 10: Statistics and Random Number Generation 517

Chapter 11: Printing Functions 577

Chapter 12: Utilities 589

Reference Material 673

Appendix A: References A-1

Appendix B: Alphabetical Summary of Routines B-1

Index i

 C/Stat/Library

Introduction Getting Started • iii

Introduction

Getting Started
The IMSL C/Math/Library is a library of C functions useful in scientific programming.
Each function is designed and documented to be used in research activities as well as
by technical specialists. A number of the example programs also show graphs of
resulting output.

To use any of the IMSL C/Math/Library functions, you first must write a program in C
to call the function. Each function conforms to established conventions in programming
and documentation. We give first priority in development to efficient algorithms, clear
documentation, and accurate results. The uniform design of the functions makes it easy
to use more than one function in a given application. Also, you will find that the design
consistency enables you to apply your experience with one IMSL C/Math/Library
function to all other IMSL functions that you use.

ANSI C vs. Non-ANSI C

All of the examples in this user’s manual conform to ANSI C. If you are not using
ANSI C, you will need to modify your examples in which functions are declared or in
which arrays are initialized as the type float.

The following is an ANSI C program in which a function is declared. The program
estimates the value of the following:

ln
0

1
1 2 4z − = −x x dxb g /

1 #include <math.h>
2 #include <imsl.h>
3
4 float fcn(float x);
5
6 main()
7 {
8 float q, exact;
9 /* evaluate the integral */
10 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0);
11 /* print the result and the exact answer */
12 exact = -4.0;

iv • Getting Started IMSL C/Math/Library

13 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
14 }
15
16 float fcn(float x)
17 {
18 return log(x)/sqrt(x);
19 }

If using non-ANSI C, you would need to modify lines 4 and 16 as follows:
4 float fcn(); /* function is not prototyped */
 .
 .
 .
16 float fcn(x) /*Only variable of function defined here */
16a float x; /* Type of variable declared here */

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all auto
arrays that are initialized as type float in ANSI C must be initialized as type static float
in non-ANSI C. The next program contains arrays that are initialized as type float.

1 #include <imsl.h>
2
3 main()
4 {
5 int n = 3;
6 float *x;
7 float a[] = {1.0, 3.0, 3.0,
8 1.0, 3.0, 4.0,
9 1.0, 4.0, 3.0};
10
11 float b[] = {1.0, 4.0, -1.0};
12 /* Solve Ax = b for x */
13 x = imsl_f_lin_sol_gen (n, a, b, 0);
14 /* Print x */
15 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
16 }

If using non-ANSI C, you would need to modify lines 7 and 11 as follows:
7 static float a[] = {1.0, 3.0, 3.0,
 .
 .
 .
11 static float b[] = {1.0, 4.0, -1.0};

The imsl.h File
The include file <imsl.h> is used in all of the examples in this manual. This file
contains prototypes for all IMSL-defined functions; the spline structures, Imsl_f_ppoly,
Imsl_d_ppoly, Imsl_f_spline, and Imsl_d_spline; enumerated data types, Imsl_quad,
Imsl_write_options, Imsl_page_options, Imsl_ode, and Imsl_error; and the
IMSL-defined data types f_complex (which is the type float complex) and d_complex
(which is the type double complex).

Introduction Matrix Storage Modes • v

Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the word
array is used to refer to its representation as a C data structure. In the following list of
array types, the IMSL C/Math/Library functions require input consisting of matrix
dimension values and all values for the matrix entries. These values are stored in
row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.”
For example, in solving linear algebraic systems, the pointer is to the solution. For
general, real eigenvalue problems, the pointer is to the eigenvalues. Normally, the input
array values are not changed by the functions.

In the IMSL C/Math/Library, an array is a pointer to a contiguous block of data. They
are not pointers to pointers to the rows of the matrix. Typical declarations are:

 float *a = {1, 2, 3, 4};
 float b[2][2] = {1, 2, 3, 4};
 float c[] = {1, 2, 3, 4};

Note that if you are using non-ANSI C and the variables are of type auto, then the
above declarations would need to be declared as type static float.

General Mode

A general matrix is a square n × n matrix. The data type of a general array can be float,
double, f_complex, or d_complex.

Rectangular Mode

A rectangular matrix is an m × n matrix. The data type of a rectangular array can be
float, double, f_complex, or d_complex.

Symmetric Mode

A symmetric matrix is a square n × n matrix A, such that A7 = A. (The matrix A7 is the
transpose of A.) The data type of a symmetric array can be float or double.

Hermitian Mode

A Hermitian matrix is a square n × n matrix A, such that

A A AH T= =

The matrix A is the complex conjugate of A, and

A AH T≡

is the conjugate transpose of A. For Hermitian matrices A+ = A. The data type of a
Hermitian array can be f_complex or d_complex.

vi • Matrix Storage Modes IMSL C/Math/Library

Sparse Coordinate Storage Format

Only the nonzero elements of a sparse matrix need to be communicated to a function.
Sparse coordinate storage format stores the value of each matrix entry along with that
entry’s row and column index. The following four non-homogeneous data structures are
defined to support this concept:

 typedef struct {
 int row;
 int col;
 float val;
 } Imsl_f_sparse_elem;

 typedef struct {
 int row;
 int col;
 double val;
 } Imsl_d_sparse_elem;

 typedef struct {
 int row;
 int col;
 f_complex val;
 } Imsl_c_sparse_elem;

 typedef struct {
 int row;
 int col;
 d_complex val;
 } Imsl_z_sparse_elem;

See the Reference Material for a discussion of the complex data types f_complex and
d_complex. Note that the only difference in these structures involves changes in
underlying data types. A sparse matrix is passed to functions that accept sparse
coordinate format by forming an array of one of these data types. The number of
elements in that array will be equal to the number of nonzeros in the sparse matrix.

As an example consider the 6 × 6 matrix:

A =

− −

− − −
− − −
− −

L

N

M
M
M
M
M
M
MM

O

Q

P
P
P
P
P
P
PP

2 0 0 0 0 0

0 9 3 1 0 0

0 0 5 0 0 0

2 0 0 7 1 0

1 0 0 5 1 3

1 2 0 0 0 6

The matrix A has 15 nonzero elements, and the sparse coordinate representation would
be

row 0 1 1 1 2 3 3 3 4 4 4 4 5 5 5

col 0 1 2 3 2 0 3 4 0 3 4 5 0 1 5

val 2 9 −3 −1 5 −2 −7 −1 −1 −5 1 −3 −1 −2 6

Introduction Matrix Storage Modes • vii

Since this representation does not rely on order, an equivalent form would be

row 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4

col 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5

val −1 −1 −2 2 −2 9 5 −3 −5 −7 −1 1 −1 6 −3

There are different ways this data could be used to initialize an array of type, for
example, Imsl_f_sparse_elem. Consider the following program fragment:

#include <imsl.h>
main()
{
Imsl_f_sparse_elem a[] = {
 {0, 0, 2.0},
 {1, 1, 9.0},
 {1, 2, -3.0},
 {1, 3, -1.0},
 {2, 2, 5.0},
 {3, 0, -2.0},
 {3, 3, -7.0},
 {3, 4, -1.0},
 {4, 0, -1.0},
 {4, 3, -5.0},
 {4, 4, 1.0},
 {4, 5, -3.0},
 {5, 0, -1.0},
 {5, 1, -2.0},
 {5, 5, 6.0} };
Imsl_f_sparse_elem b[15];

 b[0].row = b[0].col = 0; b[0].val = 2.0;
 b[1].row = b[1].col = 1; b[1].val = 9.0;
 b[2].row = 1; b[2].col = 2; b[2].val = -3.0;
 b[3].row = 1; b[3].col = 3; b[3].val = -1.0;
 b[4].row = b[4].col = 2; b[4].val = 5.0;
 b[5].row = 3; b[5].col = 0; b[5].val = -2.0;
 b[6].row = b[6].col = 3; b[6].val = -7.0;
 b[7].row = 3; b[7].col = 4; b[7].val = -1;
 b[8].row = 4; b[8].col = 0; b[8].val = -1.0;
 b[9].row = 4; b[9].col = 3; b[9].val = -5.0;
 b[10].row = b[10].col = 4; b[10].val = 1.0;
 b[11].row = 4; b[11].col = 5; b[11].val = -3.0;
 b[12].row = 5; b[12].col = 0; b[12].val = -1.0;
 b[13].row = 5; b[13] = 1; b[13].val = -2.0;
 b[14].row = b[14].col = 5; b[14].val = 6.0;
}

Both a and b represent the sparse matrix A, and the functions in this module would
produce identical results regardless of which identifier was sent through the argument
list.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to
store the diagonal and either the upper or lower triangle. As an example, consider the
5 × 5 linear system:

viii • Matrix Storage Modes IMSL C/Math/Library

H =

−
−

−

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

4 0 1 1 0 0

1 1 4 0 1 1 0

0 1 1 4 0 1 1

0 0 1 1 4 0

, ,

, , ,

, , ,

, ,

b g b g
b g b g b g

b g b g b g
b g b g

The Hermitian and symmetric positive definite system solvers in this library expect the
diagonal and lower triangle to be specified. The sparse coordinate form for the lower
triangle is given by

row 0 1 2 3 1 2 3

col 0 1 2 3 0 1 2

val (4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1)

As before, an equivalent form would be

row 0 1 1 2 2 3 3

col 0 0 1 1 2 2 3

val (4,0) (1,1) (4,0) (1,1) (4,0) (1,1) (4,0)

The following program fragment will initialize both a and b to H.
#include <imsl.h>
main()
{
 Imsl_c_sparse_elem a[] = {
 {0, 0, {4.0, 0.0}},
 {1, 1, {4.0, 0.0}},
 {2, 2, {4.0, 0.0}},
 {3, 3, {4.0, 0.0}},
 {1, 0, {1.0, 1.0}},
 {2, 1, {1.0, 1.0}},
 {3, 2, {1.0, 1.0}}
 }
 Imsl_c_sparse_elem b[7];

 b[0].row = b[0].col = 0;
 b[0].val = imsl_cf_convert (4.0, 0.0);
 b[1].row = 1; b[1].col = 0;
 b[1].val = imsl_cf_convert (1.0, 1.0);
 b[2].row = b[2].col = 1;
 b[2].val = imsl_cf_convert (4.0, 0.0);
 b[3].row = 2; b[3].col = 1;
 b[3].val = imsl_cf_convert (1.0, 1.0);
 b[4].row = b[4].col = 2;
 b[4].val = imsl_cf_convert (4.0, 0.0);
 b[5].row = 3; b[5].col = 2;
 b[5].val = imsl_cf_convert (1.0, 1.0);
 b[6].row = b[6].col = 3;
 b[6].val = imsl_cf_convert (4.0, 0.0);
}

Introduction Matrix Storage Modes • ix

There are some important points to note here. H is not symmetric, but rather Hermitian.
The functions that accept Hermitian data understand this and operate assuming that

h hij ij=

The IMSL C/Math/Library cannot take advantage of the symmetry in matrices that are
not positive definite. The implication here is that a symmetric matrix that happens to be
indefinite cannot be stored in this compact symmetric form. Rather, both upper and
lower triangles must be specified and the sparse general solver called.

Band Storage Format

A band matrix is an M × N matrix with all of its nonzero elements “close” to the main
diagonal. Specifically, values ALM = 0 if i − j > nlca or j − i > nuca. The integer
m = nlca + nuca + 1 is the total band width. The diagonals, other than the main
diagonal, are called codiagonals. While any M × N matrix is a band matrix, band storage
format is only useful when the number of nonzero codiagonals is much less than N.

In band storage format, the nlca lower codiagonals and the nuca upper codiagonals
are stored in the rows of an array of size m × N. The elements are stored in the same
column of the array as they are in the matrix. The values ALM inside the band width are
stored in the linear array in positions [(i - j + nuca + 1) * n + j]. This results in a row-
major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5 × 5 matrix A with 1 lower and 2 upper codiagonals:

A

A A A

A A A A

A A A A

A A A

A A

=

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

0 0 0 1 0 2

1 0 11 1 2 1 3

2 1 2 2 2 3 2 4

3 2 3 3 3 4

4 3 4 4

0 0

0

0

0 0

0 0 0

, , ,

, , , ,

, , , ,

, , ,

, ,

In band storage format, the data would be arranged as

0 0

0

0

0 2 1 3 2 4

0 1 1 2 2 3 3 4

0 0 1 1 2 2 3 3 4 4

1 0 2 1 3 2 4 3

A A A

A A A A

A A A A A

A A A A

, , ,

, , , ,

, , , , ,

, , , ,

L

N

M
M
M
MM

O

Q

P
P
P
PP

This data would then be stored contiguously, row-major order, in an array of length 20.

x • Matrix Storage Modes IMSL C/Math/Library

As an example, consider the following tridiagonal matrix:

A =

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

10 1 0 0 0

5 20 2 0 0

0 6 30 3 0

0 0 7 40 4

0 0 0 8 50

The following declaration will store this matrix in band storage format:
 float a[] = {
 0.0, 1.0, 2.0, 3.0, 4.0,
 10.0, 20.0, 30.0, 40.0, 50.0,
 5.0, 6.0, 7.0, 8.0, 0.0};

As in the sparse coordinate representation, there is a space saving symmetric version of
band storage. As an example, look at the following 5 × 5 symmetric problem:

A

A A A

A A A A

A A A A A

A A A A

A A A

=

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

0 0 0 1 0 2

0 1 11 1 2 1 3

0 2 1 2 2 2 2 3 2 4

1 3 2 3 3 3 3 4

2 4 3 4 4 4

0 0

0

0

0 0

, , ,

, , , ,

, , , , ,

, , , ,

, , ,

In band symmetric storage format, the data would be arranged as

0 0

0
0 2 1 3 2 4

0 1 1 2 2 3 3 4

0 0 1 1 2 2 3 3 4 4

A A A

A A A A

A A A A A

, , ,

, , , ,

, , , , ,

L

N

M
M
M

O

Q

P
P
P

The following Hermitian example illustrates the procedure:

H =
−
− −

− −
− −

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

8 0 11 11 0 0

1 1 8 0 11 11 0

1 1 1 1 8 0 11 11

0 1 1 1 1 8 0 11

0 0 1 1 1 1 8 0

, , ,

, , , ,

, , , , ,

, , , ,

, , ,

b g b g b g
b g b g b g b g
b g b g b g b g b g

b g b g b g b g
b g b g b g

The following program fragments would store H in h, using band symmetric storage
format.

f_complex h[] = {
 {0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
 {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
 {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}};

or equivalently
f_complex h[15];
 h[0] = h[1] = h[5] = imsl_cf_convert (0.0, 0.0);

Introduction Matrix Storage Modes • xi

 h[2] = h[3] = h[4] = h[6] = h[7] = h[8] = h[9] =
 imsl_cf_convert (1.0, 1.0);
 h[10] = h[11] = h[12] = h[13] = h[14] =
 imsl_cf_convert (8.0, 0.0);

Choosing Between Banded and Coordinate Forms

It is clear that any matrix can be stored in either sparse coordinate or band format. The
choice depends on the sparsity pattern of the matrix. A matrix with all nonzero data
stored in bands close to the main diagonal would probably be a good candidate for
band format. If nonzero information is scattered more or less uniformly through the
matrix, sparse coordinate format is the best choice. As extreme examples, consider the
following two cases: (1) an n × n matrix with all elements on the main diagonal and the
(0, n − 1) and (n − 1, 0) entries nonzero. The sparse coordinate vector would be n + 2
units long. An array of length n(2n − 1) would be required to store the band repre-
sentation, nearly twice as much storage as a dense solver might require. Secondly, a
tridiagonal matrix with all diagonal, superdiagonal and subdiagonal entries nonzero. In
band format, an array of length 3n is needed. In sparse coordinate, format a vector of
length 3n − 2 is required. But the problem is that, for example, float precision on a
32-bit machine, each of those 3n − 2 units in coordinate format requires three times as
much storage as any of the 3n units needed for band representation. This is due to
carrying the row and column indices in coordinate form. Band storage evades this
requirement by being essentially an ordered list, and defining location in the original
matrix by position in the list.

Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in the format
described in the Users’ Guide for the Harwell-Boeing Sparse Matrix Collection. The
scheme is column oriented, with each column held as a sparse vector, represented by a
list of the row indices of the entries in an integer array and a list of the corresponding
values in a separate float (double, f_complex, d_complex) array. Data for each column
are stored consecutively and in order. A separate integer array holds the location of the
first entry of each column and the first free location. Only entries in the lower triangle
and diagonal are stored for symmetric and Hermitian matrices. All arrays are based at
zero, which is in contrast to the Harwell-Boeing test suite’s one-based arrays.

As in the Harwell-Boeing Users’ Guide, the storage scheme is illustrated with the
following example: The 5 × 5 matrix

1 3 0 1 0

0 0 2 0 3

2 0 0 0 0

0 4 0 4 0

5 0 5 0 6

− −
−

−
−

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

xii • Memory Allocation for Output Arrays IMSL C/Math/Library

would be stored in the arrays colptr (location of first entry), rowind (row indices),
and values (nonzero entries) as follows.

Subscripts 0 1 2 3 4 5 6 7 8 9 10

colptr 0 3 5 7 9 11

rowind 0 4 2 3 0 1 4 0 3 4 1

values 1 5 2 4 −3 −2 −5 −1 −4 6 3

The following program fragment shows the relation between CSC storage format and
coordinate representation:

 k = 0;
 for (i=0; i<n; i++) {
 start = colptr[i];
 stop = colptr[i+1];
 for (j=start; j<stop; j++) {
 a[k].row = rowind[j];
 a[k].col = i;
 a[k++].val = values[j];
 }
 }
 nz =k;

Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. If the
function invocation uses the optional arguments

IMSL_RETURN_USER, float a[]

then the computed answers are stored in the user-provided array a, and the pointer
returned by the function is set to point to the user-provided array a. If an invocation
does not use IMSL_RETURN_USER, then the function initializes the pointer (through a
memory allocation request to malloc) and stores the answers there. (To release this
space, free can be used. Both malloc and free are standard C library functions
declared in the header <stdlib.h>.) In this way, the allocation of space for the
computed answers can be made either by the user or internally by the function.

Similarly, other optional arguments specify whether additional computed output arrays
are allocated by the user or are to be allocated internally by the function. For example,
in many functions in “Linear Systems,” the optional arguments

IMSL_INVERSE_USER, float inva[] (Output)
IMSL_INVERSE, float **p_inva (Output)

specify two mutually exclusive optional arguments. If the first option is chosen, the
inverse of the matrix is stored in the user-provided array inva. In the second option,
float **p_inva refers to the address of a pointer to the inverse. If the second option is
chosen, on return, the pointer is initialized (through a memory allocation request to
malloc), and the inverse of the matrix is stored there. Typically, float *p_inva is

Introduction Finding the Right Routine • xiii

declared, &p_inva is used as an argument to this function, and free(p_inva) is used
to release the space.

Finding the Right Routine
The IMSL C/Math/Library is organized into chapters; each chapter contains functions
with similar computational or analytical capabilities. To locate the right function for a
given problem, you may use either the table of contents located in each chapter
introduction, or the alphabetical “Summary of Functions” at the end of this manual.

Often the quickest way to use the IMSL C/Math/Library is to find an example similar to
your problem and then mimic the example. Each function in the document has at least
one example demonstrating its application.

Organization of the Documentation
This manual contains a concise description of each function, with at least one
demonstrated example of each function, including sample input and results. You will
find all information pertaining to the IMSL C/Math/Library in this manual. Moreover,
all information pertaining to a particular function is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents listing the
functions included in the chapter. Documentation of the functions consists of the
following information:

• Section Name: Usually, the common root for the type float and type double
versions of the function is given.

• Purpose: A statement of the purpose of the function.

• Synopsis: The form for referencing the subprogram with required arguments listed.

• Required Arguments: A description of the required arguments in the order of
their occurrence, as follows:

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output through
this argument. The argument cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant or an
expression; the function returns output through this argument.

• Return Value: The value returned by the function.

• Synopsis with Optional Arguments: The form for referencing the function with
both required and optional arguments listed.

• Optional Arguments: A description of the optional arguments in the order of their
occurrence.

xiv • Naming Conventions IMSL C/Math/Library

• Description: A description of the algorithm and references to detailed information.
In many cases, other IMSL functions with similar or complementary functions are
noted.

• Examples: At least one application of this function showing input and optional
arguments.

• Errors: Listing of any errors that may occur with a particular function. A
discussion on error types is given in the “User Errors” section of the Reference
Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the
function.

Alert Errors: List of alert errors that may occur with the function.

Warning Errors: List of warning errors that may occur with the function.

Fatal Errors: List of fatal errors that may occur with the function.

Naming Conventions
Most functions are available in both a type float and a type double version, with names
of the two versions sharing a common root. Some functions also are available in type
int, or the IMSL-defined types f_complex or d_complex versions. A list of each type
and the corresponding prefix of the function name in which multiple type versions exist
follows:

Type Prefix

float imsl_f_

double imsl_d_

int imsl_i_

f_complex imsl_c_

d_complex imsl_z_

The section names for the functions only contain the common root to make finding the
functions easier. For example, the functions imsl_f_lin_sol_gen and
imsl_d_lin_sol_gen can be found in section lin_sol_gen in Chapter 1.

Where appropriate, the same variable name is used consistently throughout a chapter in
the IMSL C/Math/Library. For example, in the functions for eigensystem analysis,
eval denotes the vector of eigenvalues and n_eval denotes the number of eigenvalues
computed or to be computed.

When writing programs accessing the IMSL C/Math/Library, the user should choose C
names that do not conflict with IMSL external names. The careful user can avoid any
conflicts with IMSL names if, in choosing names, the following rule is observed:

Introduction Error Handling, Underflow, Overflow, and Document Examples • xv

• Do not choose a name beginning with “imsl_” in any combination of uppercase or
lowercase characters.

Error Handling, Underflow, Overflow, and
Document Examples

The functions in the IMSL C/Math/Library attempt to detect and report errors and
invalid input. This error-handling capability provides automatic protection for the user
without requiring the user to make any specific provisions for the treatment of error
conditions. Errors are classified according to severity and are assigned a code number.
By default, errors of moderate or higher severity result in messages being automatically
printed by the function. Moreover, errors of highest severity cause program execution
to stop. The severity level, as well as the general nature of the error, is designated by an
“error type” with symbolic names IMSL_FATAL, IMSL_WARNING, etc.
See the “User Errors” section in the Reference Material for further details.

In general, the IMSL C/Math/Library codes are written so that computations are not
affected by underflow, provided the system (hardware or software) replaces an
underflow with the value zero. Normally, system error messages indicating underflow
can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error
messages indicating overflow should be examined for programming errors such as
incorrect input data, mismatch of argument types, or improper dimensions.

In many cases, the documentation for a function points out common pitfalls that can
lead to failure of the algorithm.

Output from document examples can be system dependent and the user’s results may
vary depending upon the system used.

Printing Results
Most functions in the IMSL C/Math/Library do not print any of the results; the output is
returned in C variables. You can print the results yourself.

The IMSL C/Math/Library contains some special functions just for printing arrays. For
example, imsl_f_write_matrix is a convenient function for printing matrices of
type float. See Chapter 11, “Printing Functions,” for detailed descriptions of these
functions.

Complex Arithmetic
Users can perform computations with complex arithmetic by using IMSL predefined
data types. These types are available in two floating-point precisions:

• f_complex for single-precision complex values

xvi • Missing Values IMSL C/Math/Library

• d_complex for double-precision complex values

A description of complex data types and functions is given in the Reference Material.

Missing Values
Some of the functions in the IMSL C/Math/Library allow the data to contain missing
values. These functions recognize as a missing value the special value referred to as “not
a number,” or NaN. The actual value is different on different computers, but it can be
obtained by reference to the IMSL function imsl_f_machine, described in Chapter 12,
“Utilitie s.”

The way that missing values are treated depends on the individual function and is
described in the documentation for the function.

Chapter 1: Linear Systems Routines • 1

Chapter 1: Linear Systems

Routines
1.1 Linear Equations with Full Matrices

Factor, Solve, and Inverse for General Matrices
Real matrices... lin_sol_gen 4
Complex matrices ..lin_sol_gen (complex) 11

Factor, Solve, and Inverse for Positive Definite Matrices
Real matrices...lin_sol_posdef 17
Complex matrices ...lin_sol_posdef (complex) 22

1.2 Linear Equations with Band Matrices

Factor and Solve for Band Matrices
Real matrices... lin_sol_gen_band 26
Complex matrices ..lin_sol_gen_band (complex) 31

Factor and Solve for Positive Definite Matrices
Symmetric
Real matrices...lin_sol_posdef_band 35
Complex matriceslin_sol_posdef_band (complex) 39

1.3 Linear Equations with General Sparse Matrices

Factor and Solve for Sparse Matrices
Real matrices...lin_sol_gen_coordinate 44
Complex matriceslin_sol_gen_coordinate (complex) 54

Factor and Solve for Positive Definite Matrices
Real matrices..lin_sol_posdef_coordinate 62
Complex matrices lin_sol_posdef_coordinate (complex) 68

1.4 Iterative Methods
Restarted generalized minimum
residual (GMRES) method............................... lin_sol_gen_min_residual 73
Conjugate gradient method ...lin_sol_def_cg 78

2 • Usage Notes IMSL C/Math/Library

1.5 Linear Least-squares with Full Matrices

Least-squares and QR decomposition
Least-squares solve, QR decomposition lin_least_squares_gen 84
Linear constraints .. lin_lsq_lin_constraints 91

Singular Value Decompositions (SVD) and Generalized Inverse
Real matrix .. lin_svd_gen 96
Complex matrix .. lin_svd_gen (complex) 101

Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices
Real matrices .. lin_sol_nonnegdef 106

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified
n × n matrix, b is a given right-hand side n vector, and x is the solution n vector. Each
entry of A and b must be specified by the user. The entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used
direct method for solving Ax = b factors the matrix A into a product of triangular
matrices and solves the resulting triangular systems of linear equations. Functions that
use direct methods for solving systems of linear equations all compute the solution to
Ax = b. Thus, if a function with the prefix “imsl_f_lin_sol” is called with the
required arguments, a pointer to x is returned by default. Additional tasks, such as only
factoring the matrix A into a product of triangular matrices, can be done using
keywords.

Matrix Factorizations

In some applications, it is desirable to just factor the n × n matrix A into a product of
two triangular matrices. This can be done by calling the appropriate function for
solving the system of linear equations Ax = b. Suppose that in addition to the solution x
of a linear system of equations Ax = b, the LU factorization of A is desired. Use the
keyword IMSL_FACTOR in the function imsl_f_lin_sol_gen to obtain access to the
factorization. If only the factorization is desired, use the keywords
IMSL_FACTOR_ONLY and IMSL_FACTOR.

Besides the basic matrix factorizations, such as LU and LL7, additional matrix
factorizations also are provided. For a real matrix A, its QR factorization can be
computed by the function imsl_f_lin_least_squares_gen. Functions for
computing the singular value decomposition (SVD) of a matrix are discussed in a later
section.

Matrix Inversions

The inverse of an n × n nonsingular matrix can be obtained by using the keyword
IMSL_INVERSE in functions for solving systems of linear equations. The inverse of a

Chapter 1: Linear Systems Usage Notes • 3

matrix need not be computed if the purpose is to solve one or more systems of linear
equations. Even with multiple right-hand sides, solving a system of linear equations by
computing the inverse and performing matrix multiplication is usually more expensive
than the method discussed in the next section.

Multiple Right-Hand Sides
Consider the case where a system of linear equations has more than one right-hand side
vector. It is most economical to find the solution vectors by first factoring the
coefficient matrix A into products of triangular matrices. Then, the resulting triangular
systems of linear equations are solved for each right-hand side. When A is a real
general matrix, access to the LU factorization of A is computed by using the keywords
IMSL_FACTOR and IMSL_FACTOR_ONLY in function imsl_f_lin_sol_gen. The
solution xN�for the k-th right-hand side vector bN is then found by two triangular solves,
LyN = bN and UxN = yN. The keyword IMSL_SOLVE_ONLY in the function
imsl_f_lin_sol_gen is used to solve each right-hand side. These arguments are
found in other functions for solving systems of linear equations.

Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear
equations APvQ x = b, where m > n. A least-squares solution x minimizes the Euclidean length
of the residual vector r = Ax − b. The function imsl_f_lin_least_squares_gen
computes a unique least-squares solution for x when A has full column rank. If A is rank-
deficient, then the base solution for some variables is computed. These variables consist of the
resulting columns after the interchanges. The QR decomposition, with column interchanges or
pivoting, is computed such that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with
its diagonal elements nonincreasing in magnitude, and P is the permutation matrix determined
by the pivoting. The base solution x%�is obtained by solving R(P7)x = Q7b for the base
variables. For details, see “Description” in imsl_f_lin_least_squares_gen. The QR
factorization of a matrix A such that AP = QR with P specified by the user can be computed
using keywords.

Singular Value Decompositions and Generalized Inverses

The SVD of an m × n matrix A is a matrix decomposition A = USV7. With
q = min(m, n), the factors UPvT and VQvT are orthogonal matrices, and STvT is a
nonnegative diagonal matrix with nonincreasing diagonal terms. The function
imsl_f_lin_svd_gen computes the singular values of A by default. Using keywords,
part or all of the U and V matrices, an estimate of the rank of A, and the generalized
inverse of A, also can be obtained.

Ill-Conditioning and Singularity

An m × n matrix A is mathematically singular if there is an x ≠ 0 such that Ax = 0. In
this case, the system of linear equations Ax = b does not have a unique solution. On the
other hand, a matrix A is numerically singular if it is “close” to a mathematically
singular matrix. Such problems are called ill-conditioned. If the numerical results with

4 • lin_sol_gen IMSL C/Math/Library

an ill-conditioned problem are unacceptable, users can either use more accuracy if it is
available (for type float accuracy switch to double) or they can obtain an approximate
solution to the system. One form of approximation can be obtained using the SVD of A:
If q = min(m, n) and

A s u vi
q

i i i i
T= =∑ 1 ,

then the approximate solution is given by the following:

x t b u vk i
k

i i
T

i i= =∑ 1 , e j

The scalars tL�L�are defined below.

t
s s tol

i i
i i i i

,
, ,= ≥ >R

S|
T|

−1 0

0

if

otherwise

The user specifies the value of tol. This value determines how “close” the given matrix
is to a singular matrix. Further restrictions may apply to the number of terms in the sum,
k ≤ q. For example, there may be a value of k ≤ q such that the scalars |(b7uL)|, i > k are
smaller than the average uncertainty in the right-hand side b. This means that these
scalars can be replaced by zero; and hence, b is replaced by a vector that is within the
stated uncertainty of the problem.

lin_sol_gen
Solves a real general system of linear equations Ax = b. Using optional arguments, any
of several related computations can be performed. These extra tasks include computing
the LU factorization of A using partial pivoting, computing the inverse matrix A��,
solving A7x = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_gen (int n, float a[], float b[], …, 0)

The type double procedure is imsl_d_lin_sol_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size n × n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Chapter 1: Linear Systems lin_sol_gen • 5

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_gen (int n, float a[], float b[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_TRANSPOSE,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, int **p_pvt, float **p_factor,
IMSL_FACTOR_USER, int pvt[], float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE

Solve A7x = b.
Default: Solve Ax = b

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, float **p_factor (Output)

p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_f_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is
used as an argument.

p_factor: The address of a pointer to an array of size n × n containing the
LU factorization of A with column pivoting. On return, the necessary space is
allocated by imsl_f_lin_sol_gen. The lower-triangular part of this array
contains information necessary to construct L, and the upper-triangular part
contains U. Typically, float *p_factor is declared, and &p_factor is used
as an argument.

IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

6 • lin_sol_gen IMSL C/Math/Library

pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.

factor[]: A user-allocated array of size n × n containing the LU
factorization of A. The strictly lower-triangular part of this array contains
information necessary to construct L, and the upper-triangular part contains U.
If A is not needed, factor and a can share the same storage.

These parameters are input if IMSL_SOLVE is specified. They are output
otherwise.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_f_lin_sol_gen. Typically, float *p_inva is declared, and &p_inva
is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n × n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is
required. The argument b is then ignored, and the returned value of
imsl_f_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LU factorization previously computed by
imsl_f_lin_sol_gen. By default, the solution to Ax = b is pointed to by
imsl_f_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required, and the argument a is ignored.

IMSL_INVERSE_ONLY

Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either
IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then
ignored, and the returned value of imsl_f_lin_sol_gen is NULL.

Chapter 1: Linear Systems lin_sol_gen • 7

Description

The function imsl_f_lin_sol_gen solves a system of linear algebraic equations with
a real coefficient matrix A. It first computes the LU factorization of A with partial
pivoting such that L��A = U. The matrix U is upper triangular, while
L��A ≡ PQ LQ��PQ�� … L�P�A ≡ U. The factors PL and LL are defined by the partial
pivoting. Each PL is an interchange of row i with row j ≥ i. Thus, PL is defined by that
value of j. Every

L I m ei i i
T= +

is an elementary elimination matrix. The vector mL is zero in entries 1, …, i. This vector
is stored as column i in the strictly lower-triangular part of the working array containing
the decomposition information.

The factorization efficiency is based on a technique of “loop unrolling and jamming”
by Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. The
solution of the linear system is then found by solving two simpler systems, y = L��b and
x = U��y. When the solution to the linear system or the inverse of the matrix is sought,
an estimate of the L� condition number of A is computed using the same algorithm as in
Dongarra et al. (1979). If the estimated condition number is greater than 1/ε (where ε is
the machine precision), a warning message is issued. This indicates that very small
changes in A may produce large changes in the solution x. The function
imsl_f_lin_sol_gen fails if U, the upper triangular part of the factorization, has a
zero diagonal element.

Examples

Example 1

This example solves a system of three linear equations. This is the simplest use of the
function. The equations follow below:

x� + 3x� + 3x� = 1

x� + 3x� + 4x� = 4

x� + 4x� + 3x� = −1
#include <imsl.h>

main()
{
 int n = 3;
 float *x;
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};
 float b[] = {1.0, 4.0, -1.0};
 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_gen (n, a, b, 0);
 /* Print x */

8 • lin_sol_gen IMSL C/Math/Library

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
}

Output
Solution, x, of Ax = b
 1 2 3
-2 -2 3

Example 2

This example solves the transpose problem A7x = b and returns the LU factorization of
A with partial pivoting. The same data as the initial example is used, except the solution
x = A�7b is returned in an array allocated in the main program. The L matrix is returned
in implicit form.

#include <imsl.h>

main()
{
 int n = 3, pvt[3];
 float factor[9];
 float x[3];
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};

 float b[] = {1.0, 4.0, -1.0};
 /* Solve trans(A)*x = b for x */
 imsl_f_lin_sol_gen (n, a, b,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR_USER, pvt, factor,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);

 /* Print factors and pivot sequence */
 imsl_f_write_matrix ("LU factors of A", n, n, factor, 0);
 imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}

Output
Solution, x, of trans(A)x = b
 1 2 3
 4 -4 1

 LU factors of A
 1 2 3
1 1 3 3
2 -1 1 0
3 -1 0 1

Pivot sequence

Chapter 1: Linear Systems lin_sol_gen • 9

 1 2 3
 1 3 3

Example 3

This example computes the inverse of the 3 × 3 matrix A of the initial example and
solves the same linear system. The matrix product C = A��A is computed and printed.
The function imsl_f_mat_mul_rect is used to compute C. The approximate result
C = I is obtained.

#include <imsl.h>

float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};

float b[] = {1.0, 4.0, -1.0};

main()
{
 int n = 3;
 float *x;
 float *p_inva;
 float *C;
 /* Solve Ax = b */
 x = imsl_f_lin_sol_gen (n, a, b,
 IMSL_INVERSE, &p_inva,
 0);

 /* Print solution */

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print input and inverse matrices */
 imsl_f_write_matrix ("Input A", n, n, a, 0);
 imsl_f_write_matrix ("Inverse of A", n, n, p_inva, 0);
 /* Check result and print */
 C = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, p_inva,
 IMSL_B_MATRIX, n, n, a,
 0);
 imsl_f_write_matrix ("Product matrix, inv(A)*A",n,n,C,0);
}

Output
Solution, x, of Ax = b
 1 2 3
 -2 -2 3

 Input A
 1 2 3
1 1 3 3
2 1 3 4
3 1 4 3

10 • lin_sol_gen IMSL C/Math/Library

 Inverse of A
 1 2 3
1 7 -3 -3
2 -1 0 1
3 -1 1 0

 Product matrix, inv(A)*A
 1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

Example 4

This example computes the solution of two systems. Only the right-hand sides differ.
The matrix and first right-hand side are given in the initial example. The second right-
hand side is the vector c = [0.5, 0.3, 0.4]7. The factorization information is computed
with the first solution and is used to compute the second solution. The factorization
work done in the first step is avoided in computing the second solution.

#include <imsl.h>

main()
{
 int n = 3, pvt[3];
 float factor[9];
 float *x,*y;

 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};

 float b[] = {1.0, 4.0, -1.0};
 float c[] = {0.5, 0.3, 0.4};

 /* Solve A*x = b for x */
 x = imsl_f_lin_sol_gen (n, a, b,
 IMSL_FACTOR_USER, pvt, factor,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Solve for A*y = c for y */
 y = imsl_f_lin_sol_gen (n, a, c,
 IMSL_SOLVE_ONLY,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 imsl_f_write_matrix ("Solution, y, of Ay = c", 1, n, y, 0);

}

Output
Solution, x, of Ax = b
 1 2 3
 -2 -2 3

Chapter 1: Linear Systems lin_sol_gen (complex) • 11

Solution, y, of Ay = c
 1 2 3
 1.4 -0.1 -0.2

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L� condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_gen (complex)
Solves a complex general system of linear equations Ax = b. Using optional arguments,
any of several related computations can be performed. These extra tasks include
computing the LU factorization of A using partial pivoting, computing the inverse
matrix A��, solving A+x = b, or computing the solution of Ax = b given the LU
factorization of A.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[], …,
0)

The type d_complex procedure is imsl_z_lin_sol_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size n × n containing the matrix.

f_complex b[] (Input)
Array of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[],
IMSL_A_COL_DIM, int a_col_dim,

12 • lin_sol_gen (complex) IMSL C/Math/Library

IMSL_TRANSPOSE,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, f_complex **p_inva,
IMSL_INVERSE_USER, f_complex inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE

Solve A+x = b
Default: Solve Ax = b

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)

p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_c_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is
used as an argument.

p_factor: The address of a pointer to an array of size n × n containing the
LU factorization of A with column pivoting. On return, the necessary space is
allocated by imsl_c_lin_sol_gen. The lower-triangular part of this array
contains information necessary to construct L, and the upper-triangular part
contains U. Typically, f_complex *p_factor is declared, and &p_factor
is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)

pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.

factor[]: A user-allocated array of size n × n containing the LU
factorization of A. The lower-triangular part of this array contains information
necessary to construct L, and the upper-triangular part contains U.

These parameters are input if IMSL_SOLVE is specified. They are output
otherwise. If A is not needed, factor and a can share the same storage.

Chapter 1: Linear Systems lin_sol_gen (complex) • 13

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, f_complex **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_c_lin_sol_gen. Typically, f_complex *p_inva is declared, and
&p_inva is used as an argument.

IMSL_INVERSE_USER, f_complex inva[] (Output)
A user-allocated array of size n × n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER
is required. The argument b is then ignored, and the returned value of
imsl_c_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LU factorization previously computed by
imsl_c_lin_sol_gen. By default, the solution to Ax = b is pointed to by
imsl_c_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and argument a is ignored.

IMSL_INVERSE_ONLY

Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either
IMSL_INVERSE or IMSL_INVERSE_USER is required. Argument b is then
ignored, and the returned value of imsl_c_lin_sol_gen is NULL.

Description

The function imsl_c_lin_sol_gen solves a system of linear algebraic equations with
a complex coefficient matrix A. It first computes the LU factorization of A with partial
pivoting such that L��A = U. The matrix U is upper-triangular, while
L��A ≡ PQLQ��PQ��…L�P�A ≡ U. The factors PL and LL are defined by the partial
pivoting. Each PL is an interchange of row i with row j ≥ i. Thus, PL is defined by that
value of j. Every

L I m ei i i
T= +

14 • lin_sol_gen (complex) IMSL C/Math/Library

is an elementary elimination matrix. The vector mL is zero in entries 1, …, i. This vector
is stored in the strictly lower-triangular part of column i of the working array containing
the decomposition information.

The solution of the linear system is then found by solving two simpler systems,
y = L��b and x = U��y. When the solution to the linear system or the inverse of the
matrix is computed, an estimate of the L� condition number of A is computed using the
algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than
1/ε (where ε is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function
imsl_c_lin_sol_gen fails if U, the upper-triangular part of the factorization, has a
zero diagonal element.

Examples

Example 1

This example solves a system of three linear equations. The equations are:

(1 + i) x� + (2 + 3i) x� + (3 − 3i) x� = 3 + 5i

(2 + i) x� + (5 + 3i) x� + (7 − 5i) x� = 22 + 10i

(−2 + i) x� + (−4 + 4i) x� + (5 + 3i) x� = −10 + 4i

#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

main()
{
 int n = 3;
 f_complex *x;
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_gen (n, a, b, 0);

 /* Print x */
 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(1, -1) (2, 4) (3, -0)

Chapter 1: Linear Systems lin_sol_gen (complex) • 15

Example 2

This example solves the conjugate transpose problem A+x = b and returns the
LU factorization of A using partial pivoting. This example differs from the first example
in that the solution array is allocated in the main program.

#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

main()
{
 int n = 3, pvt[3];
 f_complex factor[9];
 f_complex x[3];
 /* Solve ctrans(A)*x = b for x */
 imsl_c_lin_sol_gen (n, a, b,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 /* Print x */
 imsl_c_write_matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);

 /* Print factors and pivot sequence */
 imsl_c_write_matrix ("LU factors of A", n, n, factor, 0);
 imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}

Output
 Solution, x, of ctrans(A)x = b
 1 2 3
(-9.79, 11.23) (2.96, -3.13) (1.85, 2.47)

 LU factors of A
 1 2 3
1 (-2.000, 1.000) (-4.000, 4.000) (5.000, 3.000)
2 (0.600, 0.800) (-1.200, 1.400) (2.200, 0.600)
3 (0.200, 0.600) (-1.118, 0.529) (4.824, 1.294)
Pivot sequence
 1 2 3
 3 3 3

Example 3

This example computes the inverse of the 3 × 3 matrix A in the first example and also
solves the linear system. The product matrix C = A��A is computed as a check. The
approximate result is C = I.

#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},

16 • lin_sol_gen (complex) IMSL C/Math/Library

 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

main()
{
 int n = 3;
 f_complex *x;
 f_complex *p_inva;
 f_complex *C;

 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_gen (n, a, b,
 IMSL_INVERSE, &p_inva,
 0);

 /* Print solution */
 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print input and inverse matrices */
 imsl_c_write_matrix ("Input A", n, n, a, 0);
 imsl_c_write_matrix ("Inverse of A", n, n, p_inva, 0);

 /* Check and print result */
 C = imsl_c_mat_mul_rect ("A*B",
 IMSL_A_MATRIX, n,n, p_inva,
 IMSL_B_MATRIX, n,n, a,
 0);
 imsl_c_write_matrix ("Product, inv(A)*A", n, n, C, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(1, -1) (2, 4) (3, -0)

 Input A
 1 2 3
1 (1, 1) (2, 3) (3, -3)
2 (2, 1) (5, 3) (7, -5)
3 (-2, 1) (-4, 4) (5, 3)
 Inverse of A
 1 2 3
1 (1.330, 0.594) (-0.151, 0.028) (-0.604, 0.613)
2 (-0.632, -0.538) (0.160, 0.189) (0.142, -0.245)
3 (-0.189, 0.160) (0.193, -0.052) (0.024, 0.042)

 Product, inv(A)*A
 1 2 3
1 (1, -0) (-0, -0) (-0, 0)
2 (0, 0) (1, 0) (0, -0)
3 (-0, -0) (-0, 0) (1, 0)

Chapter 1: Linear Systems lin_sol_posdef • 17

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of the L� condition number is “rcond” = #.
The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_posdef
Solves a real symmetric positive definite system of linear equations Ax = b. Using
optional arguments, any of several related computations can be performed. These extra
tasks include computing the Cholesky factor, L, of A such that A = LL7, computing the
inverse matrix A��, or computing the solution of Ax = b given the Cholesky factor, L.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_posdef (int n, float a[], float b[], …, 0)

The type double procedure is imsl_d_lin_sol_posdef.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size n × n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the symmetric positive definite linear system Ax = b.
To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_posdef (int n, float a[], float b[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,

18 • lin_sol_posdef IMSL C/Math/Library

IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n × n containing the
LL7 factorization of A. On return, the necessary space is allocated by
imsl_f_lin_sol_posdef. The lower-triangular part of this array contains
L and the upper-triangular part contains L7. Typically, float *p_factor is
declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n × n containing the LL7 factorization of A. The
lower-triangular part of this array contains L, and the upper-triangular part
contains L7. If A is not needed, a and factor can share the same storage. If
IMSL_SOLVE is specified, it is input; otherwise, it is output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LL7 factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_f_lin_sol_posdef. Typically, float *p_inva is declared, and
&p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n × n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

Chapter 1: Linear Systems lin_sol_posdef • 19

IMSL_FACTOR_ONLY

Compute the Cholesky factorization LL7 of A. If IMSL_FACTOR_ONLY is
used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument
b is then ignored, and the returned value of imsl_f_lin_sol_posdef is
NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LL7 factorization previously computed by
imsl_f_lin_sol_posdef. By default, the solution to Ax = b is pointed to
by imsl_f_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and the argument a is ignored.

IMSL_INVERSE_ONLY

Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either
IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then
ignored, and the returned value of imsl_f_lin_sol_posdef is NULL.

Description

The function imsl_f_lin_sol_posdef solves a system of linear algebraic equations
having a symmetric positive definite coefficient matrix A. The function first computes
the Cholesky factorization LL7 of A. The solution of the linear system is then found by
solving the two simpler systems, y = L��b and x = L�7y. When the solution to the linear
system or the inverse of the matrix is sought, an estimate of the L� condition number of
A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated
condition number is greater than 1/ε (where ε is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large
changes in the solution x.

The function imsl_f_lin_sol_posdef fails if L, the lower-triangular matrix in the
factorization, has a zero diagonal element.

Examples

Example 1

A system of three linear equations with a symmetric positive definite coefficient matrix
is solved in this example. The equations are listed below:

x� − 3x� + 2x� = 27

−3x� + 10x� − 5x� = −78

2x� − 5x� + 6x� = 64

#include <imsl.h>

main()
{

20 • lin_sol_posdef IMSL C/Math/Library

 int n = 3;
 float *x;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b, 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
Solution, x, of Ax = b
 1 2 3
 1 -4 7

Example 2

This example solves the same system of three linear equations as in the initial example,
but this time returns the LL7 factorization of A. The solution x is returned in an array
allocated in the main program.

#include <imsl.h>

main()
{
 int n = 3;
 float x[3], *p_factor;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 imsl_f_lin_sol_posdef (n, a, b,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR, &p_factor,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print Cholesky factor of A */
 imsl_f_write_matrix ("Cholesky factor L, and trans(L), of A",
 n, n, p_factor, 0);
}

Output
Solution, x, of Ax = b
1 2 3
1 -4 7

Cholesky factor L, and trans(L), of A

Chapter 1: Linear Systems lin_sol_posdef • 21

 1 2 3
1 1 -3 2
2 -3 1 1
3 2 1 1

Example 3

This example solves the same system as in the initial example, but given the Cholesky
factors of A.

#include <imsl.h>

main()
{
 int n = 3;
 float *x, *a;
 float factor[] = {1.0, -3.0, 2.0,
 -3.0, 1.0, 1.0,
 2.0, 1.0, 1.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
Solution, x, of Ax = b
1 2 3
1 -4 7

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L� condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.

IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of
the first zero diagonal element is #.

22 • lin_sol_posdef (complex) IMSL C/Math/Library

lin_sol_posdef (complex)
Solves a complex Hermitian positive definite system of linear equations Ax = b. Using
optional arguments, any of several related computations can be performed. These extra
tasks include computing the Cholesky factor, L, of A such that A = LL+ or computing
the solution to Ax = b given the Cholesky factor, L.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[],
…, 0)

The type d_complex procedure is imsl_z_lin_sol_posdef.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size n × n containing the matrix.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To
release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, f_complex **p_factor,
IMSL_FACTOR_USER, f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

Chapter 1: Linear Systems lin_sol_posdef (complex) • 23

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of size n containing the solution x.

IMSL_FACTOR, f_complex **p_factor (Output)
The address of a pointer to an array of size n × n containing the
LL+ factorization of A. On return, the necessary space is allocated by
imsl_c_lin_sol_posdef. The lower- triangular part of this array contains
L, and the upper-triangular part contains L+. Typically, f_complex
*p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)
A user-allocated array of size n × n containing the LL+ factorization of A.
The lower- triangular part of this array contains L, and the upper-triangular
part contains L+. If A is not needed, a and factor can share the same
storage. If IMSL_SOLVE is specified, Factor is input. Otherwise, it is output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LL+ factorization
of A.
Default: fac_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the Cholesky factorization LL+ of A. If IMSL_FACTOR_ONLY is
used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument
b is then ignored, and the returned value of imsl_c_lin_sol_posdef is
NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LL+ factorization previously computed by
imsl_c_lin_sol_posdef. By default, the solution to Ax = b is pointed to
by imsl_c_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and argument a is ignored.

Description

The function imsl_c_lin_sol_posdef solves a system of linear algebraic equations
having a Hermitian positive definite coefficient matrix A. The function first computes
the LL+ factorization of A. The solution of the linear system is then found by solving
the two simpler systems, y = L��b and x = L�+y. When the solution to the linear system
is required, an estimate of the L� condition number of A is computed using the
algorithm in Dongarra et al. (1979). If the estimated condition number is greater than
1/ε (where ε is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function
imsl_c_lin_sol_posdef fails if L, the lower-triangular matrix in the factorization,
has a zero diagonal element.

24 • lin_sol_posdef (complex) IMSL C/Math/Library

Examples

Example 1

A system of five linear equations with a Hermitian positive definite coefficient matrix is
solved in this example. The equations are as follows:

2x� +(−1 + i)x� = 1 +5i

(−1 − i)x� +4x� + (1 + 2i)x� = 12 − 6i

(1 − 2i)x� +10x� + 4ix� = 1 − 16i

−4ix� + 6x� + (1 + i)x� = −3 − 3i

(1 − i)x� + 9x� = 25 + 16i
#include <imsl.h>

main()
{
 int n = 5;
 f_complex *x;
 f_complex a[] = {
 {2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
 {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
 {0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}
 };

 f_complex b[] = {
 {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
 };
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_posdef(n, a, b, 0);

 /* Print x */
 imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)

 4 5
(0, -2) (3, 2)

Example 2

This example solves the same system of five linear equations as in the first example.
This time, the LL+ factorization of A and the solution x is returned in an array allocated
in the main program.

#include <imsl.h>

main()

Chapter 1: Linear Systems lin_sol_posdef (complex) • 25

{
 int n = 5;
 f_complex x[5], *p_factor;
 f_complex a[] = {
 {2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
 {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
 {0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}
 };
 f_complex b[] = {
 {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
 };
 /* Solve Ax = b for x */
 imsl_c_lin_sol_posdef(n, a, b,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR, &p_factor,
 0);

 /* Print x */
 imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print Cholesky factor of A */
 imsl_c_write_matrix("Cholesky factor L, and ctrans(L), of A",
 n, n, p_factor, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)

 4 5
(0, -2) (3, 2)

 Cholesky factor L, and ctrans(L), of A
 1 2 3
1 (1.414, 0.000) (-0.707, 0.707) (0.000, -0.000)
2 (-0.707, -0.707) (1.732, 0.000) (0.577, 1.155)
3 (0.000, 0.000) (0.577, -1.155) (2.887, 0.000)
4 (0.000, 0.000) (0.000, 0.000) (0.000, -1.386)
5 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

 4 5
1 (0.000, -0.000) (0.000, -0.000)
2 (0.000, -0.000) (0.000, -0.000)
3 (0.000, 1.386) (0.000, -0.000)
4 (2.020, 0.000) (0.495, 0.495)
5 (0.495, -0.495) (2.917, 0.000)

26 • lin_sol_gen_band IMSL C/Math/Library

Warning Errors

IMSL_HERMITIAN_DIAG_REAL_1 The diagonal of a Hermitian matrix must be real.
Its imaginary part is set to zero.

IMSL_HERMITIAN_DIAG_REAL_2 The diagonal of a Hermitian matrix must be real.
The imaginary part will be used as zero in the
algorithm.

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An
estimate of the reciprocal of its L�condition
number is “rcond” = #. The solution might not
be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX The leading # by # minor matrix of the input
matrix is not positive definite.

IMSL_HERMITIAN_DIAG_REAL During the factorization the matrix has a large
imaginary component on the diagonal. Thus, it
cannot be positive definite.

IMSL_SINGULAR_TRI_MATRIX The triangular matrix is singular. The index of
the first zero diagonal term is #.

lin_sol_gen_band
Solves a real general band system of linear equations, Ax = b. Using optional arguments, any
of several related computations can be performed. These extra tasks include computing the
LU factorization of A using partial pivoting, solving A7x = b, or computing the solution of
Ax = b given the LU factorization of A.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca, int nuca, float
b[], …, 0)

The type double procedure is imsl_d_lin_sol_gen_band.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size (nlca + nuca + 1) containing the n × n banded coefficient matrix
in band storage mode.

Chapter 1: Linear Systems lin_sol_gen_band • 27

int nlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca,
int nuca, float b[],
IMSL_TRANSPOSE,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, int **p_pvt, float **p_factor,
IMSL_FACTOR_USER, int pvt[], float factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_BLOCKING_FACTOR, int block_factor,
0)

Optional Arguments

IMSL_TRANSPOSE

Solve A7x = b.
Default: Solve Ax = b.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, float **p_factor (Output)

p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_f_lin_sol_gen_band. Typically, int *p_pvt is declared and
&p_pvt is used as an argument.

p_factor: The address of a pointer to an array of size
(2nlca + nuca + 1) × n containing the LU factorization of A with column
pivoting. On return, the necessary space is allocated by
imsl_f_lin_sol_gen_band. Typically, float *p_factor is declared and
&p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

28 • lin_sol_gen_band IMSL C/Math/Library

pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.

factor[]: A user-allocated array of size (2nlca + nuca + 1) × n containing
the LU factorization of A. The strictly lower triangular part of this array
contains information necessary to construct L, and the upper triangular part
contains U. If A is not needed, factor and a can share the first
(nlca + nuca + 1) × n locations.

These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are
“Output” otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER
is required. The argument b is then ignored, and the returned value of
imsl_f_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LU factorization previously computed by
imsl_f_lin_sol_gen_band. By default, the solution to Ax = b is pointed to
by imsl_f_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and the argument a is ignored.

IMSL_BLOCKING_FACTOR, int block_factor (Input)
The blocking factor. block_factor must be set no larger than 32.
Default: block_factor = 1

Description

The function imsl_f_lin_sol_gen_band solves a system of linear algebraic
equations with a real band matrix A. It first computes the LU factorization of A based
on the blocked LU factorization algorithm given in Du Croz et al. (1990). Level-3
BLAS invocations are replaced with inline loops. The blocking factor block_factor

has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems,
y = L��b and x = U��y. When the solution to the linear system or the inverse of the
matrix is sought, an estimate of the L� condition number of A is computed using
Higham’s modifications to Hager’s method, as given in Higham (1988). If the
estimated condition number is greater than 1/ε (where ε is the machine precision), a
warning message is issued. This indicates that very small changes in A may produce
large changes in the solution x. The function imsl_f_lin_sol_gen_band fails if
U, the upper triangular part of the factorization, has a zero diagonal element.

Chapter 1: Linear Systems lin_sol_gen_band • 29

Examples

Example 1

This example demonstrates the simplest use of this function by solving a system of four
linear equations. This is the simplest usage of the function. The equations are as
follows:

2x� − x� = 3

−3x� + x� − 2x� = 1

−x� + 2x� = 11

2x� + x� = −2

#include <imsl.h>

void main ()
{
 int n = 4;
 int nuca = 1;
 int nlca = 1;
 float *x;

 /* Note that a is in band storage mode */

 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};
 float b[] = {3.0, 1.0, 11.0, -2.0};

 x = imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b, 0);

 imsl_f_write_matrix ("Solution x, of Ax = b", 1, n, x, 0);
}

Output
 Solution x, of Ax = b
 1 2 3 4
 2 1 -3 4

Example 2

In this example, the problem Ax = b is solved using the data from the first example.
This time, the factorizations are returned and the problem A7x = b is solved without
recomputing LU.

#include <imsl.h>

void main ()
{

30 • lin_sol_gen_band IMSL C/Math/Library

 int n = 4;
 int nuca = 1;
 int nlca = 1;
 int *pivot;
 float x[4];
 float *factor;

 /* Note that a is in band storage mode */

 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};
 float b[] = {3.0, 1.0, 11.0, -2.0};

 /* Solve Ax = b and return LU */

 imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR, &pivot, &factor,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix ("Solution of Ax = b", 1, n, x, 0);

 /* Use precomputed LU to solve trans(A)x = b */
 /* The original matrix A is not needed */

 imsl_f_lin_sol_gen_band (n, (float*) 0, nlca, nuca, b,
 IMSL_FACTOR_USER, pivot, factor,
 IMSL_SOLVE_ONLY,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix ("Solution of trans(A)x = b", 1, n, x, 0);
}

Output
 Solution of Ax = b
 1 2 3 4
 2 1 -3 4

 Solution of trans(A)x = b
 1 2 3 4
 -6 -5 -1 -0

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L� condition number is
"rcond" = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX The input matrix is singular.

Chapter 1: Linear Systems lin_sol_gen_band (complex) • 31

lin_sol_gen_band (complex)
Solves a complex general band system of linear equations Ax = b. Using optional
arguments, any of several related computations can be performed. These extra tasks
include computing the LU factorization of A using partial pivoting, solving A+x = b,
or computing the solution of Ax = b given the LU factorization of A.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[], int nlca,
int nuca, f_complex b[], …, 0)

The type double procedure is imsl_z_lin_sol_gen_band.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size (nlca + nuca + 1) × n containing the n × n banded coefficient
matrix in band storage mode.

int nlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[],
int nlca, int nuca, f_complex b[],
IMSL_TRANSPOSE,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

32 • lin_sol_gen_band (complex) IMSL C/Math/Library

Optional Arguments

IMSL_TRANSPOSE

Solve A+x = b
Default: Solve Ax = b.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)

p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_c_lin_sol_gen_band. Typically, int *p_pvt is declared and
&p_pvt is used as an argument.

p_factor: The address of a pointer to an array of size
(2nlca + nuca + 1) × n containing the LU factorization of A with column
pivoting. On return, the necessary space is allocated by
imsl_c_lin_sol_gen_band. Typically, f_complex *p_factor is declared
and &p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)

pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.

factor[]: A user-allocated array of size (2nlca + nuca + 1) × n containing
the LU factorization of A. If A is not needed, factor and a can share the first
(nlca + nuca + 1) × n locations.

These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are
“Output” otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER
is required. The argument b is then ignored, and the returned value of
imsl_c_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LU factorization previously computed by
imsl_c_lin_sol_gen_band. By default, the solution to Ax = b is pointed to
by imsl_c_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and argument a is ignored.

Description

The function imsl_c_lin_sol_gen_band solves a system of linear algebraic
equations with a complex band matrix A. It first computes the LU factorization of A

Chapter 1: Linear Systems lin_sol_gen_band (complex) • 33

using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that
the pivoting strategy is the same as if each row were scaled to have the same Lg norm.
The factorization fails if U has a zero diagonal element. This can occur only if
A is singular or very close to a singular matrix.

The solution of the linear system is then found by solving two simpler systems,

y = L��b and x = U��y. When the solution to the linear system or the inverse of the matrix is
sought, an estimate of the L� condition number of A is computed using Higham’s modifications

to Hager’s method, as given in Higham (1988). If the estimated condition number is greater than

1/ε (where ε is the machine precision), a warning message is issued. This indicates that very

small changes in A may produce large changes in the solution x. The function

imsl_c_lin_sol_gen_band fails if U, the upper triangular part of the factorization, has a

zero diagonal element. The function imsl_c_lin_sol_gen_band is based on the LINPACK

subroutine CGBFA; see Dongarra et al. (1979). CGBFA uses unscaled partial pivoting.

Examples

Example 1

The following linear system is solved:

− −
+ − + − +

+ − − −
−

L

N

M
M
M
M

O

Q

P
P
P
P

L

N

M
M
M
M

O

Q

P
P
P
P

=

− −
+
−

L

N

M
M
M
M

O

Q

P
P
P
P

2 3 4 0 0

6 05 3 2 2 0

0 1 3 3 4 1

0 0 2 1

10 5

9 5 55

12 12

8

0

1

2

3

i

i i i

i i

i i

x

x

x

x

i

i

i

i

. . .

#include <imsl.h>

void main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *x;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

 f_complex b[] =
 {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x,

34 • lin_sol_gen_band (complex) IMSL C/Math/Library

Output
 Solution, x, of Ax = b
1 (3, -0)
2 (-1, 1)
3 (3, 0)
4 (-1, 1)

Example 2

This example solves the problem Ax = b using the data from the first example. This
time, the factorizations are returned and then the problem A+x = b is solved without
recomputing LU.

#include <imsl.h>

void main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 int *pivot;
 f_complex *x;
 f_complex *factor;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex b[] =
 {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

 /* Solve Ax = b and return LU */

 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR, &pivot, &factor,
 0);

 imsl_c_write_matrix ("solution of Ax = b", n, 1, x, 0);
 free (x);

 /* Use precomputed LU to solve ctrans(A)x = b */

 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR_USER, pivot, factor,
 IMSL_TRANSPOSE,
 0);

 imsl_c_write_matrix ("solution of ctrans(A)x = b", n, 1, x, 0);
}

Output
 solution of Ax = b
1 (3, -0)
2 (-1, 1)
3 (3, 0)

Chapter 1: Linear Systems lin_sol_posdef_band • 35

4 (-1, 1)

solution of ctrans(A)x = b
1 (5.58, -2.91)
2 (-0.48, -4.67)
3 (-6.19, 7.15)
4 (12.60, 30.20)

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L� condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors

IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_posdef_band
Solves a real symmetric positive definite system of linear equations Ax = b in band
symmetric storage mode. Using optional arguments, any of several related computations
can be performed. These extra tasks include computing the R7R Cholesky factorization
of A, computing the solution of Ax = b given the Cholesky factorization of A, or
estimating the L� condition number of A.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[],
…, 0)

The type double procedure is imsl_d_lin_sol_posdef_band.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size (ncoda + 1) × n containing the n × n positive definite band
coefficient matrix in band symmetric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

36 • lin_sol_posdef_band IMSL C/Math/Library

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[],
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size (ncoda + 1) × n containing the
LL7 factorization of A. On return, the necessary space is allocated by
imsl_f_lin_sol_posdef_band. Typically, float *p_factor is declared
and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) × n containing the LL7 factorization
of A in band symmetric form. If A is not needed, factor and a can share the
same storage.

These parameters are “Input” if IMSL_SOLVE is specified. They are “Output”
otherwise.

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the LL7 factorization of A. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then
ignored, and the returned value of imsl_f_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the LL7 factorization previously computed by
imsl_f_lin_sol_posdef_band. By default, the solution to Ax = b is
pointed to by imsl_f_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is

Chapter 1: Linear Systems lin_sol_posdef_band • 37

used, argument IMSL_FACTOR_USER is required and the argument a is
ignored.

Description

The function imsl_f_lin_sol_posdef_band solves a system of linear algebraic
equations with a real symmetric positive definite band coefficient matrix A. It computes
the R7R Cholesky factorization of A. R is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an
estimate of the L� condition number of A is computed using Higham’s modifications to
Hager’s method, as given in Higham (1988). If the estimated condition number is
greater than 1/ε (where ε is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function imsl_f_lin_sol_posdef_band fails if any submatrix of R is not
positive definite or if R has a zero diagonal element. These errors occur only if A is
very close to a singular matrix or to a matrix which is not positive definite.

The function imsl_f_lin_sol_posdef_band is partially based on the LINPACK
subroutines CPBFA and SPBSL; see Dongarra et al. (1979).

Example 1

Solves a system of linear equations Ax = b, where

A b=

−

− −
−

L

N

M
M
M
M

O

Q

P
P
P
P

=
−
−

L

N

M
M
M
M

O

Q

P
P
P
P

2 0 1 0

0 4 2 1

1 2 7 1

0 1 1 3

6

11

11

19

#include <imsl.h>

void main()
{
 int n = 4;
 int ncoda = 2;
 float *x;

 /* Note that a is in band storage mode */

 float a[] = {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};

 x = imsl_f_lin_sol_posdef_band (n, a, ncoda, b, 0);

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

38 • lin_sol_posdef_band IMSL C/Math/Library

Output
 Solution, x, of Ax = b
 1 2 3 4
 4 -6 2 9

Example 2

This example solves the same problem Ax = b given in the first example. The solution
is returned in user-allocated space and an estimate of κ�(A) is computed. Additionally,
the R7R factorization is returned. Then, knowing that κ�(A) = ||A|| ||A��||, the condition
number is computed directly and compared to the estimate from Higham’s method.

#include <imsl.h>

void main()
{
 int n = 4;
 int ncoda = 2;
 float a[] = {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};
 float x[4];
 float e_i[4];
 float *factor;
 float condition;
 float column_norm;
 float inverse_norm;
 int i;
 int j;
 int index;

 imsl_f_lin_sol_posdef_band (n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* find one norm of inverse */

 inverse_norm = 0.0;
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) e_i[j] = 0.0;
 e_i[i] = 1.0;

 /* determine one norm of each column of inverse */

 imsl_f_lin_sol_posdef_band (n, a, ncoda, e_i,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, x,
 0);
 column_norm = imsl_f_vector_norm (n, x,
 IMSL_ONE_NORM,
 0);

Chapter 1: Linear Systems lin_sol_posdef_band (complex) • 39

 /* the max of the column norms is the norm of
 inv(A) */

 if (inverse_norm < column_norm)
 inverse_norm = column_norm;
 }

 /* by observation, one norm of A is 11 */

 printf ("\nHigham’s condition estimate = %f\n", condition);
 printf ("Direct condition estimate = %f\n",
 11.0*inverse_norm);
}

Output
 Solution, x, of Ax = b
 1 2 3 4
 4 -6 2 9

Higham’s condition estimate = 8.650485
Direct condition estimate = 8.650485

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L� condition number is
"rcond" = #. The solution might not be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_posdef_band (complex)
Solves a complex Hermitian positive definite system of linear equations
Ax = b in band symmetric storage mode. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the
R+R Cholesky factorization of A, computing the solution of Ax = b given the
Cholesky factorization of A, or estimating the L� condition number of A.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_band (int n , f_complex a[] , int ncoda ,
f_complex b[] , …, 0)

The type double procedure is imsl_z_lin_sol_posdef_band.

40 • lin_sol_posdef_band (complex) IMSL C/Math/Library

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size (ncoda + 1) × n containing the n × n positive definite band
coefficient matrix in band symmetric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda,
f_complex b[],
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, f_complex **p_factor,
IMSL_FACTOR_USER, f_complex factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, f_complex **p_factor (Output)
The address of a pointer to an array of size (ncoda + 1) × n containing the
R+R factorization of A. On return, the necessary space is allocated by
imsl_c_lin_sol_posdef_band. Typically, f_complex *p_factor is
declared and &p_factor is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) × n containing the R+R
factorization of A in band symmetric form. If A is not needed, factor and a
can share the same storage.
These parameters are “Input” if IMSL_SOLVE is specified. They are “Output”
otherwise.

Chapter 1: Linear Systems lin_sol_posdef_band (complex) • 41

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L� norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY

Compute the R+R factorization of A. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then
ignored, and the returned value of imsl_c_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY

Solve Ax = b given the R+R factorization previously computed by
imsl_c_lin_sol_posdef_band. By default, the solution to Ax = b is
pointed to by imsl_c_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is
used, argument IMSL_FACTOR_USER is required and the argument a is
ignored.

Description

The function imsl_c_lin_sol_posdef_band solves a system of linear algebraic
equations with a real symmetric positive definite band coefficient matrix A. It computes
the R+R Cholesky factorization of A. Argument R is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an
estimate of the L� condition number of A is computed using Higham’s modifications to
Hager’s method, as given in Higham (1988). If the estimated condition number is
greater than 1/ε (where ε is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function imsl_c_lin_sol_posdef_band fails if any submatrix of R is not positive
definite or if R has a zero diagonal element. These errors occur only if A is very close to a
singular matrix or to a matrix which is not positive definite.

The function imsl_c_lin_sol_posdef_band is based partially on the LINPACK
subroutines SPBFA and CPBSL; see Dongarra et al. (1979).

Examples

Example 1

Solve a linear system Ax = b where

A

i

i i

i i

i i

i

=

− +
− − +

−
− +

−

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

2 1 0 0 0

1 4 1 2 0 0

0 1 2 10 4 0

0 0 4 6 1

0 0 0 1 9

#include <imsl.h>

42 • lin_sol_posdef_band (complex) IMSL C/Math/Library

void main()

{

 int n = 5;

 int ncoda = 1;

 f_complex *x;

 /* Note that a is in band storage mode */

 f_complex a[] =

 {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},

 {1.0, 1.0},

 {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},

 {9.0, 0.0}};

 f_complex b[] =

 {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},

 {25.0, 16.0}};

 x = imsl_c_lin_sol_posdef_band (n, a, ncoda, b, 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);

}

Output
 Solution, x, of Ax = b

1 (2, 1)

2 (3, -0)

3 (-1, -1)

4 (0, -2)

5 (3, 2)

Example 2

This example solves the same problem Ax = b given in the first example. The solution
is returned in user-allocated space and an estimate of κ�(A) is computed. Additionally,

Chapter 1: Linear Systems lin_sol_posdef_band (complex) • 43

the R+R factorization is returned. Then, knowing that κ�(A) = ||A|| ||A��||, the condition
number is computed directly and compared to the estimate from Higham’s method.

#include <imsl.h>
#include <math.h>

void main()
{
 int n = 5;
 int ncoda = 1;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
 {1.0, 1.0},
 {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
 {9.0, 0.0}};
 f_complex b[] =
 {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
 {25.0, 16.0}};
 f_complex x[5];
 f_complex e_i[5];
 f_complex *factor;
 float condition;
 float column_norm;
 float inverse_norm;
 int i;
 int j;
 int index;

 imsl_c_lin_sol_posdef_band (n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Find one norm of inverse */

 inverse_norm = 0.0;
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) e_i[j] = imsl_cf_convert (0.0, 0.0);
 e_i[i] = imsl_cf_convert (1.0, 0.0);

 /* Determine one norm of each column of inverse */

 imsl_c_lin_sol_posdef_band (n, a, ncoda, e_i,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, x,
 0);

 column_norm = imsl_c_vector_norm (n, x,
 IMSL_ONE_NORM,
 0);

 /* The max of the column norms is the

44 • lin_sol_gen_coordinate IMSL C/Math/Library

 norm of inv(A) */

 if (inverse_norm < column_norm)
 inverse_norm = column_norm;
 }

 /* By observation, one norm of A is 14+sqrt(5) */

 printf ("\nHigham’s condition estimate = %7.4f\n", condition);
 printf ("Direct condition estimate = %7.4f\n",
 (14.0+sqrt(5.0))*inverse_norm);
}

Output
 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)

 4 5
(0, -2) (3, 2)

Higham’s condition estimate = 19.3777
Direct condition estimate = 19.3777

Warning Errors

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of
the reciprocal of its L� condition number is "rcond" = #.
The solution might not be accurate.

Fatal Errors

IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is
not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_gen_coordinate
Solves a sparse system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include returning the
LU factorization of A computing the solution of Ax = b given an LU factorization
setting drop tolerances, and controlling iterative refinement.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_gen_coordinate (int n , int nz , Imsl_f_sparse_elem
*a , float *b , ..., 0)

The type double function is imsl_d_lin_sol_gen_coordinate .

Chapter 1: Linear Systems lin_sol_gen_coordinate • 45

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use
free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem
*a, float *b,
IMSL_RETURN_SPARSE_LU_FACTOR,

Imsl_f_sparse_lu_factor *lu_factor,
IMSL_SUPPLY_SPARSE_LU_FACTOR,

Imsl_f_sparse_lu_factor *lu_factor,
IMSL_FREE_SPARSE_LU_FACTOR,
IMSL_RETURN_SPARSE_LU_IN_COORD,

Imsl_f_sparse_elem **lu_coordinate,
int **row_pivots, int **col_pivots,

IMSL_SUPPLY_SPARSE_LU_IN_COORD,
Imsl_f_sparse_elem *lu_coordinate, int *row_pivots,
int *col_pivots,

IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_RETURN_USER, float x[],
IMSL_TRANSPOSE,
IMSL_CONDITION, float *condition,
IMSL_PIVOTING_STRATEGY, Imsl_pivot method,
IMSL_NUM_OF_SEARCH_ROWS, int num_search_row,
IMSL_ITERATIVE_REFINEMENT,
IMSL_DROP_TOLERANCE, float tolerance,
IMSL_HYBRID_FACTORIZATION, float density,

int order_bound,
IMSL_STABILITY_FACTOR, float s_factor,
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit,

46 • lin_sol_gen_coordinate IMSL C/Math/Library

IMSL_GROWTH_FACTOR, float *gf,
IMSL_SMALLEST_PIVOT, float *small_pivot
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,

float *values,
IMSL_MEMORY_BLOCK_SIZE, int block_size,
0)

Optional Arguments

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor
(Output)
The address of a structure of type Imsl_f_sparse_lu_factor. The pointers
within the structure are initialized to point to the LU factorization by
imsl_f_lin_sol_gen_coordinate.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor (Input)
The address of a structure of type Imsl_f_sparse_lu_factor. This structure
contains the LU factorization of the input matrix computed by
imsl_f_lin_sol_gen_coordinate with the
IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,
Before returning, free the linked list data structure containing the
LU factorization of A. Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD,
Imsl_f_sparse_elem **lu_coordinate, int **row_pivots,
int **col_pivots (Output)
The LU factorization is returned in coordinate form. This is more compact
than the internal representation encapsulated in Imsl_f_sparse_lu. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of
the factor must be reconstructed. If however, the factor is to be stored after the
program exits, and loaded again at some subsequent run, the combination of
IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably
the best choice, since the factors are in a format that is simple to store and
read.

IMSL_SUPPLY_SPARSE_LU_IN_COORD,
Imsl_f_sparse_elem *lu_coordinate, int *row_pivots,
int *col_pivots (Output)
Supply the LU factorization in coordinate form. See
IMSL_RETURN_SPARSE_LU_IN_COORD for a description.

IMSL_FACTOR_ONLY,
Compute the LU factorization of the input matrix and return. The argument b
is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of

Chapter 1: Linear Systems lin_sol_gen_coordinate • 47

option IMSL_SUPPLY_SPARSE_LU_FACTOR or
IMSL_SUPPLY_SPARSE_LU_IN_COORD.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_TRANSPOSE,
Solve the problem A7x = b. This option can be used in conjunction with either
of the options that supply the factorization.

IMSL_CONDITION, float *condition,
Estimate the L� condition number of A and return in the variable condition.

IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following:
IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or
IMSL_SYMMETRIC_MARKOWITZ.
Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that
will be searched for a pivot element.
Default: num_search_row = 3

IMSL_ITERATIVE_REFINEMENT,
Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new
element is less than tolerance, it will be discarded.
Default: tolerance = 0.0

IMSL_HYBRID_FACTORIZATION, float density, int order_bound,
Enable the function to switch to a dense factorization method when the density
of the active submatrix reaches 0.0 ≤ density ≤ 1.0 and the order of the
active submatrix is less than or equal to order_bound.

IMSL_STABILITY_FACTOR, float s_factor (Input)
The absolute value of the pivot element must be bigger than the largest
element in absolute value in its row divided by s_factor.
Default: s_factor = 10.0

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.0e16

IMSL_GROWTH_FACTOR, float *gf (Output)
Argument gf is calculated as the largest element in absolute value at any stage
of the Gaussian elimination divided by the largest element in absolute value in
A.

48 • lin_sol_gen_coordinate IMSL C/Math/Library

IMSL_SMALLEST_PIVOT, float *small_pivot (Output)
A pointer to the value of the pivot element of smallest magnitude that occurred
during the factorization.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the “Introduction” for a discussion of this storage scheme.

IMSL_MEMORY_BLOCKSIZE, int blocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize

new nonzero elements.
Default: blocksize = nz

Description

The function imsl_f_lin_sol_gen_coordinate solves a system of linear equations
Ax = b, where A is sparse. In its default use, it solves the so-called one off problem, by
first performing an LU factorization of A using the improved generalized symmetric
Markowitz pivoting scheme. The factor L is not stored explicitly because the saxpy

operations performed during the elimination are extended to the right-hand side, along
with any row interchanges. Thus, the system Ly = b is solved implicitly. The factor U is
then passed to a triangular solver which computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually
more efficient to compute the factorization once, and perform multiple forward and
back solves with the various right-hand sides. In this case, the factor L is explicitly
stored and a record of all row as well as column interchanges is made. The solve step
then solves the two triangular systems
Ly = b and Ux = y. The user specifies either the IMSL_RETURN_SPARSE_LU_FACTOR

or the IMSL_RETURN_LU_IN_COORD option to retrieve the factorization, then calls the
function subsequently with different right-hand sides, passing the factorization back in
using either IMSL_SUPPLY_SPARSE_LU_FACTOR or
IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunction with IMSL_SOLVE_ONLY. If
IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to
imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR
to release the heap used to store L and U.

If the solution to A7x = b is required, specify the option IMSL_TRANSPOSE. This
keyword only alters the forward elimination and back substitution so that the operations
U7y = b and L7x = y are performed to obtain the solution. So, with one call to produce
the factorization, solutions to both Ax = b and A7x = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the
L� condition number of A. The algorithm used is due to Higham. Specification of
IMSL_CONDITION causes a complete L to be computed and stored, even if a one off
problem is being solved. This is due to the fact that Higham’s method requires solution
to problems of the form Az = r and A7z = r.

Chapter 1: Linear Systems lin_sol_gen_coordinate • 49

The default pivoting strategy is symmetric Markowitz. If a row or column oriented
problem is encountered, there may be some reduction in fill-in by selecting either
IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will
search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce
fill-in. This works by preventing any new fill element which has magnitude less than the
specified drop tolerance from being added to the factorization. Since this can introduce
substantial error into the factorization, it is recommended that
IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final
solution. The trade-off is between space savings from the drop tolerance and the extra
time needed in repeated solve steps needed for refinement.

The function imsl_f_lin_sol_gen_coordinate provides the option of switching
to a dense factorization method at some point during the decomposition. This option is
enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two parameters
required by this option, density, specifies a minimum density for the active submatrix
before a format switch will occur. A density of 1.0 indicates complete fill-in. The other
parameter, order_bound, places an upper bound of the order of the active submatrix
which will be converted to dense format. This is used to prevent a switch from
occurring too early, possibly when the O(n�) nature of the dense factorization will cause
performance degradation. Note that this option can significantly increase heap storage
requirements.

Examples

Example 1

As an example, consider the following matrix:

A =

− −

− −
− − −
− −

L

N

M
M
M
M
M
M
MM

O

Q

P
P
P
P
P
P
PP

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

Let x7 = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, −34, 31)7. The number of
nonzeros in A is nz = 15.

#include <imsl.h>
main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,

50 • lin_sol_gen_coordinate IMSL C/Math/Library

 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;

 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b, 0);

 imsl_f_write_matrix ("solution", 1, n, x, 0);

 free (x);
}

Output
 solution
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2

This examples sets A = E(1000, 10). A linear system is solved and the LU factorization
returned. Then a second linear system is solved, using the same coefficient matrix A
just factored. Maximum absolute errors and execution time ratios are printed, showing
that forward and back solves take approximately 10 percent of the computation time of
a factor and solve. This ratio can vary greatly, depending on the order of the coefficient
matrix, the initial number of nonzeros, and especially on the amount of fill-in produced
during the elimination. Be aware that timing results are highly machine dependent.

#include <imsl.h>
main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_lu_factor lu_factor;
 float *b;
 float *x;
 float *mod_five;
 float *mod_ten;
 float error_factor_solve;
 float error_solve;
 double time_factor_solve;
 double time_solve;
 int n = 1000;
 int c = 10;
 int i;
 int nz;
 int index;

Chapter 1: Linear Systems lin_sol_gen_coordinate • 51

 /* Get the coefficient matrix */

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Set two different predetermined solutions */

 mod_five = (float*) malloc (n*sizeof(*mod_five));
 mod_ten = (float*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 mod_ten[i] = (float) (i % 10);
 }

 /* Choose b so that x will approximate mod_five */

 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

 /* Time the factor/solve */

 time_factor_solve = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 time_factor_solve = imsl_ctime() - time_factor_solve;

 /* Compute max abolute error */

 error_factor_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (mod_five);
 free (b);
 free (x);

 /* Get new right hand side -- b = A * mod_ten */

 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);

 /* Use the previously computed factorization
 to solve Ax = b */

 time_solve = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_solve = imsl_ctime() - time_solve;
 error_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);

52 • lin_sol_gen_coordinate IMSL C/Math/Library

 free (mod_ten);
 free (b);
 free (x);

 /* Print errors and ratio of execution times */

 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
 printf ("time_solve/time_factor_solve = %f\n",
 time_solve/time_factor_solve);
}

Output
absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04
time_solve/time_factor_solve = 0.093750

Example 3

This example solves a system Ax = b, where A = E (500, 50). Then, the same system is
solved using a large drop tolerance. Finally, using the factorization just computed, the
same linear system is solved with iterative refinement. Be aware that timing results are
highly machine dependent.

#include <imsl.h>
main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_lu_factor lu_factor;
 float *b;
 float *x;
 float *mod_five;
 float error_zero_drop_tol;
 float error_nonzero_drop_tol;
 float error_nonzero_drop_tol_IR;
 double time_zero_drop_tol;
 double time_nonzero_drop_tol;
 double time_nonzero_drop_tol_IR;
 int nz_nonzero_drop_tol;
 int nz_zero_drop_tol;
 int n = 500;
 int c = 50;
 int i;
 int nz;
 int index;

 /* Get the coefficient matrix */

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
 for (i=0; i<nz; i++) a[i].val *= 0.05;

 /* Set a predetermined solution */

 mod_five = (float*) malloc (n*sizeof(*mod_five));
 for (i=0; i<n; i++)
 mod_five[i] = (float) (i % 5);

Chapter 1: Linear Systems lin_sol_gen_coordinate • 53

 /* Choose b so that x will approximate mod_five */

 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

 /* Time the factor/solve */

 time_zero_drop_tol = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_zero_drop_tol,
 0);
 time_zero_drop_tol = imsl_ctime() - time_zero_drop_tol;

 /* Compute max abolute error */

 error_zero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (x);

 /* Solve the same problem, with drop
 tolerance = 0.005 */

 time_nonzero_drop_tol = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_DROP_TOLERANCE, 0.005,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_nonzero_drop_tol,
 0);
 time_nonzero_drop_tol = imsl_ctime() - time_nonzero_drop_tol;

 /* Compute max abolute error */

 error_nonzero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (x);

 /* Solve the same problem with IR, use last
 factorization */

 time_nonzero_drop_tol_IR = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 IMSL_ITERATIVE_REFINEMENT,
 0);
 time_nonzero_drop_tol_IR = imsl_ctime() - time_nonzero_drop_tol_IR;

 /* Compute max abolute error */

 error_nonzero_drop_tol_IR = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,

54 • lin_sol_gen_coordinate (complex) IMSL C/Math/Library

 0);
 free (x);
 free (b);

 /* Print errors and ratio of execution times */

 printf ("drop tolerance = 0.0\n");
 printf ("\tabsolute error = %e\n", error_zero_drop_tol);
 printf ("\tfillin = %d\n\n", nz_zero_drop_tol);

 printf ("drop tolerance = 0.005\n");
 printf ("\tabsolute error = %e\n", error_nonzero_drop_tol);
 printf ("\tfillin = %d\n\n", nz_nonzero_drop_tol);

 printf ("drop tolerance = 0.005 (with IR)\n");
 printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR);
 printf ("\tfillin = %d\n\n", nz_nonzero_drop_tol);

 printf ("time_nonzero_drop_tol/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol/time_zero_drop_tol);
 printf ("time_nonzero_drop_tol_IR/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol_IR/time_zero_drop_tol);
}

Output
drop tolerance = 0.0
 absolute error = 3.814697e-06
 fillin = 9530

drop tolerance = 0.005
 absolute error = 2.699481e+00
 fillin = 8656

drop tolerance = 0.005 (with IR)
 absolute error = 1.907349e-06
 fillin = 8656

time_nonzero_drop_tol/time_zero_drop_tol = 1.086957
time_nonzero_drop_tol_IR/time_zero_drop_tol = 0.840580

Notice the absolute error when iterative refinement is not used. Also note that iterative
refinement itself can be quite expensive. In this case, for example, the IR solve took
approximately as much time as the factorization. For this problem the use of a drop
high drop tolerance and iterative refinement was able to reduce fill-in by 10 percent at a
time cost double that of the default usage. In tight memory situations, such a trade-off
may be acceptable. Users should be aware that a drop tolerance can be chosen large
enough, introducing large errors into LU, to prevent convergence of iterative
refinement.

lin_sol_gen_coordinate (complex)
Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A.
Using optional arguments, any of several related computations can be performed. These
extra tasks include returning the LU factorization of A, computing the solution of

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) • 55

Ax = b given an LU factorization, setting drop tolerances, and controlling iterative
refinement.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz,
Imsl_c_sparse_elem *a, f_complex *b, ..., 0)

The type double function is imsl_z_lin_sol_gen_coordinate.

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
the matrix.

f_complex *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse linear system Ax = b. To release this space, use
free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz,
Imsl_c_sparse_elem *a, f_complex *b,
IMSL_RETURN_SPARSE_LU_FACTOR,

Imsl_c_sparse_lu_factor *lu_factor,
IMSL_SUPPLY_SPARSE_LU_FACTOR,

Imsl_c_sparse_lu_factor *lu_factor,
IMSL_FREE_SPARSE_LU_FACTOR,
IMSL_RETURN_SPARSE_LU_IN_COORD,

Imsl_c_sparse_elem **lu_coordinate,
int **row_pivots, int **col_pivots,

IMSL_SUPPLY_SPARSE_LU_IN_COORD,
Imsl_c_sparse_elem *lu_coordinate, int *row_pivots,
int *col_pivots,

IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_RETURN_USER, f_complex x[],
IMSL_TRANSPOSE,

56 • lin_sol_gen_coordinate (complex) IMSL C/Math/Library

IMSL_CONDITION, float *condition,
IMSL_PIVOTING_STRATEGY, Imsl_pivot method,
IMSL_NUM_OF_SEARCH_ROWS, int num_search_row,
IMSL_ITERATIVE_REFINEMENT,
IMSL_DROP_TOLERANCE, float tolerance,
IMSL_HYBRID_FACTORIZATION, float density,

int order_bound,
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit,
IMSL_GROWTH_FACTOR, float *gf,
IMSL_SMALLEST_PIVOT, float *small_pivot
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,

f_complex *values,
IMSL_MEMORY_BLOCK_SIZE, int block_size,
0)

Optional Arguments

IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor
(Output)
The address of a structure of type Imsl_c_sparse_lu_factor. The pointers
within the structure are initialized to point to the LU factorization by
imsl_c_lin_sol_gen_coordinate.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor
(Input)
The address of a structure of type Imsl_c_sparse_lu_factor. This structure
contains the LU factorization of the input matrix computed by
imsl_c_lin_sol_gen_coordinate with the
IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,
Before returning, free the linked list data structure containing the LU
factorization of A. Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD,
Imsl_c_sparse_elem **lu_coordinate, int **row_pivots,
int **col_pivots (Output)
The LU factorization is returned in coordinate form. This is more compact
than the internal representation encapsulated in Imsl_c_sparse_lu. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of
the factor must be reconstructed. If however, the factor is to be stored after the
program exits, and loaded again at some subsequent run, the combination of
IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably
the best choice, since the factors are in a format that is simple to store and
read.

IMSL_SUPPLY_SPARSE_LU_IN_COORD, Imsl_c_sparse_elem *lu_coordinate, int
*row_pivots, int *col_pivots (Output)

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) • 57

Supply the LU factorization in coordinate form. See
IMSL_RETURN_SPARSE_LU_IN_COORD for a description.

IMSL_FACTOR_ONLY,
Compute the LU factorization of the input matrix and return. The argument b
is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of
option IMSL_SUPPLY_SPARSE_LU_FACTOR or
IMSL_SUPPLY_SPARSE_LU_IN_COORD.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_TRANSPOSE,
Solve the problem A7x = b. This option can be used in conjunction with either
of the options that supply the factorization.

IMSL_CONDITION, float *condition,
Estimate the L� condition number of A and return in the variable condition.

IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following:
IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or
IMSL_SYMMETRIC_MARKOWITZ.
Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that
will be searched for a pivot element.
Default: num_search_row = 3

IMSL_ITERATIVE_REFINEMENT,
Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new
element is less than tolerance, it will be discarded.
Default: tolerance = 0.0

IMSL_HYBRID_FACTORIZATION, float density, int order_bound,
Enable the code to switch to a dense factorization method when the density of
the active submatrix reaches 0.0 ≤ density ≤ 1.0 and the order of the active
submatrix is less than or equal to order_bound.

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.e16

IMSL_GROWTH_FACTOR, float *gf (Output)
gf is calculated as the largest element in absolute value at any stage of the
Gaussian elimination divided by the largest element in absolute value in A.

58 • lin_sol_gen_coordinate (complex) IMSL C/Math/Library

IMSL_SMALLEST_PIVOT, float *small_pivot (Output)
A pointer to the value of the pivot element of smallest magnitude.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, f_complex *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the introduction for a discussion of this storage scheme.

IMSL_FACTOR_RESIZE_INCREMENT, int increment (Input)
Supply the number of nonzeros which will be added to the factor if current
allocations are inadequate.
Default: increment = nz

Description

The function imsl_c_lin_sol_gen_coordinate solves a system of linear equations
Ax = b, where A is sparse. In its default use, it solves the so-called one off problem, by
first performing an LU factorization of A using the improved generalized symmetric
Markowitz pivoting scheme. The factor L is not stored explicitly because the saxpy
operations performed during the elimination are extended to the right-hand side, along
with any row interchanges. Thus, the system Ly = b is solved implicitly. The factor U is
then passed to a triangular solver which computes the solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually
more efficient to compute the factorization once, and perform multiple forward and
back solves with the various right-hand sides. In this case the factor L is explicitly
stored and a record of all row as well as column interchanges is made. The solve step
then solves the two triangular systems
Ly = b and Ux = y. The user specifies either the IMSL_RETURN_SPARSE_LU_FACTOR
or the IMSL_RETURN_LU_IN_COORD option to retrieve the factorization, then calls the
function subsequently with different right-hand sides, passing the factorization back in
using either IMSL_SUPPLY_SPARSE_LU_FACTOR or
IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunction with IMSL_SOLVE_ONLY. If
IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to
imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR
to release the heap used to store L and U.

If the solution to A7x = b is required, specify the option IMSL_TRANSPOSE. This
keyword only alters the forward elimination and back substitution so that the operations
U7y = b and L7x = y are performed to obtain the solution. So, with one call to produce
the factorization, solutions to both Ax = b and A7x = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the
L� condition number of A. The algorithm used is due to Higham. Specification of
IMSL_CONDITION causes a complete L to be computed and stored, even if a one off
problem is being solved. This is due to the fact that Higham’s method requires solution
to problems of the form Az = r and A7z = r.

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) • 59

The default pivoting strategy is symmetric Markowitz. If a row or column oriented
problem is encountered, there may be some reduction in fill-in by selecting either
IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will
search a pre-elected number of row or columns for pivot candidates. The default
number is three, by this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce
fill-in. This works by preventing any new fill element which has magnitude less than the
specified drop tolerance from being added to the factorization. Since this can introduce
substantial error into the factorization, it is recommended that
IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final
solution. The trade-off is between space savings from the drop tolerance and the extra
time needed in repeated solve steps needed for refinement.

The function imsl_c_lin_sol_gen_coordinate provides the option of switching
to a dense factorization method at some point during the decomposition. This option is
enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two parameters
required by this option, density, specifies a minimum density for the active submatrix
before a format switch will occur. A density of 1.0 indicates complete fill-in. The other
parameter, order_bound, places an upper bound of the order of the active submatrix
which will be converted to dense format. This is used to prevent a switch from
occurring too early, possibly when the O(n�) nature of the dense factorization will cause
performance degradation. Note that this option can significantly increase heap storage
requirements.

Examples

Example 1

As an example, consider the following matrix:

A

i

i i

i

i i i

i i i

i i i

=

+
+ − − +

+
− − + − +
− + − + − +
− + − + +

L

N

M
M
M
M
M
M
MM

O

Q

P
P
P
P
P
P
PP

10 7 0 0 0 0 0

0 3 2 3 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 12 2 7 7

1 12 2 8 0 0 0 3 7

Let

x7 = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)

so that

Ax = (3 + 17i, −19 + 5i, 6 + 18i, − 38 + 32i, −63 + 49i, −57 + 83i)7

#include <imsl.h>

60 • lin_sol_gen_coordinate (complex) IMSL C/Math/Library

main()
{
 static Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};

 static f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
 {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
 int n = 6;
 int nz = 15;
 f_complex *x;

 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b, 0);

 imsl_c_write_matrix ("solution", n, 1, x, 0);

 free (x);
}

Output
 solution
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)

Example 2

This examples sets A = E (1000, 10). A linear system is solved and the LU factorization
returned. Then a second linear system is solved using the same coefficient matrix A just
factored. Maximum absolute errors and execution time ratios are printed showing that
forward and back solves take a small percentage of the computation time of a factor and
solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the
initial number of nonzeros, and especially on the amount of fill-in produced during the
elimination. Be aware that timing results are highly machine dependent.

#include <imsl.h>
main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_sparse_lu_factor lu_factor;
 f_complex *b;

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) • 61

 f_complex *x;
 f_complex *mod_five;
 f_complex *mod_ten;
 float error_factor_solve;
 float error_solve;
 double time_factor_solve;
 double time_solve;
 int n = 1000;
 int c = 10;
 int i;
 int nz;
 int index;

 /* Get the coefficient matrix */

 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

 /* Set two different predetermined solutions */

 mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
 mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
 mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
 }

 /* Choose b so that x will approximate mod_five */

 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

 /* Time the factor/solve */

 time_factor_solve = imsl_ctime();
 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 time_factor_solve = imsl_ctime() - time_factor_solve;

 /* Compute max abolute error */

 error_factor_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (b);
 free (x);

 /* Get new right hand side -- b = A * mod_ten */

 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);

 /* Use the previously computed factorization
 to solve Ax = b */

62 • lin_sol_posdef_coordinate IMSL C/Math/Library

 time_solve = imsl_ctime();
 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_solve = imsl_ctime() - time_solve;
 error_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 free (b);
 free (x);

 /* Print errors and ratio of execution times */

 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
 printf ("time_solve/time_factor_solve = %f\n",
 time_solve/time_factor_solve);
}

Output
absolute error (factor/solve) = 2.389053e-06
absolute error (solve) = 7.656095e-06
time_solve/time_factor_solve = 0.070313

lin_sol_posdef_coordinate
Solves a sparse real symmetric positive definite system of linear equations
Ax = b. Using optional arguments, any of several related computations can be
performed. These extra tasks include returning the symbolic factorization of A,
returning the numeric factorization of A, and computing the solution of Ax = b given
either the symbolic or numeric factorizations.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_posdef_coordinate (int n, int nz,
Imsl_f_sparse_elem *a, float *b, ..., 0)

The type double function is imsl_d_lin_sol_posdef_coordinate.

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in lower triangle of the matrix.

Chapter 1: Linear Systems lin_sol_posdef_coordinate • 63

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
the lower triangle of the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b.
To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_posdef_coordinate (int n, int nz,
Imsl_f_sparse_elem *a, float *b,
IMSL_RETURN_SYMBOLIC_FACTOR,

Imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR,

Imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR,

Imsl_f_numeric_factor *num_factor,

IMSL_SUPPLY_NUMERIC_FACTOR,
Imsl_f_numeric_factor *num_factor,

IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, float x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,

float *values,
0)

Optional Arguments

IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Output)
A pointer to a structure of type Imsl_symbolic_factor containing, on return, the
symbolic factorization of the input matrix.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains
the symbolic factorization of the input matrix computed by
imsl_f_lin_sol_posdef_coordinate with the
IMSL_RETURN_SYMBOLIC_FACTOR option.

64 • lin_sol_posdef_coordinate IMSL C/Math/Library

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The
argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return,
the numeric factorization of the input matrix.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_f_numeric_factor. This structure contains
the numeric factorization of the input matrix computed by
imsl_f_lin_sol_posdef_coordinate with the
IMSL_RETURN_NUMERIC_FACTOR option.

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The
argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option
requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or
IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default, a
standard factorization is computed based on a sparse compressed storage
scheme.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_f_lin_sol_posdef_coordinate.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_f_lin_sol_posdef_coordinate.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the “Introduction” for a discussion of this storage scheme.

Chapter 1: Linear Systems lin_sol_posdef_coordinate • 65

Description

The function imsl_f_lin_sol_posdef_coordinate solves a system of linear
algebraic equations having a sparse symmetric positive definite coefficient matrix A. In
this function’s default usage, a symbolic factorization of a permutation of the
coefficient matrix is computed first. Then a numerical factorization is performed. The
solution of the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum
degree ordering and then setting up a sparse data structure for the Cholesky factor, L. This
step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations of the
nonzeros elements but not any of the elements themselves. Thus, the val field in the
Imsl_f_sparse_elem structure is ignored. If an application generates different sparse
symmetric positive definite coefficient matrices that all have the same sparsity pattern, then
by using IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR,
the symbolic factorization need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic
factor, the numeric factorization produces the entries in L so that

PAP7 = LL7

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the
standard factorization is performed based on a sparse compressed storage scheme. This
is fully described in George and Liu (1981). Optionally, a multifrontal technique can be
used. The multifrontal method requires more storage but will be faster in certain cases.
The multifrontal factorization is based on the routines in Liu (1987). For a detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft
(1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient
matrix is the same but the right-hand sides change, the options
IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used
to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to
efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following
calculations:

Ly� = Pb

L7y� = y�

x = P7y�

The permutation information, P, is carried in the numeric factor structure.

66 • lin_sol_posdef_coordinate IMSL C/Math/Library

Examples

Example 1

As an example consider the 5 × 5 coefficient matrix:

a =

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

Let x7 = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)7. The number of nonzeros in
the lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle is
given by the following:

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

Since this representation is not unique, an equivalent form would be as follows:

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50

#include <imsl.h>
main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 20.0,
 2, 0, 1.0,
 2, 2, 30.0,
 3, 2, 4.0,
 3, 3, 40.0,
 4, 0, 2.0,
 4, 1, 3.0,
 4, 3, 5.0,
 4, 4, 50.0};

 float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
 int n = 5;
 int nz = 10;
 float *x;

 x = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b, 0);

 imsl_f_write_matrix ("solution", 1, n, x, 0);

 free (x);
}

Chapter 1: Linear Systems lin_sol_posdef_coordinate • 67

Output
 solution
 1 2 3 4 5
 5 4 3 2 1

Example 2

In this example, set A = E(2500, 50). Then solve the system Ax = b� and return the
numeric factorization resulting from that call. Then solve the system Ax = b� using the
numeric factorization just computed. The ratio of execution time is printed. Be aware
that timing results are highly machine dependent.

#include <imsl.h>

main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_elem *c;
 Imsl_f_numeric_factor numeric_factor;
 float *b_1;
 float *b_2;
 float *x_1;
 float *x_2;
 int n;
 int ic;
 int nz;
 int i;
 int index;
 double time_1;
 double time_2;
 float error_1;
 float error_2;

 ic = 50;
 n = ic*ic;

 /* Generate two right hand sides */

 b_1 = imsl_f_random_uniform (n*sizeof(*b_1));
 b_2 = imsl_f_random_uniform (n*sizeof(*b_2));

 /* Build coefficient matrix a */

 a = imsl_f_generate_test_coordinate (n, ic, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 /* Now solve Ax_1 = b_1 and return the numeric
 factorization */

 time_1 = imsl_ctime ();
 x_1 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = imsl_ctime () - time_1;

 /* Now solve Ax_2 = b_2 given the numeric

68 • lin_sol_posdef_coordinate (complex) IMSL C/Math/Library

 factorization */

 time_2 = imsl_ctime ();
 x_2 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_2 = imsl_ctime () - time_2;

 printf("time_2/time_1 = %lf\n", time_2/time_1);
}

Output
time_2/time_1 = 0.037037

lin_sol_posdef_coordinate (complex)
Solves a sparse Hermitian positive definite system of linear equations Ax = b. Using
optional arguments, any of several related computations can be performed. These extra
tasks include returning the symbolic factorization of A, returning the numeric
factorization of A, and computing the solution of Ax = b given either the symbolic or
numeric factorizations.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_coordinate (int n, int nz,
Imsl_c_sparse_elem *a, f_complex *b, ..., 0)

The type d_complex function is imsl_z_lin_sol_posdef_coordinate.

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
lower triangle of the matrix.

f_complex *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b.
To release this space, use free. If no solution was computed, then NULL is returned.

Chapter 1: Linear Systems lin_sol_posdef_coordinate (complex) • 69

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_coordinate (int n,
int nz, Imsl_c_sparse_elem *a, f_complex *b,
IMSL_RETURN_SYMBOLIC_FACTOR,

Imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR,

Imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR,

Imsl_c_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR,

Imsl_c_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, f_complex x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,

float *values,
0)

Optional Arguments

IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Output)
A pointer to a structure of type Imsl_symbolic_factor containing, on return, the
symbolic factorization of the input matrix.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains
the symbolic factorization of the input matrix computed by
imsl_c_lin_sol_posdef_coordinate with the
IMSL_RETURN_SYMBOLIC_FACTOR option.

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The
argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_c_numeric_factor containing, on return,
the numeric factorization of the input matrix.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_c_numeric_factor. This structure contains
the numeric factorization of the input matrix computed by
imsl_c_lin_sol_posdef_coordinate with the
IMSL_RETURN_NUMERIC_FACTOR option.

70 • lin_sol_posdef_coordinate (complex) IMSL C/Math/Library

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The
argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option
requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or
IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default a
standard factorization is computed based on a sparse compressed storage
scheme.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the introduction for a discussion of this storage scheme.

Description

The function imsl_c_lin_sol_posdef_coordinate solves a system of linear
algebraic equations having a sparse Hermitian positive definite coefficient matrix A. In
this function’s default use, a symbolic factorization of a permutation of the coefficient
matrix is computed first. Then a numerical factorization is performed. The solution of
the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum
degree ordering and then setting up a sparse data structure for the Cholesky factor, L.
This step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations
of the nonzeros elements but not any of the elements themselves. Thus, the val field in
the Imsl_c_sparse_elem structure is ignored. If an application generates different
sparse Hermitian positive definite coefficient matrices that all have the same sparsity
pattern, then by using IMSL_RETURN_SYMBOLIC_FACTOR and

Chapter 1: Linear Systems lin_sol_posdef_coordinate (complex) • 71

IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization need only be computed
once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic
factor, the numeric factorization produces the entries in L so that

PAP7 = LL7

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the
standard factorization is performed based on a sparse compressed storage scheme. This
is fully described in George and Liu (1981). Optionally, a multifrontal technique can be
used. The multifrontal method requires more storage but will be faster in certain cases.
The multifrontal factorization is based on the routines in Liu (1987). For a detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft
(1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient
matrix is the same but the right-hand sides change, the options
IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used
to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to
efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following
calculations:

Ly� = Pb

L7y� = y�

x = P7y�

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As a simple example of default use, consider the following Hermitian positive definite
matrix

A

i

i i

i

=
− +

− − +
−

L

N
M
M
M

O

Q
P
P
P

2 1 0

1 4 1 2

0 1 2 10

72 • lin_sol_posdef_coordinate (complex) IMSL C/Math/Library

Let x7 = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (−2 + 2i, 5 +15i, 36 + 28i)7. The number of
nonzeros in the lower triangle is nz = 5.

#include <imsl.h>

main()
{
 Imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0},
 1, 1, {4.0, 0.0},
 2, 2, {10.0, 0.0},
 1, 0, {-1.0, -1.0},
 2, 1, {1.0, -2.0}};

 f_complex b[] = {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};
 int n = 3;
 int nz = 5;
 f_complex *x;

 x = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b, 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);

 free (x);
}

Output
 Solution, x, of Ax = b
1 (1, 1)
2 (2, 2)
3 (3, 3)

Example 2

Set A = E(2500, 50). Then solve the system Ax = b� and return the numeric
factorization resulting from that call. Then solve the system Ax = b� using the numeric
factorization just computed. Absolute errors and execution time are printed.

#include <imsl.h>

main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_numeric_factor numeric_factor;
 f_complex b_1[2500];
 f_complex b_2[2500];
 f_complex *x_1;
 f_complex *x_2;
 int n;
 int ic;
 int nz;
 int i;
 int index;
 double time_1;
 double time_2;
 float *rand_vec;

 ic = 50;
 n = ic*ic;

Chapter 1: Linear Systems lin_sol_gen_min_residual • 73

 index = 0;

 /* Generate two right hand sides */

 rand_vec = imsl_f_random_uniform (4*n*sizeof(*rand_vec), 0);
 for (i=0; i<n; i++) {
 b_1[i].re = rand_vec[index++];
 b_1[i].im = rand_vec[index++];
 b_2[i].re = rand_vec[index++];
 b_2[i].im = rand_vec[index++];
 }
 /* Build coefficient matrix a */

 a = imsl_c_generate_test_coordinate (n, ic,
 &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 /* Now solve Ax_1 = b_1 and return the numeric
 factorization */

 time_1 = imsl_ctime ();
 x_1 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = imsl_ctime () - time_1;

 /* Now solve Ax_2 = b_2 given the numeric
 factorization */

 time_2 = imsl_ctime ();
 x_2 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_2 = imsl_ctime () - time_2;

 printf("time_2/time_1 = %lf\n", time_2/time_1);
}

Output
time_2/time_1 = 0.096386

lin_sol_gen_min_residual
Solves a linear system Ax = b using the restarted generalized minimum residual
(GMRES) method.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (float *p,
float *z), float *b, ..., 0)

74 • lin_sol_gen_min_residual IMSL C/Math/Library

The type double function is imsl_d_lin_sol_gen_min_residual.

Required Arguments

int n (Input)
Number of rows in the matrix.

void amultp (float *p, float *z)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (float *p,
float *z), float *b,
IMSL_RETURN_USER, float x[],
IMSL_MAX_ITER, int *maxit,
IMSL_REL_ERR, float tolerance,
IMSL_PRECOND, void precond (float *r, float *z),
IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax,
IMSL_HOUSEHOLDER_REORTHOG,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_MAX_ITER, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of GMRES
iterations allowed. On exit, the number of iterations used is returned.
Default: maxit = 1000

IMSL_REL_ERR, float tolerance (Input)
The algorithm attempts to generate x such that ||b − Ax||� ≤ τ||b||�, where
τ = tolerance.
Default: tolerance = sqrt(imsl_f_machine(4))

IMSL_PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z = M��r, where M is the preconditioning
matrix.

IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax, (Input)
The maximum Krylov subspace dimension, i.e., the maximum allowable

Chapter 1: Linear Systems lin_sol_gen_min_residual • 75

number of GMRES iterations allowed before restarting.
Default: kdmax = imsl_i_min(n, 20)

IMSL_HOUSEHOLDER_REORTHOG,
Perform orthogonalization by Householder transformations, replacing the
Gram-Schmidt process.

Description

The function imsl_f_lin_sol_gen_min_residual, based on the FORTRAN
subroutine GMRES by H.F. Walker, solves the linear system
Ax = b using the GMRES method. This method is described in detail by Saad and
Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution x� and an initial residual
r� = b − Ax�. At iteration m, a correction zP is determined in the Krylov subspace

κP (v) = span (v, Av, …, AP��v)

v = r� which solves the least-squares problem

()
min

z rm
b A x z∈ − +κ 0 0 2b g b g

Then at iteration m, xP = x� + zP.

Orthogonalization by Householder transformations requires less storage but more
arithmetic than Gram-Schmidt. However, Walker (1988) reports numerical experiments
which suggest the Householder approach is more stable, especially as the limits of
residual reduction are reached.

Examples

Example 1

As an example, consider the following matrix:

A =

− −

− −
− − −
− −

L

N

M
M
M
M
M
M
MM

O

Q

P
P
P
P
P
P
PP

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

Let x7 = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, −34, 31)7. The function
imsl_f_mat_mul_rect_coordinate is used to form the product Ax.

#include <imsl.h>

void amultp (float*, float*);

76 • lin_sol_gen_min_residual IMSL C/Math/Library

main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 float *x;

 x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
 0);

 imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
}

void amultp (float *p, float *z)
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int n = 6;
 int nz = 15;

 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}

Output
 Solution, x, to Ax = b
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2

In this example, the same system given in the first example is solved. This time a
preconditioner is provided. The preconditioned matrix is chosen as the diagonal of A.

#include <imsl.h>

void amultp (float*, float*);
void precond (float*, float*);

main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};

Chapter 1: Linear Systems lin_sol_gen_min_residual • 77

 int n = 6;
 float *x;
 int maxit = 1000;

 x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_PRECOND, precond,
 0);

 imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
 printf ("\nNumber of iterations taken = %d\n", maxit);
}

 /* Set z = Ap */

void amultp (float *p, float *z)
{
 static Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int n = 6;
 int nz = 15;

 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}
 /* Solve Mz = r */

void precond (float *r, float *z)
{
 static float diagonal_inverse[] =
 {0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0};
 int n = 6;
 int i;

 for (i=0; i<n; i++)
 z[i] = diagonal_inverse[i]*r[i];
}

Output
 Solution, x, to Ax = b
 1 2 3 4 5 6
 1 2 3 4 5 6

78 • lin_sol_def_cg IMSL C/Math/Library

Number of iterations taken = 5

lin_sol_def_cg
Solves a real symmetric definite linear system using a conjugate gradient method.
Using optional arguments, a preconditioner can be supplied.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_def_cg (int n, void amultp (), float *b, ..., 0)

The type double function is imsl_d_lin_sol_def_cg.

Required Arguments

int n (Input)
Number of rows in the matrix.

void amultp (float *p, float *z)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_def_cg (int n, void amultp (), float *b,
IMSL_RETURN_USER, float x[],
IMSL_MAX_ITER, int *maxit,
IMSL_REL_ERR, float relative_error,
IMSL_PRECOND, void precond (),
IMSL_JACOBI, float *diagonal,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_MAX_ITER, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of iterations
allowed. On exit, the number of iterations used is returned.

Chapter 1: Linear Systems lin_sol_def_cg • 79

IMSL_REL_ERR, float relative_error (Input)
The relative error desired.
Default: relative_error = sqrt(imsl_f_machine(4))

IMSL_PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z = M��r, where M is the preconditioning
matrix.

IMSL_JACOBI, float diagonal[] (Input)
Use the Jacobi preconditioner, i.e. M = diag(A). The user-supplied vector
diagonal should be set so that diagonal[i] = AL�L.

Description

The function imsl_f_lin_sol_def_cg solves the symmetric definite linear system
Ax = b using the conjugate gradient method with optional preconditioning. This method
is described in detail by Golub and Van Loan (1983, Chapter 10), and in Hageman and
Young (1981, Chapter 7).

The preconditioning matrix M is a matrix that approximates A, and for which the linear
system Mz = r is easy to solve. These two properties are in conflict; balancing them is a
topic of much current research. In the default use of imsl_f_lin_sol_def_cg, M = I.
If the option IMSL_JACOBI is selected, M is set to the diagonal of A.

The number of iterations needed depends on the matrix and the error tolerance. As a
rough guide,

itmax = >>n n for 1

See the references mentioned above for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let τ be the
desired relative error. Then the algorithm used is as follows:

80 • lin_sol_def_cg IMSL C/Math/Library

λ

β

β

β

α

α
α

τ λ

λ

τ λ

= −
=

= −
=

=
=

=
=

=

= +

=

=

= +
= −

≤ −

≤ −

−

− −

− −

1

1

1

1

1

1

0 0

1

1

1 1

1 1

2 2

2 2

p x

r b Ap

k

z M r

k

p z

z r z r

p z p

z Ap

z z z p

x x p

r r z

z x

z x

k k

k

k k

k k
T

k k
T

k

k k k k

k

k k
T

k k
T

k

k k k k

k k k k

k k

k k

for

if then

else

endif

if then

recompute

if exit

, ,

/

/

|| || || ||

|| || || ||

K itmax

e j e j

e j e j

b gc h

b gc h
endif

endfor

Here λ is an estimate of λ�(G), the largest eigenvalue of the iteration matrix
G = I −M�� A. The stopping criterion is based on the result (Hageman and Young 1981,
pp. 148-151)

x x

x G

z

x
k M

M

k M

k M

−
≤

−
F
HG

I
KJ
F
HG

I
KJ

1

1 λmax b g

where

x x Mx
M

T2 =

It is also known that

λ λ λmax max maxT T G1 2 1b g b g b g≤ ≤ ≤ <K

where the TQ are the symmetric, tridiagonal matrices

Chapter 1: Linear Systems lin_sol_def_cg • 81

Tn =

L

N

M
M
M
M

O

Q

P
P
P
P

µ ω
ω µ ω

ω µ

1 2

2 2 3

3 3 O

O O

with µN = 1 − βN/αN�� − 1/αN, µ� = 1 − 1/α� and

ω αk k kB= −/ 1

Usually the eigenvalue computation is needed for only a few of the iterations.

Example 1

In this example, the solution to a linear system is found. The coefficient matrix is stored
as a full matrix.

#include <imsl.h>

static void amultp (float*, float*);

void main()
{
 int n = 3;
 float b[] = {27.0, -78.0, 64.0};
 float *x;

 x = imsl_f_lin_sol_def_cg (n, amultp, b, 0);

 imsl_f_write_matrix ("x", 1, n, x, 0);
}

static void amultp (float *p, float *z)
{
 static float a[] = {1.0, -3.0, 2.0,

 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 int n = 3;

 imsl_f_mat_mul_rect ("A*x",
 IMSL_A_MATRIX, n, n, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER, z,
 0);
}

Output
 x
 1 2 3
 1 -4 7

82 • lin_sol_def_cg IMSL C/Math/Library

Example 2

In this example, two different preconditioners are used to find the solution of a linear
system which occurs in a finite difference solution of Laplace’s equation on a regular

c × c grid, c = 100. The matrix is A = E (c�, c). For the first solution, select Jacobi
preconditioning and supply the diagonal, so M = diag (A). The number of iterations
performed and the maximum absolute error are printed. Next, use a more complicated
preconditioning matrix, M, consisting of the symmetric tridiagonal part of A.

Notice that the symmetric positive definite band solver is used to factor M once, and
subsequently just perform forward and back solves. Again, the number of iterations
performed and the maximum absolute error are printed. Note the substantial reduction
in iterations.

#include <imsl.h>

static void amultp (float*, float*);
static void precond (float*, float*);
static Imsl_f_sparse_elem *a;
static int n = 2500;
static int c = 50;
static int nz;

void main()
{
 int maxit = 1000;
 int i;
 int index;
 float *b;
 float *x;
 float *mod_five;
 float *diagonal;
 float norm;

 n = c*c;
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 diagonal = (float*) malloc (n*sizeof(*diagonal));
 b = (float*) malloc (n*sizeof(*b));

 /* Generate coefficient matrix */

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Set a predetermined answer and diagonal */

 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 diagonal[i] = 4.0;
 }

 /* Get right hand side */

 amultp (mod_five, b);

 /* Solve with jacobi preconditioning */

 x = imsl_f_lin_sol_def_cg (n, amultp, b,

Chapter 1: Linear Systems lin_sol_def_cg • 83

 IMSL_MAX_ITER, &maxit,
 IMSL_JACOBI, diagonal,
 0);

 /* Find max absolute error, print results */

 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 printf ("iterations = %d, norm = %e\n", maxit, norm);
 free (x);

 /* Solve same system, with different preconditioner */

 x = imsl_f_lin_sol_def_cg (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_PRECOND, precond,
 0);

 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 printf ("iterations = %d, norm = %e\n", maxit, norm);
}

 /* Set z = Ap */

static void amultp (float *p, float *z)
{
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}

 /* Solve Mz = r */

static void precond (float *r, float *z)
{
 static float *m;
 static float *factor;
 static int first = 1;
 float *null = (float*) 0;

 if (first) {

 /* Factor the first time through */

 m = imsl_f_generate_test_band (n, 1, &nz, 0);
 imsl_f_lin_sol_posdef_band (n, m, 1, null,
 IMSL_FACTOR, &factor,
 IMSL_FACTOR_ONLY,
 0);
 first = 1;
 }

84 • lin_least_squares_gen IMSL C/Math/Library

 /* Perform the forward and back solves */

 imsl_f_lin_sol_posdef_band (n, m, 1, r,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, z,
 0);
}

Output
iterations = 115, norm = 1.382828e-05
iterations = 75, norm = 7.319450e-05

lin_least_squares_gen
Solves a linear least-squares problem Ax = b. Using optional arguments, the QR
factorization of A, AP = QR, and the solve step based on this factorization can be
computed.

Synopsis

#include <imsl.h>

float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[],
…, 0)

The type double procedure is imsl_d_lin_least_squares_gen.

Required Arguments

int m (Input)
Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size m × n containing the matrix.

float b[] (Input)
Array of size m containing the right-hand side.

Return Value

If no optional arguments are used, function imsl_f_lin_least_squares_gen
returns a pointer to the solution x of the linear least-squares problem Ax = b. To release
this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Chapter 1: Linear Systems lin_least_squares_gen • 85

float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float x[],
IMSL_BASIS, float tol, int *kbasis,
IMSL_RESIDUAL, float **p_res,
IMSL_RESIDUAL_USER, float res[],
IMSL_FACTOR, float **p_qraux, float **p_qr,
IMSL_FACTOR_USER, float qraux[], float qr[],
IMSL_FAC_COL_DIM, int qr_col_dim,
IMSL_Q, float **p_q,
IMSL_Q_USER, float q[],
IMSL_Q_COL_DIM, int q_col_dim,
IMSL_PIVOT, int pvt[],
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of size n containing the least-squares solution x. If
IMSL_RETURN_USER is used, the return value of the function is a pointer to
the array x.

IMSL_BASIS, float tol, int *kbasis (Input, Input/Output)

tol: Nonnegative tolerance used to determine the subset of columns of A to
be included in the solution.

Default: tol = sqrt (imsl_amach(4))

kbasis: Integer containing the number of columns used in the solution.

kbasis = k if |rN��,N��| < |tol|*|r���| and |rL�L|≥ tol*|r���| for i = 1, 2, …, k. For
more information on the use of this option, see “Description” on page 87.

Default: kbasis = min (m, n)

IMSL_RESIDUAL, float **p_res (Output)
The address of a pointer to an array of size m containing the residual vector
b − Ax. On return, the necessary space is allocated by the function. Typically,
float *p_res is declared, and &p_res is used as an argument.

IMSL_RESIDUAL_USER, float res[] (Output)
A user-allocated array of size m containing the residual vector b − Ax.

IMSL_FACTOR, float **p_qraux, float **p_qr (Output)

**p_qraux: The address of a pointer qraux to an array of size n containing
the scalars τN of the Householder transformations in the first min (m, n)

86 • lin_least_squares_gen IMSL C/Math/Library

positions. On return, the necessary space is allocated by the function.
Typically, float *qraux is declared, and &qraux is used as an argument.

**p_qr: The address of a pointer to an array of size m × n containing the
Householder transformations that define the decomposition. The strictly
lower-triangular part of this array contains the information to construct Q, and
the upper-triangular part contains R. On return, the necessary space is
allocated by the function. Typically, float *qr is declared, and &qr is used as
an argument.

IMSL_FACTOR_USER, float qraux[], float qr[] (Input /Output)

qraux[]: A user-allocated array of size n containing the scalars τN of the
Householder transformations in the first min (m, n) positions.

qr[]: A user-allocated array of size m × n containing the Householder
transformations that define the decomposition. The strictly lower-triangular
part of this array contains the information to construct Q. The upper-triangular
part contains R. If the data in a is not needed, qr can share the same storage
locations as a by using a instead of the separate argument qr.

These parameters are “Input” if IMSL_SOLVE is specified; “Output” otherwise.

IMSL_FAC_COL_DIM, int qr_col_dim (Input)
The column dimension of the array containing QR factorization.
Default: qr_col_dim = n

IMSL_Q, float **p_q (Output)
The address of a pointer to an array of size m × m containing the orthogonal
matrix of the factorization. On return, the necessary space is allocated by the
function. Typically, float *q is declared, and &q is used as an argument.

IMSL_Q_USER, float q[] (Output)
A user-allocated array of size m × m containing the orthogonal matrix Q of the
QR factorization.

IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of the array containing the Q matrix of the
factorization.
Default: q_col_dim = m

IMSL_PIVOT, int pvt[] (Input/Output)
Array of size n containing the desired variable order and usage information.
The argument is used with IMSL_FACTOR_ONLY or IMSL_SOLVE_ONLY.

On input, if pvt [k − 1] > 0, then column k of A is an initial column. If pvt
[k − 1] = 0, then the column of A is a free column and can be interchanged in
the column pivoting. If pvt [k − 1] < 0, then column k of A is a final column.
If all columns are specified as initial (or final) columns, then no pivoting is
performed. (The permutation matrix P is the identity matrix in this case.)

On output, pvt [k − 1] contains the index of the column of the original matrix
that has been interchanged into column k.

Chapter 1: Linear Systems lin_least_squares_gen • 87

Default: pvt [k − 1] = 0, k = 1, …, n

IMSL_FACTOR_ONLY

Compute just the QR factorization of the matrix AP with the permutation
matrix P defined by pvt and by further pivoting involving free columns. If
IMSL_FACTOR_ONLY is used, the additional arguments IMSL_PIVOT and
IMSL_FACTOR are required. In that case, the required argument b is ignored,
and the returned value of the function is NULL.

IMSL_SOLVE_ONLY

Compute the solution to the least-squares problem Ax = b given the QR
factorization previously computed by this function. If IMSL_SOLVE_ONLY is
used, arguments IMSL_FACTOR, IMSL_PIVOT, and IMSL_BASIS are required,
and the required argument a is ignored.

Description

The function imsl_f_lin_least_squares_gen solves a system of linear least-
squares problems Ax = b with column pivoting. It computes a QR factorization of the
matrix AP, where P is the permutation matrix defined by the pivoting, and computes the
smallest integer k satisfying |rN��� N��| < |tol|*|r���| to the output variable kbasis.
Householder transformations

Q l u u Qk k k k
T= − τ

k = 1, …, min (m − 1, n)are used to compute the factorization. The decomposition is
computed in the form Q��P����Q�…Q�AP = R, so AP = QR where Q = Q�…Q��P����Q�.
Since each Householder vector uN has zeros in the first k − 1 entries, it is stored as part of
column k of qr. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of
the first min (m, n) rows of qr. The solution x to the least-squares problem is computed
by solving the upper-triangular system of linear equations
R(1:k, 1:k) y (1:k) = (Q7b) (1:k) with k = kbasis. The solution is completed by setting
y(k + 1 : n) to zero and rearranging the variables, x = Py.

When IMSL_FACTOR_ONLY is specified, the function computes the QR factorization of
AP with P defined by the input pvt and by column pivoting among ‘‘free’’ columns.
Before the factorization, initial columns are moved to the beginning of the array a and
the final columns to the end. Both initial and final columns are not permuted further
during the computation. Just the free columns are moved.

If IMSL_SOLVE_ONLY is specified, then the function computes the least-squares
solution to Ax = b given the QR factorization previously defined. There are kbasis

columns used in the solution. Hence, in the case that all columns are free, x is computed
as described in the default case.

88 • lin_least_squares_gen IMSL C/Math/Library

Examples

Example 1

This example illustrates the least-squares solution of four linear equations in three
unknowns using column pivoting. The problem is equivalent to least-squares quadratic
polynomial fitting to four data values. Write the polynomial as p(t) = x� + tx� + t�x� and
the data pairs (tL, bL), tL = 2i, i = 1, 2, 3, 4. A pointer to the solution to Ax = b is returned
by the function imsl_f_lin_least_squares_gen.

#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

float b[] = {4.999, 9.001, 12.999, 17.001};

main()
{
 int m = 4, n = 3;
 float *x;
 /* Solve Ax = b for x */

 x = imsl_f_lin_least_squares_gen (m, n, a, b, 0);

 /* Print x */
 imsl_f_write_matrix ("Solution vector", 1, n, x, 0);
}

Output
Solution vector
 1 2 3
0.999 2.000 0.000

Example 2

This example uses the same coefficient matrix A as in the initial example. It computes
the QR factorization of A with column pivoting. The final and free columns are
specified by pvt and the column pivoting is done only among the free columns.

#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

int pvt[] = {0, 0, -1};

main()
{
 int m = 4, n = 3;
 float *x, *b;
 float *p_qraux, *p_qr;

Chapter 1: Linear Systems lin_least_squares_gen • 89

 float *p_q;
 /* Compute the QR factorization */
 /* of A with partial column */
 /* pivoting */
 x = imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_Q, &p_q,
 IMSL_FACTOR_ONLY,
 0);

 /* Print Q */
 imsl_f_write_matrix ("The matrix Q", m, m, p_q, 0);

 /* Print R */
 imsl_f_write_matrix ("The matrix R", m, n, p_qr,
 IMSL_PRINT_UPPER,
 0);

 /* Print pivots */
 imsl_i_write_matrix ("The Pivot Sequence", 1, n, pvt, 0);

}

Output
 The matrix Q
 1 2 3 4
1 -0.1826 -0.8165 0.5000 -0.2236
2 -0.3651 -0.4082 -0.5000 0.6708
3 -0.5477 0.0000 -0.5000 -0.6708
4 -0.7303 0.4082 0.5000 0.2236

 The matrix R
 1 2 3
1 -10.95 -1.83 -73.03
2 -0.82 16.33
3 8.00

The Pivot Sequence
 1 2 3
 2 1 3

Example 3

This example computes the QR factorization with column pivoting for the matrix A of
the initial example. It computes the least-squares solutions to Ax = bL for i = 1, 2, 3.

#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

float b[] = {4.999, 9.001, 12.999, 17.001,
 2.0, 3.142, 5.11, 0.0,
 1.34, 8.112, 3.76, 10.99};

90 • lin_least_squares_gen IMSL C/Math/Library

int pvt[] = {0, 0, 0};

main()
{
 int m = 4, n = 3;
 int i, k = 3;
 float *p_qraux, *p_qr;
 float tol = 1.e-4;
 int *kbasis;
 float *x, *p_res;
 /* Factor A with the given pvt */
 /* setting all variables to */
 /* be free */
 imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_BASIS, tol, &kbasis,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_FACTOR_ONLY,
 0);
 /* Print some factorization */
 /* information*/

 printf("Number of Columns in the base\n%2d", kbasis);
 imsl_f_write_matrix ("Upper triangular R Matrix", m, n, p_qr,
 IMSL_PRINT_UPPER,
 0);
 imsl_i_write_matrix ("The output column order ", 1, n, pvt, 0);

 /* Solve Ax = b for each x */
 /* given the factorization */
 for (i = 0; i < k; i++) {
 x = imsl_f_lin_least_squares_gen (m, n, a, &b[i*m],
 IMSL_BASIS, tol, &kbasis,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR_USER, p_qraux, p_qr,
 IMSL_RESIDUAL, &p_res,
 IMSL_SOLVE_ONLY,
 0);
 /* Print right-hand side, b */
 /* and solution, x */
 imsl_f_write_matrix ("Right-hand side, b ", 1, m,
 &b[i*m], 0);
 imsl_f_write_matrix ("Solution, x ", 1, n, x, 0);
 /* Print residuals, b - Ax */
 imsl_f_write_matrix ("Residual, b - Ax ", 1, m, p_res,
 0);
 }

}

Output
Number of Columns in the base
 3
 Upper triangular R Matrix
 1 2 3
1 -75.26 -10.63 -1.59
2 -2.65 -1.15
3 0.36

Chapter 1: Linear Systems lin_lsq_lin_constraints • 91

The output column order
 1 2 3
 3 2 1

 Right-hand side, b
 1 2 3 4
 5 9 13 17

 Solution, x
 1 2 3
 0.999 2.000 0.000

 Residual, b - Ax
 1 2 3 4
 -0.0004 0.0012 -0.0012 0.0004

 Right-hand side, b
 1 2 3 4
 2.000 3.142 5.110 0.000

 Solution, x
 1 2 3
 -4.244 3.706 -0.391

 Residual, b - Ax
 1 2 3 4
 0.395 -1.186 1.186 -0.395

 Right-hand side, b
 1 2 3 4
 1.34 8.11 3.76 10.99

 Solution, x
 1 2 3
 0.4735 0.9437 0.0286

 Residual, b - Ax
 1 2 3 4
 -1.135 3.406 -3.406 1.135

Fatal Errors

IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of
the first zero diagonal term is #.

lin_lsq_lin_constraints
Solves a linear least-squares problem with linear constraints.

Synopsis

#include <imsl.h>

92 • lin_lsq_lin_constraints IMSL C/Math/Library

float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float
a[], float b[], float c[], float bl[], float bu[], int con_type[],
float xlb[], float xub[], ..., 0)

The type double function is imsl_d_lin_lsq_lin_constraints.

Required Arguments

int nra (Input)
Number of least-squares equations.

int nca (Input)
Number of variables.

int ncon (Input)
Number of constraints.

float a[] (Input)
Array of size nra × nca containing the coefficients of the nra least-squares
equations.

float b[] (Input)
Array of length nra containing the right-hand sides of the least-squares
equations.

float c[] (Input)
Array of size ncon × nca containing the coefficients of the ncon constraints.

float bl[] (Input)
Array of length ncon containing the lower limit of the general constraints. If
there is no lower limit on the i-th constraint, then bl[i] will not be referenced.

float bu[] (Input)
Array of length ncon containing the upper limit of the general constraints. If
there is no upper limit on the i-th constraint, then bu[i] will not be referenced.
If there is no range constraint, bl and bu can share the same storage.

int con_type[] (Input)
Array of length ncon indicating the type of constraints exclusive of simple
bounds, where con_type[i] = 0, 1, 2, 3 indicates =, <=, >= and range
constraints, respectively.

float xlb[] (Input)
Array of length nca containing the lower bound on the variables. If there is no
lower bound on the i-th variable, then xlb[i] should be set to 1.0e30.

float xub[] (Input)
Array of length nca containing the upper bound on the variables. If there is no
lower bound on the i-th variable, then xub[i] should be set to −1.0e30.

Return Value

A pointer to the to a vector of length nca containing the approximate solution. To
release this space, use free. If no solution was computed, then NULL is returned.

Chapter 1: Linear Systems lin_lsq_lin_constraints • 93

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float
a[], float b[], float c[], float bl[], float bu[], int con_type[],
float xlb[], float xub[],
IMSL_RETURN_USER, float x[],
IMSL_RESIDUAL, float **residual,
IMSL_RESIDUAL_USER, float residual_user[],
IMSL_PRINT,
IMSL_MAX_ITER, int max_iter,
IMSL_REL_FCN_TOL, float rel_tol,
IMSL_ABS_FCN_TOL, float abs_tol,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
Store the solution in the user supplied vector x of length nca.

IMSL_RESIDUAL, float **residual (Output)
The address of a pointer to an array containing the residuals b − Ax of the
least-squares equations at the approximate solution.

IMSL_RESIDUAL_USER, float residual_user[] (Output)
Store the residuals in the user-supplied vector of length nra.

IMSL_PRINT,
Debug output flag. Choose this option if more detailed output is desired.

IMSL_MAX_ITER, int max_iter (Input)
Set the maximum number of add/drop iterations.
Default: max_iter = 5*max(nra, nca)

IMSL_REL_FCN_TOL, float rel_tol (Input)
Relative rank determination tolerance to be used.
Default: rel_tol = sqrt(imsl_f_machine(4))

IMSL_ABS_FCN_TOL, float abs_tol (Input)
Absolute rank determination tolerance to be used.
Default: abs_tol = sqrt(imsl_f_machine(4))

Description

The function imsl_f_lin_lsq_lin_constraints solves linear least-squares
problems with linear constraints. These are systems of least-squares equations of the
form

Ax ≅ b

94 • lin_lsq_lin_constraints IMSL C/Math/Library

subject to

bO ≤ Cx ≤ bX

xO ≤ x ≤ xX

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side,
and C is the coefficient matrix of the constraints. The vectors bO, bX, xO and xX are the
lower and upper bounds on the constraints and the variables, respectively. The system
is solved by defining dependent variables y ≡ Cx and then solving the least-squares
system with the lower and upper bounds on x and y. The equation Cx − y = 0 is a set of
equality constraints. These constraints are realized by heavy weighting, i.e., a penalty
method, Hanson (1986, pp. 826-834).

Examples

Example 1

In this example, the following problem is solved in the least-squares sense:

3x� + 2x� + x� = 3.3

4x� +2x� + x� = 2.2

2x� + 2x� + x� = 1.3

x� + x� + x� = 1.0

Subject to

x� = x� + x� ≤ 1

0 ≤ x� ≤ 0.5

0 ≤ x� ≤ 0.5

0 ≤ x� ≤ 0.5

#include <imsl.h>

main()
{
 int nra = 4;
 int nca = 3;

Chapter 1: Linear Systems lin_lsq_lin_constraints • 95

 int ncon = 1;
 float *x;
 float a[] = {3.0, 2.0, 1.0,
 4.0, 2.0, 1.0,
 2.0, 2.0, 1.0,
 1.0, 1.0, 1.0};
 float b[] = {3.3, 2.3, 1.3, 1.0};
 float c[] = {1.0, 1.0, 1.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {0.5, 0.5, 0.5};
 int con_type[] = {1};
 float bc[] = {1.0};

 x = imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
 bc, bc, con_type, xlb, xub, 0);

 imsl_f_write_matrix ("Solution", 1, nca, x, 0);
}

Output
 Solution
 1 2 3
 0.5 0.3 0.2

Example 2

The same problem solved in the first example is solved again. This time residuals of the
least-squares equations at the approximate solution are returned, and the norm of the
residual vector is printed. Both the solution and residuals are returned in user-supplied
space.

#include <imsl.h>

main()
{
 int nra = 4;
 int nca = 3;
 int ncon = 1;
 float x[3];
 float residual[4];
 float a[] = {3.0, 2.0, 1.0,
 4.0, 2.0, 1.0,
 2.0, 2.0, 1.0,
 1.0, 1.0, 1.0};
 float b[] = {3.3, 2.3, 1.3, 1.0};
 float c[] = {1.0, 1.0, 1.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {0.5, 0.5, 0.5};
 int con_type[] = {1};
 float bc[] = {1.0};

 imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
 bc, bc, con_type, xlb, xub,
 IMSL_RETURN_USER, x,
 IMSL_RESIDUAL_USER, residual,
 0);

96 • lin_svd_gen IMSL C/Math/Library

 imsl_f_write_matrix ("Solution", 1, nca, x, 0);
 imsl_f_write_matrix ("Residual", 1, nra, residual, 0);
 printf ("\n\nNorm of residual = %f\n",
 imsl_f_vector_norm (nra, residual, 0));
}

Output
 Solution
 1 2 3
 0.5 0.3 0.2

 Residual
 1 2 3 4
 -1.0 0.5 0.5 -0.0

Norm of residual = 1.224745

lin_svd_gen
Computes the SVD, A = USV7, of a real rectangular matrix A. An approximate
generalized inverse and rank of A also can be computed.

Synopsis

#include <imsl.h>

float *imsl_f_lin_svd_gen (int m, int n, float a[], …, 0)

The type double procedure is imsl_d_lin_svd_gen.

Required Arguments

int m (Input)
Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size m × n containing the matrix.

Return Value

If no optional arguments are used, imsl_f_lin_svd_gen returns a pointer to an array
of size min (m, n) containing the ordered singular values of the matrix. To release this
space, use free. If no value can be computed, then NULL is returned.

Chapter 1: Linear Systems lin_svd_gen • 97

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_svd_gen (int m, int n, float a[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float s[],
IMSL_RANK, float tol, int *rank,
IMSL_U, float **p_u,
IMSL_U_USER, float u[],
IMSL_U_COL_DIM, int u_col_dim,
IMSL_V, float **p_v,
IMSL_V_USER, float v[],
IMSL_V_COL_DIM, int v_col_dim,
IMSL_INVERSE, float **p_gen_inva,
IMSL_INVERSE_USER, float gen_inva[],
IMSL_INV_COL_DIM, int gen_inva_col_dim,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float s[] (Output)
A user-allocated array of size min (m, n) containing the singular values of A in
its first min (m, n) positions in nonincreasing order. If IMSL_RETURN_USER is
used, the return value of imsl_f_lin_svd_gen is s.

IMSL_RANK, float tol, int *rank (Input/Output)

tol: Scalar containing the tolerance used to determine when a singular value
is negligible and replaced by the value zero. If tol > 0, then a singular value
sL�L is considered negligible if sL�L ≤ tol. If tol < 0, then a singular value
sL�L is considered negligible if sL�L ≤ |tol|*||A||g. In this case, |tol| should be
an estimate of relative error or uncertainty in the data.

*rank: Integer containing an estimate of the rank of A.

IMSL_U, float **p_u (Output)
**p_u: The address of a pointer to an array of size m × min (m, n) containing
the left- singular vectors of A. On return, the necessary space is allocated by
imsl_f_lin_svd_gen. Typically, float *p_u is declared, and &p_u is used
as an argument.

IMSL_U_USER, float u[] (Output)
u[]: A user-allocated array of size m × min (m, n)containing the left-singular
vectors of A. If m ≥ n, the left-singular vectors can be returned using the
storage locations of the array a.

98 • lin_svd_gen IMSL C/Math/Library

IMSL_U_COL_DIM, int u_col_dim (Input)
The column dimension of the array containing the left-singular vectors.
Default: u_col_dim = min (m, n)

IMSL_V, float **p_v (Output)
**p_v: The address of a pointer to an array of size n × min (m, n) containing
the right singular vectors of A. On return, the necessary space is allocated by
imsl_f_lin_svd_gen. Typically, float *p_v is declared, and &p_v is used
as an argument.

IMSL_V_USER, float v[] (Output)
v[]: A user-allocated array of size n × min (m, n)containing the right-singular
vectors of A. The right-singular vectors can be returned using the storage
locations of the array a. Note that the return of the left- and right-singular
vectors cannot use the storage locations of a simultaneously.

IMSL_V_COL_DIM, int v_col_dim (Input)
The column dimension of the array containing the right-singular vectors.
Default: v_col_dim = min (m, n)

IMSL_INVERSE, float **p_gen_inva (Output)
The address of a pointer to an array of size n × m containing the generalized
inverse of the matrix A. On return, the necessary space is allocated by
imsl_f_lin_svd_gen. Typically, float *p_gen_inva is declared, and
&p_gen_inva is used as an argument.

IMSL_INVERSE_USER, float gen_inva[] (Output)
A user-allocated array of size n × m containing the general inverse of the
matrix A.

IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
The column dimension of the array containing the general inverse of the
matrix A.
Default: gen_inva_col_dim = m

Description

The function imsl_f_lin_svd_gen computes the singular value decomposition of a
real matrix A. It first reduces the matrix A to a bidiagonal matrix B by pre- and post-
multiplying Householder transformations. Then, the singular value decomposition of
B is computed using the implicit-shifted QR algorithm. An estimate of the rank of the
matrix A is obtained by finding the smallest integer k such that sN�N ≤ tol or
sN�N ≤ |tol|*||A||g. Since sL����L�� ≤ sL�L, it follows that all the sL��L satisfy the same
inequality for i = k, …, min (m, n) − 1. The rank is set to the value k − 1. If A = USV7,
its generalized inverse is A� = VS� U7. Here,

S diag s si i
+ − −= 1 1

1 1 0 0, ,, , , , ,K Ke j

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or
IMSL_INVERSE_USER is specified, the function first computes the singular value

Chapter 1: Linear Systems lin_svd_gen • 99

decomposition of the matrix A. The generalized inverse is then computed. The function
imsl_f_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations
isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a real 6 × 4 matrix.
#include <imsl.h>

float a[] = {1.0, 2.0, 1.0, 4.0,
 3.0, 2.0, 1.0, 3.0,
 4.0, 3.0, 1.0, 4.0,
 2.0, 1.0, 3.0, 1.0,
 1.0, 5.0, 2.0, 2.0,
 1.0, 2.0, 2.0, 3.0};

main()
{
 int m = 6, n = 4;
 float *s;
 /* Compute singular values */
 s = imsl_f_lin_svd_gen (m, n, a, 0);
 /* Print singular values */
 imsl_f_write_matrix ("Singular values", 1, n, s, 0);
}

Output
 Singular values
 1 2 3 4
11.49 3.27 2.65 2.09

Example 2

This example computes the singular value decomposition of the 6 × 4 real matrix A.
The singular values are returned in the user-provided array. The matrices U and V are
returned in the space provided by the function imsl_f_lin_svd_gen.

#include <imsl.h>

float a[] = {1.0, 2.0, 1.0, 4.0,
 3.0, 2.0, 1.0, 3.0,
 4.0, 3.0, 1.0, 4.0,
 2.0, 1.0, 3.0, 1.0,
 1.0, 5.0, 2.0, 2.0,
 1.0, 2.0, 2.0, 3.0};

main()
{
 int m = 6, n = 4;
 float s[4], *p_u, *p_v;
 /* Compute SVD */
 imsl_f_lin_svd_gen (m, n, a,
 IMSL_RETURN_USER, s,

100 • lin_svd_gen IMSL C/Math/Library

 IMSL_U, &p_u,
 IMSL_V, &p_v,
 0);
 /* Print decomposition*/

 imsl_f_write_matrix ("Singular values, S", 1, n, s, 0);
 imsl_f_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
 imsl_f_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
}

Output
 Singular values, S
 1 2 3 4
 11.49 3.27 2.65 2.09

 Left singular vectors, U
 1 2 3 4
1 -0.3805 0.1197 0.4391 -0.5654
2 -0.4038 0.3451 -0.0566 0.2148
3 -0.5451 0.4293 0.0514 0.4321
4 -0.2648 -0.0683 -0.8839 -0.2153
5 -0.4463 -0.8168 0.1419 0.3213
6 -0.3546 -0.1021 -0.0043 -0.5458

 Right singular vectors, V
 1 2 3 4
1 -0.4443 0.5555 -0.4354 0.5518
2 -0.5581 -0.6543 0.2775 0.4283
3 -0.3244 -0.3514 -0.7321 -0.4851
4 -0.6212 0.3739 0.4444 -0.5261

Example 3

This example computes the rank and generalized inverse of a 3 × 2 matrix A. The rank
and the 2 × 3 generalized inverse matrix A� are printed.

#include <imsl.h>

float a[] = {1.0, 0.0,
 1.0, 1.0,
 100.0, -50.0};

main()
{
 int m = 3, n = 2;
 float tol;
 float gen_inva[6];
 float *s;
 int *rank;
 /* Compute generalized inverse */
 tol = 1.e-4;
 s = imsl_f_lin_svd_gen (m, n, a,
 IMSL_RANK, tol, &rank,
 IMSL_INVERSE_USER, gen_inva,
 IMSL_INV_COL_DIM, m,
 0);
 /* Print rank, singular values and */
 /* generalized inverse. */

Chapter 1: Linear Systems lin_svd_gen (complex) • 101

 printf ("Rank of matrix = %2d", rank);

 imsl_f_write_matrix ("Singular values", 1, n, s, 0);

 imsl_f_write_matrix ("Generalized inverse", n, m, gen_inva,
 IMSL_A_COL_DIM, m,
 0);
}

Output
Rank of matrix = 2
 Singular values
 1 2
 111.8 1.4

 Generalized inverse
 1 2 3
1 0.100 0.300 0.006
2 0.200 0.600 -0.008

Warning Errors

IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30
iterations.

lin_svd_gen (complex)
Computes the SVD, A = USV+, of a complex rectangular matrix A. An approximate
generalized inverse and rank of A also can be computed.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[], …, 0)

The type d_complex function is imsl_z_lin_svd_gen.

Required Arguments

int m (Input)
Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

f_complex a[] (Input)
Array of size m × n containing the matrix.

102 • lin_svd_gen (complex) IMSL C/Math/Library

Return Value

Using only required arguments, imsl_c_lin_svd_gen returns a pointer to a complex
array of length min (m, n) containing the singular values of the matrix. To release this
space, use free. If no value can be computed then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, f_complex s[],
IMSL_RANK, float tol, int *rank,
IMSL_U, f_complex **p_u,
IMSL_U_USER, f_complex u[],
IMSL_U_COL_DIM, int u_col_dim,
IMSL_V, f_complex **p_v,
IMSL_V_USER, f_complex v[],
IMSL_V_COL_DIM, int v_col_dim,
IMSL_INVERSE, f_complex **p_gen_inva,
IMSL_INVERSE_USER, f_complex gen_inva[],
IMSL_INV_COL_DIM, int gen_inva_col_dim,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, f_complex s[] (Output)
A user-allocated array of length min (m, n) containing the singular values of A
in its first min (m, n) positions in nonincreasing order. The complex entries are
all real. If IMSL_RETURN_USER is used, the return value of
imsl_c_lin_svd_gen is s.

IMSL_RANK, float tol, int *rank (Input/Output)

tol: Scalar containing the tolerance used to determine when a singular value
is negligible and replaced by the value zero. If tol > 0, then a singular value
sL�L is considered negligible if sL�L ≤ tol. If tol < 0, then a singular value sL�L is
considered negligible if sL�L ≤ |tol|*||A||g. In this case, should be an estimate of
relative error or uncertainty in the data.

*rank: Integer containing an estimate of the rank of A.

IMSL_U, f_complex **p_u (Output)
The address of a pointer to an array of size m × min (m, n) containing the left-
singular vectors of A. On return, the necessary space is allocated by
imsl_c_lin_svd_gen. Typically, f_complex *p_u is declared, and &p_u is
used as an argument.

Chapter 1: Linear Systems lin_svd_gen (complex) • 103

IMSL_U_USER, f_complex u[] (Output)
A user-allocated array of size m × min (m, n) containing the left-singular
vectors of A. If m ≥ n, the left-singular vectors can be returned using the
storage locations of the array a.

IMSL_U_COL_DIM, int u_col_dim (Input)
The column dimension of the array containing the left-singular vectors.
Default: u_col_dim = min (m, n)

IMSL_V, f_complex **p_v (Output)
The address of a pointer to an array of size n × min (m, n) containing the
right-singular vectors of A. On return, the necessary space is allocated by
imsl_c_lin_svd_gen. Typically, f_complex *p_v is declared,
and &p_v is used as an argument.

IMSL_V_USER, f_complex v[] (Output)
A user-allocated array of size n × min (m, n) containing the right-singular
vectors of A. The right-singular vectors can be returned using the storage
locations of the array a. Note that the return of the left and right-singular
vectors cannot use the storage locations of a simultaneously.

IMSL_V_COL_DIM, int v_col_dim (Input)
The column dimension of the array containing the right-singular vectors.
Default: v_col_dim = min (m, n)

IMSL_INVERSE, f_complex **p_gen_inva (Output)
The address of a pointer to an array of size n × m containing the generalized
inverse of the matrix A. On return, the necessary space is allocated by
imsl_c_lin_svd_gen. Typically, f_complex *p_gen_inva is declared, and
&p_gen_inva is used as an argument.

IMSL_INVERSE_USER, f_complex gen_inva[] (Output)
A user-allocated array of size n × m containing the general inverse of the
matrix A.

IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
The column dimension of the array containing the general inverse of the
matrix A.
Default: gen_inva_col_dim = m

Description

The function imsl_c_lin_svd_gen computes the singular value decomposition of a
complex matrix A. It first reduces the matrix A to a bidiagonal matrix B by pre- and
post-multiplying Householder transformations. Then, the singular value decomposition
of B is computed using the implicit-shifted QR algorithm. An estimate of the rank of the
matrix A is obtained by finding the smallest integer k such that sN�N ≤ tol or
sN�N ≤ |tol|*||A||g. Since sL���L�� ≤ sL�L, it follows that all the sL�L satisfy the same inequality
for i = k, …, min (m, n) − 1. The rank is set to the value k − 1. If A = USV+, its
generalized inverse is A� = VS� U+.

104 • lin_svd_gen (complex) IMSL C/Math/Library

Here,

S s si i
+ − −= diag , , ,0, ,0, ,1 1

1 1K Ke j

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or
IMSL_INVERSE_USER is specified, the function first computes the singular value
decomposition of the matrix A. The generalized inverse is then computed. The function
imsl_c_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations
isolating an individual singular value.

Examples

Example 1

This example computes the singular values of a 6 × 3 complex matrix.
#include <imsl.h>
 main()
{
 int m = 6, n = 3;
 f_complex *s;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};
 /* Compute singular values */
 s = imsl_c_lin_svd_gen (m, n, a, 0);
 /* Print singular values */
 imsl_c_write_matrix ("Singular values", 1, n, s, 0);
}

Output
 Singular values
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

Example 2

This example computes the singular value decomposition of the 6 × 3 complex matrix
A. The singular values are returned in the user-provided array. The matrices U and V
are returned in the space provided by the function imsl_c_lin_svd_gen.

#include <imsl.h>

main()
{
 int m = 6, n = 3;
 f_complex s[3], *p_u, *p_v;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},

Chapter 1: Linear Systems lin_svd_gen (complex) • 105

 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};
 /* Compute SVD of a */
 imsl_c_lin_svd_gen (m, n, a,
 IMSL_RETURN_USER, s,
 IMSL_U, &p_u,
 IMSL_V, &p_v,
 0);
 /* Print decomposition factors */
 imsl_c_write_matrix ("Singular values, S", 1, n, s, 0);
 imsl_c_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
 imsl_c_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
 }

Output
 Singular values, S
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

 Left singular vectors, U
 1 2 3
1 (0.1968, 0.2186) (0.5011, 0.0217) (-0.2007, -0.1003)
2 (0.3443, -0.3542) (-0.2933, 0.0248) (0.1155, -0.2338)
3 (0.1457, 0.2307) (-0.5424, 0.1381) (-0.4361, -0.4407)
4 (0.3016, -0.0844) (0.2157, 0.2659) (-0.0523, -0.0894)
5 (0.2283, -0.6008) (-0.1325, 0.1433) (0.3152, -0.0090)
6 (0.2876, -0.0350) (0.4377, -0.0400) (0.0458, -0.6205)

 Right singular vectors, V
 1 2 3
1 (0.6616, 0.0000) (-0.2651, 0.0000) (-0.7014, 0.0000)
2 (0.7355, 0.0379) (0.3850, -0.0707) (0.5482, 0.0624)
3 (0.0507, -0.1317) (0.1724, 0.8642) (-0.0173, -0.4509)

Example 3

This example computes the rank and generalized inverse of a 6 × 4 matrix A. The rank
and the 4 × 6 generalized inverse matrix A� are printed.

#include <imsl.h>
main()
{
 int m = 6, n = 4;
 int *rank;
 float tol;
 f_complex gen_inv[24], *s;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, {1.0,0.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, {0.0,1.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, {0.0,0.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, {2.0,1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, {1.0,3.1},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}, {1.4,1.9}};
 /* Factor a */
 tol = 1.e-4;
 s = imsl_c_lin_svd_gen (m, n, a,
 IMSL_RANK, tol, &rank,

106 • lin_sol_nonnegdef IMSL C/Math/Library

 IMSL_INVERSE_USER, gen_inv,
 IMSL_INV_COL_DIM, m,
 0);
 /* Print rank and generalized */
 /* inverse matrix */

 printf ("Rank = %2d", rank);

 imsl_c_write_matrix ("Singular values", 1, n, s, 0);

 imsl_c_write_matrix ("Generalized inverse", n, m, gen_inv,
 IMSL_A_COL_DIM, m, 0);
}

Output
Rank = 4
 Singular values
 1 2 3
(12.13, 0.00) (9.53, 0.00) (5.67, 0.00)

 4
(1.74, 0.00)

 Generalized inverse
 1 2 3
1 (0.0266, 0.0164) (-0.0185, 0.0453) (0.0720, 0.0700)
2 (0.0061, 0.0280) (0.0820, -0.1156) (-0.0410, -0.0242)
3 (-0.0019, -0.0572) (0.1174, 0.0812) (0.0499, 0.0463)
4 (0.0380, 0.0298) (-0.0758, -0.2158) (0.0356, -0.0557)

 4 5 6
1 (-0.0220, -0.0428) (-0.0003, -0.0709) (0.0254, 0.1050)
2 (0.0959, 0.0885) (-0.0187, 0.0287) (-0.0218, -0.1109)
3 (-0.0234, 0.1033) (-0.0769, 0.0103) (0.0810, -0.1074)
4 (0.2918, -0.0763) (0.0881, 0.2070) (-0.1531, 0.0814)

Warning Errors

IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30
iterations.

lin_sol_nonnegdef
Solves a real symmetric nonnegative definite system of linear equations Ax = b. Using
options, computes a Cholesky factorization of the matrix A, such that A = R7R = LL7.
Computes the solution to Ax = b given the Cholesky factor.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[], …, 0)

The type double function is imsl_d_lin_sol_nonnegdef.

Chapter 1: Linear Systems lin_sol_nonnegdef • 107

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size n × n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value

Using required arguments, imsl_f_lin_sol_nonnegdef returns a pointer to a
solution x of the linear system. To release this space, use free. If no value can be
computed, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[],
IMSL_RETURN_USER, float x[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_TOLERANCE, float tol,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x. When this option
is specified, no storage is allocated for the solution, and
imsl_f_lin_sol_nonnegdef returns a pointer to the array x.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

108 • lin_sol_nonnegdef IMSL C/Math/Library

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n × n containing the LL7
factorization of A. When this option is specified, the space for the factor
matrix is allocated by imsl_f_lin_sol_nonnegdef. The lower-triangular
part of the factor array contains L, and the upper-triangular part contains L7R.
Typically, float *p_factor is declared, and &p_factor is used as an
argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n × n containing the LL7 factorization of A. The
lower-triangular part of factor contains L, and the upper-triangular part
contains L7. If a is not needed, a and factor can be the same storage
locations. If IMSL_SOLVE is specified, this parameter is input; otherwise, it is
output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LL7 factorization.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n × n containing the inverse of A.
The space for this array is allocated by imsl_f_lin_sol_nonnegdef.
Typically, float *p_inva is declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n × n containing the inverse of A. If a is not
needed, a and factor can be the same storage locations. The storage
locations for A cannot be the factorization and the inverse of A at the same
time.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_TOLERANCE, float tol (Input)
Tolerance used in determining linear dependence.
Default: tol = 100* imsl_f_machine(4)
See the documentation for imsl_f_machine in Chapter 12, “Utilities.”

IMSL_FACTOR_ONLY

Compute the LL7 factorization of A only. The argument b is ignored, and
either the optional argument IMSL_FACTOR or IMSL_FACTOR_USER is
required.

IMSL_SOLVE_ONLY

Solve Ax = b using the factorization previously computed by this function. The
argument a is ignored, and the optional argument IMSL_FACTOR_USER is
required.

Chapter 1: Linear Systems lin_sol_nonnegdef • 109

IMSL_INVERSE_ONLY

Compute the inverse of A only. The argument b is ignored, and either the
optional argument IMSL_INVERSE or IMSL_INVERSE_USER is required.

Description

The function imsl_f_lin_sol_nonnegdef solves a system of linear algebraic
equations having a symmetric nonnegative definite (positive semidefinite) coefficient
matrix. It first computes a Cholesky (LL7 or R7R) factorization of the coefficient
matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds
sequentially by columns. The i-th column is declared to be linearly dependent on the
first i − 1 columns if

a r aii ji
j

i

ii− ≤
=

−

∑ 2

1

1

ε

where ε (specified in tol) may be set by the user. When a linear dependence is
declared, all elements in the i-th row of R (column of L) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for
checking for matrices that are not nonnegative definite also are incorporated. The
function imsl_f_lin_sol_nonnegdef declares A to not be nonnegative definite and
issues an error message if either of the following conditions are satisfied:

1

2 0

2

1

1

1

1

.

. ,

a r a

r a r r a a k i

ii jij

i

ii

ii ik ji jk

j

i

ii kk

− < −

= − > >

=

−

=

−

∑

∑

ε

ε and

Healy’s (1968) algorithm and the function imsl_f_lin_sol_nonnegdef permit the
matrices A and R to occupy the same storage. Barrett and Healy (1978) in their remark
neglect this fact. The function imsl_f_lin_sol_nonnegdef uses

rijj

i 2

1

1

=

−∑

for aLL in the above condition 2 to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive
definite, then the resulting inverse is a symmetric g� inverse of A. For a matrix G to be a
g� inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose
inverse, but generally fail conditions 3 and 4. The four conditions for G to be a Moore-
Penrose inverse of A are as follows:

1. AGA = A

110 • lin_sol_nonnegdef IMSL C/Math/Library

2. GAG = G

3. AG is symmetric

4. GA is symmetric

The solution of the linear system Ax = b is computed by solving the factored version of
the linear system R7Rx = b as two successive triangular linear systems. In solving the
triangular linear systems, if the elements of a row of R are all zero, the corresponding
element of the solution vector is set to zero. For a detailed description of the algorithm,
see Section 2 in Sallas and Lionti (1988).

Examples

Example 1

A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83−86
and 104−105) discusses the computations for the factorization and solution to this problem.

#include <imsl.h>

main()
{
 int n = 4;
 float *x;
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 float b[] = {18.0, 22.0, 7.0, 20.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_nonnegdef(n, a, b, 0);
 /* Print solution, x, of Ax = b */
 imsl_f_write_matrix("Solution, x", 1, n, x, 0);
}

Output
 Solution, x
 1 2 3 4
0.167 0.500 0.000 1.000

Example 2

The symmetric nonnegative definite matrix in the initial example is used to compute the
factorization only in the first call to lin_sol_nonnegdef. The space needed for the
factor is provided by the user. On the second call, both the LL7 factorization and the
right-hand side vector in the first example are used as the input to compute a solution x.
It also illustrates another way to obtain the solution array x.

#include <imsl.h>

main()
{
 int n = 4, a_col_dim = 6;
 float factor[36], x[5];

Chapter 1: Linear Systems lin_sol_nonnegdef • 111

 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 float b[] = {18.0, 22.0, 7.0, 20.0};
 /* Factor A */
 imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_FACTOR_ONLY,
 0);
 /* NULL is returned in */
 /* this case. Another */
 /* way to obtain the */
 /* factor is to use the */
 /* IMSL_FACTOR option. */
 imsl_f_write_matrix("factor", n, n, factor,
 IMSL_A_COL_DIM, a_col_dim,
 0);
 /* Get the solution using */
 /* the factorized matrix. */
 imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_RETURN_USER, x,
 IMSL_SOLVE_ONLY,
 0);
 imsl_f_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
 factor
 1 2 3 4
1 6 2 5 1
2 2 4 -2 2
3 5 -2 0 0
4 1 2 0 3

 Solution, x, of Ax = b
 1 2 3 4
 0.167 0.500 0.000 1.000

Example 3

This example uses the IMSL_INVERSE option to compute the symmetric g inverse of
the symmetric nonnegative matrix in the first example. Maindonald (1984, p. 106)
discusses the computations for this problem.

#include <stdio.h>
#include <imsl.h>

void main()
{
 int n = 4;
 float *p_a_inva, *p_a_inva_a, *p_inva;
 float a[] = {36.0, 12.0, 30.0, 6.0,

112 • lin_sol_nonnegdef IMSL C/Math/Library

 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 /* Get g2_inverse(a) */
 imsl_f_lin_sol_nonnegdef(n, a, NULL,
 IMSL_INVERSE, &p_inva,
 IMSL_INVERSE_ONLY,
 0);
 /* Form a*g2_inverse(a) */
 p_a_inva = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, a,
 IMSL_B_MATRIX, n, n, p_inva,
 0);
 /* Form a*g2_inverse(a)*a */
 p_a_inva_a = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, p_a_inva,
 IMSL_B_MATRIX, n, n, a,
 0);
 imsl_f_write_matrix("The g2 inverse of a", n, n, p_inva, 0);
 imsl_f_write_matrix("a*g2_inverse(a)\nviolates condition 3 of"
 " the M-P inverse", n, n, p_a_inva, 0);
 imsl_f_write_matrix("a = a*g2_inverse(a)*a\ncondition 1 of"
 " the M-P inverse", n, n, p_a_inva_a, 0);
}

Output
 The g2 inverse of a
 1 2 3 4
1 0.0347 -0.0208 0.0000 0.0000
2 -0.0208 0.0903 0.0000 -0.0556
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 -0.0556 0.0000 0.1111

 a*g2_inverse(a)
 violates condition 3 of the M-P inverse
 1 2 3 4
1 1.0 -0.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 1.0 -0.5 0.0 0.0
4 0.0 -0.0 0.0 1.0

 a = a*g2_inverse(a)*a
 condition 1 of the M-P inverse
 1 2 3 4
1 36 12 30 6
2 12 20 2 10
3 30 2 29 1
4 6 10 1 14

Warning Errors

IMSL_INCONSISTENT_EQUATIONS_2 The linear system of equations is
inconsistent.

IMSL_NOT_NONNEG_DEFINITE The matrix A is not nonnegative definite.

Chapter 2: Eigensystem Analysis Routines • 113

Chapter 2: Eigensystem Analysis

Routines
2.1 Linear Eigensystem Problems

General Matrices
Eigenvalues and eigenvectors...eig_gen 116
Eigenvalues and eigenvectors....................................eig_gen (complex) 118

Real Symmetric Matrices
Eigenvalues and eigenvectors.. eig_sym 121

Complex Hermitian Matrices
Eigenvalues and eigenvectors..................................eig_herm (complex) 124

2.2 Generalized Eigensystem Problems

Real Symmetric Matrices and B Positive Definite
Eigenvalues and eigenvectors.. eig_symgen 127
Real matrices...geneig 130
Complex matrices ...geneig (complex) 133

Usage Notes
An ordinary linear eigensystem problem is represented by the equation Ax = λx where A
denotes an n × n matrix. The value λ is an eigenvalue and x ≠ 0 is the corresponding
eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we
have chosen this factor so that x has Euclidean length one, and the component of x of
largest magnitude is positive. If x is a complex vector, this component of largest
magnitude is scaled to be real and positive. The entry where this component occurs can
be arbitrary for eigenvectors having nonunique maximum magnitude values.

A generalized linear eigensystem problem is represented by Ax = λBx where
A and B are n × n matrices. The value λ is a generalized eigenvalue, and x is the
corresponding generalized eigenvector. The generalized eigenvectors are normalized in
the same manner as the ordinary eigensystem problem.

114 • Usage Notes IMSL C/Math/Library

Error Analysis and Accuracy

The remarks in this section are for ordinary eigenvalue problems. Except in special
cases, functions will not return the exact eigenvalue-eigenvector pair for the ordinary
eigenvalue problem Ax = λx. Typically, the computed pair

~,
~

x λ

are an exact eigenvector-eigenvalue pair for a "nearby” matrix A + E. Information
about E is known only in terms of bounds of the form ||E||� ≤ f (n) ||A||�ε. The value of
f(n) depends on the algorithm, but is typically a small fractional power of n. The
parameter ε is the machine precision. By a theorem due to Bauer and Fike (see Golub
and Van Loan 1989, p. 342),

min
~
λ λ κ λ σ− ≤ X E Ab g b g2

 for all in

where σ(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of
eigenvectors, || ⋅ ||� is Euclidean length, and κ(X) is the condition number of X defined as
κ(X) = ||X||�||X��||�. If A is a real symmetric or complex Hermitian matrix, then its
eigenvector matrix X is respectively orthogonal or unitary. For these matrices, κ(X) = 1.

The accuracy of the computed eigenvalues
~
λ j

and eigenvectors
~x j

can be checked by computing their performance index τ. The performance index is
defined to be

τ
λ

ε
=

−

≤ ≤
max

~ ~ ~

~1

2

2 2
j n

j j j

j

Ax x

n A x

where ε is again the machine precision.

The performance index τ is related to the error analysis because

Ex Ax xj j j j
~ ~ ~ ~

2 2
= − λ

where E is the “nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an
eigensystem analysis function is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and
poor if τ > 100. This is an arbitrary definition, but large values of τ can serve as a
warning that there is a significant error in the calculation.

If the condition number κ(X) of the eigenvector matrix X is large, there can be large
errors in the eigenvalues even if τ is small. In particular, it is often difficult to recognize
near multiple eigenvalues or unstable mathematical problems from numerical results.
This facet of the eigenvalue problem is often difficult for users to understand. Suppose
the accuracy of an individual eigenvalue is desired. This can be answered
approximately by computing the condition number of an individual eigenvalue

Chapter 2: Eigensystem Analysis Usage Notes • 115

(see Golub and Van Loan 1989, pp. 344−345). For matrices A, such that the computed
array of normalized eigenvectors X is invertible, the condition number of λM is

κ j j
Te X= −1

the Euclidean length of the j-th row of X��. Users can choose to compute this matrix
using function imsl_c_lin_sol_gen in Chapter 1, “Linear Systems.” An
approximate bound for the accuracy of a computed eigenvalue is then given by κM�ε||A||.
To compute an approximate bound for the relative accuracy of an eigenvalue, divide
this bound by |λM|.

Reformulating Generalized Eigenvalue Problems

The generalized eigenvalue problem Ax = λBx is often difficult for users to analyze
because it is frequently ill-conditioned. Occasionally, changes of variables can be
performed on the given problem to ease this ill-conditioning. Suppose that B is singular,
but A is nonsingular. Define the reciprocal µ = λ��. Then, assuming A is definite, the
roles of A and B are interchanged so that the reformulated problem Bx = µAx is solved.
Those generalized eigenvalues µM = 0 correspond to eigenvalues λM = ∞. The remaining
λM = µM��. The generalized eigenvectors for λM correspond to those for µM.
Now suppose that B is nonsingular. The user can solve the ordinary eigenvalue problem
Cx = λx where C = B��A. The matrix C is subject to perturbations due to ill-
conditioning and rounding errors when computing B��A. Computing the condition
numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy
of results for the generalized problem.

There is another method that users can consider to reduce the generalized problem to an
alternate ordinary problem. This technique is based on first computing a matrix
decomposition B = PQ where both P and Q are matrices that are “simple” to invert.
Then, the given generalized problem is equivalent to the ordinary eigenvalue problem
Fy = λy. The matrix F = P��AQ�� and the unnormalized eigenvectors of the generalized
problem are given by x = Q��y. An example of this reformulation is used in the case
where A and B are real and symmetric, with B positive definite. The function
imsl_f_eig_symgen (page 127), uses P = R7 and Q = R where R is an upper-
triangular matrix obtained from a Cholesky decomposition, B = R7R. The matrix
F = R�7AR�� is symmetric and real. Computation of the eigenvalue-eigenvector
expansion for F is based on function imsl_f_eig_sym (page 121).

116 • eig_gen IMSL C/Math/Library

eig_gen
Computes the eigenexpansion of a real matrix A.

Synopsis

#include <imsl.h>

f_complex *imsl_f_eig_gen (int n, float *a, …, 0)

The type d_complex function is imsl_d_eig_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float *a (Input)
An array of size n × n containing the matrix.

Return Value

A pointer to the n complex eigenvalues of the matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>
f_complex *imsl_f_eig_gen (int n, float *a,

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, f_complex evalu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the
matrix. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix
of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

Chapter 2: Eigensystem Analysis eig_gen • 117

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description

Function imsl_f_eig_gen computes the eigenvalues of a real matrix by a two-phase
process. The matrix is reduced to upper Hessenberg form by elementary orthogonal or
Gauss similarity transformations. Then, eigenvalues are computed using a QR or
combined LR-QR algorithm (Golub and Van Loan 1989, pp. 373−382, and Watkins
and Elsner 1990). The combined LR-QR algorithm is based on an implementation by
Jeff Haag and David Watkins. Eigenvectors are then calculated as required. When
eigenvectors are computed, the QR algorithm is used to compute the eigenexpansion.
When only eigenvalues are required, the combined LR-QR algorithm is used.

Examples

Example 1

#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,
 18.0, -5.0, -7.0};
 f_complex *eval;
 /* Compute eigenvalues of A */
 eval = imsl_f_eig_gen (n, a, 0);
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output

 Eigenvalues
 1 2 3
(2, 4) (2, -4) (1, 0)

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;

118 • eig_gen (complex) IMSL C/Math/Library

 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,
 18.0, -5.0, -7.0};
 f_complex *eval;
 f_complex *evec;
 /* Compute eigenvalues of A */
 eval = imsl_f_eig_gen (n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
(2, 4) (2, -4) (1, 0)

 Eigenvectors
 1 2 3
1 (0.3162, 0.3162) (0.3162, -0.3162) (0.4082, 0.0000)
2 (0.0000, 0.6325) (0.0000, -0.6325) (0.8165, 0.0000)
3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)

Warning Errors

IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge
after # iterations.

eig_gen (complex)
Computes the eigenexpansion of a complex matrix A.

Synopsis

#include <imsl.h>

f_complex *imsl_c_eig_gen (int n, f_complex *a, …, 0)

The type d_complex procedure is imsl_z_eig_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex *a (Input)
Array of size n × n containing the matrix.

Return Value

A pointer to the n complex eigenvalues of the matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Chapter 2: Eigensystem Analysis eig_gen (complex) • 119

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_eig_gen (int n, f_complex *a,
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, f_complex evalu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the
matrix. On return, the necessary space is allocated by the function. Typically,
f_complex *evecu is declared, and &evecu is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix
of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description

The function imsl_c_eig_gen computes the eigenvalues of a complex matrix by a
two-phase process. The matrix is reduced to upper Hessenberg form by elementary
Gauss transformations. Then, the eigenvalues are computed using an explicitly shifted
LR algorithm. Eigenvectors are calculated during the iterations for the eigenvalues
(Martin and Wilkinson 1971).

Examples

Example 1

#include <imsl.h>

main()
{
 int n = 4;
 f_complex a[] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
 {3,3}, {6,10}, {-5,-5}, {-6,-6},

120 • eig_gen (complex) IMSL C/Math/Library

 {2,2}, {3,3}, {-1, 3}, {-5,-5},
 {1,1}, {2,2}, {-3,-3}, { 0, 4} };
 f_complex *eval;
 /* Compute eigenvalues */
 eval = imsl_c_eig_gen (n, a, 0);
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
(4, 8) (3, 7) (2, 6)

 4
(1, 5)

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 4;
 f_complex a[] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
 {3,3}, {6,10}, {-5,-5}, {-6,-6},
 {2,2}, {3,3}, {-1, 3}, {-5,-5},
 {1,1}, {2,2}, {-3,-3}, { 0, 4} };
 f_complex *eval;
 f_complex *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_c_eig_gen (n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
(4, 8) (3, 7) (2, 6)

 4
(1, 5)

 Eigenvectors
 1 2 3
1 (0.5773, -0.0000) (0.5774 0.0000) (0.3780, -0.0000)
2 (0.5773, -0.0000) (0.5773, -0.0000) (0.7559, 0.0000)
3 (0.5774, 0.0000) (-0.0000, -0.0000) (0.3780, 0.0000)
4 (-0.0000, -0.0000) (0.5774, 0.0000) (0.3780, -0.0000)

Chapter 2: Eigensystem Analysis eig_sym • 121

 4
1 (0.7559, 0.0000)
2 (0.3780, 0.0000)
3 (0.3780, 0.0000)
4 (0.3780, 0.0000)

Fatal Errors

IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge
after # iterations.

eig_sym
Computes the eigenexpansion of a real symmetric matrix A.

Synopsis

#include <imsl.h>

float *imsl_f_eig_sym (int n, float *a, …, 0)

The type double procedure is imsl_d_eig_sym.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float *a (Input)
Array of size n × n containing the symmetric matrix.

Return Value

A pointer to the n eigenvalues of the symmetric matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_eig_sym (int n, float *a,
IMSL_VECTORS, float **evec,
IMSL_VECTORS_USER, float evecu[],
IMSL_RETURN_USER, float evalu[],
IMSL_RANGE, float elow, float ehigh,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RESULT_NUMBER, int *n_eval,
0)

122 • eig_sym IMSL C/Math/Library

Optional Arguments

IMSL_VECTORS, float **evec (Output)
The address of a pointer to an array of size n × n containing the eigenvectors of
the matrix. On return, the necessary space is allocated by the function. Typically,
float *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the
orthogonal matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower
limit elow and upper limit ehigh.
Default: (elow, ehigh) = (−∞, +∞)

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

IMSL_RESULT_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range low, ehigh.

Description

The function imsl_f_eig_sym computes the eigenvalues of a symmetric real matrix
by a two-phase process. The matrix is reduced to tridiagonal form by elementary
orthogonal similarity transformations. Then, the eigenvalues are computed using a
rational QR or bisection algorithm. Eigenvectors are calculated as required
(Parlett 1980, pp. 169−173).

Examples

Example 1

#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {7.0, -8.0, -8.0,
 -8.0, -16.0, -18.0,
 -8.0, -18.0, 13.0};
 float *eval;
 /* Compute eigenvalues */
 eval = imsl_f_eig_sym(n, a, 0);
 /* Print eigenvalues */

Chapter 2: Eigensystem Analysis eig_sym • 123

 imsl_f_write_matrix ("Eigenvalues", 1, 3, eval, 0);
}

Output

 Eigenvalues
 1 2 3
 -27.90 22.68 9.22

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {7.0, -8.0, -8.0,
 -8.0, -16.0, -18.0,
 -8.0, -18.0, 13.0};
 float *eval;
 float *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_f_eig_sym(n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
 -27.90 22.68 9.22

 Eigenvectors
 1 2 3
1 0.2945 -0.2722 0.9161
2 0.8521 -0.3591 -0.3806
3 0.4326 0.8927 0.1262

Warning Errors

IMSL_SLOW_CONVERGENCE_SYM The iteration for the eigenvalue failed to
converge in 100 iterations before deflating.

IMSL_SLOW_CONVERGENCE_2 Inverse iteration did not converge.
Eigenvector is not correct for the specified
eigenvalue.

IMSL_LOST_ORTHOGONALITY_2 The eigenvectors have lost orthogonality.

124 • eig_herm (complex) IMSL C/Math/Library

IMSL_NO_EIGENVALUES_RETURNED The number of eigenvalues in the specified
interval exceeds mxeval. The argument
n_eval contains the number of eigenvalues
in the interval. No eigenvalues will be
returned.

eig_herm (complex)
Computes the eigenexpansion of a complex Hermitian matrix A.

Synopsis

#include <imsl.h>

float *imsl_c_eig_herm (int n, f_complex *a, …, 0)

The type double procedure is imsl_d_eig_herm.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex *a (Input)
Array of size n × n containing the matrix.

Return Value

A pointer to the n eigenvalues of the matrix. To release this space, use free. If no
value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_c_eig_herm (int n, f_complex *a,
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, float evalu[],
IMSL_RANGE, float elow, float ehigh,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RESULT_NUMBER, int *n_eval,
0)

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the
matrix. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

Chapter 2: Eigensystem Analysis eig_herm (complex) • 125

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the
unitary matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower
limit elow and upper limit ehigh.
Default: (elow, ehigh) = (−∞, +∞).

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of X.
Default: evecu_col_dim = n

IMSL_RESULT_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range elow, ehigh.

Description

The function imsl_c_eig_herm computes the eigenvalues of a complex Hermitian
matrix by a two-phase process. The matrix is reduced to tridiagonal form by elementary
orthogonal similarity transformations. Then, the eigenvalues are computed using a
rational QR or bisection algorithm. Eigenvectors are calculated as required.

Examples

Example 1

#include <imsl.h>

main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {-2,0} };
 float *eval;
 /* Compute eigenvalues */
 eval = imsl_c_eig_herm(n, a, 0);
 /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
 15.38 -10.63 -0.75

126 • eig_herm (complex) IMSL C/Math/Library

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed
as well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {-2,0} };
 float *eval;
 f_complex *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_c_eig_herm(n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
 15.38 -10.63 -0.75

 Eigenvectors
 1 2 3
1 (0.0631, -0.4075) (-0.0598, -0.3117) (0.8539, 0.0000)
2 (0.7703, 0.0000) (-0.5939, 0.1841) (-0.0313, -0.1380)
3 (0.4668, 0.1366) (0.7160, 0.0000) (0.0808, -0.4942)

Warning Errors

IMSL_LOST_ORTHOGONALITY The iteration for at least one eigenvector failed to
converge. Some of the eigenvectors may be
inaccurate.

IMSL_NEVAL_MXEVAL_MISMATCH The determined number of eigenvalues in the
interval (#, #) is #. However, the input value for
the maximum number of eigenvalues in this
interval is #.

Fatal Errors

IMSL_SLOW_CONVERGENCE_GEN The iteration for the eigenvalues did not
converge.

IMSL_HERMITIAN_DIAG_REAL The matrix element A (#, #) = #. The diagonal of
a Hermitian matrix must be real.

Chapter 2: Eigensystem Analysis eig_symgen • 127

eig_symgen
Computes the generalized eigenexpansion of a system Ax = λBx. The matrices A and B
are real and symmetric, and B is positive definite.

Synopsis

#include <imsl.h>

float *imsl_f_eig_symgen (int n, float *a, float *b, …, 0)

The type double procedure is imsl_d_eig_symgen.

Required Arguments

int n (Input)
Number of rows and columns in the matrices.

float *a (Input)
Array of size n × n containing the symmetric coefficient matrix A.

float *b (Input)
Array of size n × n containing the positive definite symmetric coefficient matrix
B.

Return Value

A pointer to the n eigenvalues of the symmetric matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_eig_symgen (int n, float *a, float *b,
IMSL_VECTORS, float **evec,
IMSL_VECTORS_USER, float evecu[],
IMSL_RETURN_USER, float evalu[],
IMSL_RANGE, float elow, float ehigh,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments

IMSL_VECTORS, float **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the
problem. On return, the necessary space is allocated by the function. Typically,
float *evec is declared, and &evec is used as an argument.

128 • eig_symgen IMSL C/Math/Library

IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix
of generalized eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description

The function imsl_f_eig_symgen computes the eigenvalues of a symmetric, positive
definite eigenvalue problem by a three-phase process (Martin and Wilkinson 1971).
The matrix B is reduced to factored form using the Cholesky decomposition. These
factors are used to form a congruence transformation that yields a symmetric real
matrix whose eigenexpansion is obtained. The problem is then transformed back to the
original coordinates. Eigenvectors are calculated and transformed as required.

Examples

Example 1

#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {1.1, 1.2, 1.4,
 1.2, 1.3, 1.5,
 1.4, 1.5, 1.6};
 float b[] = {2.0, 1.0, 0.0,
 1.0, 2.0, 1.0,
 0.0, 1.0, 2.0};
 float *eval;
 /* Solve for eigenvalues */
 eval = imsl_f_eig_symgen (n, a, b, 0);
 /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
 1.386 -0.058 -0.003

Chapter 2: Eigensystem Analysis eig_symgen • 129

Example 2

This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {1.1, 1.2, 1.4,
 1.2, 1.3, 1.5,
 1.4, 1.5, 1.6};
 float b[] = {2.0, 1.0, 0.0,
 1.0, 2.0, 1.0,
 0.0, 1.0, 2.0};
 float *eval;
 float *evec;
 /* Solve for eigenvalues and eigenvectors */
 eval = imsl_f_eig_symgen (n, a, b,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
 1.386 -0.058 -0.003

 Eigenvectors
 1 2 3
1 0.6431 -0.1147 -0.6817
2 -0.0224 -0.6872 0.7266
3 0.7655 0.7174 -0.0858

Warning Errors

IMSL_SLOW_CONVERGENCE_SYM The iteration for an eigenvalue failed to
converge in 100 iterations before deflating.

Fatal Errors

IMSL_SUBMATRIX_NOT_POS_DEFINITE The leading # by # submatrix of the input
matrix is not positive definite.

IMSL_MATRIX_B_NOT_POS_DEFINITE Matrix B is not positive definite.

130 • geneig IMSL C/Math/Library

geneig
Computes the generalized eigenexpansion of a system Ax = λBx, with A and B real.

Synopsis

#include <imsl.h>

void imsl_f_geneig (int n, float *a, float *b, f_complex *alpha, float
*beta, ..., 0)

The double analogue is imsl_d_geneig.

Required Arguments

int n (Input)
Number of rows and columns in A and B.

float *a (Input)
Array of size n × n containing the coefficient matrix A.

float *b (Input)
Array of size n × n containing the coefficient matrix B.

f_complex *alpha (Output)
Vector of size n containing scalars αL. If βL ≠ 0, λL = αL/βL for
i = 0, …, n − 1 are the eigenvalues of the system.

float *beta (Output)
Vector of size n.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_geneig (int n, float *a, float *b,
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the
problem. Each vector is normalized to have Euclidean length equal to the value
one. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix

Chapter 2: Eigensystem Analysis geneig • 131

of generalized eigenvectors is returned in the space evecu. Each vector is
normalized to have Euclidean length equal to the value one.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n.

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description

The function imsl_f_geneig uses the QZ algorithm to compute the eigenvalues and
eigenvectors of the generalized eigensystem Ax = λBx, where A and B are real matrices
of order n. The eigenvalues for this problem can be infinite, so α and β are returned
instead of λ. If β is nonzero, λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg
form and B to upper-triangular form. Then, orthogonal transformations are used to
reduce A to quasi-upper-triangular form while keeping B upper triangular. The
generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_f_geneig is based on the QZ algorithm due to Moler and Stewart
(1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see
Garbow et al. (1977).

Examples

Example 1

In this example, the eigenvalue, λ, of system Ax = λBx is computed, where

A B= −
L

N
M
M
M

O

Q
P
P
P

=
L

N
M
M
M

O

Q
P
P
P

10 05 0 0

10 0 2 0 0 0

50 10 05

05 0 0 0 0

30 30 0 0

4 0 05 10

. . .

. . .

. . .

. . .

. . .

. . .

 and

#include <imsl.h>

main()
{
 int n = 3;
 f_complex alpha[3];
 float beta[3];
 int i;
 f_complex eval[3];
 float a[] = {1.0, 0.5, 0.0,
 -10.0, 2.0, 0.0,
 5.0, 1.0, 0.5};

132 • geneig IMSL C/Math/Library

 float b[] = {0.5, 0.0, 0.0,
 3.0, 3.0, 0.0,
 4.0, 0.5, 1.0};

 /* Compute eigenvalues */

 imsl_f_geneig (n, a, b, alpha, beta, 0);

 for (i=0; i<n; i++)
 if (beta[i] != 0.0)
 eval[i] = imsl_c_div(alpha[i],
 imsl_cf_convert(beta[i], 0.0));
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
(0.833, 1.993) (0.833, -1.993) (0.500, 0.000)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in
the last example.

#include <imsl.h>

main()
{
 int n = 3;
 f_complex alpha[3];
 float beta[3];
 int i;
 f_complex eval[3];
 f_complex *evec;
 float a[] = {1.0, 0.5, 0.0,
 -10.0, 2.0, 0.0,
 5.0, 1.0, 0.5};
 float b[] = {0.5, 0.0, 0.0,
 3.0, 3.0, 0.0,
 4.0, 0.5, 1.0};

 imsl_f_geneig (n, a, b, alpha, beta,
 IMSL_VECTORS, &evec,
 0);

 for (i=0; i<n; i++)
 if (beta[i] != 0.0)
 eval[i] = imsl_c_div(alpha[i],
 imsl_cf_convert(beta[i], 0.0));
 else
 printf ("Infinite eigenvalue\n");

Chapter 2: Eigensystem Analysis geneig (complex) • 133

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

 /* Print eigenvectors */

 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
(0.833, 1.993) (0.833, -1.993) (0.500, -0.000)

 Eigenvectors
 1 2 3
1 (-0.197, 0.150) (-0.197, -0.150) (-0.000, 0.000)
2 (-0.069, -0.568) (-0.069, 0.568) (-0.000, 0.000)
3 (0.782, 0.000) (0.782, 0.000) (1.000, 0.000)

geneig (complex)
Computes the generalized eigenexpansion of a system Ax = λBx, with A and B complex.

Synopsis

#include <imsl.h>

void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha,
float *beta, ..., 0)

The double analogue is imsl_z_geneig.

Required Arguments

int n (Input)
Number of rows and columns in A and B.

f_complex *a (Input)
Array of size n × n containing the coefficient matrix A.

f_complex *b (Input)
Array of size n × n containing the coefficient matrix B

f_complex *alpha (Output)
Vector of size n containing scalars αL. If βL ≠ 0, λL = αL/βL for
i = 0, …, n − 1 are the eigenvalues of the system.

f_complex *beta (Output)
Vector of size n.

134 • geneig (complex) IMSL C/Math/Library

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha,
f_complex *beta
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments

IMSL_VECTORS, f_complex **evec (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the
problem. Each vector is normalized to have Euclidean length equal to the value
one. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix
of generalized eigenvectors is returned in the space evecu. Each vector is
normalized to have Euclidean length equal to the value one.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim =

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n.

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n.

Description

The function imsl_c_geneig uses the QZ algorithm to compute the eigenvalues and
eigenvectors of the generalized eigensystem Ax = λBx, where A and B are real matrices
of order n. The eigenvalues for this problem can be infinite, so α and β are returned
instead of λ. If β is nonzero, λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg
form and B to upper-triangular form. Then, orthogonal transformations are used to
reduce A to quasi-upper-triangular form while keeping B upper triangular. The
generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_c_geneig is based on the QZ algorithm due to Moler and Stewart
(1973).

Chapter 2: Eigensystem Analysis geneig (complex) • 135

Examples

Example 1

In this example, the eigenvalue, λ, of system Ax = λBx is solved, where

A

i i i

i

i i

B i i i

i i i

=
+ +

− +
+ +

L

N
M
M
M

O

Q
P
P
P

= + +
+ + +

L

N
M
M
M

O

Q
P
P
P

1 05 5

10 2 0

5 1 05 3

0 5 0 0

3 3 3 3

4 2 05 1

.

.

.

.

 and

#include <imsl.h>

main()
{
 int n = 3;
 f_complex alpha[3];
 f_complex beta[3];
 int i;
 f_complex eval[3];
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};

 /* Compute eigenvalues */

 imsl_c_geneig (n, a, b, alpha, beta, 0);

 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in
the last example.

#include <imsl.h>

main()
{

136 • geneig (complex) IMSL C/Math/Library

 int n = 3;
 f_complex alpha[3];
 f_complex beta[3];
 int i;
 f_complex eval[3];
 f_complex *evec;
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};

 /* Compute eigenvalues and eigenvectors */

 imsl_c_geneig (n, a, b, alpha, beta,
 IMSL_VECTORS_USER, evec,
 0);

 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

 /*Print eigenvectors */

 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)

 Eigenvectors
 1 2 3
1 (-0.3267, -0.1245) (-0.3007, -0.2444) (0.0371, 0.1518)
2 (0.1767, 0.0054) (0.8959, 0.0000) (0.9577, 0.0000)
3 (0.9201, 0.0000) (-0.2019, 0.0801) (-0.2215, 0.0968)

Chapter 3: Interpolation and Approximation Routines • 137

Chapter 3: Interpolation and
Approximation

Routines
3.1 Cubic Spline Interpolation

Derivative end conditions..................................cub_spline_interp_e_cnd 143
Shape preserving..cub_spline_interp_shape 150

3.2 Cubic Spline Evaluation and Integration
Evaluation and differentiation..cub_spline_value 155
Integration..cub_spline_integral 158

3.3 Spline Interpolation
One-dimensional interpolation ... spline_interp 159
Knot sequence given interpolation data................................spline_knots 165
Two-dimensional, tensor-product interpolation.............. spline_2d_interp 169

3.4 Spline Evaluation and Integration
One-dimensional evaluation and differentiation....................spline_value 175
One-dimensional integration... spline_integral 178
Two-dimensional evaluation and differentiation..............spline_2d_value 180
Two-dimensional integration....................................... spline_2d_integral 184

3.5 Least-Squares Approximation and Smoothing
General functions... user_fcn_least_squares 187
Splines with fixed knots ..spline_least_squares 191
Tensor-product splines with fixed knotsspline_2d_least_squares 197
Cubic smoothing spline..cub_spline_smooth 203
Splines with constraints spline_lsq_constrained 207
Smooth one-dimensional data by error detection.smooth_1d_data 214

3.6 Scattered Data Interpolation
Akima’s surface-fitting methodscattered_2d_interp 218

3.7 Scattered Data Least Squares
Fit using radial-basis functions radial_scattered_fit 223
Evaluate radial-basis fit.. radial_evaluate 229

138 • Usage Notes IMSL C/Math/Library

Usage Notes
The majority of the functions in this chapter produce cubic piecewise polynomial or
general spline functions that either interpolate or approximate given data or support the
evaluation and integration of these functions. Two major subdivisions of functions are
provided. The cubic spline functions begin with the prefix “cub_spline_” and use the
piecewise polynomial representation described below. The spline functions begin with
the prefix “spline_” and use the B-spline representation described below. Most of the
spline functions are based on routines in the book by de Boor (1978).

We provide a few general purpose routines for general least-squares fit to data and a
routine that produces an interpolant to two-dimensional scattered data.

Piecewise Polynomials

A univariate piecewise polynomial (function) p is specified by giving its breakpoint
sequence ξ ∈ RQ, the order k (degree k − 1) of its polynomial pieces, and the k × (n − 1)
matrix c of its local polynomial coefficients. In terms of this information, the piecewise
polynomial (ppoly) function is given by

p x c
x

j
xji

j

k
i

j

i ib g b g
b g=
−

−
≤ ≤

=

−

+∑
1

1

11

ξ
ξ ξ

!
for

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the ppoly
function to the entire real axis by extrapolation from the first and last intervals. This
representation is redundant when the ppoly function is known to be smooth. For
example, if p is known to be continuous, then we can compute c��L�� from the cML as
follows:

c p c
ji i ji

j

k
i i

j

1 1 1
1

1
1

1, !+ +
=

+
−

= =
−
−∑ξ

ξ ξb g b g
b g

For smooth ppoly, we prefer to use the nonredundant representation in terms of the
“basis” or B-splines, at least when such a function is first to be determined.

Splines and B-Splines

B-splines provide a particularly convenient and suitable basis for a given class of
smooth ppoly functions. Such a class is specified by giving its breakpoint sequence, its
order k, and the required smoothness across each of the interior breakpoints. The
corresponding B-spline basis is specified by giving its knot sequence t ∈ R0. The
specification rule is as follows: If the class is to have all derivatives up to and including
the j-th derivative continuous across the interior breakpoint ξL, then the number
ξL should occur k − j − 1 times in the knot sequence. Assuming that ξ� and ξQ are the
endpoints of the interval of interest, choose the first k knots equal to ξ� and the last
k knots equal to ξQ. This can be done because the B-splines are defined to be right
continuous near ξ� and left continuous near ξQ.

Chapter 3: Interpolation and Approximation Usage Notes • 139

When the above construction is completed, a knot sequence t of length M is generated,
and there are m: = M − k B-splines of order k, for example
B�, …, BP��, spanning the ppoly functions on the interval with the indicated
smoothness. That is, each ppoly function in this class has a unique representation

p a B a B a Bm m= + + + − −0 0 1 1 1 1K

as a linear combination of B-splines. A B-spline is a particularly compact ppoly
function. BL is a nonnegative function that is nonzero only on the interval [tL�tL�N]. More
precisely, the support of the i-th B-spline is [tL,tL�N]. No ppoly function in the same class
(other than the zero function) has smaller support (i.e., vanishes on more intervals) than
a B-spline. This makes B-splines particularly attractive basis functions since the
influence of any particular B-spline coefficient extends only over a few intervals. When
it is necessary to emphasize the dependence of the B-spline on its parameters, we will
use the notation BL�N�t�to denote the i-th B-spline of order k for the knot sequence t.

Cubic Splines

Cubic splines are smooth (i.e., C� or C�), fourth-order ppoly functions. For historical
and other reasons, cubic splines are the most heavily used ppoly functions. Therefore,
we provide special functions for their construction and evaluation. These routines use
the ppoly representation as described above for general ppoly functions (with k = 4).

We provide two cubic spline interpolation functions:
imsl_f_cub_spline_interp_e_cnd and imsl_f_cub_spline_interp_shape.
The function imsl_f_cub_spline_interp_e_cnd allows the user to specify various
endpoint conditions (such as the value of the first or second derivative at the right and
left points). This means that the natural cubic spline can be obtained using this function
by setting the second derivative to zero at both endpoints. The function
imsl_f_cub_spline_interp_shape is designed so that the shape of the curve
matches the shape of the data. In particular, one option of this function preserves the
convexity of the data while the default attempts to minimize oscillations.

It is possible that the cubic spline interpolation functions will produce unsatisfactory
results. For example, the interpolant may not have the shape required by the user, or the
data may be noisy and require a least-squares fit. The interpolation function
imsl_f_spline_interp is more flexible, as it allows you to choose the knots and
order of the spline interpolant. We encourage the user to use this routine and exploit the
flexibility provided.

Tensor Product Splines

The simplest method of obtaining multivariate interpolation and approximation
functions is to take univariate methods and form a multivariate method via tensor
products. In the case of two-dimensional spline interpolation, the derivation proceeds as
follows. Let t[be a knot sequence for splines of order k[, and t\ be a knot sequence for
splines of order k\. Let N[+ k[be the length of t[, and N\ + k\ be the length of t\. Then,
the tensor-product spline has the following form.

140 • Usage Notes IMSL C/Math/Library

c B x B ynm n k m k

n

N

m

N

x x y y

xy

, , , ,t tb g b g
=

−

=

−

∑∑
0

1

0

1

Given two sets of points

xi i

N xl q =1

and

yi i

N yl q =1

for which the corresponding univariate interpolation problem can be solved, the tensor-
product interpolation problem finds the coefficients cQP so that

c B x B y fnm n k i m k j

n

N

m

N

ijx x y y

xy

, , , ,t tb g d i
=

−

=

−

∑∑ =
0

1

0

1

This problem can be solved efficiently by repeatedly solving univariate interpolation
problems as described in de Boor (1978, p. 347). Three-dimensional interpolation can
be handled in an analogous manner. This chapter provides functions that compute the
two-dimensional, tensor-product spline coefficients given two-dimensional
interpolation data (imsl_f_spline_2d_interp) and that compute the two-
dimensional, tensor-product spline coefficients for a tensor-product, least-squares
problem (imsl_f_spline_2d_least_squares). In addition, we provide evaluation,
differentiation, and integration functions for the two-dimensional, tensor-product spline
functions. The relevant functions are imsl_f_spline_2d_value and
imsl_f_spline_2d_integral.

Scattered Data Interpolation

The IMSL C/Math/Library provides one function, imsl_f_scattered_2d_interp,
that returns values of an interpolant to scattered data in the plane. This function is based
on work by Akima (1978), which uses C� piecewise quintics on a triangular mesh.

Least Squares

The IMSL C/Math/Library includes functions for smoothing noisy data. The function
imsl_f_user_fcn_least_squares computes regressions with user-supplied
functions. The function imsl_f_spline_least_squares computes a least-squares
fit using splines with fixed knots or variable knots. These functions produce cubic
spline, least-squares fit by default. Optional arguments allow the user to choose the
order and the knot sequence. IMSL C/Math/Library also includes a tensor-product
spline regression function (imsl_f_spline_2d_least_squares) mentioned above.
The function imsl_f_radial_scattered_fit computes an approximation to
scattered data in R1 using radial-basis functions.

In addition to the functions listed above, several functions in Chapter 10, “Statistics and
Random Number Generation”, provide for polynomial regression and general linear
regression.

Chapter 3: Interpolation and Approximation Usage Notes • 141

Smoothing by Cubic Splines

One ‘‘smoothing spline’’ function is provided. The default action of
imsl_f_cub_spline_smooth estimates a smoothing parameter by cross-validation
and then returns the cubic spline that smooths the data. If the user wishes to supply a
smoothing parameter, then this function returns the appropriate cubic spline.

Structures for Splines and Piecewise Polynomials

This optional section includes more details concerning the structures for splines and
piecewise polynomials.

A spline may be viewed as a mapping with domain RG and target RU, where d and r are
positive integers. For this version of the IMSL C/Math/Library, only r = 1 is supported.
Thus, if s is a spline, then for some d and r

s : RG → RU

This implies that such a spline s must have d knot sequences and orders (one for each
domain dimension). Thus, associated with s, we have knots and orders

t�, …, tG��

k�, …, kG��
The precise form of the spline follows:

s(x) = (s�(x), …, sU��(x)) x = (x�, …, xG) ∈ RG
where the following equation is true.

s x c B Bi j j
i

j k
j

n

j

n

j kd

d

d

d d
db g : , , , , , ,

=
−

−

−

− −
−

=

−

=

−

∑∑ L K K
0 1 0 0

0

0

0

1

1

1 1
1

0

1

0

1

t t

Note that nL is the number of knots in tL minus the order kL.

We store all the information for a spline in one structure called Imsl_f_spline. (If the
type is double, then the structure name is Imsl_d_spline, and the float becomes double.)
The specification for this structure follows:

 typedef struct {
 int domain_dim;
 int target_dim;
 int *order;
 int *num_coef;
 int *num_knots;
 float **knots;
 float **coef;
} Imsl_f_spline;

142 • Usage Notes IMSL C/Math/Library

Explicitly, if sp is a pointer to Imsl_f_spline, then

sp-> domain_dim = d

sp-> target_dim = r

sp-> order [i] = kL i = 0, …, d − 1

sp-> num_coef [i] = mL i = 0, …, d − 1

sp-> num_knots [i] = nL + kL i = 0, …, d − 1

sp-> knots [i] [j] = t j
i = 0, …, d − 1 j = 0, …, nL + kL − 1

sp-> coef [i] [j] = c j
i = 0, …, r − 1 j = j� + j� n� + … + jG�� n�…nG��

For ppoly functions, we view a ppoly as a mapping with domain RG and target
RU where d and r are positive integers. Thus, if p is a ppoly, then for some d and r the
following is true.

p : RG → RU

For this version of the C/Math/Library, only r = 1 is supported. This implies that such a
ppoly p must have d breakpoint sequences and orders (one for each domain
dimension). Thus, associated with p, we have breakpoints and orders

ξ�, …, ξG

k�, …, kG

The precise form of the ppoly follows:

p(x) = (p�(x), …, pU(x)) x = (x�, …, xG) ∈ RG

where

p x c
x

l

x

li
l

k

L L l l
i

l

k
L d L

d l

d
d

d

d
d

d

d

b g e j e j
:

! !, , , , ,
=

− −

=

−

=

−

∑ ∑K K
K K

0

1

0

1
1

1

1
1

1

1

1 1ξ ξ

with

LM : = max {1, min {MM, nM − 1}}

where M- is chosen so that

ξ ξ
M
j

j M
j

j jx j d≤ < =+1 1, ,K

with

ξ ξ0 1
j

n
j

j
= −∞ = ∞+ and

Note that nM is the number of breakpoints in ξM.

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd • 143

We store all the information for a ppoly in one structure called Imsl_f_ppoly. (If the
type is double, then the structure name is Imsl_d_ppoly, and the float becomes double.)
The following is the specification for this structure.
 typedef struct {
 int domain_dim;
 int target_dim;
 int *order;
 int *num_coef;
 int *num_breakpoints;
 float **breakpoints;
 float **coef;
} Imsl_f_ppoly;

In particular, if ppoly is a pointer to the structure of type Imsl_f_ppoly, then

ppoly-> domain_dim = d

ppoly-> target_dim = r

ppoly-> order [i] = kL i = 0, …, d − 1

ppoly-> num_coef [i] = kL (nL − 1) i = 0, …, d − 1

ppoly-> num_breakpoints [i] = nL i = 0, …, d − 1

ppoly-> breakpoints [i] [j] = ξ j
 i = 0, …, d − 1 j = 0, …, nL − 1

ppoly->coef [i[[j] = c j
i = 0, …, r − 1
j = 0, …, k�(n� − 1)…kG��(nG�� − 1)

cub_spline_interp_e_cnd
Computes a cubic spline interpolant, specifying various endpoint conditions. The
default interpolant satisfies the “not-a-knot” condition.

Synopsis
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata,

float xdata[], float fdata[], …, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_e_cnd.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates for the interpolation
problem.

144 • cub_spline_interp_e_cnd IMSL C/Math/Library

Return Value

A pointer to the structure that represents the cubic spline interpolant. If an interpolant
cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata, float xdata[],
float fdata[],
IMSL_LEFT, int ileft, float left,
IMSL_RIGHT, int iright, float right,
IMSL_PERIODIC,
0)

Optional Arguments

IMSL_LEFT, int ileft, float left (Input)
Set the value for the first or second derivative of the interpolant at the left
endpoint. If ileft = i, then the interpolant s satisfies

s�L�(x/) = left

where x/ is the leftmost abscissa. The only valid values for ileft are 1 or 2.

IMSL_RIGHT, int iright, float right (Input)
Set the value for the first or second derivative of the interpolant at the right
endpoint. If iright = i, then the interpolant s satisfies

s�L�(x5) = right

where x5 is the rightmost abscissa. The only valid values for iright are 1 or 2.

IMSL_PERIODIC

Compute the C� periodic interpolant to the data. That is, we require

s�L�(x/) = s�L�(x5) i = 0, 1, 2

where s, x/, and x5 are defined above.

Description

The function imsl_f_cub_spline_interp_e_cnd computes a C� cubic spline
interpolant to a set of data points (xL, fL) for i = 0, …, ndata − 1 = n. The breakpoints of
the spline are the abscissas. We emphasize here that for all the univariate interpolation
functions, the abscissas need not be sorted. Endpoint conditions are to be selected by
the user. The user may specify “not-a-knot” or first derivative or second derivative at
each endpoint, or C� periodicity may be requested (see de Boor 1978, Chapter 4). If no
defaults are selected, then the “not-a-knot” spline interpolant is computed. If the
IMSL_PERIODIC keyword is selected, then all other keywords are ignored; and a
C� periodic interpolant is computed. In this case, if the fdata values at the left and

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd • 145

right endpoints are not the same, then a warning message is issued; and we set the right
value equal to the left. If IMSL_LEFT or IMSL_RIGHT are selected (in the absence of
IMSL_PERIODIC), then the user has the ability to select the values of the first or second
derivative at either endpoint. The default case (when the keyword is not used) is the
“not-a-knot” condition on that endpoint. Thus, when no optional arguments are chosen,
this function produces the “not-a-knot” interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth
(say C�) function f, i.e. fL = f(xL), then the error will behave in a predictable fashion.
Let ξ be the breakpoint vector for the above spline interpolant. Then, the maximum
absolute error satisfies

f s C f
n

n

− ≤ξ ξ ξ ξ
ξ

0
0

4 4

, ,

b g

where

ξ ξ ξ: max
, ,

= −
= − +

i n
i i

0 1
1

K

For more details, see de Boor (1978, Chapters 4 and 5).

The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling
program must receive this in a pointer Imsl_f_ppoly *ppoly. This structure contains all
the information to determine the spline (stored as a piecewise polynomial) that is
computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y
y = imsl_f_cub_spline_value (x, ppoly, 0)

The difference between the default (“not-a-knot”) spline and the interpolating cubic
spline, which has first derivative set to 1 at the left end and the second derivative set to
−90 at the right end, is illustrated in the following figure.

Figure 3-1 Two Interpolating Splines

146 • cub_spline_interp_e_cnd IMSL C/Math/Library

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since we are using the
default settings, the interpolant is determined by the “not-a-knot” condition
(see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *ppoly;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);

 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,ppoly,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.809 0.1270
0.100 0.997 0.997 0.0000
0.150 0.778 0.723 0.0552
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295
0.800 -0.537 -0.537 0.0000

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd • 147

0.850 0.183 0.148 0.0347
0.900 0.804 0.804 0.0000
0.950 0.994 1.086 0.0926
1.000 0.650 0.650 0.0000

Example 2

In this example, a cubic spline interpolant to a function f is computed. The value of the
derivative at the left endpoint and the value of the second derivative at the right
endpoint are specified. The values of this spline are then compared with the exact
function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA], xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 1;
 left = 0.0;
 iright = 2;
 right =-225.0*sin(15.0);
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i=0; i<NDATA; i++){
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.438 0.2441
0.100 0.997 0.997 0.0000
0.150 0.778 0.822 0.0442
0.200 0.141 0.141 0.0000

148 • cub_spline_interp_e_cnd IMSL C/Math/Library

0.250 -0.572 -0.575 0.0038
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.836 0.0233
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.439 0.0111
0.500 0.938 0.938 0.0000

Example 3

This example computes the natural cubic spline interpolant to a function f by forcing
the second derivative of the interpolant to be zero at both endpoints. As in the previous
example, the exact function values are computed with the values of the spline.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA],
 xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 2;
 left = 0.0;
 iright = 2;
 right = 0.0;
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < NDATA; i++){
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.667 0.0150
0.100 0.997 0.997 0.0000
0.150 0.778 0.761 0.0172

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd • 149

0.200 0.141 0.141 0.0000
0.250 -0.572 -0.559 0.0126
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.840 0.0189
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.440 0.0098
0.500 0.938 0.938 0.0000

Example 4

This example computes the cubic spline interpolant to a functions, and imposes the
periodic end conditions s(a) = s(b), s’(a) = s’(b), and s"(a) = s"(b), where a is the
leftmost abscissa and b is the rightmost abscissa.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function*/
#define F(x) (float)(sin(x))

main()
{
 int i;
 float x, y, twopi, fdata[NDATA], xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 twopi = 2.0*imsl_f_constant("pi", 0);
 for (i = 0; i < NDATA; i++) {
 xdata[i] = twopi*(float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 fdata[NDATA-1] = fdata[0];
 /* Compute periodic cubic spline */
 /* interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_PERIODIC,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < NDATA; i++){
 x = (twopi/20.)*i;
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n",x,F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.314 0.309 0.309 0.0001
0.628 0.588 0.588 0.0000
0.942 0.809 0.809 0.0004
1.257 0.951 0.951 0.0000
1.571 1.000 1.000 0.0004
1.885 0.951 0.951 0.0000

150 • cub_spline_interp_shape IMSL C/Math/Library

2.199 0.809 0.809 0.0004
2.513 0.588 0.588 0.0000
2.827 0.309 0.309 0.0001
3.142 -0.000 -0.000 0.0000

Warning Errors

IMSL_NOT_PERIODIC The data is not periodic. The rightmost fdata
value is set to the leftmost fdata value.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

cub_spline_interp_shape
Computes a shape-preserving cubic spline.

Synopsis

#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata, float xdata[],
float fdata[], …, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_shape .

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates for the interpolation
problem.

Return Value

A pointer to the structure that represents the cubic spline interpolant. If an interpolant
cannot be computed, then NULL is returned. To release this space, use free .

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata ,
float xdata[] , float fdata[] ,
IMSL_CONCAVE,
IMSL_CONCAVE_ITMAX, int itmax ,
0)

Chapter 3: Interpolation and Approximation cub_spline_interp_shape • 151

Optional Arguments

IMSL_CONCAVE

This option produces a cubic interpolant that will preserve the concavity of the
data.

IMSL_CONCAVE_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of
Newton’s Method. Default: itmax = 25.

Description

The function imsl_f_cub_spline_interp_shape computes a C� cubic spline
interpolant to a set of data points(xL, fL) for i = 0, …, ndata − 1 = n. The breakpoints of
the spline are the abscissas. This computation is based on a method by Akima (1970) to
combat wiggles in the interpolant. Endpoint conditions are automatically determined by
the program; see Akima (1970) or de Boor (1978).

If the optional argument IMSL_CONCAVE is chosen, then this function computes a cubic
spline interpolant to the data. For ease of explanation, we will assume that xL < xL��,
although it is not necessary for the user to sort these data values. If the data are strictly
convex, then the computed spline is convex, C�, and minimizes the expression

′′z g
x

xn b g
1

2

over all convex C� functions that interpolate the data. In the general case, when the data
have both convex and concave regions, the convexity of the spline is consistent with the
data, and the above integral is minimized under the appropriate constraints. For more
information on this interpolation scheme, refer to Michelli et al. (1985) and Irvine et al.
(1986).

One important feature of the splines produced by this function is that it is not possible,
a priori, to predict the number of breakpoints of the resulting interpolant. In most cases,
there will be breakpoints at places other than data locations. This function should be
used when it is important to preserve the convex and concave regions implied by the
data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic
polynomials are not reproduced. (However, linear polynomials are reproduced.) This
explains the theoretical error estimate below.

If the data points arise from the values of a smooth (say C�) function f, i.e. fL = f(xL),
then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for
either of the above spline interpolants. Then, the maximum absolute error satisfies

f s C f
m

m

− ≤ξ ξ ξ ξ
ξ

0
0

2 2

, ,

b g

where
ξ ξ ξ: max

, ,
= −

= − +
i m

i i
0 1

1
K

and ξP is the last breakpoint.

152 • cub_spline_interp_shape IMSL C/Math/Library

The return value for this function is a pointer of the type Imsl_f_ppoly. The calling
program must receive this in a pointer Imsl_f_ppoly *ppoly. This structure contains all
the information to determine the spline (stored as a piecewise polynomial) that is
computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y.
y = imsl_f_cub_spline_value (x, ppoly, 0)

The difference between the convexity-preserving spline and Akima’s spline is
illustrated in the following figure. Note that the convexity-preserving interpolant
exhibits linear segments where the convexity constraints are binding.

Figure 3-2 Two Shape-Preserving Splines

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;

Chapter 3: Interpolation and Approximation cub_spline_interp_shape • 153

 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < 2*NDATA-1; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.818 0.1360
0.100 0.997 0.997 0.0000
0.150 0.778 0.615 0.1635
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.478 0.0934
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.812 0.0464
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.386 0.0645
0.500 0.938 0.938 0.0000
0.550 0.923 0.854 0.0683
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.276 0.0433
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.889 0.0789
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.149 0.0338
0.900 0.804 0.804 0.0000
0.950 0.994 0.932 0.0613
1.000 0.650 0.650 0.0000

Example 2

In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;

154 • cub_spline_interp_shape IMSL C/Math/Library

 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata,
 IMSL_CONCAVE,
 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.667 0.0150
0.100 0.997 0.997 0.0000
0.150 0.778 0.761 0.0172
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.559 0.0126
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.840 0.0189
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.440 0.0098
0.500 0.938 0.938 0.0000
0.550 0.923 0.902 0.0208
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.311 0.0086
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.952 0.0156
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.200 0.0174
0.900 0.804 0.804 0.0000
0.950 0.994 0.892 0.1020
1.000 0.650 0.650 0.0000

Warning Errors

IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been
reached. The best approximation is returned.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

Chapter 3: Interpolation and Approximation cub_spline_value • 155

cub_spline_value
Computes the value of a cubic spline or the value of one of its derivatives.

Synopsis

#include <imsl.h>

float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly, …, 0)

The type double function is imsl_d_cub_spline_value.

Required Arguments

float x (Input)
Evaluation point for the cubic spline.

Imsl_f_ppoly *ppoly (Input)
Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value

The value of a cubic spline or one of its derivatives at the point x. If no value can be
computed, then NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly,
IMSL_DERIV, int deriv,
IMSL_GRID, int n, float *xvec, float **value,
IMSL_GRID_USER, int n, float *xvec, float value_user[],
0)

Optional Arguments

IMSL_DERIV, int deriv (Input)
Let d = deriv and let s be the cubic spline that is represented by the structure
*ppoly, then this option produces the d-th derivative of s at x, s�G� (x).

IMSL_GRID, int n, float *xvec, float **value (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to
be evaluated. The d-th derivative of the spline at the points in xvec is returned
in value.

IMSL_GRID_USER, int n, float *xvec, float value_user[] (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to
be evaluated. The d-th derivative of the spline at the points in xvec is returned
in the user-supplied space value_user.

156 • cub_spline_value IMSL C/Math/Library

Description

The function imsl_f_cub_spline_value computes the value of a cubic spline or
one of its derivatives. The first and last pieces of the cubic spline are extrapolated. As a
result, the cubic spline structures returned by the cubic spline routines are defined and
can be evaluated on the entire real line. This routine is based on the routine PPVALU
by de Boor (1978, p. 89).

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since the default settings
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor
1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199

Chapter 3: Interpolation and Approximation cub_spline_value • 157

0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed.
The values of this spline are then compared with the exact function values. This
example compares the values of the first derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define functions */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata,fdata, 0);
 /* Print results */
 printf(" x FP(x) Interpolant Deriv Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp,
 IMSL_DERIV, 1,
 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, FP(x), y,
 fabs(FP(x)-y));
 }
}

Output
 x FP(x) Interpolant Deriv Error
0.250 -12.308 -12.559 0.2510
0.300 -3.162 -3.218 0.0560
0.350 7.681 7.796 0.1151
0.400 14.403 13.919 0.4833
0.450 13.395 13.530 0.1346
0.500 5.200 5.007 0.1926
0.550 -5.786 -5.840 0.0535
0.600 -13.667 -13.201 0.4660
0.650 -14.214 -14.393 0.1798
0.700 -7.133 -6.734 0.3990
0.750 3.775 3.911 0.1359

158 • cub_spline_integral IMSL C/Math/Library

cub_spline_integral
Computes the integral of a cubic spline.

Synopsis

#include <imsl.h>

float imsl_f_cub_spline_integral (float a, float b, Imsl_f_ppoly *ppoly)

The type double function is imsl_d_cub_spline_integral.

Required Arguments

float a (Input)

float b (Input)
Endpoints for integration.

Imsl_f_ppoly *ppoly (Input)
Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value

The integral from a to b of the cubic spline. If no value can be computed, then NaN is
returned.

Description

The function imsl_f_cub_spline_integral computes the integral of a cubic spline
from a to b.

s x dx
a

b
b gz

Example

In this example, a cubic spline interpolant to a function f is computed. The values of the
integral of this spline are then compared with the exact integral values. Since the
default settings are used, the interpolant is determined by the “not-a-knot” condition
(see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 21
 /* Define function */
#define F(x) (float)(sin(15.0*x))
 /* Integral from 0 to x */
#define FI(x) (float)((1.-cos(15.0*x))/15.)

main()
{
 int i;

Chapter 3: Interpolation and Approximation spline_interp • 159

 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FI(x) Interpolant Integral Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_integral(0.0, x, pp);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, FI(x), y,
 fabs(FI(x)-y));
 }
}

Output
 x FI(x) Interpolant Integral Error
0.250 0.121 0.121 0.0001
0.275 0.104 0.104 0.0001
0.300 0.081 0.081 0.0001
0.325 0.056 0.056 0.0001
0.350 0.033 0.033 0.0001
0.375 0.014 0.014 0.0002
0.400 0.003 0.003 0.0002
0.425 0.000 0.000 0.0002
0.450 0.007 0.007 0.0002
0.475 0.022 0.022 0.0001
0.500 0.044 0.044 0.0001
0.525 0.068 0.068 0.0001
0.550 0.092 0.092 0.0001
0.575 0.113 0.113 0.0001
0.600 0.127 0.128 0.0001
0.625 0.133 0.133 0.0001
0.650 0.130 0.130 0.0001
0.675 0.118 0.118 0.0001
0.700 0.098 0.098 0.0001
0.725 0.075 0.075 0.0001
0.750 0.050 0.050 0.0001

spline_interp
Compute a spline interpolant.

Synopsis

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[],
float fdata[], …, 0)

The type Imsl_d_spline function is imsl_d_spline_interp.

160 • spline_interp IMSL C/Math/Library

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the interpolation
problem.

Return Value

A pointer to the structure that represents the spline interpolant. If an interpolant cannot
be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[], float
fdata[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
0)

Optional Arguments

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots.
Default: knots are selected by the function imsl_f_spline_knots using its
defaults.

Description

Given the data points x = xdata, f = fdata, and the number n = ndata of elements in
xdata and fdata, the default action of imsl_f_spline_interp computes a cubic
(k = 4) spline interpolant s to the data using the default knot sequence generated by
imsl_f_spline_knots.

The optional argument IMSL_ORDER allows the user to choose the order of the spline
interpolant. The optional argument IMSL_KNOTS allows user specification of knots.

The function imsl_f_spline_interp is based on the routine SPLINT by de Boor
(1978, p. 204).

Chapter 3: Interpolation and Approximation spline_interp • 161

First, imsl_f_spline_interp sorts the xdata vector and stores the result in x. The
elements of the fdata vector are permuted appropriately and stored in f, yielding the
equivalent data (xL, fL) for i = 0 to n − 1.

The following preliminary checks are performed on the data. We verify that

xL < xL�� i = 0, …, n − 2

tL < tL�N i = 0, …, n − 1

tL < tL�� i = 0, …, n + k − 2

The first test checks to see that the abscissas are distinct. The second and third
inequalities verify that a valid knot sequence has been specified.

• In order for the interpolation matrix to be nonsingular, we also check
tN���� ≤ xL ≤ tQ for i = 0 to n − 1. This first inequality in the last check is necessary since
the method used to generate the entries of the interpolation matrix requires that the
k possibly nonzero B-splines at xL,

BM�N��, …, BM where j satisfies tM ≤ xL < tM��

be well-defined (that is, j − k + 1 ≥ 0).

General conditions are not known for the exact behavior of the error in spline
interpolation; however, if t and x are selected properly and the data points arise from
the values of a smooth (say CN) function f, i.e. fL = f(xL), then the error will behave in a
predictable fashion. The maximum absolute error satisfies

f s C f
k n

k n

k k− ≤
−

−
t t t t

t
1

1
, ,

b g

where

t t t: max
, ,

= −
= − − +

i k n
i i

1 1
1

K

For more information on this problem, see de Boor (1978, Chapter 13) and his
reference. This function can be used in place of the IMSL function
imsl_f_cub_spline_interp.

The return value for this function is a pointer of type Imsl_f_spline. The calling
program must receive this in a pointer Imsl_f_spline *sp. This structure contains all the
information to determine the spline (stored as a linear combination of B-splines) that is
computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y.
y = imsl_f_spline_value (x, sp, 0)

Three spline interpolants of order 2, 3, and 5 are plotted. These splines use the default
knots.

162 • spline_interp IMSL C/Math/Library

Figure 3-3 Three Spline Interpolants

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since the default settings
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor
1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float xdata[NDATA], fdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = 0; i < 2*NDATA-1; i++){

Chapter 3: Interpolation and Approximation spline_interp • 163

 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.809 0.1270
0.100 0.997 0.997 0.0000
0.150 0.778 0.723 0.0552
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.148 0.0347
0.900 0.804 0.804 0.0000
0.950 0.994 1.086 0.0926
1.000 0.650 0.650 0.0000

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed.
The values of this spline are then compared with the exact function values.This
example chooses to use a quadratic (k = 3) and a quintic k = 6 spline interpolant to the
data instead of the default values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, order;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 for (order =3; order<7; order += 3) {

164 • spline_interp IMSL C/Math/Library

 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata,
 IMSL_ORDER, order,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d\n", order);
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x,sp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
 }
}

Output
The order of the spline is 3
 x F(x) Interpolant Error
 0.250 -0.572 -0.542 0.0299
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.819 0.0397
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.429 0.0210
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.879 0.0433
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.305 0.0149
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.922 0.0459

The order of the spline is 6
 x F(x) Interpolant Error
 0.250 -0.572 -0.573 0.0016
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.856 0.0031
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.448 0.0020
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.922 0.0003
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.322 0.0025
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.959 0.0090

Warning Errors

IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The
solution might not be accurate.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

Chapter 3: Interpolation and Approximation spline_knots • 165

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_KNOT_XDATA_INTERLACING The i-th smallest element of xdata (xL) must
satisfy tL ≤ xL < tL�RUGHU where t is the knot
sequence.

IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdataL ≤ tQGDWD,
for i = 1, …, ndata.

IMSL_XDATA_TOO_SMALL The array xdata must satisfy xdataL ≥ tRUGHU��,
for i = 1, …, ndata.

spline_knots
Computes the knots for a spline interpolant

Synopsis

#include <imsl.h>

float *imsl_f_spline_knots (int ndata, float xdata[], …, 0)

The type double function is imsl_d_spline_knots.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

Return Value

A pointer to the knots. If the knots cannot be computed, then NULL is returned. To
release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_spline_knots (int ndata, float xdata[],
IMSL_ORDER, int order,
IMSL_OPT,
IMSL_OPT_ITMAX, int itmax,
IMSL_RETURN_USER, float knots[],
0)

166 • spline_knots IMSL C/Math/Library

Optional Arguments

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

IMSL_OPT

This option produces knots that satisfy an optimality criterion.

IMSL_OPT_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of
Newton’s method.
Default: itmax = 10

IMSL_RETURN_USER, float knots[] (Output)
This option requires the user to provide the space for the return knots. For
example, the user could declare float knots[100]; and pass in knots.
The return value is then also set to knots.

Description

Given the data points x = xdata, the order of the spline k = order, and the number
n = ndata of elements in xdata, the default action of imsl_f_spline_knots
returns a pointer to a knot sequence that is appropriate for interpolation of data on x by
splines of order k (the default order is k = 4). The knot sequence is contained in its first
n + k positions. If k is even, and we assume that the entries in the input vector x are
increasing, then the resulting knot sequence t is returned as

tL = x� for i = 0, …, k − 1

tL = xL�N���� for i = k, …, n − 1

tL = xQ�� for i = n, …, n + k − 1

There is some discussion concerning this selection of knots in de Boor (1978, p. 211).
If k is odd, then t is returned as

t

t

t

i

i
i

k
i

k

i n

x i k

x x i k n

x i n n k

= = −
= + = −

= = = −

− − − − − −

−

0

1

2
1 1

2

2

1

0 1

2 1

1

for

for

for

, ,

() / , ,

, ,

K

K

K

It is not necessary to sort the values in xdata.

If the option IMSL_OPT is selected, then the knot sequence returned minimizes the
constant c in the error estimate

||f − s|| ≤ c|| f �N�||

Chapter 3: Interpolation and Approximation spline_knots • 167

In the above formula, f is any function in CN, and s is the spline interpolant to f at the
abscissas x with knot sequence t.

The algorithm is based on a routine described in de Boor (1978, p. 204), which in turn
is based on a theorem of Micchelli et al. (1976).

Examples

Example 1

In this example, knots for a cubic spline are generated and printed. Notice that the knots
are stacked at the endpoints and that the second and next to last data points are not
knots.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 6

main()
{
 int i;
 float *knots, xdata[NDATA];

 for(i = 0; i < NDATA; i++)
 xdata[i] = i;
 knots = imsl_f_spline_knots(NDATA, xdata, 0);
 imsl_f_write_matrix("The knots for the cubic spline are:\n",
 1, NDATA+4, knots,
 IMSL_COL_NUMBER_ZERO,
 0);
}

Output
 The knots for the cubic spline are:

 0 1 2 3 4 5
 0 0 0 0 2 3

 6 7 8 9
 5 5 5 5

Example 2

This is a continuation of the examples for imsl_f_spline_interp (page 159).
Recall that in these examples, a cubic spline interpolant to a function f is computed
first. The values of this spline are then compared with the exact function values. The
second example uses a quadratic (k = 3) and a quintic (k = 6) spline interpolant to the
data. Now, instead of using the default knots, select the “optimal” knots as described
above. Notice that the error is actually worse in this case.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

168 • spline_knots IMSL C/Math/Library

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, order;
 float fdata[NDATA], xdata[NDATA], *knots, x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 for(order = 3; order < 7; order += 3) {
 knots = imsl_f_spline_knots(NDATA, xdata, IMSL_ORDER, order,
 IMSL_OPT,
 0);
 /* Compute spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata,fdata,
 IMSL_ORDER, order,
 IMSL_KNOTS, knots,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d\n", order);
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
 }
}

Output
The order of the spline is 3
 x F(x) Interpolant Error
 0.250 -0.572 -0.543 0.0290
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.819 0.0401
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.429 0.0210
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.879 0.0433
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.305 0.0150
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.920 0.0478

The order of the spline is 6
 x F(x) Interpolant Error
 0.250 -0.572 -0.578 0.0061
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.854 0.0054
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.448 0.0019

Chapter 3: Interpolation and Approximation spline_2d_interp • 169

 0.500 0.938 0.938 0.0000
 0.550 0.923 0.920 0.0022
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.317 0.0020
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.966 0.0023

Warning Errors

IMSL_NO_CONV_NEWTON Newton’s method iteration did not converge.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_ILL_COND_LIN_SYS Interpolation matrix is singular. The xdata

values may be too close together.

spline_2d_interp
Computes a two-dimensional, tensor-product spline interpolant from two-dimensional,
tensor-product data.

Synopsis

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int
num_ydata, float ydata[], float fdata[], …, 0)

The type Imsl_d_spline function is imsl_d_spline_2d_interp.

Required Arguments

int num_xdata (Input)
Number of data points in the X direction.

float xdata[] (Input)
Array with num_xdata components containing the data points in the X
direction.

int num_ydata (Input)
Number of data points in the Y direction.

float ydata[] (Input)
Array with num_ydata components containing the data points in the Y
direction.

float fdata[] (Input)
Array of size num_data × num_data containing the values to be interpolated.
fdata[i][j] is the value at (xdata[i], ydata[j]).

170 • spline_2d_interp IMSL C/Math/Library

Return Value

A pointer to the structure that represents the tensor-product spline interpolant. If an
interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int
num_ydata, float ydata[], float fdata[],
IMSL_ORDER, int xorder, int yorder,
IMSL_KNOTS, float xknots[], float yknots[],
IMSL_FDATA_COL_DIM, int fdata_col_dim,
0)

Optional Arguments

IMSL_ORDER, int xorder, int yorder (Input)
This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4, (i.e., tensor-product cubic splines)

IMSL_KNOTS, float xknots[], float yknots[] (Input)
This option requires the user to provide the knots. The default knots are
selected by the function imsl_f_spline_knots using its defaults.

IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)
The column dimension of the matrix fdata.
Default: fdata_col_dim = num_xdata

Description

The function imsl_f_spline_2d_interp computes a tensor-product spline
interpolant. The tensor-product spline interpolant to data {(xL, yM, fLM)}, where
0 ≤ i ≤ n[− 1 and 0 ≤ j ≤ n\ − 1 has the form

c B x B ynm

n

n

m

n

n k m k

xy

x x y y

=

−

=

−

∑∑
0

1

0

1

, , , ,t tb g b g

where k[and k\ are the orders of the splines. These numbers are defaulted to be 4, but
can be set to any positive integer using the keyword, IMSL_ORDER. Likewise, t[�and t\
are the corresponding knot sequences (xknots and yknots). These values are
defaulted to the knots returned by imsl_f_spline_knots. The algorithm requires
that

t[(k[− 1) ≤ xL ≤ t[(n[) 0 ≤ i ≤ n[− 1

t\(k\ − 1) ≤ yM ≤ t\(n\ − 1) 0 ≤ j ≤ n\ − 1

Tensor-product spline interpolants in two dimensions can be computed quite efficiently
by solving (repeatedly) two univariate interpolation problems.

Chapter 3: Interpolation and Approximation spline_2d_interp • 171

The computation is motivated by the following observations. It is necessary to solve the
system of equations

c B x B y fnm

n

n

m

n

n k i m k j ij

xy

x x y y

=

−

=

−

∑∑ =
0

1

0

1

, , , ,t tb g d i

Setting

h c B xmi nmn

n

n k i
x

x x
=

=

−∑ 0

1

, ,t b g
note that for each fixed i from 0 to n[− 1, we have n\ linear equations in the same
number of unknowns as can be seen below:

h B y fmi

m

n

m k i ij

y

y y

=

−

∑ =
0

1

, ,t b g

c B x B y fnm

n

n

m

n

n k i m k j ij

xy

x x y y

=

−

=

−

∑∑ =
0

1

0

1

, , , ,t tb g d i

Setting

h c B xmi nmn

n

n k i
x

x x
=

=

−∑ 0

1

, ,t b g
note that for each fixed i from 1 to n[− 1, we have n\ − 1 linear equations in the same
number of unknowns as can be seen below:

h B y fmi

m

n

m k i ij

y

y y

=

−

∑ =
0

1

, ,t b g

The same matrix appears in all of the equations above:

B y m j nm k j yy y, , ,t d i 1 1≤ ≤ −

Thus, only factor this matrix once and then apply this factorization to the n[right-hand
sides. Once this is done and hPL is computed, then solve for the coefficients cQP using
the relation

c B x hnm

n

n

n k i mi

x

x x

=

−

∑ =
0

1

, ,t b g

for m from 0 to n\ − 1, which again involves one factorization and n\ solutions to the
different right-hand sides. The function imsl_f_spline_2d_interp is based on the
routine SPLI2D by de Boor (1978, p. 347).

The return value for this function is a pointer to the structure Imsl_f_spline. The
calling program must receive this in a pointer Imsl_f_spline *sp. This structure
contains all the information to determine the spline (stored in B-spline format) that is

172 • spline_2d_interp IMSL C/Math/Library

computed by this procedure. For example, the following code sequence evaluates this
spline at (x,y) and returns the value in z.
z = imsl_f_spline_2d_value (x, y, sp, 0);

Examples

Example 1

In this example, a tensor-product spline interpolant to a function f is computed.
The values of the interpolant and the error on a 4 × 4 grid are displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x, y) (float)(x*x*x+y*y)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error \n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
 x y F(x, y) Interpolant Error
0.000 0.000 0.000 0.000 0.0000
0.000 0.500 0.250 0.250 0.0000
0.500 0.000 0.125 0.125 0.0000
0.500 0.500 0.375 0.375 0.0000

Chapter 3: Interpolation and Approximation spline_2d_interp • 173

Example 2

Recall that in the first example, a tensor-product spline interpolant to a function f is
computed. The values of the interpolant and the error on a 4 × 4 grid are displayed.
Notice that the first interpolant with order = 3 does not reproduce the cubic data,
while the second interpolant with order = 6 does reproduce the data.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 7
#define OUTDATA 4
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)

main()
{
 int i, j, num_xdata, num_ydata, order;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;

 for(order = 3; order < 7; order += 3) {
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata,
 IMSL_ORDER, order, order,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d \n", order);
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f \n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
 }
}

174 • spline_2d_interp IMSL C/Math/Library

Output
The order of the spline is 3
 x y F(x, y) Interpolant Error
 0.000 0.000 0.000 0.000 0.0000
 0.000 0.250 0.062 0.063 0.0000
 0.000 0.500 0.250 0.250 0.0000
 0.000 0.750 0.562 0.562 0.0000
 0.250 0.000 0.016 0.016 0.0002
 0.250 0.250 0.078 0.078 0.0002
 0.250 0.500 0.266 0.266 0.0002
 0.250 0.750 0.578 0.578 0.0002
 0.500 0.000 0.125 0.125 0.0000
 0.500 0.250 0.188 0.188 0.0000
 0.500 0.500 0.375 0.375 0.0000
 0.500 0.750 0.688 0.687 0.0000
 0.750 0.000 0.422 0.422 0.0002
 0.750 0.250 0.484 0.484 0.0002
 0.750 0.500 0.672 0.672 0.0002
 0.750 0.750 0.984 0.984 0.0002

The order of the spline is 6
 x y F(x, y) Interpolant Error
 0.000 0.000 0.000 0.000 0.0000
 0.000 0.250 0.062 0.063 0.0000
 0.000 0.500 0.250 0.250 0.0000
 0.000 0.750 0.562 0.562 0.0000
 0.250 0.000 0.016 0.016 0.0000
 0.250 0.250 0.078 0.078 0.0000
 0.250 0.500 0.266 0.266 0.0000
 0.250 0.750 0.578 0.578 0.0000
 0.500 0.000 0.125 0.125 0.0000
 0.500 0.250 0.188 0.188 0.0000
 0.500 0.500 0.375 0.375 0.0000
 0.500 0.750 0.688 0.688 0.0000
 0.750 0.000 0.422 0.422 0.0000
 0.750 0.250 0.484 0.484 0.0000
 0.750 0.500 0.672 0.672 0.0000
 0.750 0.750 0.984 0.984 0.0000

Warning Errors

IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The
solution might not be accurate.

Fatal Errors

IMSL_XDATA_NOT_INCREASING The xdata values must be strictly increasing.

IMSL_YDATA_NOT_INCREASING The ydata values must be strictly increasing.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

Chapter 3: Interpolation and Approximation spline_value • 175

IMSL_KNOT_DATA_INTERLACING The i-th smallest element of the data arrays
xdata and ydata must satisfy
tL ≤ dataL < tL�RUGHU, where t is the knot
sequence.

IMSL_DATA_TOO_LARGE The data arrays xdata and ydata must satisfy
dataL ≤ tQXPBGDWD, for i = 1, …, num_data.

IMSL_DATA_TOO_SMALL The data arrays xdata and ydata must satisfy
dataL ≥ tRUGHU��, for i = 1, …, num_data.

spline_value
Computes the value of a spline or the value of one of its derivatives.

Synopsis

#include <imsl.h>

float imsl_f_spline_value (float x, Imsl_f_spline *sp, …, 0)

The type double function is imsl_d_spline_value.

Required Arguments

float x (Input)
Evaluation point for the spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value

The value of a spline or one of its derivatives at the point x. If no value can be
computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_spline_value (float x, Imsl_f_spline *sp,
IMSL_DERIV, int deriv,
IMSL_GRID, int n, float *xvec, float **value,
IMSL_GRID_USER, int n, float *xvec, float value_user[],
0)

Optional Arguments

IMSL_DERIV, int deriv (Input)
Let d = deriv and let s be the spline that is represented by the structure *sp.
Then, this option produces the d-th derivative of s at x, s�G� (x).
Default: deriv = 0

176 • spline_value IMSL C/Math/Library

IMSL_GRID, int n, float *xvec, float **value (Input/Output)
The argument xvec is the array of length n containing the points at which the
spline is to be evaluated. The d-th derivative of the spline at the points in xvec
is returned in value.

IMSL_GRID_USER int n, float *xvec, float value_user[] (Input/Output)
The argument xvec is the array of length n containing the points at which the
spline is to be evaluated. The d-th derivative of the spline at the points in xvec
is returned in value_user.

Description

The function imsl_f_spline_value computes the value of a spline or one of its
derivatives. This function is based on the routine BVALUE by de Boor (1978, p. 144).

Examples

Example 1

In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since the default settings
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor
1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata,fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Chapter 3: Interpolation and Approximation spline_value • 177

Output
 x F(x) Interpolant Error
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295

Example 2

Recall that in the first example, a cubic spline interpolant to a function f is computed.
The values of this spline are then compared with the exact function values. This
example compares the values of the first derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FP(x) Interpolant Deriv Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, IMSL_DERIV, 1, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f \n", x, FP(x), y,
 fabs(FP(x)-y));
 }
}

Output
 x FP(x) Interpolant Deriv Error
0.250 -12.308 -12.559 0.2510
0.300 -3.162 -3.218 0.0560
0.350 7.681 7.796 0.1151
0.400 14.403 13.919 0.4833

178 • spline_integral IMSL C/Math/Library

0.450 13.395 13.530 0.1346
0.500 5.200 5.007 0.1926
0.550 -5.786 -5.840 0.0535
0.600 -13.667 -13.201 0.4660
0.650 -14.214 -14.393 0.1798
0.700 -7.133 -6.734 0.3990
0.750 3.775 3.911 0.1359

Fatal Errors

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

spline_integral
Computes the integral of a spline.

Synopsis

#include <imsl.h>

float imsl_f_spline_integral (float a, float b, Imsl_f_spline *sp)

The type double function is imsl_d_spline_integral.

Required Arguments

float a (Input)

float b (Input)
Endpoints for integration.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value

The integral of a spline. If no value can be computed, then NaN is returned.

Description

The function imsl_f_spline_integral computes the integral of a spline from a to
b

s x dx
a

b
b gz

This routine uses the identity (22) on page 151 of de Boor (1978).

Chapter 3: Interpolation and Approximation spline_integral • 179

Example

In this example, a cubic spline interpolant to a function f is computed. The values of the
integral of this spline are then compared with the exact integral values. Since the
default settings are used, the interpolant is determined by the “not-a-knot” condition
(see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 21
 /* Define function */
#define F(x) (float)(sin(15.0*x))
 /* Integral from 0 to x */
#define FI(x) (float)((1.-cos(15.0*x))/15.)

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FI(x) Interpolant Integral Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_integral(0.0, x, sp);
 printf(" %6.3f %10.3f %10.3f %10.4f \n", x, FI(x), y,
 fabs(FI(x)-y));
 }
}

Output
 x FI(x) Interpolant Integral Error
0.250 0.121 0.121 0.0001
0.275 0.104 0.104 0.0001
0.300 0.081 0.081 0.0001
0.325 0.056 0.056 0.0001
0.350 0.033 0.033 0.0001
0.375 0.014 0.014 0.0002
0.400 0.003 0.003 0.0002
0.425 0.000 0.000 0.0002
0.450 0.007 0.007 0.0002
0.475 0.022 0.022 0.0001
0.500 0.044 0.044 0.0001
0.525 0.068 0.068 0.0001
0.550 0.092 0.092 0.0001
0.575 0.113 0.113 0.0001
0.600 0.127 0.128 0.0001
0.625 0.133 0.133 0.0001

180 • spline_2d_value IMSL C/Math/Library

0.650 0.130 0.130 0.0001
0.675 0.118 0.118 0.0001
0.700 0.098 0.098 0.0001
0.725 0.075 0.075 0.0001
0.750 0.050 0.050 0.0001

Warning Errors

IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy
dataL ≤ tRUGHU��, for i = 1, …, num_data.

IMSL_SPLINE_EQUAL_LIMITS The upper and lower endpoints of integration
are equal. The indefinite integral is zero.

IMSL_LIMITS_LOWER_TOO_SMALL The left endpoint is less than tRUGHU��.
Integration occurs only from tRUGHU�� to b.

IMSL_LIMITS_UPPER_TOO_SMALL The right endpoint is less than tRUGHU��.
Integration occurs only from tRUGHU�� to a.

IMSL_LIMITS_UPPER_TOO_BIG The right endpoint is greater than
tVSOLQHBVSDFHBGLP��. Integration occurs only from
a to tVSOLQHBVSDFHBGLP��.

IMSL_LIMITS_LOWER_TOO_BIG The left endpoint is greater than
tVSOLQHBVSDFHBGLP��. Integration occurs only from
b to tVSOLQHBVSDFHBGLP��.

Fatal Errors

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

spline_2d_value
Computes the value of a tensor-product spline or the value of one of its partial
derivatives.

Synopsis

#include <imsl.h>

float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp, …, 0)

The type double function is imsl_d_spline_2d_value.

Required Arguments

float x (Input)

Chapter 3: Interpolation and Approximation spline_2d_value • 181

float y (Input)
The (x, y) coordinates of the evaluation point for the tensor-product spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value

The value of a tensor-product spline or one of its derivatives at the point (x, y).

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp,
IMSL_DERIV, int x_partial, int y_partial,
IMSL_GRID, int nx, float *xvec, int ny, float *yvec,

float **value,
IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec, float
value_user[],
0)

Optional Arguments

IMSL_DERIV, int x_partial, int y_partial (Input)
Let p = x_partial and q = y_partial, and let s be the spline that is
represented by the structure *sp, then this option produces the (p, q)-th
derivative of s at (x, y), s�S�T� (x, y).
Default: x_partial = y_partial = 0

IMSL_GRID, int nx, float *xvec, int ny, float *yvec, float **value
(Input/Output)
The argument xvec is the array of length nx containing the X coordinates at
which the spline is to be evaluated. The argument yvec is the array of length
ny containing the Y coordinates at which the spline is to be evaluated. The
value of the spline on the nx by ny grid is returned in value.

IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec,
float value_user[] (Input/Output)
The argument xvec is the array of length nx containing the X coordinates at
which the spline is to be evaluated. The argument yvec is the array of length
ny containing the Y coordinates at which the spline is to be evaluated. The
value of the spline on the nx by ny grid is returned in the user-supplied space
value_user.

Description

The function imsl_f_spline_2d_value computes the value of a tensor-product
spline or one of its derivatives. This function is based on the discussion in de Boor
(1978, pp. 351−353).

182 • spline_2d_value IMSL C/Math/Library

Examples

Example 1

In this example, a spline interpolant s to a function f is constructed. Using the procedure
imsl_f_spline_2d_interp to compute the interpolant,
imsl_f_spline_2d_value is employed to compute s(x, y). The values of this partial
derivative and the error are computed on a 4 × 4 grid and then displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F(x, y) Value Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
 x y F(x, y) Value Error
0.333 0.333 0.148 0.148 0.0000
0.333 0.667 0.481 0.481 0.0000
0.667 0.333 0.407 0.407 0.0000
0.667 0.667 0.741 0.741 0.0000

Chapter 3: Interpolation and Approximation spline_2d_value • 183

Example 2

In this example, a spline interpolant s to a function f is constructed.Using function
imsl_f_spline_2d_interp to compute the interpolant, then
imsl_f_spline_2d_value is employed to compute s����� (x, y). The values of this
partial derivative and the error are computed on a 4 × 4 grid and then displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x, y) (float)(x*x*x*y*y)
#define F21(x,y) (float)(6.*x*2.*y)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F21(x, y) 21InterpDeriv Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_value(x, y, sp,
 IMSL_DERIV, 2, 1,
 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F21(x, y), z, fabs(F21(x,y)-z));
 }
 }
}

Output
 x y F21(x, y) 21InterpDeriv Error
0.333 0.333 1.333 1.333 0.0000
0.333 0.667 2.667 2.667 0.0000
0.667 0.333 2.667 2.667 0.0000
0.667 0.667 5.333 5.333 0.0001

184 • spline_2d_integral IMSL C/Math/Library

Warning Errors

IMSL_X_NOT_WITHIN_KNOTS The value of x does not lie within the knot
sequence.

IMSL_Y_NOT_WITHIN_KNOTS The value of y does not lie within the knot
sequence.

Fatal Errors

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

spline_2d_integral
Evaluates the integral of a tensor-product spline on a rectangular domain.

Synopsis

#include <imsl.h>

float imsl_f_spline_2d_integral (float a, float b, float c, float d,
Imsl_f_spline *sp)

The type double function is imsl_d_spline_2d_integral.

Required Arguments

float a (Input)

float b (Input)
The integration limits for the first variable of the tensor-product spline.

float c (Input)

float d (Input)
The integration limits for the second variable of the tensor-product spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value

The value of the integral of the tensor-product spline over the rectangle
[a, b] × [c, d]. If no value can be computed, NaN is returned.

Description

The function imsl_f_spline_2d_integral computes the integral of a tensor-
product spline. If s is the spline, then this function returns

s x y dydx
c

d

a

b
,b gzz

Chapter 3: Interpolation and Approximation spline_2d_integral • 185

This function uses the (univariate integration) identity (22) in de Boor (1978, p. 151)

α τ τ αi

i

nx

i k j
j k j

j

i

i

r

i kB d
k

B x
=

+

==

−

+∑z ∑∑=
−L

N
M
M

O

Q
P
P0

1

00

1

1
0

-

t

t t
, ,b g b g

where t� ≤ x ≤ tU.

It assumes (for all knot sequences) that the first and last k knots are stacked, that is,
t� = … = tN�� and tQ = … = tQ�N�� , where k is the order of the spline in the x or y
direction.

Example

This example integrates a two-dimensional, tensor-product spline over the rectangle [0,
x] × [0, y].

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)
 /* The integral of F from 0 to x */
 /* and 0 to y */
#define FI(x,y) (float)(y*x*x*x*x/4. + x*y*y*y/3.)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i],ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y FI(x, y) Integral Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_integral(0.0, x, 0.0, y, sp);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, FI(x, y), z, fabs(FI(x,y)-z));
 }

186 • spline_2d_integral IMSL C/Math/Library

 }
}

Output
 x y FI(x, y) Integral Error
0.333 0.333 0.005 0.005 0.0000
0.333 0.667 0.035 0.035 0.0000
0.667 0.333 0.025 0.025 0.0000
0.667 0.667 0.099 0.099 0.0000

Warning Errors

IMSL_SPLINE_LEFT_ENDPT The left endpoint of X integration is not within
the knot sequence. Integration occurs only
from tRUGHU�� to b.

IMSL_SPLINE_RIGHT_ENDPT The right endpoint of X integration is not
within the knot sequence. Integration occurs
only from tRUGHU�� to a.

IMSL_SPLINE_LEFT_ENDPT_1 The left endpoint of X integration is not within
the knot sequence. Integration occurs only
from b to
tVSOLQHBVSDFHBGLP��.

IMSL_SPLINE_RIGHT_ENDPT_1 The right endpoint of X integration is not
within the knot sequence. Integration occurs
only from a to
tVSOLQHBVSDFHBGLP��.

IMSL_SPLINE_LEFT_ENDPT_2 The left endpoint of Y integration is not within
the knot sequence. Integration occurs only
from tRUGHU�� to d.

IMSL_SPLINE_RIGHT_ENDPT_2 The right endpoint of Y integration is not
within the knot sequence. Integration occurs
only from tRUGHU�� to c.

IMSL_SPLINE_LEFT_ENDPT_3 The left endpoint of Y integration is not within
the knot sequence. Integration occurs only
from d to
tVSOLQHBVSDFHBGLP��.

IMSL_SPLINE_RIGHT_ENDPT_3 The right endpoint of Y integration is not
within the knot sequence. Integration occurs
only from c to
tVSOLQHBVSDFHBGLP��.

Fatal Errors

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

Chapter 3: Interpolation and Approximation user_fcn_least_squares • 187

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

user_fcn_least_squares
Computes a least-squares fit using user-supplied functions.

Synopsis

#include <imsl.h>

float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int
nbasis, int ndata, float xdata[], float ydata[], …, 0)

The type double function is imsl_d_user_fcn_least_squares.

Required Arguments

float fcn (int k, float x) (Input)
User-supplied function that defines the subspace from which the least-squares
fit is to be performed. The k-th basis function evaluated at x is f(k, x) where
k = 1, 2, …, nbasis.

int nbasis (Input)
Number of basis functions.

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares
problem.

float ydata[] (Input)
Array with ndata components containing the ordinates of the least-squares
problem.

Return Value

A pointer to the vector containing the coefficients of the basis functions. If a fit cannot
be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int
nbasis, int ndata, float xdata[], float ydata[],
IMSL_RETURN_USER, float coef[],
IMSL_INTERCEPT, float *intercept,
IMSL_SSE, float *ssq_err,
IMSL_WEIGHTS, float weights[],
0)

188 • user_fcn_least_squares IMSL C/Math/Library

Optional Arguments

IMSL_RETURN_USER, float coef[] (Output)
The coefficients are stored in the user-supplied array.

IMSL_INTERCEPT, float *intercept (Output)
This option adds an intercept to the model. Thus, the least-squares fit is
computed using the user-supplied basis functions augmented by the constant
function. The coefficient of the constant function is stored in intercept.

IMSL_SSE, float *ssq_err (Output)
This option returns the error sum of squares.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one

Description

The function imsl_f_user_fcn_least_squares computes a best least-squares
approximation to given univariate data of the form

x fi i i

n
,b gm r =

−

0

1

by M basis functions

Fj j

Mn s =1

(where M = nbasis). In particular, the default for this function returns the coefficients
a which minimize

w f a F xi
i

n

i j
j

M

j i
=

−

−
=

∑ ∑−
L

N
M
M

O

Q
P
P0

1

1
1

2

b g

where w = weights, n = ndata, x = xdata, and f = ydata.

If the optional argument IMSL_INTCERCEPT is chosen, then an intercept is placed in
the model, and the coefficients a, returned by imsl_f_user_fcn_least_squares,
minimize the error sum of squares as indicated below.

w f a F xi
i

n

i j
j

M

j i
=

−

−
=

∑ ∑− −
L

N
M
M

O

Q
P
P0

1

1
1

2

intercept b g

Examples

Example 1

This example fits the following two functions (indexed by δ):

1 + sinx + 7 sin3x + δε

Chapter 3: Interpolation and Approximation user_fcn_least_squares • 189

where ε is a random uniform deviate over the range [−1, 1] and δ is 0 for the first
function and 1 for the second. These functions are evaluated at 90 equally spaced points
on the interval [0, 6]. Four basis functions are used: 1, sinx, sin2x, sin3x.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

float fcn(int n, float x);

main()
{
 int nbasis = 4, i, delta;
 float ydata[NDATA], xdata[NDATA], *random, *coef;
 /* Generate random numbers */
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for(delta = 0; delta < 2; delta++) {
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
 ydata, 0);
 printf("\nFor delta = %1d", delta);
 imsl_f_write_matrix("the computed coefficients are\n",
 1, nbasis, coef, 0);
 }
}

float fcn(int n, float x)
{
 return (n == 1) ? 1.0 : sin((n-1)*x);
}

Output
For delta = 0
 the computed coefficients are

 1 2 3 4
 1 1 -0 7

For delta = 1
 the computed coefficients are

 1 2 3 4
 0.979 0.998 0.096 6.839

Example 2

Recall that the first example fitted the following two functions (indexed by δ):

1 + sinx + 7 sin3x + δε

190 • user_fcn_least_squares IMSL C/Math/Library

where ε is a random uniform deviate over the range[−1, 1] , and δ is 0 for the first
function and 1 for the second. These functions are evaluated at 90 equally spaced points
on the interval [0, 6]. Previously, the four basis functions were used: 1, sinx, sin2x,
sin3x. This example uses the four basis functions: sinx, sin2x, sin3x, sin4x, combined
with the intercept option.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

float fcn(int n, float x);

main()
{
 int nbasis = 4, i, delta;
 float ydata[NDATA], xdata[NDATA], *random, *coef, intercept;
 /* Generate random numbers */
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for(delta = 0; delta < 2; delta++){
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
 ydata,
 IMSL_INTERCEPT, &intercept,
 0);
 printf("\nFor delta = %1d\n", delta);
 printf("The predicted intercept value is %10.3f\n" ,
 intercept);
 imsl_f_write_matrix("the computed coefficients are\n",
 1, nbasis, coef, 0);
 }
}

float fcn(int n, float x)
{
 return sin(n*x);
}

Output
For delta = 0
The predicted intercept value is 1.000

 the computed coefficients are

 1 2 3 4
 1 0 7 -0

For delta = 1

Chapter 3: Interpolation and Approximation spline_least_squares • 191

The predicted intercept value is 0.978

 the computed coefficients are

 1 2 3 4
 0.998 0.097 6.841 0.07

Warning Errors

IMSL_LINEAR_DEPENDENCE Linear dependence of the basis functions
exists. One or more components of coef are
set to zero.

IMSL_LINEAR_DEPENDENCE_CONST Linear dependence of the constant function
and basis functions exists. One or more
components of coef are set to zero.

Fatal Errors

IMSL_NEGATIVE_WEIGHTS_2 All weights must be greater than or equal to
zero.

spline_least_squares
Computes a least-squares spline approximation.

Synopsis

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[],
float fdata[], int spline_space_dim, …, 0)

The type Imsl_d_spline function is imsl_d_spline_least_squares.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the least-squares
problem.

int spline_space_dim (Input)
The linear dimension of the spline subspace. It should be smaller than ndata
and greater than or equal to order (whose default value is 4).

192 • spline_least_squares IMSL C/Math/Library

Return Value

A pointer to the structure that represents the spline fit. If a fit cannot be computed, then
NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[],
float fdata[], int spline_space_dim,
IMSL_SSE, float *sse_err,
IMSL_WEIGHTS, float weights[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
IMSL_OPTIMIZE,
0)

Optional Arguments

IMSL_SSE, float *sse (Output)
This option places the weighted error sum of squares in the place pointed to by
sse.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one.

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4, (i.e., cubic splines).

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots. The user must provide a
knot sequence of length spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

IMSL_OPTIMIZE

This option optimizes the knot locations, by attempting to minimize the least-
squares error as a function of the knots. The optimal knots are available in the
returned spline structure.

Description

Let’s make the identifications

n = ndata

x = xdata

f = fdata

m = spline_space_dim

k = order

Chapter 3: Interpolation and Approximation spline_least_squares • 193

For convenience, we assume that the sequence x is increasing, although the function
does not require this.

By default, k = 4, and the knot sequence we select equally distributes the knots through
the distinct xL’s. In particular, the m + k knots will be generated in [x�, xQ] with k knots
stacked at each of the extreme values. The interior knots will be equally spaced in the
interval.

Once knots t and weights w are determined (and assuming that the option
IMSL_OPTIMIZE is not chosen), then the function computes the spline least-squares fit
to the data by minimizing over the linear coefficients aM

w f a B xi
i

n

i j
j

m

j i
=

−

=
∑ ∑−

L

N
M
M

O

Q
P
P0

1

1

2

b g

where the BM, j = 1, …, m are a (B-spline) basis for the spline subspace.

The optional argument IMSL_ORDER allows the user to choose the order of the spline
fit. The optional argument IMSL_KNOTS allows user specification of knots. The
function imsl_f_spline_least_squares is based on the routine L2APPR by de
Boor (1978, p. 255).

If the option IMSL_OPTIMIZE is chosen, then the procedure attempts to find the best
placement of knots that will minimize the least-squares error to the given data by a
spline of order k with m coefficients. For this problem to make sense, it is necessary
that m > k. We then attempt to find the minimum of the functional

F a w f a B xi
i

n

i j
j

m

j k i, , ,t tb g b g= −
L

N
M
M

O

Q
P
P=

−

=

−

∑ ∑
0

1

0

1

The technique employed here uses the fact that for a fixed knot sequence t the
minimization in a is a linear least-squares problem that can be easily solved. Thus, we
can think of our objective function F as a function of just t by setting

G F a
a

t tb g b g= min ,

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new
objective function G. In addition to this local method, there is a global heuristic built
into the algorithm that will be useful if the data arise from a smooth function. This
heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184 and 258−261).

The initial guess, tJ, for the knot sequence is either provided by the user or is the
default. This guess must be a valid knot sequence for splines of order k with

t t t t-0 1 1 1g
k
g

i m
g

m k
gx i M≤ ≤ ≤ ≤ ≤ ≤ =+ −K K K, ,

with tJ nondecreasing, and

t ti
g

i k
g i m< = −+ for 0 1, ,K

194 • spline_least_squares IMSL C/Math/Library

In regard to execution speed, this function can be several orders of magnitude slower
than a simple least-squares fit.

The return value for this function is a pointer of type Imsl_f_spline. The calling
program must receive this in a pointer Imsl_f_spline *sp. This structure contains
all the information to determine the spline (stored in B-spline form) that is computed by
this function. For example, the following code sequence evaluates this spline a x and
returns the value in y.
y = imsl_f_spline_value (x, sp, 0);

In the figure below two cubic splines are fit to

x

Both splines are cubics with the same spline_space_dim = 8. The first spline is
computed with the default settings, while the second spline is computed by optimizing
the knot locations using the keyword IMSL_OPTIMIZE.

Figure 3-4 Two Fits to Noisy x

Examples

Example 1

This example fits data generated from a trigonometric polynomial

1 + sinx + 7 sin3x + ε

where ε is a random uniform deviate over the range [−1, 1]. The data are obtained by
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data is
fitted with a cubic spline with 12 degrees of freedom (eight equally spaced interior
knots). The error at 10 equally spaced points is printed out.

Chapter 3: Interpolation and Approximation spline_least_squares • 195

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

main()
{
 int i, spline_space_dim = 12;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_spline *sp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim, 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++) {
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output
 x Error
0.000 -0.356
0.667 -0.004
1.333 0.434
2.000 -0.069
2.667 -0.494
3.333 0.362
4.000 -0.273
4.667 -0.247
5.333 0.303
6.000 0.578

Example 2

This example continues with the first example in which we fit data generated from the
trigonometric polynomial

1 + sinx + 7 sin3x + ε

where ε is random uniform deviate over the range [−1, 1]. The data is obtained by
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data was
fitted with a cubic spline with 12 degrees of freedom (in this case, the default gives us
eight equally spaced interior knots) and the error sum of squares was printed. In this

196 • spline_least_squares IMSL C/Math/Library

example, the knot locations are optimized and the error sum of squares is printed. Then,
the error at 10 equally spaced points is printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

main()
{
 int i, spline_space_dim = 12;
 float fdata[NDATA], xdata[NDATA], *random, sse1, sse2;
 Imsl_f_spline *sp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim,
 IMSL_SSE, &sse1,
 0);
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim,
 IMSL_OPTIMIZE,
 IMSL_SSE, &sse2,
 0);
 printf("The error sum of squares before optimizing is %10.1f\n",
 sse1);
 printf("The error sum of squares after optimizing is %10.1f\n\n",
 sse2);
 printf(" x error\n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f\n", x, Error);
 }
}

Output
The error sum of squares before optimizing is 32.6
The error sum of squares after optimizing is 27.0

 x Error
 0.000 -0.656
 0.667 0.107
 1.333 0.055
 2.000 -0.243
 2.667 -0.063
 3.333 -0.015
 4.000 -0.424

Chapter 3: Interpolation and Approximation spline_2d_least_squares • 197

 4.667 -0.138
 5.333 0.133
 6.000 0.494

Warning Errors

IMSL_OPT_KNOTS_STACKED_1 The knots found to be optimal are stacked
more than order. This indicates fewer knots
will produce the same error sum of squares.
The knots have been separated slightly.

Fatal Errors

IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdataL ≤ tQGDWD,
for i = 1, …, ndata.

IMSL_XDATA_TOO_SMALL The array xdata must satisfy
 xdataL ≥ tRUGHU��, for i = 1, …, ndata.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to
zero.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_OPT_KNOTS_STACKED_2 The knots found to be optimal are stacked
more than order. This indicates fewer knots
will produce the same error sum of squares.

spline_2d_least_squares
Computes a two-dimensional, tensor-product spline approximant using least squares.

Synopsis

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float
xdata[], int num_ydata, float ydata[], float fdata[], int
x_spline_space_dim, int y_spline_space_dim, …, 0)

The type Imsl_d_spline function is imsl_d_spline_2d_least_squares.

Required Arguments

int num_xdata (Input)
Number of data points in the X direction.

float xdata[] (Input)
Array with num_xdata components containing the data points in the X
direction.

198 • spline_2d_least_squares IMSL C/Math/Library

int num_ydata (Input)
Number of data points in the Y direction.

float ydata[] (Input)
Array with num_ydata components containing the data points in the Y
direction.

float fdata[] (Input)
Array of size num_xdata × num_ydata containing the values to be
approximated. fdata[i][j] is the (possibly noisy) value at (xdata[i],
ydata[j]).

int x_spline_space_dim (Input)
The linear dimension of the spline subspace for the x variable. It should be
smaller than num_xdata and greater than or equal to xorder (whose default
value is 4).

int y_spline_space_dim (Input)
The linear dimension of the spline subspace for the y variable. It should be
smaller than num_ydata and greater than or equal to yorder (whose default
value is 4).

Return Value

A pointer to the structure that represents the tensor-product spline interpolant. If an
interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float
xdata[], int num_ydata, float ydata[], float fdata[], int
x_spline_space_dim, int y_spline_space_dim,
IMSL_SSE, float *sse,
IMSL_ORDER, int xorder, int yorder,
IMSL_KNOTS, float xknots[], float yknots[],
IMSL_FDATA_COL_DIM, int fdata_col_dim,
IMSL_WEIGHTS, float xweights[], float yweights[],
0)

Optional Arguments

IMSL_SSE, float *sse (Output)
This option places the weighted error sum of squares in the place pointed to by
sse.

IMSL_ORDER, int xorder, int yorder (Input)
This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4 (i.e., tensor-product cubic splines)

Chapter 3: Interpolation and Approximation spline_2d_least_squares • 199

IMSL_KNOTS, float xknots[], float yknots[] (Input)
This option requires the user to provide the knots.
Default: The default knots are equally spaced in the x and y dimensions.

IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)
The column dimension of fdata.
Default: fdata_col_dim = num_ydata

IMSL_WEIGHTS, float xweights[], float yweights[] (Input)
This option requires the user to provide the weights for the least-squares fit.
Default: all weights are equal to 1.

Description

The imsl_f_spline_2d_least_squares procedure computes a tensor-product
spline least-squares approximation to weighted tensor-product data. The input for this
function consists of data vectors to specify the tensor-product grid for the data, two
vectors with the weights (optional, the default is 1), the values of the surface on the
grid, and the specification for the tensor-product spline (optional, a default is chosen).
The grid is specified by the two vectors x = xdata and y = ydata of length
n = num_xdata and m = num_ydata, respectively. A two-dimensional array f = fdata
contains the data values which are to be fit. The two vectors w[= xweights and
w\ = yweights contain the weights for the weighted least-squares problem. The
information for the approximating tensor-product spline can be provided using the
keywords IMSL_ORDER and IMSL_KNOTS. This information is contained in
k[= xorder, t[= xknots, and N = xspline_space_dim for the spline in the first
variable, and in k\ = yorder, t\ = yknots and M = y_spline_space_dim for the
spline in the second variable.

This function computes coefficients for the tensor-product spline by solving the normal
equations in tensor-product form as discussed in de Boor (1978, Chapter 17). The
interested reader might also want to study the paper by Grosse (1980).

As the computation proceeds, we obtain coefficients c minimizing

w i w j c B x y fx y
j

m

kl
l

M

kl i i ij
k

N

i

n

b g b g b g
=

−

=

−

=

−

=

−

∑ ∑∑∑ −
L
N
M
M

O
Q
P
P0

1

0

1

0

1

0

1 2

,

where the function BNO is the tensor-product of two B-splines of order k[and k\.
Specifically, we have

B x y B x B ykl k k l kx x y y
, , , , ,b g b g b g= t t

The spline

c Bkl

l

M

k

N

kl

=

−

=

−

∑∑
0

1

0

1

and its partial derivatives can be evaluated using imsl_f_spline_2d_value.

200 • spline_2d_least_squares IMSL C/Math/Library

The return value for this function is a pointer to the structure Imsl_f_spline. The
calling program must receive this in a pointer of type Imsl_f_spline. This structure
contains all the information to determine the spline that is computed by this
procedure. For example, the following code sequence evaluates this spline
(stored in the structure sp at (x, y) and returns the value in v.
v = imsl_f_spline_2d_value (x, y, sp, 0)

Examples

Example 1

The data for this example comes from the function e[sin (x + y) on the rectangle [0, 3]
× [0, 5]. This function is sampled on a 50 × 25 grid. Next try to recover it by using
tensor-product cubic splines. The values of the function e[sin (x + y) are printed on a
2 × 2 grid and compared with the values of the tensor-product spline least-squares fit.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NXDATA 50
#define NYDATA 25
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA], x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NXDATA; i++) {
 xdata[i] = 3.*(float) i / ((float)(NXDATA-1));
 }
 for (i = 0; i < NYDATA; i++) {
 ydata[i] = 5.*(float) i / ((float)(NYDATA-1));
 }
 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++) {
 for (j = 0; j < NYDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = NXDATA;
 num_ydata = NYDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata,
 ydata, fdata, 5, 7, 0);
 /* Print results */
 printf(" x y F(x, y) Fitted Values Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float)i / (float)(OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float)j / (float)(OUTDATA);

Chapter 3: Interpolation and Approximation spline_2d_least_squares • 201

 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x, y), z, fabs(F(x,y)-z));
 }

 }
}

Output
 x y F(x, y) Fitted Values Error
0.000 0.000 0.000 -0.020 0.0204
0.000 0.500 0.479 0.500 0.0208
0.500 0.000 0.790 0.816 0.0253
0.500 0.500 1.387 1.384 0.0031

Example 2

The same data is used as in the previous example. Optional argument IMSL_SSE is
used to return the error sum of squares.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NXDATA 50
#define NYDATA 25
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA], x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NXDATA; i++) {
 xdata[i] = 3.*(float) i / ((float) (NXDATA - 1));
 }
 for (i = 0; i < NYDATA; i++) {
 ydata[i] = 5.*(float) i / ((float) (NYDATA - 1));
 }
 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++) {
 for (j = 0; j < NYDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = NXDATA;
 num_ydata = NYDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata,
 ydata, fdata, 5, 7,
 IMSL_SSE, &x,
 0);
 /* Print results */
 printf("The error sum of squares is %10.3f\n\n", x);

202 • spline_2d_least_squares IMSL C/Math/Library

 printf(" x y F(x, y) Fitted Values Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
The error sum of squares is 3.753

 x y F(x, y) Fitted Values Error
0.000 0.000 0.000 -0.020 0.0204
0.000 0.500 0.479 0.500 0.0208
0.500 0.000 0.790 0.816 0.0253
0.500 0.500 1.387 1.384 0.0031

Warning Errors

IMSL_ILL_COND_LSQ_PROB The least-squares matrix is ill-conditioned. The
solution might not be accurate.

IMSL_SPLINE_LOW_ACCURACY There may be less than one digit of accuracy in
the least-squares fit. Try using a higher
precision if possible.

Fatal Errors

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_SPLINE_LRGST_ELEMNT The data arrays xdata and ydata must satisfy
dataL ≤ tVSOLQHBVSDFHBGLP, for i = 1,
…, num_data.

IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy
dataL ≥ tRUGHU��, for i = 1, …, num_data.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to
zero.

IMSL_DATA_DECREASING The xdata values must be nondecreasing.

Chapter 3: Interpolation and Approximation cub_spline_smooth • 203

cub_spline_smooth
Computes a smooth cubic spline approximation to noisy data by using cross-validation
to estimate the smoothing parameter or by directly choosing the smoothing parameter.

Synopsis

#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float
fdata[], …, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_smooth.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the problem.

Return Value

A pointer to the structure that represents the cubic spline. If a smoothed cubic spline
cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float
fdata[],
IMSL_WEIGHTS, float weights[],
IMSL_SMOOTHING_PAR, float sigma,
0)

Optional Arguments

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights are equal to 1.

IMSL_SMOOTHING_PAR, float sigma (Input)
This option sets the smoothing parameter σ = sigma explicitly.

204 • cub_spline_smooth IMSL C/Math/Library

Description

The function imsl_f_cub_spline_smooth is designed to produce a C� cubic spline
approximation to a data set in which the function values are noisy. This spline is called
a smoothing spline.

Consider first the situation when the optional argument IMSL_SMOOTHING_PAR is
selected. Then, a natural cubic spline with knots at all the data abscissas x = xdata is
computed, but it does not interpolate the data (xL, fL). The smoothing spline s is the
unique C� function which minimizes

′′z s x dx
a

b

b g2

subject to the constraint

s x f wi i i

i

n

b gc h− ≤
=

−

∑
0

1 2

σ

where w = weights, σ = sigma is the smoothing parameter, and n = ndata.

Recommended values for σ depend on the weights w. If an estimate for the standard
deviation of the error in the value fL is available, then wL should be set to the inverse of
this value; and the smoothing parameter σ should be chosen in the confidence interval
corresponding to the left side of the above inequality. That is,

n n n n− ≤ ≤ +2 2σ

The function imsl_f_cub_spline_smooth is based on an algorithm of Reinsch
(1967). This algorithm is also discussed in de Boor (1978,
pp. 235−243).

The default for this function chooses the smoothing parameter σ by a statistical
technique called cross-validation. For more information on this topic, refer to Craven
and Wahba (1979).

The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling
program must receive this in a pointer Imsl_f_ppoly *pp. This structure contains all the
information to determine the spline (stored as a piecewise polynomial) that is computed
by this procedure. For example, the following code sequence evaluates this spline at
x and returns the value in y.
y = imsl_f_cub_spline_value (x, pp, 0);

Examples

Example 1

In this example, function values are contaminated by adding a small “random” amount
to the correct values. The function imsl_f_cub_spline_smooth is used to
approximate the original, uncontaminated data.

Chapter 3: Interpolation and Approximation cub_spline_smooth • 205

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_ppoly *pp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
 }
 pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata, 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output
 x Error
0.000 -0.201
0.667 0.070
1.333 -0.008
2.000 -0.058
2.667 -0.025
3.333 0.076
4.000 -0.002
4.667 -0.008
5.333 0.045
6.000 0.276

Example 2

Recall that in the first example, function values are contaminated by adding a small
“random” amount to the correct values. Then, imsl_f_cub_spline_smooth is used
to approximate the original, uncontaminated data. This example explicitly inputs the
value of the smoothing parameter to be 5.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */

206 • cub_spline_smooth IMSL C/Math/Library

#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_ppoly *pp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
 }
 pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata,
 IMSL_SMOOTHING_PAR, 5.0,
 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output
 x Error
0.000 -0.593
0.667 0.230
1.333 -0.116
2.000 -0.106
2.667 0.176
3.333 -0.071
4.000 -0.171
4.667 0.196
5.333 -0.036
6.000 0.971

Warning Errors

IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been
reached. The best approximation is returned.

Fatal Errors

IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to
zero.

Chapter 3: Interpolation and Approximation spline_lsq_constrained • 207

spline_lsq_constrained
Computes a least-squares constrained spline approximation.

Synopsis

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[],
float fdata[], int spline_space_dim, int num_con_pts,
f_constraint_struct constraints[], …, 0)

The type Imsl_d_spline function is imsl_d_spline_lsq_constrained.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the least-squares
problem.

int spline_space_dim (Input)
The linear dimension of the spline subspace. It should be smaller than ndata
and greater than or equal to order (whose default value is 4).

int num_con_pts (Input)
The number of points in the vector constraints.

f_constraint_struct constraints[] (Input)
A structure containing the abscissas at which the fit is to be constrained, the
derivative of the spline that is to be constrained, the type of constraints, and
any lower or upper limits. A description of the structure fields follows:

Field Description

xval point at which fit is constrained

der derivative value of the spline to be constrained

type types of the general constraints

bl lower limit of the general constraints

bu upper limit of the general constraints

Notes: If you want to constrain the integral of the spline over the closed
interval (c, d), then set constraints[i].der = constraints
[i+1].der = −1 and constraints[i].xval = c and
constraints[i+1].xval = d. For consistency, insist that

208 • spline_lsq_constrained IMSL C/Math/Library

constraints[i].type = constraints[i+1].type ≥ 0 and c ≤ d.
Note that every der must be at least −1.

constraints [i].type i-th constraint

1 bl f xi
d

i
i= b g b g

2 f x bud
i i

ib g b g ≤
3 f x bld

i i
ib g b g ≥

4 bl f x bui
d

i i
i≤ ≤b g b g

5 bl f t dti
c

= z b g
6 f t dt bu

c
ib gz ≤

7 f t dt bl
c

ib gz ≥
8 bl f t dt bui

c
i≤ ≤z b g

20 periodic end conditions

99 disregard this constraint

In order to have two point constraints, must have

constraints[i].type = constraints[i+1].type

constraints [i]. type i-th constraint

9 bl f x f xi
d

i
d

i
i i= − +

+
b g b gb g b g1

1

10 f x f x bud
i

d
i i

i ib g b gb g b g− ≤+
+

1
1

11 f x f x bld
i

d
i i

i ib g b gb g b g− ≥+
+

1
1

12 bl f x f x bui
d

i
d

i i
i i≤ − ≤+

+
b g b gb g b g1

1

Return Value

A pointer to the structure that represents the spline fit. If a fit cannot be computed, then
NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[],
float fdata[], int spline_space_dim, int num_con_pts,
f_constraint_struct constraints[],
IMSL_NHARD, int nhard,
IMSL_WEIGHTS, float weights[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
0)

Chapter 3: Interpolation and Approximation spline_lsq_constrained • 209

Optional Arguments

IMSL_NHARD, int nhard (Output)
The argument nhard is the number of entries of constraints involved in the
“hard” constraints. Note that 0 ≤ nhard ≤ num_con_pts. The default,
nhard = 0, always results in a fit, while setting nhard = num_con_pts forces
all constraints to be met. The “hard” constraints must be met, or else the
function signals failure. The “soft” constraints need not be satisfied, but there
will be an attempt to satisfy the “soft” constraints. The constraints must be
listed in terms of priority with the most important constraints first. Thus, all of
the “hard” constraints must precede the “soft” constraints. If infeasibility is
detected among the “soft” constraints, we satisfy, in order, as many of the
“soft” constraints as possible.
Default: nhard = 0

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4(i.e., cubic splines)

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots. The user must provide a
knot sequence of length spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

Description

The function imsl_f_spline_lsq_constrained produces a constrained, weighted
least-squares fit to data from a spline subspace. Constraints involving one point, two
points, or integrals over an interval are allowed. The types of constraints supported by
the functions are of four types:

ES[f] = f y
j

p
pd i d i

or = − +
+f y f y

j
p

j
p

p pd i d id i d i1

1

or = z f t dt
yp

b g
or = periodic end conditions

An interval, IS (which may be a point, a finite interval, or a semi-infinite interval), is
associated with each of these constraints.

The input for this function consists of several items; first, the data set
(xL, fL) for i = 1, …, N (where N = NDATA), that is the data which is to be fit. Second, we
have the weights to be used in the least-squares fit (w = WEIGHT, defaulting to 1). The
vector constraints contains the abscissas of the points involved in specifying the
constraints, as well as information relating the type of constraints and the constraint
interval.

210 • spline_lsq_constrained IMSL C/Math/Library

Let nI denote the number of feasible constraints as described above. Then, the function
solved the problem

f a B x wi j j
j

m

i
i

n

i−
==

∑∑
11

2

b g

subject to

E a B I p np j j
j

m

p f
=

∑
L

N
M
M

O

Q
P
P ∈ =

1

1, ,K

This linearly constrained least-squares problem is treated as a quadratic program and is
solved by invoking the function imsl_f_quadratic_prog.

The choice of weights depends on the data uncertainty in the problem. In some cases,
there is a natural choice for the weights based on the estimates of errors in the data
points.

Determining feasibility of linear constraints is a numerically sensitive task. If you
encounter difficulties, a quick fix would be to widen the constraint intervals IS.

Examples

Example 1

This is a simple application of imsl_f_lsq_constrained. Data is generated from
the function

x x

2 2
+ sin()

and contaminated with random noise and fit with cubic splines. The function is
increasing, so least-squares fit should also be increasing. This is not the case for the
unconstrained least-squares fit generated by imsl_f_spline_least_squares. Then,
the derivative is forced to be greater than 0 at num_con_pts = 15 equally spaced
points and imsl_f_lsq_constrained is called. The resulting curve is monotone.
The error is printed for the two fits averaged over 100 equally spaced points.

#include <imsl.h>
#include <math.h>

#define MXKORD 4
#define MXNCOF 20
#define MXNDAT 51
#define MXNXVL 15

main()
{
 f_constraint_struct constraint[MXNXVL];
 int i, korder, ncoef, ndata, nxval;
 float *noise, errlsq, errnft, grdsiz, rels, x;
 float fdata[MXNDAT], xdata[MXNDAT];
 Imsl_f_spline *sp, *spls;

Chapter 3: Interpolation and Approximation spline_lsq_constrained • 211

#define F1(x) (float)(.5*(x) + sin(.5*(x)))

 korder = 4;
 ndata = 15;
 nxval = 15;
 ncoef = 8;
 /*
 * Compute original xdata and fdata with random noise.
 */
 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform (ndata, 0);
 grdsiz = 10.0;
 for (i = 0; i < ndata; i++) {
 xdata[i] = grdsiz * ((float) (i) / (float) (ndata - 1));
 fdata[i] = F1 (xdata[i]) + (noise[i] - .5);
 }

 /* Compute least-squares fit. */

 spls = imsl_f_spline_least_squares (ndata, xdata, fdata, ncoef, 0);
 /*
 * Construct the constraints.
 */
 for (i = 0; i < nxval; i++) {
 constraint[i].xval = grdsiz * (float)(i) / (float)(nxval - 1);
 constraint[i].itype = 3;
 constraint[i].ider = 1;
 constraint[i].bl = 0.0;
 }
 /* Compute constrained least-squares fit. */
 sp = imsl_f_spline_lsq_constrained (ndata, xdata, fdata, ncoef,
 nxval, constraint, 0);
 /*
 * Compute the average error of 100 points in the interval.
 */
 errlsq = 0.0;
 errnft = 0.0;
 for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
 }
 /* Print results */
 printf (" Average error with spline_least_squares fit: %8.5f\n",
 errlsq / 100.0);
 printf (" Average error with spline_lsq_constrained fit: %8.5f\n",
 errnft / 100.0);
}

Output
Average error with spline_least_squares fit: 0.20250
Average error with spline_lsq_constrained fit: 0.14334

212 • spline_lsq_constrained IMSL C/Math/Library

Example 2

Now, try to recover the function

1

1 4+ x

from noisy data. First, try the unconstrained least-squares fit using
imsl_f_spline_least_squares. Finding that fit somewhat unsatisfactory, several
constraints are applied using imsl_f_spline_lsq_constrained. First, notice that
the unconstrained fit oscillates through the true function at both ends of the interval.
This is common for flat data. To remove this oscillation, the cubic spline is constrained
to have zero second derivative at the first and last four knots. This forces the cubic
spline to reduce to a linear polynomial on the first and last three knot intervals. In
addition, the fit is constrained (called s) as follows:

s(−7) ≥ 0

s x dxb g
−z ≤

7

7
2 3.

s(−7) = s(7)

Notice that the last constraint was generated using the periodic option (requiring only
the zero-th derivative to be periodic). The error is printed for the two fits averaged over
100 equally spaced points.

#include <imsl.h>
#include <math.h>

#define KORDER 4
#define NDATA 51
#define NXVAL 12
#define NCOEF 13

main()
{
 f_constraint_struct constraint[NXVAL];
 int i;
 float *noise, errlsq, errnft, grdsiz, rels, x;
 float fdata[NDATA], xdata[NDATA], xknot[NDATA+KORDER];
 Imsl_f_spline *sp, *spls;

#define F1(x) (float)(1.0/(1.0+x*x*x*x))

 /* Compute original xdata and fdata with random noise */

 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform (NDATA, 0);
 grdsiz = 14.0;
 for (i = 0; i < NDATA; i++) {
 xdata[i] = grdsiz * ((float)(i)/(float)(NDATA - 1))
 - grdsiz/2.0;
 fdata[i] = F1 (xdata[i]) + 0.125*(noise[i] - .5);
 }

Chapter 3: Interpolation and Approximation spline_lsq_constrained • 213

/* Generate knots. */
 for (i = 0; i < NCOEF-KORDER+2; i++) {
 xknot[i+KORDER-1] = grdsiz * ((float)(i)/
 (float)(NCOEF-KORDER+1)) - grdsiz/2.0;
 }
 for (i = 0; i < KORDER - 1; i++) {
 xknot[i] = xknot[KORDER-1];
 xknot[i+NCOEF+1] = xknot[NCOEF];
 }

 /* Compute spline_least_squares fit */

 spls = imsl_f_spline_least_squares (NDATA, xdata, fdata, NCOEF,
 IMSL_KNOTS, xknot, 0);

 /* Construct the constraints for CONFT */

 for (i = 0; i < 4; i++) {
 constraint[i].xval = xknot[KORDER+i-1];
 constraint[i+4].xval = xknot[NCOEF-3+i];
 constraint[i].itype = 1;
 constraint[i+4].itype = 1;
 constraint[i].ider = 2;
 constraint[i+4].ider = 2;
 constraint[i].bl = 0.0;
 constraint[i+4].bl = 0.0;
 }
 constraint[8].xval = -7.0;
 constraint[8].itype = 3;
 constraint[8].ider = 0;
 constraint[8].bl = 0.0;

 constraint[9].xval = -7.0;
 constraint[9].itype = 6;
 constraint[9].bu = 2.3;

 constraint[10].xval = 7.0;
 constraint[10].itype = 6;
 constraint[10].bu = 2.3;

 constraint[11].xval = -7.0;
 constraint[11].itype = 20;
 constraint[11].ider = 0;

 sp = imsl_f_spline_lsq_constrained (NDATA, xdata, fdata, NCOEF,
 NXVAL, constraint, IMSL_KNOTS, xknot, 0);

 /* Compute the average error of 100 points in the interval */

 errlsq = 0.0;
 errnft = 0.0;
 for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0 - grdsiz/2.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
 }
 /* Print results */
 printf (" Average error with BSLSQ fit: %8.5f\n",

214 • smooth_1d_data IMSL C/Math/Library

 errlsq / 100.0);
 printf (" Average error with CONFT fit: %8.5f\n",
 errnft / 100.0);
}

Output
Average error with BSLSQ fit: 0.01783
Average error with CONFT fit: 0.01339

smooth_1d_data
Smooth one-dimensional data by error detection.

Synopsis

#include <imsl.h>

float *imsl_f_smooth_1d_data (int ndata,
 float xdata[], float fdata[], …, 0)

The type double function is imsl_d_smooth_1d_data.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the data points.

float fdata[] (Input)
Array with ndata components containing the ordinates of the data points.

Return Value

A pointer to the vector of length ndata containing the smoothed data.

Synopsis with Optional Arguments

#include <imsl.h>

float * imsl_f_smooth_1d_data (int ndata,
float xdata[], float fdata[],
IMSL_RETURN_USER, float sdata[],
IMSL_ITMAX, int itmax,
IMSL_DISTANCE, float dis,
IMSL_STOPPING_CRITERION, float sc,
 0)

Chapter 3: Interpolation and Approximation smooth_1d_data • 215

Optional Arguments

IMSL_RETURN_USER, float sdata[] (Output)
The smoothed data is stored in the user-supplied array.

IMSL_ITMAX, int itmax (Input)
The maximum number of iterations allowed.
Default: itmax = 500

IMSL_DISTANCE, float dis (Input)
Proportion of the distance the ordinate in error is moved to its
interpolating curve. It must be in the range 0.0 to 1.0.
Default: dis = 1.0

IMSL_STOPPING_CRITERION, float sc (Input)
The stopping criterion. sc should be greater than or equal to zero.
Default: sc = 0.0

Algorithm

The function imsl_f_smooth_1d_data is designed to smooth a data set that is
mildly contaminated with isolated errors. In general, the routine will not work well if
more than 25% of the data points are in error. The routine imsl_f_smooth_1d_data
is based on an algorithm of Guerra and Tapia (1974).

Setting ndata = n, fdata = f, sdata = s and xdata = x, the algorithm proceeds as
follows. Although the user need not input an ordered xdata sequence, we will assume
that x is increasing for simplicity. The algorithm first sorts the xdata values into an
increasing sequence and then continues. A cubic spline interpolant is computed for each
of the 6-point data sets (initially setting s = f)

(xM, sM) j = i − 3, …, i + 3 j ≠ i,

where i = 4, …, n − 3. For each i the interpolant, which we will call SL, is compared
with the current value of sL, and a ‘point energy’ is computed as

peL�= SL(xL) − sL

Setting sc = sc, the algorithm terminates either if itmax iterations have taken place or
if

pe sc x x i ni i i≤ − = −+ −3 3 6 4 3e j / , ,K

If the above inequality is violated for any i, then we update the i-th element of s by
setting sL = sL + d(peL), where d = dis. Note that neither the first three nor the last three
data points are changed. Thus, if these points are inaccurate, care must be taken to
interpret the results.

The choice of the parameters d, sc and itmax are crucial to the successful usage of this
subroutine. If the user has specific information about the extent of the contamination,
then he should choose the parameters as follows: d = 1, sc = 0 and itmax to be the
number of data points in error. On the other hand, if no such specific information is
available, then choose d = .5, itmax ≤ 2n, and

216 • smooth_1d_data IMSL C/Math/Library

sc
s s

x xn

=
−
−

.
max min

5
1b g

In any case, we would encourage the user to experiment with these values.

Example

We take 91 uniform samples from the function 5 + (5 + t� sin t)/t on the interval [1, 10].
Then, we contaminate 10 of the samples and try to recover the original function values.

#include <imsl.h>

#include "stdlib.h"

#include "math.h"

#define NDATA 91

#define F(X) (X*X*sin((double)(X))+5.0)/X + 5.0

main()

{

 int i, maxit;

 int isub[10] = {5, 16, 25, 33, 41, 48, 55, 61, 74, 82};

 float dis, f, fdata[NDATA], sc, *sdata=NULL;

 float c, xdata[NDATA], s_user[NDATA];

 float rnoise[10] = {2.5, -3., -2., 2.5, 3.,

 -2., -2.5, 2., -2., 3.};

 /* Example 1: No specific information available. */

 dis = .5;

 sc = .56;

 maxit = 182;

 /* Set values for xdata and fdata. */

 xdata[0] = 1.;

 fdata[0] = F(xdata[0]);

 for (i=1;i<NDATA;i++) {

 xdata[i] = xdata[i-1]+.1;

 fdata[i] = F(xdata[i]);

 }

 /* Contaminate the data. */

 for (i=0;i<10;i++) fdata[isub[i]] += rnoise[i];

 /* Smooth the data. */

Chapter 3: Interpolation and Approximation smooth_1d_data • 217

 sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,

 IMSL_DISTANCE, dis,

 IMSL_STOPPING_CRITERION, sc,

 IMSL_ITMAX, maxit,

 0);

 /* Output the result. */

 printf("Case A - No specific information available. \n");

 printf(" F(X) F(X)+noise sdata\n");

 for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",

 F(xdata[isub[i]]),

 fdata[isub[i]],

 sdata[isub[i]]);

 /* Example 2: No specific information is available. */

 dis = 1.0;

 sc = 0.0;

 maxit = 10;

 /*

 * A warning message is produced because the maximum

 * number of iterations is reached.

 */

 /* Smooth the data. */

sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,

 IMSL_DISTANCE, dis,

 IMSL_STOPPING_CRITERION, sc,

 IMSL_ITMAX, maxit,

 IMSL_RETURN_USER, s_user,

 0);

 /* Output the result. */

 printf("Case B - Specific information available. \n");

 printf(" F(X) F(X)+noise sdata\n");

 for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",

 F(xdata[isub[i]]),

 fdata[isub[i]],

 s_user[isub[i]]);

}

218 • scattered_2d_interp IMSL C/Math/Library

Output
Case A - No specific information available.

 F(X) F(X)+noise sdata

 9.830 12.330 9.870

 8.263 5.263 8.215

 5.201 3.201 5.168

 2.223 4.723 2.264

 1.259 4.259 1.308

 3.167 1.167 3.138

 7.167 4.667 7.131

 10.880 12.880 10.909

 12.774 10.774 12.708

 7.594 10.594 7.639

*** WARNING Error IMSL_ITMAX_EXCEEDED from imsl_f_smooth_1d_data.

*** Maximum number of iterations limit "itmax" = 10 exceeded.

*** The best answer found is returned.

Case B - Specific information available.

 F(X) F(X)+noise sdata

 9.830 12.330 9.831

 8.263 5.263 8.262

 5.201 3.201 5.199

 2.223 4.723 2.225

 1.259 4.259 1.261

 3.167 1.167 3.170

 7.167 4.667 7.170

 10.880 12.880 10.878

 12.774 10.774 12.770

 7.594 10.594 7.592

scattered_2d_interp
Computes a smooth bivariate interpolant to scattered data that is locally a quintic
polynomial in two variables.

Synopsis

#include <imsl.h>

float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float
fdata[], int nx_out, int ny_out, float x_out[], float y_out[], …,
0)

Chapter 3: Interpolation and Approximation scattered_2d_interp • 219

The type double function is imsl_d_scattered_2d_interp.

Required Arguments

int ndata (Input)
Number of data points.

float xydata[] (Input)
Array with ndata*2 components containing the data points for the
interpolation problem. The i-th data point (xL, yL) is stored consecutively in the
2i and 2i + 1 positions of xydata.

float fdata[] (Input)
Array of size ndata containing the values to be interpolated.

int nx_out (Input)
Number of data points in the x direction for the output grid.

int ny_out (Input)
Number of data points in the y direction for the output grid.

float x_out[] (Input)
Array of length nx_out specifying the x values for the output grid. It must be
strictly increasing.

float y_out[] (Input)
Array of length ny_out specifying the y values for the output grid. It must be
strictly increasing.

Return Value

A pointer to the nx_out × ny_out grid of values of the interpolant. If no answer can
be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float
fdata[], int nx_out, int ny_out, float x_out[], float y_out[],
IMSL_RETURN_USER, float surface[],
IMSL_SUR_COL_DIM, int surface_col_dim,
0)

Optional Arguments

IMSL_RETURN_USER, float surface[] (Output)
This option allows the user to provide his own space for the result. In this
case, the answer will be returned in surface.

IMSL_SUR_COL_DIM, int surface_col_dim (Input)
This option requires the user to provide the column dimension of the two-

220 • scattered_2d_interp IMSL C/Math/Library

dimensional array surface.
Default: surface_col_dim = ny_out

Description

The function imsl_f_scattered_2d_interp computes a C� interpolant to scattered
data in the plane. Given the data points

x y fi i i i

n
, ,b gm r =

−

0

1

in R� where n = ndata, imsl_f_scattered_2d_interp returns the values of the
interpolant s on the user-specified grid. The computation of s is as follows: First the
Delaunay triangulation of the points

x yi i i

n
,b gm r =

−

0

1

is computed. On each triangle T in this triangulation, s has the form

s x y c x y x y Tmn
T m n

m n

, ,b g = ∀ ∈
+ ≤
∑

5

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In
addition, we have

s x y f i ni i i, , ,b g = = −for 0 1K

and s is continuously differentiable across the boundaries of neighboring triangles.
These conditions do not exhaust the freedom implied by the above representation. This
additional freedom is exploited in an attempt to produce an interpolant that is faithful to
the global shape properties implied by the data. For more information on this
procedure, refer to the article by Akima (1978). The output grid is specified by the two
integer variables nx_out and ny_out that represent the number of grid points in the
first (second) variable and by two real vectors that represent the first (second)
coordinates of the grid.

Examples

Example 1

In this example, the interpolant to the linear function (3 + 7x + 2y) is computed from 20
data points equally spaced on the circle of radius 3. Then the values are printed on a
3 × 3 grid.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 20
#define OUTDATA 3
 /* Define function */
#define F(x,y) (float)(3.+7.*x+2.*y)

#define SURF(I,J) surf[(J) +(I)*OUTDATA]

Chapter 3: Interpolation and Approximation scattered_2d_interp • 221

main()
{
 int i, j;
 float fdata[NDATA], xydata[2*NDATA], *surf;
 float x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;

 pi = imsl_f_constant("pi", 0);
 /* Set up output grid */
 for (i = 0; i < OUTDATA; i++) {
 x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
 }
 for (i = 0; i < 2*NDATA; i += 2) {
 xydata[i] = 3.*cos(pi*i/NDATA);
 xydata[i+1] = 3.*sin(pi*i/NDATA);
 fdata[i/2] = F(xydata[i], xydata[i+1]);
 }
 /* Compute scattered data interpolant */
 surf = imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
 OUTDATA, x_out, y_out, 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 for (j = 0; j < OUTDATA; j++) {
 x = x_out[i];
 y = y_out[j];
 z = SURF(i,j);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }

 }
}

Output
 x y F(x, y) Interpolant Error
0.000 0.000 3.000 3.000 0.0000
0.000 0.500 4.000 4.000 0.0000
0.000 1.000 5.000 5.000 0.0000
0.500 0.000 6.500 6.500 0.0000
0.500 0.500 7.500 7.500 0.0000
0.500 1.000 8.500 8.500 0.0000
1.000 0.000 10.000 10.000 0.0000
1.000 0.500 11.000 11.000 0.0000
1.000 1.000 12.000 12.000 0.0000

Example 2

Recall that in the first example, the interpolant to the linear function 3 + 7x + 2y is
computed from 20 data points equally spaced on the circle of radius 3. We then print
the values on a 3 × 3 grid. This example used the optional arguments to indicate that the
answer is stored noncontiguously in a two-dimensional array surf with column
dimension equal to 11.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

222 • scattered_2d_interp IMSL C/Math/Library

#define NDATA 20
#define OUTDATA 3
#define COLDIM 11
 /* Define function */
#define F(x,y) (float)(3.+7.*x+2.*y)

main()
{
 int i, j;
 float fdata[NDATA], xydata[2*NDATA];
 float surf[OUTDATA][COLDIM];
 float x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;

 pi = imsl_f_constant("pi", 0);
 /* Set up output grid */
 for (i = 0; i < OUTDATA; i++) {
 x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
 }
 for (i = 0; i < 2*NDATA; i += 2) {
 xydata[i] = 3.*cos(pi*i/NDATA);
 xydata[i+1] = 3.*sin(pi*i/NDATA);
 fdata[i/2] = F(xydata[i], xydata[i+1]);
 }
 /* Compute scattered data interpolant */
 imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
 OUTDATA, x_out, y_out,
 IMSL_RETURN_USER, surf,
 IMSL_SUR_COL_DIM, COLDIM,
 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 for (j = 0; j < OUTDATA; j++) {
 x = x_out[i];
 y = y_out[j];
 z = surf[i][j];
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
 x y F(x, y) Interpolant Error
0.000 0.000 3.000 3.000 0.0000
0.000 0.500 4.000 4.000 0.0000
0.000 1.000 5.000 5.000 0.0000
0.500 0.000 6.500 6.500 0.0000
0.500 0.500 7.500 7.500 0.0000
0.500 1.000 8.500 8.500 0.0000
1.000 0.000 10.000 10.000 0.0000
1.000 0.500 11.000 11.000 0.0000
1.000 1.000 12.000 12.000 0.0000

Chapter 3: Interpolation and Approximation radial_scattered_fit • 223

Fatal Errors

IMSL_DUPLICATE_XYDATA_VALUES The two-dimensional data values must be
distinct.

IMSL_XOUT_NOT_STRICTLY_INCRSING The vector x_out must be strictly
increasing.

IMSL_YOUT_NOT_STRICTLY_INCRSING The vector y_out must be strictly
increasing.

radial_scattered_fit
Computes an approximation to scattered data in RQ for n ≥ 1 using radial-basis
functions.

Synopsis

#include <imsl.h>

Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension,
int num_points, float abscissae[], float fdata[],
int num_centers, …, 0)

The type Imsl_d_radial_basis_fit function is imsl_d_radial_scattered_fit.

Required Arguments

int dimension (Input)
Number of dimensions.

int num_points (Input)
The number of data points.

float abscissae[] (Input)
Array of size dimension × num_points containing the abscissae of the data
points. The argument abscissae[i][j] is the abscissa value of the (i+1)-th
data point in the (j+1)-th dimension.

float fdata[] (Input)
Array with num_points components containing the ordinates for the
problem.

int num_centers (Input)
The number of centers to be used when computing the radial-basis fit. The
argument num_centers should be less than or equal to num_points.

Return Value

A pointer to the structure that represents the radial-basis fit. If a fit cannot be computed,
then NULL is returned. To release this space, use free.

224 • radial_scattered_fit IMSL C/Math/Library

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension, int
num_points, float abscissae[], float fdata[],
int num_centers,
IMSL_CENTERS, float centers[],
IMSL_CENTERS_RATIO, float ratio,
IMSL_RANDOM_SEED, int seed,
IMSL_SUPPLY_BASIS, float radial_function(),
IMSL_SUPPLY_DELTA, float delta,
IMSL_WEIGHTS, float weights[],
IMSL_QR,
0)

Optional Arguments

IMSL_CENTERS (Input)
User-supplied centers. See the “Description” section of this function for
details.

IMSL_CENTERS_RATIO, float ratio (Input)
The desired ratio of centers placed on an evenly spaced grid to the total
number of centers. The condition that the same number of centers placed on a
grid for each dimension must be equal. Thus, the actual number of centers
placed on a grid is usually less than ratio*num_centers, but will never be
more than ratio*num_centers. The remaining centers are randomly chosen
from the set of abscissae given in abscissae.
Default: ratio = 0.5

IMSL_RANDOM_SEED, int seed
The value of the random seed used when determining the random subset of
abscissae to use as centers. By changing the value of seed on different calls to
imsl_f_radial_scattered_fit, with the same data set, a different set of
random centers will be chosen. Setting seed to zero forces the random
number seed to be based on the system clock, so a possibly different set of
centers will be chosen each time the program is executed.
Default: seed = 234579

IMSL_SUPPLY_BASIS, float radial_function (float distance) (Input)
User-supplied function to compute the values of the radial functions.
Default: Hardy multiquadric

IMSL_SUPPLY_DELTA, float delta (Input)
The delta used in the default basis function

φ δr rb g = +2 2

Default: delta = 1

Chapter 3: Interpolation and Approximation radial_scattered_fit • 225

IMSL_WEIGHTS, float weights[]
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_QR

This option forces the use of a QR decomposition instead of a singular value
decomposition. This may result in space savings for large problems.

Description

The function imsl_f_radial_scattered_fit computed a least-squares fit to
scattered data in RG where d = dimension. More precisely, let n = ndata,
x = abscissae, f = fdata, and d = dimension. Then we have

x x f fn d
n

0 1
0 1

1, , , ,K K−
−⊂ ⊂R R

This function computes a function F which approximates the above data in the sense
that it minimizes the sum-of-squares error

w F x fi

i

n
i

i

=

−

∑ −
0

1 2

e je j

where w = weights. Of course, we must restrict the functional form of F. This is done
as follows:

F x x cj j
j

k

b g : = − +
F
HG

I
KJ=

−

∑α φ δ
2 2

0

1

The function φ is called the radial function. It maps R� into R�, only defined for the
nonnegative reals. For the purpose of this routine, the user-supplied function

φ δr rb g e j= +2 2

Note that the value of delta is defaulted to 1. It can be set by the user by using the
keyword IMSL_DELTA. The parameter δ is used to scale the problem. Generally choose
δ to be near the minimum spacing of the centers.

The default basis function is called the Hardy multiquadric, and it is defined as

φ δr rb g e j= +2 2

A key feature of this routine is the user’s control over the selection of the basis
function.

To obtain the default selection of centers, we first compute the number of centers that
will be on a grid and how many are on a random subset of the abscissae. Next, we
compute those centers on a grid. Finally, a random subset of abscissa are obtained
determining where the centers are placed. Let us examine the selection of centers in
more detail.

226 • radial_scattered_fit IMSL C/Math/Library

First, we restrict the computed grid to have the same number of grid values in each of
the dimension directions. Then, the number of centers placed on a grid,
num_gridded, is computed as follows:

α = (centers_ratio) (num_centers)

β = α��GLPHQVLRQ

num_gridded = βGLPHQVLRQ

Note that there are β grid values in each of the dimension directions. Then we have

num_random = (num_centers) − (num_gridded)

Now we know how many centers will be placed on a grid and how many will be placed
on a random subset of the abscissae. The gridded centers are computed such that they
are equally spaced in each of the dimension directions. The last problem is to
compute a random subset, without replacement, of the abscissa. The selection is based
on a random seed. The default seed is 234579. The user can change this using the
optional argument IMSL_RANDOM_SEED. Once the subset is computed, we use the
abscissae as centers.

Since the selection of good centers for a specific problem is an unsolved problem at this
time, we have given the ultimate flexibility to the user. That is, you can select your own
centers using the keyword IMSL_CENTERS. As a rule of thumb, the centers should be
interspersed with the abscissae.

The return value for this function is a pointer to the structure, which contains all the
information necessary to evaluate the fit. This pointer is then passed to the function
imsl_f_radial_evaluate to produce values of the fitted function.

Examples

Example 1

This example, generates data from a function and contaminates it with noise on a grid
of 10 equally spaced points.The fit is evaluated on a finer grid and compared with the
actual function values.

#include <imsl.h>
#include <math.h>

#define NDATA 10
#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))

main ()
{
 int i;
 int j;
 int dim = 1;
 float fdata[NDATA];
 float *fdata2;
 float xdata[NDATA];
 float xdata2[2*NDATA];

Chapter 3: Interpolation and Approximation radial_scattered_fit • 227

 float pi;
 float *noise;
 Imsl_f_radial_basis_fit *radial_fit;

 pi = imsl_f_constant ("pi", 0);

 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform(NDATA, 0);

/* Set up the sampled data points with noise. */

 for (i = 0; i < NDATA; ++i) {
 xdata[i] = (float)(i)/(float)(NDATA-1);
 fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
 }
/* Compute the radial fit. */

 radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
 fdata, NUM_CENTERS, 0);

/* Compare result to the original function at twice as many values as
 there were original data points. */

 for (i = 0; i < 2*NDATA; ++i)
 xdata2[i] = (float)(i/(float)(2*(NDATA-1)));
/* Evaluate the fit at these new points. */

 fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);

 printf(" I TRUE APPROX ERROR\n");
 for (i = 0; i < 2*NDATA; ++i)
 printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
 }

Output
 I TRUE APPROX ERROR
 1 0.00000 -0.08980 0.08980
 2 0.34202 0.38795 -0.04593
 3 0.64279 0.75470 -0.11191
 4 0.86603 0.99915 -0.13312
 5 0.98481 1.11597 -0.13116
 6 0.98481 1.10692 -0.12211
 7 0.86603 0.98183 -0.11580
 8 0.64279 0.75826 -0.11547
 9 0.34202 0.46078 -0.11876
10 -0.00000 0.11996 -0.11996
11 -0.34202 -0.23007 -0.11195
12 -0.64279 -0.55348 -0.08931
13 -0.86603 -0.81624 -0.04979
14 -0.98481 -0.98752 0.00271
15 -0.98481 -1.04276 0.05795
16 -0.86603 -0.96471 0.09868
17 -0.64279 -0.74472 0.10193
18 -0.34202 -0.38203 0.04001
19 0.00000 0.11600 -0.11600
20 0.34202 0.73553 -0.39351

228 • radial_scattered_fit IMSL C/Math/Library

Example 2

This example generates data from a function and contaminates it with noise.We fit this
data successively on grids of size 10, 20, …, 100. Now interpolate and print the 2-norm
of the difference between the interpolated result and actual function values. Note that
double precision is used for higher accuracy.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 100
#define NUM_CENTERS 100
#define NRANDOM 200
#define NOISE_SIZE 1.0
#define G(x,y) (exp((y)/2.0)*sin(x) - cos((y)/2.0))

double radial_function (double r);

main()
{
 int i;
 int ndata;
 double *fit;
 double ratio;
 double fdata[NDATA+1];
 double xydata[2 * NDATA+1];
 double pi;
 double *noise;
 int num_centers;
 Imsl_d_radial_basis_fit *radial_struct;

 pi = imsl_d_constant ("pi", 0);

 /* Get the random numbers used for the noise. */

 imsl_random_seed_set (234579);
 noise = imsl_d_random_uniform (NRANDOM+1, 0);
 for (i = 0; i < NRANDOM; ++i) noise[i] = 1.0 - 2.0 * noise[i];
 printf(" NDATA || Error ||_2 \n");

 for (ndata = 10; ndata <= 100 ; ndata += 10) {
 num_centers = ndata;

 /* Set up the sampled data points with noise. */
 for (i = 0; i < 2 * ndata; i += 2) {
 xydata[i] = 3. * (noise[i]);
 xydata[i + 1] = 3. * (noise[i + 1]);
 fdata[i / 2] = G(xydata[i], xydata[i + 1])
 + NOISE_SIZE * noise[i];
 }

 /* Compute the radial fit. */
 ratio = 0.5;
 radial_struct= imsl_d_radial_scattered_fit (2, ndata, xydata,
 fdata, num_centers,
 IMSL_CENTERS_RATIO, ratio,
 IMSL_SUPPLY_BASIS, radial_function,

Chapter 3: Interpolation and Approximation radial_evaluate • 229

 0);
 fit = imsl_d_radial_evaluate (ndata, xydata, radial_struct, 0);

 for (i = 0; i < ndata; ++i) fit[i] -= fdata[i];

 printf("%8d %17.8f \n", ndata,
 imsl_d_vector_norm(ndata, fit, 0));
 }

}

double radial_function (double r)
{
 return log(1.0+r);
}

Output
NDATA || Error ||_2
 10 0.00000000
 20 0.00000000
 30 0.00000000
 40 0.00000000
 50 0.00000000
 60 0.00000000
 70 0.00000000
 80 0.00000000
 90 0.00000000
100 0.00000000

radial_evaluate
Evaluates a radial-basis fit.

Synopsis

#include <imsl.h>

float *imsl_f_radial_evaluate (int n, float x[],
Imsl_d_radial_basis_fit *radial_fit, …, 0)

The type double function is imsl_d_evaluate.

Required Arguments

int n (Input)
The number of points at which the fit will be evaluated.

float x[] (Input)
Array of size (radial_fit − > dimension) × n containing the abscissae of
the data points at which the fit will be evaluated. The argument x[i][j] is the
abscissa value of the (i+1)-th data point in the (j+1)-th dimension.

Imsl_f_radial_basis_fit *radial_fit (Input)
A pointer to radial-basis structure to be used for the evaluation. (Input).

230 • radial_evaluate IMSL C/Math/Library

Return Value

A pointer to an array of length n containing the values of the radial-basis fit at the
desired values. If no value can be computed, then NULL is returned. To release this
space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_radial_evaluate (int n, float x[],
Imsl_f_radial_basis_fit *radial_fit
IMSL_RETURN_USER, float value[],
0)

Optional Arguments

IMSL_RETURN_USER, value[] (Input)
A user-allocated array of length n containing the returned values.

Description

The function imsl_f_radial_evaluate evaluates a radial-basis fit from data
generated by imsl_f_radial_scattered_fit.

Example
#include <imsl.h>
#include <math.h>

#define NDATA 10
#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))

main ()
{
 int i;
 int j;
 int dim = 1;
 float fdata[NDATA];
 float *fdata2;
 float xdata[NDATA];
 float xdata2[2*NDATA];
 float pi;
 float *noise;
 Imsl_f_radial_basis_fit *radial_fit;

 pi = imsl_f_constant ("pi", 0);

 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform(NDATA, 0);

/* Set up the sampled data points with noise */

 for (i = 0; i < NDATA; ++i) {

Chapter 3: Interpolation and Approximation radial_evaluate • 231

 xdata[i] = (float)(i)/(float)(NDATA-1);
 fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
 }
/* Compute the radial fit */

 radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
 fdata, NUM_CENTERS, 0);

/* Compare result to the original function at twice as many values as there
 were original data points */

 for (i = 0; i < 2*NDATA; ++i)
 xdata2[i] = (float)(i/(float)(2*(NDATA-1)));

/* Evaluate the fit at these new points */

 fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);

 printf(" I TRUE APPROX ERROR\n");
 for (i = 0; i < 2*NDATA; ++i)
 printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
 }

Output
 I TRUE APPROX ERROR
 1 0.00000 -0.08980 0.08980
 2 0.34202 0.38795 -0.04593
 3 0.64279 0.75470 -0.11191
 4 0.86603 0.99915 -0.13312
 5 0.98481 1.11597 -0.13116
 6 0.98481 1.10692 -0.12211
 7 0.86603 0.98183 -0.11580
 8 0.64279 0.75826 -0.11547
 9 0.34202 0.46078 -0.11876
10 -0.00000 0.11996 -0.11996
11 -0.34202 -0.23007 -0.11195
12 -0.64279 -0.55348 -0.08931
13 -0.86603 -0.81624 -0.04979
14 -0.98481 -0.98752 0.00271
15 -0.98481 -1.04276 0.05795
16 -0.86603 -0.96471 0.09868
17 -0.64279 -0.74472 0.10193
18 -0.34202 -0.38203 0.04001
19 0.00000 0.11600 -0.11600
20 0.34202 0.73553 -0.39351

Chapter 4: Quadrature Routines • 231

Chapter 4: Quadrature

Routines
4.1 Univariate Quadrature

Adaptive general-purpose endpoint singularity..................... int_fcn_sing 233
Adaptive general purpose.. int_fcn 237
Adaptive general-purpose points of singularity...............int_fcn_sing_pts 241
Adaptive weighted algebraic singularities........................ int_fcn_alg_log 245
Adaptive infinite interval... int_fcn_inf 248
Adaptive weighted oscillatory (trigonometric) int_fcn_trig 252
Adaptive weighted Fourier (trigonometric)int_fcn_fourier 256
Cauchy principal value..int_fcn_cauchy 260
Nonadaptive general purpose.. int_fcn_smooth 263

4.2 Multivariate Quadrature
Two-dimensional iterated integral.. int_fcn_2d 266
Iterated integral on a hyper-rectangle......................... int_fcn_hyper_rect 270

4.3 Gauss Quadrature
Gauss quadrature formulas .. gauss_quad_rule 273

4.4 Differentiation
First, second, or third derivative of a function.................... fcn_derivative 277

Usage Notes

Univariate Quadrature

The first nine functions in this chapter are designed to compute approximations to
integrals of the form

f x w x dx
c

b
b g b gz

The weight function w is used to incorporate known singularities (either algebraic or
logarithmic) or to incorporate oscillations. For general-purpose integration, we
recommend the use of imsl_f_int_fcn_sing (even if no endpoint singularities are

232 • Usage Notes IMSL C/Math/Library

present). If more efficiency is desired, then the use of one of the more specialized
functions should be considered. These functions are organized as follows:

• w = 1

imsl_f_int_fcn_sing

imsl_f_int_fcn

imsl_f_int_fcn_sing_pts

imsl_f_int_fcn_inf

imsl_f_int_fcn_smooth

• w(x) = sinωx or w(x) = cosωx

imsl_f_int_fcn_trig (for a finite interval)

imsl_f_int_fcn_fourier (for an infinite interval)

• w(x) = (x − a)D(b − x)Eln(x − a)ln(b − x) where the ln factors are optional

imsl_f_int_fcn_alg_log

• w(x) = 1/(x − c)

imsl_f_int_fcn_cauchy

The calling sequences for these functions are very similar. The function to be integrated
is always fcn, and the lower and upper limits are a and b, respectively. The requested
absolute error ε is err_abs, while the requested relative error ρ is err_rel. These
quadrature functions return the estimated answer R. An optional value err_est = E
estimates the error. These numbers are related as follows:

f x w x dx R E f x w x dx
a

b

a

b

b g b g b g b g− ≤ ≤z zmax{ , }ε ρ

Several of the univariate quadrature functions have arguments of type Imsl_quad,
which is defined in imsl.h.

One situation that occasionally arises in univariate quadrature concerns the approximation
of integrals when only tabular data are given. The functions described above do not directly
address this question. However, the standard method for handling this problem is first to
interpolate the data, and then to integrate the interpolant. This can be accomplished by using
the IMSL spline interpolation functions with one of the spline integration functions, which
can be found in Chapter 3, “Interpolation and Approximation”.

Multivariate Quadrature

Two functions have been included in this chapter that are of use in approximating
certain multivariate integrals. In particular, the function imsl_f_int_fcn_2d returns
an approximation to an iterated two-dimensional integral of the form

f x y dydx
g x

h x

a

b
,b g

b g

b gzz

Chapter 4: Quadrature int_fcn_sing • 233

The second function, imsl_f_int_fcn_hpyer_rect, returns an approximation to
the integral of a function of n variables over a hyper-rectangle

K K Kf x x dx dxn
a

b

a

b

n
n

n

1 1
1

1

, ,b gzz
When working with two-dimensional tensor-product tabular data, use the IMSL
spline interpolation function imsl_f_spline_2d_interp, followed by the IMSL
spline integration function imsl_f_spline_2d_integral described in
Chapter 3, “Interpolation and Approximation”.

Gauss Quadrature

Before computing Gauss quadratures, you must compute so-called Gauss quadrature
rules that integrate polynomials of as high degree as possible. These quadrature rules
can be easily computed using the function imsl_f_gauss_quad_rule, which
produces the points {wL} for i = 1, …, N that satisfy

f x w x dx f x w
a

b

i

i

N

ib g b g b gz ∑=
=1

for all functions f that are polynomials of degree less than 2N. The weight functions w
may be selected from the following table.

w(x) Interval Name

1 (−1, 1) Legendre

1 1 2/ ()− x (−1, 1) Chebyshev 1st kind

1 2− x (−1, 1) Chebyshev 2nd kind

e x− 2 (−∞, ∞) Hermite

(1 + x)D (1 − x)E (−1, 1) Jacobi

e xx a− (0, ∞) Generalized Laguerre

1/cosh (x) (−∞, ∞) Hyperbolic cosine

Where permissible, imsl_f_gauss_quad_rule also computes Gauss-Radau and
Gauss-Lobatto quadrature rules.

int_fcn_sing
Integrates a function, which may have endpoint singularities, using a globally adaptive
scheme based on Gauss-Kronrod rules.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_sing (float fcn(), float a, float b, …, 0)

234 • int_fcn_sing IMSL C/Math/Library

The type double function is imsl_d_int_fcn_sing.

Required Arguments

float fcn (float x) (input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Return Value

An estimate of

fcn x dx
a

b
b gz

If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_sing (float fcn(), float a, float b,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

Chapter 4: Quadrature int_fcn_sing • 235

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

This function is designed to handle functions with endpoint singularities. However, the
performance on functions that are well-behaved at the endpoints is also quite good.

The function imsl_f_int_fcn_sing is a general-purpose integrator that uses a
globally adaptive scheme in order to reduce the absolute error. It subdivides the interval
[a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each
subinterval. The error for each subinterval is estimated by comparison with the 10-point
Gauss quadrature rule. The subinterval with the largest estimated error is then bisected,
and the same procedure is applied to both halves. The bisection process is continued
until either the error criterion is satisfied, roundoff error is detected, the subintervals
become too small, or the maximum number of subintervals allowed is reached. This
function uses an extrapolation procedure known as the ε-algorithm.

The function imsl_f_int_fcn_sing is based on the subroutine QAGS by Piessens et
al. (1983).

Examples

Example 1

The value of

ln /

0

1
1 2 4z − = −x x dxb g

is estimated.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0);
 /* Print the result and */
 /*the exact answer */
 exact = -4.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return log(x)/sqrt(x);
}

236 • int_fcn_sing IMSL C/Math/Library

Output

integral = -4.000
exact = -4.000

Example 2

The value of

ln /x x dxb g
0

1
1 2 4z − = −

is again estimated. The values of the actual and estimated errors are printed as well.
Note that these numbers are machine dependent. Furthermore, usually the error
estimate is pessimistic. That is, the actual error is usually smaller than the error estimate
as is in this example.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0,
 IMSL_ERR_EST, &err_est,
 0);
 /* Print the result and */
 /* the exact answer */
 exact = -4.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
}

float fcn(float x)
{
 return log(x)/sqrt(x);
}

Output

integral = -4.000
exact = -4.000
error estimate = 3.175735e-04
exact error = 6.556511e-05

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

Chapter 4: Quadrature int_fcn • 237

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Fatal Errors

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

int_fcn
Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn (float fcn(), float a, float b, …, 0)

The type double function is imsl_d_int_fcn.

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Return Value

The value of

fcn x dx
a

b
b gz

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn (float fcn(float x), float a, float b,
IMSL_RULE, int rule,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,

238 • int_fcn IMSL C/Math/Library

IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_RULE, int rule (Input)
Choice of quadrature rule.

rule Gauss-Kronrod Rule

1 7-15 points

2 10-21 points

3 15-31 points

4 20-41 points

5 25-51 points

6 30-61 points

Default: rule = 1

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_ rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn is a general-purpose integrator that uses a globally
adaptive scheme to reduce the absolute error. It subdivides the interval [a, b] and uses a
(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The
error for each subinterval is estimated by comparison with the k-point Gauss quadrature
rule. The subinterval with the largest estimated error is then bisected, and the same

Chapter 4: Quadrature int_fcn • 239

procedure is applied to both halves. The bisection process is continued until either the
error criterion is satisfied, roundoff error is detected, the subintervals become too small,
or the maximum number of subintervals allowed is reached. The function
imsl_f_int_fcn is based on the subroutine QAG by Piessens et al. (1983).

Should imsl_f_int_fcn fail to produce acceptable results, consider one of the more
specialized functions documented in this chapter.

Examples

Example 1

The value of

xe dx ex

0

2
2 1z = +

is computed. Since the integrand is not oscillatory, all of the default values are used.
The values of the actual and estimated error are machine dependent.

#include <math.h>
#include <imsl.h>

float fcn(float x);
float q;
float exact;

 main()
{
 /* evaluate the integral */
 q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);
 /* print the result and the exact answer */
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 float y;
 y = x * (exp(x));
 return y;
}

Output

integral = 8.389
exact = 8.389

Example 2

The value of

sin /1
0

1
x dxb gz

240 • int_fcn IMSL C/Math/Library

is computed. Since the integrand is oscillatory, rule = 6 is used. The exact value is
0.50406706. The values of the actual and estimated error are machine dependent.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
float q, err_est, err_abs= 0.0001, exact = 0.50406706, error;

 /* intergrate fcn(x) from 0 to 1 */
 q = imsl_f_int_fcn (fcn, 0.0, 1.0,
 IMSL_ERR_ABS, err_abs,/* set abs error value*/
 IMSL_RULE, 6,
 IMSL_ERR_EST, &err_est, /* pass in address */
 0);
 error = q - exact;
 /* print the result and the exact answer */
 printf(" integral = %10.3f\n exact = %10.3f\n error = %10.3f\n ",
 q, exact , error);
 printf(" err_est = %g\n", err_est);
}

float fcn(float x)
{
 /* compute sin(1/x), avoiding division by zero */
 return ((x)>1.0e-5) ? sin(1.0/(x)) : 0.0;
}

Output

integral = 0.504
 exact = 0.504
 error = 0.000
 err_est = 0.000170593

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

Chapter 4: Quadrature int_fcn_sing_pts • 241

int_fcn_sing_pts
Integrates a function with singularity points given.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints,
float points[], …, 0)

The type double function is imsl_d_int_fcn_sing_pts.

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

int npoints (Input)
The number of singularities of the integrand.

float points[] (Input)
The abscissas of the singularities. These values should be interior to the
interval [a, b].

Return Value

The value of

fcn x dx
a

b
b gz

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints,
float points[],
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)

242 • int_fcn_sing_pts IMSL C/Math/Library

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn_sing_pts is a special-purpose integrator that uses a
globally adaptive scheme in order to reduce the absolute error. It subdivides the interval
[a, b] into npoints + 1 user-supplied subintervals and uses a 21-point Gauss-Kronrod
rule to estimate the integral over each subinterval. The error for each subinterval is
estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with
the largest estimated error is then bisected, and the same procedure is applied to both
halves. The bisection process is continued until either the error criterion is satisfied,
roundoff error is detected, the subintervals become too small, or the maximum number
of subintervals allowed is reached. This function uses an extrapolation procedure
known as the ε-algorithm.

The function imsl_f_int_fcn_sing_pts is based on the subroutine QAGP by
Piessens et al. (1983).

Examples

Example 1

The value of

x x x dx3

0

3
2 21 2 61 2

77

4
7 27z − − = + −ln ln lne je j

Chapter 4: Quadrature int_fcn_sing_pts • 243

is computed. The values of the actual and estimated error are machine dependent. Note
that this function never evaluates the user-supplied function at the user-supplied
breakpoints.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int npoints = 2;
 float q, exact, points[2];
 /* Set singular points */
 points[0] = 1.0;
 points[1] = sqrt(2.);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points, 0);
 /* print the result and */
 /* the exact answer */
 exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}

Output

integral = 52.741
exact = 52.741

Example 2

The value of

x x x dx3

0

3
2 21 2 61 2

77

4
7 27z − − = + −ln ln lne je j

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as in this example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int n_evals, npoints = 2;
 float q, exact, err_est, exact_err, points[2];
 /* Set singular points */
 points[0] = 1.0;

244 • int_fcn_sing_pts IMSL C/Math/Library

 points[1] = sqrt(2.);
 /* Evaluate the integral and get the */
 /* error estimate and the number of */
 /* evaluations */
 q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}

Output

integral = 52.741
exact = 52.741
error estimate = 1.258850e-04
exact error = 3.051758e-05
The number of function evaluations = 819

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Fatal Errors

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

Chapter 4: Quadrature int_fcn_alg_log • 245

int_fcn_alg_log
Integrates a function with algebraic-logarithmic singularities.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_alg_log (float fcn(), float a, float b, Imsl_quad
weight, float alpha, float beta, …, 0)

The type double function is imsl_d_int_fcn_alg_log.

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Imsl_quad weight, float alpha, float beta (Input)
These three parameters are used to describe the weight function that may have
algebraic or logarithmic singularities at the endpoints. The parameter weight
can take on four values as described below. The parameters alpha = α and
beta = β specify the strength of the singularities at a or b and hence, must be
greater than −1.

weight Integration Weight

IMSL_ALG (x − a)D (b − x)E
IMSL_ALG_LEFT_LOG (x − a)D (b − x)Elog (x − a)

IMSL_ALG_RIGHT_LOG (x − a)D (b − x)Elog (b − x)

IMSL_ALG_LOG (x − a)D (b − x)Elog (x − a) log (b − x)

Return Value

The value of

fcn x w x dx
a

b
b g b gz

is returned where w(x) is one of the four weights above. If no value can be computed,
then NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

246 • int_fcn_alg_log IMSL C/Math/Library

float imsl_f_int_fcn_alg_log (float fcn(float x), float a, float b,
Imsl_quad weight, float alpha, float beta,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn_alg_log is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It computes integrals whose
integrands have the special form w(x)f(x) where w(x) is a weight function described
above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas is
employed. This function is based on the subroutine QAWS, which is fully documented by
Piessens et al. (1983).

Examples

Example 1

The value of

Chapter 4: Quadrature int_fcn_alg_log • 247

1 1
3 2 4

90

1 1 2

+ − =
−z x x x x dxb g b g b g b g/

ln
ln

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
 IMSL_ALG_LEFT_LOG, 1.0, 0.5,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = (3.*log(2.)-4.)/9.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return sqrt(1+x);
}

Output

integral = -0.213
exact = -0.213

Example 2

The value of

1 1
3 2 4

90

1 1 2

+ − =
−z x x x x dxb g b g b g b g/

ln
ln

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as in this example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int n_evals;
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
 IMSL_ALG_LEFT_LOG, 1.0, 0.5,

248 • int_fcn_inf IMSL C/Math/Library

 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = (3.*log(2.)-4.)/9.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return sqrt(1+x);
}

Output

integral = -0.213
exact = -0.213
error estimate = 3.725290e-09
exact error = 1.490116e-08
The number of function evaluations = 50

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

int_fcn_inf
Integrates a function over an infinite or semi-infinite interval.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_inf (float fcn(), float bound, Imsl_quad interval,
…, 0)

The type double procedure is imsl_d_int_fcn_inf.

Chapter 4: Quadrature int_fcn_inf • 249

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float bound (Input)
Finite limit of integration. This argument is ignored if interval has the value
IMSL_INF_INF.

Imsl_quad interval (Input)
Flag indicating integration limits. The following settings are allowed:

interval Integration Limits

IMSL_INF_BOUND (−∞, bound)

IMSL_BOUND_INF (bound, ∞)

IMSL_INF_INF (−∞, ∞)

Return Value

The value of

fcn x dx
a

b
b gz

is returned where a and b are appropriate integration limits. If no value can be
computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_inf (float fcn, float bound, Imsl_quad interval,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = ε

where ε is the machine precision

250 • int_fcn_inf IMSL C/Math/Library

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn_inf is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It initially transforms an infinite
or semi-infinite interval into the finite interval [0, 1]. It then uses the same strategy as
the function imsl_f_int_fcn_sing.

The function imsl_f_int_fcn_inf is based on the subroutine QAGI by Piessens et
al. (1983).

Examples

Example 1

The value of

ln lnx

x
dx

b g
b g

b g
1 10

10

2020 +
=

−∞z π

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, pi;

 pi = imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_inf (fcn, 0.0,
 IMSL_BOUND_INF,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -pi*log(10.)/20.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{

Chapter 4: Quadrature int_fcn_inf • 251

 float z;
 z = 10.*x;
 return log(x)/(1+ z*z);
}

Output

integral = -0.362
exact = -0.362

Example 2

The value of

ln lnx

x
dx

1 10

10

2020 +
=

−∞z b g
b gπ

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as in this example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

 main()
{
 int n_evals;
 float q, exact, err_est, exact_err, pi;

 pi = imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_inf (fcn, 0.0,
 IMSL_BOUND_INF,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -pi*log(10.)/20.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 float z;
 z = 10.*x;
 return log(x)/(1+ z*z);
}

252 • int_fcn_trig IMSL C/Math/Library

Output

integral = -0.362
exact = -0.362
error estimate = 2.801418e-06
exact error = 2.980232e-08
The number of function evaluations = 285

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Fatal Errors

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

int_fcn_trig
Integrates a function containing a sine or a cosine factor.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight,
float omega, …, 0)

The type double function is imsl_d_int_fcn_trig.

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Chapter 4: Quadrature int_fcn_trig • 253

Imsl_quad weight and float omega (Input)
These two parameters are used to describe the trigonometric weight. The
parameter weight can take on the two values described below, and the
parameter omega = ω specifies the frequency of the trigonometric weighting
function.

weight Integration Weight

IMSL_COS cos (ωx)

IMSL_SIN sin (ωx)

Return Value

The value of

fcn x x dx
a

b
b g b gz cos ω

is returned if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is
replaced with a sine factor. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight,
float omega,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_MAX_MOMENTS, int max_moments,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

254 • int_fcn_trig IMSL C/Math/Library

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_MAX_MOMENTS, int max_moments (Input)
This is an upper bound on the number of Chebyshev moments that can be
stored. Increasing (decreasing) this number may increase (decrease) execution
speed and space used.

Default: max_moments = 21

Description

The function imsl_f_int_fcn_trig is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It computes integrals whose
integrands have the special form w(x)f(x) where w(x) is either cos(ωx) or sin(ωx).
Depending on the length of the subinterval in relation to the size of ω, either a modified
Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to approximate
the integral on a subinterval. This function uses the general strategy of the function
imsl_f_int_fcn_sing. The function imsl_f_int_fcn_trig is based on the
subroutine QAWO by Piessens et al. (1983).

Examples

Example 1

The value of

ln sinx x dxb g b g
0

1
10z π

is computed. Notice that we have coded around the singularity at zero. This is
necessary since this procedure evaluates the integrand at the two endpoints.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, omega;

 omega = 10*imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
 IMSL_SIN, omega,
 0);
 /* Print the result and the */

Chapter 4: Quadrature int_fcn_trig • 255

 /* exact answer */
 exact = -.1281316;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return (x==0.0) ? 0.0 : log(x);
}

Output

integral = -0.128
exact = -0.128

Example 2

The value of

ln sinx x dxb g b g
0

1
10z π

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, it is usually the case that
the error estimate is pessimistic. That is, the actual error is usually smaller than the
error estimate as is the case in this example. The number of function evaluations are
also printed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

 main()
{
 int n_evals;
 float q, exact, omega, err_est, exact_err;

 omega = 10*imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
 IMSL_SIN, omega,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -.1281316;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{

256 • int_fcn_fourier IMSL C/Math/Library

 return (x==0.0) ? 0.0 : log(x);
}

Output

integral = -0.128
exact = -0.128
error estimate = 7.504603e-05
exact error = 5.245209e-06
The number of function evaluations = 215

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Fatal Errors

IMSL_DIVERGENT Integral is probably divergent or slowly
convergent.

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

int_fcn_fourier
Computes a Fourier sine or cosine transform.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight,
float omega, …, 0)

The type double function is imsl_d_int_fcn_fourier.

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration. The upper limit of integration is ∞.

Imsl_quad weight and float omega (Input)
These two parameters are used to describe the trigonometric weight. The

Chapter 4: Quadrature int_fcn_fourier • 257

parameter weight can take on the two values described below, and the
parameter omega = ∞ specifies the frequency of the trigonometric weighting
function.

weight Integration Weight

IMSL_COS cos (ωx)

IMSL_SIN sin (ωx)

Return Value

The return value is

fcn x x dx
a

b g b g
∞z cos ω

if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced
with a sine factor. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight,
float omega,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_MAX_CYCLES, int max_cycles,
IMSL_MAX_MOMENTS, int max_moments,
IMSL_N_CYCLES, int *n_cycles,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_MAX_CYCLES, int max_cycles (Input)
Number of cycles allowed.
Default: max_subinter = 50

258 • int_fcn_fourier IMSL C/Math/Library

IMSL_MAX_MOMENTS, int max_moments (Input)
Number of subintervals allowed in the partition of each cycle.
Default: max_moments = 21

IMSL_N_CYCLES, int *n_cycles (Output)
Address to store the number of cycles generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn_fourier is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It computes integrals whose
integrands have the special form w(x)f(x) where w(x) is either cosωx or sinωx. The
integration interval is always semi-infinite of the form
[a, ∞]. These Fourier integrals are approximated by repeated calls to the function
imsl_f_int_fcn_trig followed by extrapolation.

The function imsl_f_int_fcn_fourier is based on the subroutine QAWF by
Piessens et al. (1983).

Examples

Example 1

The value of

x x dx−∞z =1 2

0
2 1/ cos /πb g

is computed. Notice that the integrand is coded to protect for the singularity at zero.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, omega;

 omega = imsl_f_constant("pi",0) / 2.;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_fourier (fcn, 0.0,
 IMSL_COS, omega,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return (x==0.) ? 0. : 1./sqrt(x);
}

Chapter 4: Quadrature int_fcn_fourier • 259

Output

integral = 1.000
exact = 1.000

Example 2

The value of

x x dx−∞z =1 2

0
2 1/ cos /πb g

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as is the case in this example.The number of function evaluations also are printed.
Notice that the integrand is coded to protect for the singularity at zero.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int n_evals;
 float q, exact, omega, err_est, exact_err;

 omega = imsl_f_constant("pi",0) / 2.0;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_fourier (fcn, 0.0,
 IMSL_COS, omega,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 1.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return (x==0.) ? 0. : 1./sqrt(x);
}

Output

integral = 1.000
exact = 1.000
error estimate = 1.803637e-04
exact error = 1.013279e-06
The number of function evaluations = 405

260 • int_fcn_cauchy IMSL C/Math/Library

Warning Errors

IMSL_BAD_INTEGRAND_BEHAVIOR Bad integrand behavior occurred in one or
more cycles.

IMSL_EXTRAPOLATION_PROBLEMS Extrapolation table constructed for
convergence acceleration of the series
formed by the integral contributions of the
cycles does not converge to the requested
accuracy.

Fatal Errors

IMSL_MAX_CYCLES Maximum number of cycles allowed has
been reached.

int_fcn_cauchy
Computes integrals of the form

f x

x c
dx

a

b b g
−z

in the Cauchy principal value sense.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c, …, 0)

The type double function is imsl_d_int_fcn_cauchy.

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

float c (Input)
Singular point, c must not equal a or b.

Return Value

The value of

fcn x

x c
dx

a

b b g
−z

is returned. If no value can be computed, NaN is returned.

Chapter 4: Quadrature int_fcn_cauchy • 261

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_ rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn_cauchy uses a globally adaptive scheme in an
attempt to reduce the absolute error. It computes integrals whose integrands have the
special form w(x)f(x) where w(x) = 1/(x − c). If c lies in the interval of integration, then
the integral is interpreted as a Cauchy principal value. A combination of modified
Clenshaw-Curtis and Gauss-Kronrod formulas are employed.

The function imsl_f_int_fcn_cauchy is an implementation of the subroutine
QAWC by Piessens et al. (1983).

262 • int_fcn_cauchy IMSL C/Math/Library

Examples

Example 1

The Cauchy principal value of

1

5 6

125 631

1831

5

x x
dx

+
=

−z e j
b gln /

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0, 0);
 /* Print the result and the */
 /* exact answer */
 exact = log(125./631.)/18.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return 1.0/(5.0*x*x*x+6.0);
}

Output

integral = -0.090
exact = -0.090

Example 2

The Cauchy principal value of

1

5 6

125 631

1831

5

x x
dx

+
=

−z e j
b gln /

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as is the case in this example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()

Chapter 4: Quadrature int_fcn_smooth • 263

{
 int n_evals;
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = log(125./631.)/18.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return 1.0/(5.0*x*x*x+6.0);
}

Output

integral = -0.090
exact = -0.090
error estimate = 2.160174e-06
exact error = 0.000000e+00
The number of function evaluations = 215

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

int_fcn_smooth
Integrates a smooth function using a nonadaptive rule.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_smooth (float fcn(), float a, float b, …, 0)

The type double function is imsl_d_int_fcn_smooth.

264 • int_fcn_smooth IMSL C/Math/Library

Required Arguments

float fcn (float x) (Input)
User-supplied function to be integrated.

float a (Input)
Lower limit of integration.

float b (Input)
Upper limit of integration.

Return Value

The value of

fcn x dx
a

b
b gz

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_smooth (float fcn(), float a, float b,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_ rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

Description

The function imsl_f_int_fcn_smooth is designed to integrate smooth functions. It
implements a nonadaptive quadrature procedure based on nested Paterson rules of
order 10, 21, 43, and 87. These rules are positive quadrature rules with degree of
accuracy 19, 31, 64, and 130, respectively. The function imsl_f_int_fcn_smooth
applies these rules successively, estimating the error, until either the error estimate
satisfies the user-supplied constraints or the last rule is applied.

Chapter 4: Quadrature int_fcn_smooth • 265

This function is not very robust, but for certain smooth functions it can be efficient. If
imsl_f_int_fcn_smooth should not perform well, we recommend the use of the
function imsl_f_int_fcn_sing.

The function imsl_f_int_fcn_smooth is based on the subroutine QNG by Piessens
et al. (1983).

Examples

Example 1

The value of

xe dx ex = +z 2

0

2
1

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0., 2., 0);
 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return x * exp(x);
}

Output

integral = 8.389
exact = 8.389

Example 2

The value of

xe dx ex

0

2
2 1z = +

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as is the case in this example.

266 • int_fcn_2d IMSL C/Math/Library

#include <math.h>
#include <imsl.h>

float fcn(float x);

 main()
{
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0.0, 2.0,
 IMSL_ERR_EST, &err_est,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
}

float fcn(float x)
{
 return x * exp(x);
}

Output

integral = 8.389
exact = 8.389
error estimate = 5.000267e-05
exact error = 9.536743e-07

Fatal Errors

IMSL_MAX_STEPS The maximum number of steps allowed have been
taken. The integrand is too difficult for this routine.

int_fcn_2d
Computes a two-dimensional iterated integral.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (float x),
float hcn (float x), …, 0)

The type double function is imsl_d_int_fcn_2d.

Required Arguments

float fcn (float x, float y) (Input)
User-supplied function to be integrated.

Chapter 4: Quadrature int_fcn_2d • 267

float a (Input)
Lower limit of outer integral.

float b (Input)
Upper limit of outer integral.

float gcn (float x) (Input)
User-supplied function to evaluate the lower limit of the inner integral.

float hcn (float x) (Input)
User-supplied function to evaluate the upper limit of the inner integral.

Return Value

The value of

fcn x y dydx
gcn x

hcn x

a

b
,b g

b g

b gzz
is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (float x),
float hcn (float x),
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_ rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500

268 • int_fcn_2d IMSL C/Math/Library

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Description

The function imsl_f_int_fcn_2d approximates the two-dimensional iterated integral

f x y dydx
g x

h x

a

b
,b g

b g

b gzz
An estimate of the error is returned in err_est. The lower-numbered rules are used for
less smooth integrands while the higher-order rules are more efficient for smooth
(oscillatory) integrands.

Examples

Example 1

In this example, compute the value of the integral

y x y dydxcos +zz 2

1

3

0

1

e j
#include <math.h>
#include <imsl.h>

float fcn(float x, float y), gcn(float x), hcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_2d (fcn, 0.0, 1.0, gcn, hcn, 0);
 /* print the result and the exact answer */
 exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x, float y)
{
 return y * cos(x+y*y);
}

float gcn(float x)
{
 return 1.0;
}

float hcn(float x)
{
 return 3.0;
}

Chapter 4: Quadrature int_fcn_2d • 269

Output

integral = -0.514
exact = -0.514

Example 2

In this example, compute the value of the integral

y x y dydxcos +zz 2

1

3

0

1

e j
The values of the actual and estimated error are printed as well. Note that these
numbers are machine dependent. Furthermore, the error estimate is usually pessimistic.
That is, the actual error is usually smaller than the error estimate, as is the case in this
example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

float fcn(float x, float y), gcn(float x), hcn(float x);

main()
{
 int n_evals;
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_2d (fcn, 0., 1., gcn, hcn,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
 exact_err = fabs(exact - q);

 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x, float y)
{
 return y * cos(x+y*y);
}

float gcn(float x)
{
 return 1.0;
}

float hcn(float x)
{
 return 3.0;
}

270 • int_fcn_hyper_rect IMSL C/Math/Library

Output

integral = -0.514
exact = -0.514
error estimate = 3.065193e-06
exact error = 1.192093e-07
The number of function evaluations = 441

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested
tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors

IMSL_MAX_SUBINTERVALS The maximum number of subintervals
allowed has been reached.

int_fcn_hyper_rect
Integrate a function on a hyper-rectangle,

K K Kf x x dx dxn
a

b

a

b

n
n

n

0 1 1 0
1

1

0

0

, , − −
−

−zz b g

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[],
float b[], …, 0)

The type double function is imsl_d_int_fcn_hyper_rect.

Required Arguments

float fcn (int ndim, float x) (Input)
User-supplied function to be integrated.

int ndim (Input)
The dimension of the hyper-rectangle.

float a[] (Input)
Lower limits of integration.

float b[] (Input)
Upper limits of integration.

Return Value

The value of

Chapter 4: Quadrature int_fcn_hyper_rect • 271

K K Kf x x dx dxn
a

b

a

b

n
n

n

0 1 1 0
1

1

0

0

, , − −
−

−zz b g

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[], float
b[], IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_EVALS, int max_evals,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs (Input)
Absolute accuracy desired.
Default: err_ abs = ε

where ε is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_ rel = ε

where ε is the machine precision

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_EVALS, int max_evals (Input)
Number of evaluations allowed.

Default: max_evals = 32Q.

Description

The function imsl_f_int_fcn_hyper_rect approximates the n-dimensional
iterated integral

K K Kf x x dx dxn
a

b

a

b

n
n

n

0 1 1 0
1

1

0

, , − −
−

−zz b g

An estimate of the error is returned in the optional argument err_est. The
approximation is achieved by iterated applications of product Gauss formulas. The
integral is first estimated by a two-point tensor product formula in each direction. Then
for i = 1, …, n, the function calculates a new estimate by doubling the number of points
in the i-th direction, then halving the number immediately afterwards if the new
estimate does not change appreciably. This process is repeated until either one
complete sweep results in no increase in the number of sample points in any dimension;

272 • int_fcn_hyper_rect IMSL C/Math/Library

the number of Gauss points in one direction exceeds 256; or the number of function
evaluations needed to complete a sweep exceeds max_evals.

Example

In this example, we compute the integral of

e
x x x− + +1

2
2
2

3
2e j

on an expanding cube. The values of the error estimates are machine dependent. The

exact integral over R��is π���.

#include <math.h>
#include <imsl.h>

float fcn(int n, float x[]);

main()
{
 int i, j, ndim = 3;
 float q, limit, a[3], b[3];

 printf(" integral limit \n");
 limit = pow(imsl_f_constant("pi",0), 1.5);
 /* Evaluate the integral */
 for (i = 0; i < 6; i++) {
 for (j = 0; j < 3; j++) {
 a[j] = -(i+1)/2.;
 b[j] = (i+1)/2.;
 }
 q = imsl_f_int_fcn_hyper_rect (fcn, ndim, a, b, 0);
 /* Print the result and the */
 /* limiting answer */
 printf(" %10.3f %10.3f\n", q, limit);
 }
}

float fcn(int n, float x[])
{
 float s;
 s = x[0]*x[0] + x[1]*x[1] + x[2]*x[2];
 return exp(-s);
}

Output

integral limit
 0.785 5.568
 3.332 5.568
 5.021 5.568
 5.491 5.568
 5.561 5.568
 5.568 5.568

Chapter 4: Quadrature gauss_quad_rule • 273

Warning Errors

IMSL_MAX_EVALS_TOO_LARGE The argument max_evals was set greater than

2�Q.

Fatal Errors

IMSL_NOT_CONVERGENT The maximum number of function evaluations has
been reached, and convergence has not been
attained.

gauss_quad_rule
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various
classical weight functions.

Synopsis

#include <imsl.h>

void imsl_f_gauss_quad_rule (int n, float weights[], float points[], …,
0)

The type double procedure is imsl_d_gauss_quad_rule.

Required Arguments

int n (Input)
Number of quadrature points.

float weights[] (Output)
Array of length n containing the quadrature weights.

float points[] (Output)
Array of length n containing quadrature points. The default action of this
routine is to produce the Gauss Legendre points and weights.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_gauss_quad_rule (int n, float weights[], float points[],
IMSL_CHEBYSHEV_FIRST,
IMSL_CHEBYSHEV_SECOND,
IMSL_HERMITE,
IMSL_COSH,
IMSL_JACOBI, float alpha, float beta,
IMSL_GEN_LAGUERRE, float alpha,
IMSL_FIXED_POINT, float a,
IMSL_TWO_FIXED_POINTS, float a, float b,
0)

274 • gauss_quad_rule IMSL C/Math/Library

Optional Arguments
IMSL_CHEBYSHEV_FIRST

Compute the Gauss points and weights using the weight function

1 1 2/ − x

on the interval (−1, 1).
IMSL_CHEBYSHEV_SECOND

Compute the Gauss points and weights using the weight function

1 2− x

on the interval (−1, 1).
IMSL_HERMITE

Compute the Gauss points and weights using the weight function exp (−x�) on
the interval (−∞, ∞).

IMSL_COSH

Compute the Gauss points and weights using the weight function 1 / (cosh (x))
on the interval (−∞, ∞).

IMSL_JACOBI, float alpha, float beta (Input)
Compute the Gauss points and weights using the weight function

(1 − x)D (1 + x)E on the interval (−1, 1).

IMSL_GEN_LAGUERRE, float alpha (Input)

Compute the Gauss points and weights using the weight function exp (−x)xD
on the interval (0, ∞).

IMSL_FIXED_POINT, float a (Input)
Compute the Gauss-Radau points and weights using the specified weight
function and the fixed point a. This formula will integrate polynomials of
degree less than 2n − 1 exactly.

IMSL_TWO_FIXED_POINTS, float a, float b (Input)
Compute the Gauss-Lobatto points and weights using the specified weight
function and the fixed points a and b. This formula will integrate polynomials
of degree less than 2n − 2 exactly.

Description

The function imsl_f_gauss_quad_rule produces the points and weights for the
Gauss, Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most
popular weights. The default weight is the weight function identically equal to 1 on the
interval (−1, 1). In fact, it is slightly more general than this suggests, because the extra
one or two points that may be specified do not have to lie at the endpoints of the
interval. This function is a modification of the subroutine GAUSSQUADRULE
(Golub and Welsch 1969).

In the default case, the function returns points in x = points and weights in
w = weights so that

Chapter 4: Quadrature gauss_quad_rule • 275

f x w x dx f x w
a

b

i

i

N

ib g b g b gz ∑=
=1

for all functions f that are polynomials of degree less than 2n.

If the keyword IMSL_FIXED_POINT is specified, then one of the above xL is equal to a.
Similarly, if the keyword IMSL_TWO_FIXED_POINTS is specified, then two of the
components of x are equal to a and b. In general, the accuracy of the above quadrature
formula degrades when n increases. The quadrature rule will integrate all functions f
that are polynomials of degree less than 2n − F, where F is the number of fixed points.

Examples

Example 1

The three-point Gauss Legendre quadrature points and weights are computed and used
to approximate the integrals

x dx ii

−z =
1

1
0 6, ,K

Notice that the integrals are exact for the first six monomials, but that the last
approximation is in error. In general, the Gauss rules with k points integrate
polynomials with degree less than 2k exactly.

#include <math.h>
#include <imsl.h>

#define QUADPTS 3
#define POWERS 7

main()
{
 int i, j;
 float weights[QUADPTS], points[QUADPTS], s[POWERS];
 /* Produce the Gauss Legendre */
 /* quadrature points */
 imsl_f_gauss_quad_rule (QUADPTS, weights, points, 0);
 /* integrate the functions */
 /* 1, x, ..., pow(x,POWERS-1) */
 for(i = 0; i < POWERS; i++) {
 s[i] = 0.0;
 for(j = 0; j < QUADPTS; j++) {
 s[i] += weights[j]*imsl_fi_power(points[j], i);
 }
 }
 printf("The integral from -1 to 1 of pow(x, i) is\n");
 printf("Function Quadrature Exact\n\n");
 for(i = 0; i < POWERS; i++){
 float z;
 z = (1-i%2)*2./(i+1.);
 printf("pow(x, %d) %10.3f %10.3f\n", i, s[i], z);
 }
}

276 • gauss_quad_rule IMSL C/Math/Library

Output

The integral from -1 to 1 of pow(x, i) is
Function Quadrature Exact

pow(x, 0) 2.000 2.000
pow(x, 1) 0.000 0.000
pow(x, 2) 0.667 0.667
pow(x, 3) 0.000 0.000
pow(x, 4) 0.400 0.400
pow(x, 5) 0.000 0.000
pow(x, 6) 0.240 0.286

Example 2

The three-point Gauss Laguerre quadrature points and weights are computed and used
to approximate the integrals

x xe dx i ii x−∞
= =z ! , ,0 6

0
K

Notice that the integrals are exact for the first six monomials, but that the last
approximation is in error. In general, the Gauss rules with k points integrate
polynomials with degree less than 2k exactly.

#include <math.h>
#include <imsl.h>

#define QUADPTS 3
#define POWERS 7

main()
{
 int i, j;
 float weights[QUADPTS], points[QUADPTS], s[POWERS], z;
 /* Produce the Gauss Legendre */
 /* quadrature points */
 imsl_f_gauss_quad_rule (QUADPTS, weights, points,
 IMSL_GEN_LAGUERRE, 1.0,

 0);
 /* Integrate the functions */
 /* 1, x, ..., pow(x,POWERS-1) */
 for(i = 0; i < POWERS; i++) {
 s[i] = 0.0;
 for(j = 0; j < QUADPTS; j++){
 s[i] += weights[j]*imsl_fi_power(points[j], i);
 }
 }
 printf("The integral from 0 to infinity of pow(x, i)*x*exp(x) is\n");
 printf("Function Quadrature Exact\n\n");
 for(z = 1.0, i = 0; i < POWERS; i++){
 z *= (i+1);
 printf("pow(x, %d) %10.3f %10.3f \n", i, s[i], z);
 }
}

Chapter 4: Quadrature fcn_derivative • 277

Output

The integral from 0 to infinity of pow(x, i)*x*exp(x) is
Function Quadrature Exact

pow(x, 0) 1.000 1.000
pow(x, 1) 2.000 2.000
pow(x, 2) 6.000 6.000
pow(x, 3) 24.000 24.000
pow(x, 4) 120.000 120.000
pow(x, 5) 720.000 720.000
pow(x, 6) 4896.000 5040.000

fcn_derivative
Computes the first, second, or third derivative of a user-supplied function.

Synopsis

#include <imsl.h>

float imsl_f_fcn_derivative (float fcn(), float x, …, 0)

The type double procedure is imsl_d_fcn_derivative.

Required Arguments

float fcn(float x) (Input)
User-supplied function whose derivative at x will be computed.

float x (Input)
Point at which the derivative will be evaluated.

Return Value

An estimate of the first, second or third derivative of fcn at x. If no value can be
computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>
float imsl_f_fcn_derivative (float fcn(), float x,
IMSL_ORDER, int order,
IMSL_INITIAL_STEPSIZE, float stepize,
IMSL_RELATIVE_ERROR, float tolerance,
0)

Optional Arguments

IMSL_ORDER, int order (Input)
The order of the desired derivative (1, 2 or 3).
Default: order = 1.

IMSL_INITIAL_STEPSIZE, float stepsize (Input)
Beginning value used to compute the size of the interval for approximating the

278 • fcn_derivative IMSL C/Math/Library

derivative. Stepsize must be chosen small enough that fcn is defined and
reasonably smooth in the interval
(x − 4.0*stepsize, x + 4.0*stepsize), yet large enough to avoid roundoff
problems.
Default: stepsize = .01

IMSL_RELATIVE_ERROR, float tolerance (Input)
The relative error desired in the derivative estimate. Convergence is assumed
when (2/3) |d� − d�| < tolerance, for two successive derivative estimates,
d� and d�.
Default: tolerance = ε4

Description

The function imsl_f_fcn_derivative produces an estimate to the first, second, or
third derivative of a function. The estimate originates from first computing a spline
interpolant to the input function using value within the interval
(x − 4.0*stepsize, x + 4.0*stepsize), then differentiating the spline at x.

Examples

Example 1

This example obtains the approximate first derivative of the function
f(x) = −2sin(3x/2) at the point x = 2.

#include <imsl.h>
#include <math.h>

void main()
{
 float fcn(float);
 float x;
 float deriv;

 x = 2.0;

 deriv = imsl_f_fcn_derivative(fcn, x, 0);
 printf ("f’(x) = %7.4f\n", deriv);
}

float fcn(float x)
{
 return -2.0*sin(1.5*x);
}

Output

f’(x) = 2.9701

Example 2

This example obtains the approximate first, second, and third derivative of the function
f(x) = −2sin(3x/2) at the point x = 2.

Chapter 4: Quadrature fcn_derivative • 279

#include <imsl.h>
#include <math.h>

void main()
{
 double fcn(double);
 double x;
 double tolerance;
 double deriv;

 x = 2.0;

 deriv = imsl_d_fcn_derivative(fcn, x,
 0);
 printf ("f’(x) = %7.3f, error = %5.2e\n", deriv,
 fabs(deriv+3.0*cos(1.5*x)));

 deriv = imsl_d_fcn_derivative(fcn, x,
 IMSL_ORDER, 2,
 0);
 printf ("f’’(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-4.5*sin(1.5*x)));

 deriv = imsl_d_fcn_derivative(fcn, x,
 IMSL_ORDER, 3,
 0);
 printf ("f’’’(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-6.75*cos(1.5*x)));
}

double fcn(double x)
{
 return -2.0*sin(1.5*x);
}

Output

f’(x) = 2.970, error = 1.11e-07
f’’(x) = 0.6350, error = 8.52e-09
f’’’(x) = -6.6824, error = 1.12e-08

Chapter 5: Differential Equations Routines • 281

Chapter 5: Differential Equations

Routines
Runge-Kutta method..ode_runge_kutta 283
Adam’s or Gear’s method ...ode_adams_gear 288
Method of lines .. pde_method_of_lines 295
Fast Poisson solver ... fast_poisson_2d 311

Usage Notes

Ordinary Differential Equations
An ordinary differential equation is an equation involving one or more dependent
variables called yL, one independent variable, t, and derivatives of the yL with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent
variables yL at a known value t = t� are given. Values of yL(t) for t > t� or t < t� are
required.

The functions imsl_f_ode_runge_kutta and imsl_f_ode_adams_gear solve the
IVP for ODEs of the form

dy

dt
y f t y y i Ni

i i N= ′ = =, , , , ,1 1K Kb g
with yL = (t = t�) specified. Here, fL is a user-supplied function that must be evaluated at
any set of values (t, y�, …, y1), i = 1, …, N.

This problem statement is abbreviated by writing it as a system of first-order ODEs,
y(t) = [y�(t), …, y1(t)]7, f(t, y) = [f�(t, y), …, f1(t, y)]7, so that the problem becomes
y′ = f(t, y) with initial values y(t�).

The system

dy

dt
y f t y= ′ = ,b g

is said to be stiff if some of the eigenvalues of the Jacobian matrix

∂ ∂′y yi j/n s

282 • Usage Notes IMSL C/Math/Library

are large and negative. This is frequently the case for differential equations modeling
the behavior of physical systems, such as chemical reactions proceeding to equilibrium
where subspecies effectively complete their reactions in different epochs. An alternate
model concerns discharging capacitors such that different parts of the system have
widely varying decay rates (or time constants).

Users typically identify stiff systems by the fact that numerical differential equation
solvers such as imsl_f_ode_runge_kutta are inefficient, or else completely fail.
Special methods are often required. The most common inefficiency is that a large
number of evaluations of f(t, y) (and hence an excessive amount of computer time) are
required to satisfy the accuracy and stability requirements of the software. In such
cases, use the IMSL function imsl_f_ode_adams_gear. For more discussion about
stiff systems, see Gear (1971, Chapter 11) or Shampine and Gear (1979).

Partial Differential Equations
The routine imsl_f_pde_method_of_lines, page 295, solves the IVP problem for
systems of the form

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u

t
f x t u u

u

x

u

x

u

x

u

x
i

i N
N N=

F
HG

I
KJ, , , , , , , , , ,1

1
2

1
2

2

2
K K K

subject to the boundary conditions

α β
∂
∂

γ

α β
∂
∂

γ

1 1 1

2 2 2

i
i

i i

i
i

i i

u a
u

x
a t

u b
u

x
b t

b g b g

b g b g

b g b g b g

b g b g b g

+ =

+ =

and subject to the initial conditions

uL(x, t = t�) = gL(x)

for i = 1, …, N. Here, fL, gL,

α βj
i

j
ib g b g, and

are user-supplied, j = 1, 2.

The routine fast_poisson_2d, page 311, solves Laplace’s, Poisson’s, or Helmholtz’s
equation in two dimensions. This routine uses a fast Poisson method to solve a PDE of
the form

∂
∂

∂
∂

2

2

2

2

u

x

u

y
cu f x y+ + = ,b g

over a rectangle, subject to boundary conditions on each of the four sides. The scalar
constant c and the function f are user specified.

Chapter 5: Differential Equations ode_runge_kutta • 283

ode_runge_kutta
Solves an initial-value problem for ordinary differential equations using the
Runge-Kutta-Verner fifth-order and sixth-order method.

Synopsis

#include <imsl.h>

float imsl_ode_runge_kutta_mgr (int task, void **state, …, 0)

void imsl_f_ode_runge_kutta (int neq, float *t, float tend, float y[],
void *state, void fcn())

Required Arguments for imsl_ode_runge_kutta_mgr

int task (Input)
This function must be called with task set to IMSL_ODE_INITIALIZE to set
up for solving an ODE system and with task equal to IMSL_ODE_RESET to
clean up after it has been solved. These values for task are defined in the
include file, imsl.h.

void **state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It cannot be directly manipulated.

Required Arguments for imsl_f_ode_runge_kutta

int neq (Input)
Number of differential equations.

float *t (Input/Output)
Independent variable. On input, t is the initial independent variable value. On
output, t is replaced by tend, unless error conditions arise.

float tend (Input)
Value of t at which the solution is desired. The value tend may be less than
the initial value of t.

float y[] (Input/Output)
Array with neq components containing a vector of dependent variables. On
input, y contains the initial values. On output, y contains the approximate
solution.

void *state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It must be initialized by a call to imsl_ode_runge_kutta_mgr. It
cannot be directly manipulated.

void fcn (int neq, float t, float *y, float *yprime)
User-supplied function to evaluate the right-hand side where
float *yprime (Output)

284 • ode_runge_kutta IMSL C/Math/Library

Array with neq components containing the vector y′.This function
computes

yprime = = ′ =dy

dt
y f t y,b g

and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_ode_runge_kutta_mgr (int task, void **state,
IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_HMIN, float hmin,
IMSL_HMAX, float hmax,
IMSL_MAX_NUMBER_STEPS, int max_steps,
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals,
IMSL_SCALE, float scale,
IMSL_NORM, int norm,
IMSL_FLOOR, float floor,
IMSL_NSTEP, int *nstep,
IMSL_NFCN, int *nfcn,
IMSL_HTRIAL, float *htrial,
0)

Optional Arguments

IMSL_TOL, float tol (Input)
Tolerance for error control. An attempt is made to control the norm of the
local error such that the global error is proportional to tol.
Default: tol = 100.0*imsl_f_machine(4)

IMSL_HINIT, float hinit (Input)
Initial value for the step size h. Steps are applied in the direction of
integration.
Default: hinit = 0.001|tend − t|

IMSL_HMIN, float hmin (Input)
Minimum value for the step size h.
Default: hmin − 0.0

IMSL_HMAX, float hmax (Input)
Maximum value for the step size h.
Default: hmax = 2.0

IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
Maximum number of steps allowed.
Default: max_steps = 500

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
Maximum number of function evaluations allowed.
Default: max_fcn_evals = No enforced limit

Chapter 5: Differential Equations ode_runge_kutta • 285

IMSL_SCALE, float scale (Input)
A measure of the scale of the problem, such as an approximation to the
Jacobian along the trajectory.
Default: scale = 1

IMSL_NORM, int norm (Input)
Switch determining the error norm. In the following, eL is the absolute value of
the error estimate for yL.
0 minimum of the absolute error and the relative error, equals

the maximum of eL / max (|yL|, 1) for i = 1, …, neq.
1 absolute error, equals maxLeL.
2 maxL(eL / wL) where wL = max (|yL|, floor). The value of floor

is reset using IMSL_FLOOR.
Default: norm = 0

IMSL_FLOOR, float floor (Input)
This is used with IMSL_NORM. It provides a positive lower bound for the error
norm option with value 2.
Default: floor = 1.0

IMSL_NSTEP, int *nstep (Output)
Returns the number of steps taken.

IMSL_NFCN, int *nfcn (Output)
Returns the number of function evaluations used.

IMSL_HTRIAL, float *htrial (Output)
Returns the current trial step size.

Description

The function imsl_f_ode_runge_kutta finds an approximation to the solution of a
system of first-order differential equations of the form

dy

dt
y f t y= ′ = ,b g

with given initial conditions for y at the starting value for t. The function attempts to
keep the global error proportional to a user-specified tolerance. The proportionality
depends on the differential equation and the range of integration.

The function imsl_f_ode_runge_kutta is efficient for nonstiff systems where the
evaluations of f(t, y) are not expensive. The code is based on an algorithm designed by
Hull et al. (1976, 1978). It uses Runge-Kutta formulas of order five and six developed
by J.H. Verner.

286 • ode_runge_kutta IMSL C/Math/Library

Examples

Example 1

This example solves
dy

dt
y= −

over the interval [0, 1] with the initial condition y(0) = 1. The solution is y(t) = e�W.

The ODE solver is initialized by a call to imsl_f_ode_runge_kutta_mgr with
IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default
values are changed. The function imsl_f_ode_runge_kutta is then called to
integrate from t = 0 to t = 1.

#include <imsl.h>
#include <math.h>

void fcn (int neq, float t, float y[], float yprime[]);

main()
{
 int neq = 1; /* Number of ode’s */
 float t = 0.0; /* Initial time */
 float tend = 1.0; /* Final time */
 float y[1] = {1.0}; /* Initial condition */
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state, 0);
 /* Integrate from t=0 to tend=1 */
 imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
 /* Print the solution and error */
 printf("y[%f] = %f\n", t, y[0]);
 printf("Error is: %e\n", exp((double)(-tend))-y[0]);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = -y[0];
}

Output
y[1.000000] = 0.367879
Error is: -9.149755e-09

Example 2

Consider a predator-prey problem with rabbits and foxes. Let r be the density of
rabbits, and let f be the density of foxes. In the absence of any predator-prey interaction,
the rabbits would increase at a rate proportional to their number, and the foxes would
die of starvation at a rate proportional to their number. Mathematically, the model
without species interaction is approximated by the equation

r′ = 2r

ƒ′= −ƒ

Chapter 5: Differential Equations ode_runge_kutta • 287

With species interaction, the rate at which the rabbits are consumed by the foxes is
assumed to equal the value 2rf. The rate at which the foxes increase, because they are
consuming the rabbits, is equal to rf. Thus, the model differential equations to be solved
are

r′ = 2r − 2rƒ

ƒ′ = −ƒ + rƒ

For illustration, the initial conditions are taken to be r(0) = 1 and f(0) = 3. The interval
of integration is 0 ≤ t ≤ 10. In the program, y[0] = r and y[1] = f. The ODE solver is
initialized by a call to imsl_f_ode_runge_kutta_mgr. The error tolerance is set to
0.0005. Absolute error control is selected by setting IMSL_NORM to the value one. We
also request that nstep be set to the current number of steps in the integration. The
function imsl_f_ode_runge_kutta is then called in a loop to integrate from
t = 0 to t = 10 in steps of δt = 1. At each step, the solution is printed. Note that nstep is
updated even though it is not an argument to this function. Its address has been stored
within imsl_f_ode_runge_kutta_mgr into the area pointed to by state. The last
call to imsl_f_ode_runge_kutta_mgr with IMSL_ODE_RESET releases workspace.

#include <imsl.h>

void fcn(int neq, float t, float y[], float yprime[]);

main()
{
 int neq = 2;
 float t = 0.0; /* Initial time */
 float tend; /* Final time */
 float y[2] = {1.0, 3.0}; /* Initial conditions */
 int k;
 int nstep;
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state,
 IMSL_TOL, 0.0005,
 IMSL_NSTEP, &nstep,
 IMSL_NORM, 1,
 0);
 printf("\n Start End Density of Density of Number of");
 printf("\n Time Time Rabbits Foxes Steps\n\n");

 for (k = 0; k < 10; k++) {
 tend = k + 1;
 imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
 printf("%3d %12.3f %12.3f %12.3f %12d\n", k, t, y[0], y[1], nstep);
 }
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_RESET, &state, 0);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 /* Density change rate for Rabbits: */
 yprime[0] = 2*y[0]*(1 - y[1]);
 /* Density change rate for Foxes: */

288 • ode_adams_gear IMSL C/Math/Library

 yprime[1] = -y[1]*(1 - y[0]);
}

Output
Start End Density of Density of Number of
Time Time Rabbits Foxes Steps

 0 1.000 0.078 1.465 4
 1 2.000 0.085 0.578 6
 2 3.000 0.292 0.250 7
 3 4.000 1.449 0.187 8
 4 5.000 4.046 1.444 11
 5 6.000 0.176 2.256 15
 6 7.000 0.066 0.908 18
 7 8.000 0.148 0.367 20
 8 9.000 0.655 0.188 21
 9 10.000 3.157 0.352 23

Fatal Errors

IMSL_ODE_TOO_MANY_EVALS Completion of the next step would make the
number of function evaluations #, but only #
evaluations are allowed.

IMSL_ODE_TOO_MANY_STEPS Maximum number of steps allowed, #, used. The
problem may be stiff.

IMSL_ODE_FAIL Unable to satisfy the error requirement.
“tol” = # may be too small.

ode_adams_gear
Solves a stiff initial-value problem for ordinary differential equations using the Adams-
Gear methods.

Synopsis

#include <imsl.h>

float imsl_ode_adams_gear_mgr (int task, void **state, …, 0)

void imsl_f_ode_adams_gear (int neq, float *t, float tend, float y[],
void *state, void fcn())

Required Arguments for imsl_ode_adams_gear_mgr

int task (Input)
This function must be called with task set to IMSL_ODE_INITIALIZE to set
up for solving an ODE system and with task equal to IMSL_ODE_RESET to
clean up after it has been solved. These values for task are defined in the
included file, imsl.h.

Chapter 5: Differential Equations ode_adams_gear • 289

void **state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It cannot be directly manipulated.

Required Arguments for imsl_f_ode_adams_gear

int neq (Input)
Number of differential equations.

float *t (Input/Output)
Independent variable. On input, t is the initial independent variable value. On
output, t is replaced by tend unless error conditions arise.

float tend (Input)
Value of t at which the solution is desired. The value tend may be less than
the initial value of t.

float y[] (Input/Output)
Array with neq components containing a vector of dependent variables. On
input, y contains the initial values. On output, y contains the approximate
solution.

void *state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It must be initialized by a call to imsl_ode_adams_gear_mgr. It
cannot be directly manipulated.

void fcn (int neq, float t, float *y, float *yprime)
User-supplied function to evaluate the right-hand side where
float *yprime (Output)

Array with neq components containing the vector y′. This function
computes

yprime = = ′ =dy

dt
y f t y,b g

and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_ode_adams_gear_mgr (int task, void **state,
IMSL_JACOBIAN, void fcnj (),
IMSL_METHOD, int method,
IMSL_MAXORD, int maxord,
IMSL_MITER, int miter,
IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_HMIN, float hmin,
IMSL_HMAX, float hmax,
IMSL_MAX_NUMBER_STEPS, int max_steps,
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals,

290 • ode_adams_gear IMSL C/Math/Library

IMSL_SCALE, float scale,
IMSL_NORM, int norm,
IMSL_FLOOR, float floor,
IMSL_NSTEP, int *nstep,
IMSL_NFCN, int *nfcn,
IMSL_NFCNJ, int *nfcnj,
0)

Optional Arguments

IMSL_JACOBIAN, void fcnj (int neq, float t, float *y, float yprime[],
float dypdy[])
User-supplied function to evaluate the Jacobian matrix where

float yprime[] (Input)
Array with neq components containing the vector y′ = f(t, y).

float dypdy[] (Output)
Array of size neq × neq containing the partial derivatives. Each
derivative ∂y|L / ∂yL is evaluated at the provided (t, y) values and is
returned in array location dypdy[(i − 1)*n + j − 1].

and neq, t, and *y are described in the “Required Arguments” section.

IMSL_METHOD, int method (Input)
Choose the class of integration methods.
1 Use implicit Adams method.
2 Use backward differentiation formula (BDF) methods.
Default: method = 2

IMSL_MAXORD, int maxord (Input)
Define the highest order formula to use of implicit Adams type or BDF type.
The default is the value 12 for Adams formulas and is the value 5 for BDF
formulas.

IMSL_MITER, int miter (Input)
Choose the method for solving the formula equations.

1 Use function iteration or successive substitution.
2 Use chord or modified Newton method and a user-supplied

Jacobian matrix.
3 Same as 2 except Jacobian is approximated within the function

by divided differences.

Default: miter = 3

IMSL_TOL, float tol (Input)
Tolerance for error control. An attempt is made to control the norm of the
local error such that the global error is proportional to tol.
Default: tol = 0.001

Chapter 5: Differential Equations ode_adams_gear • 291

IMSL_HINIT, float hinit (Input)
Initial value for the step size h. Steps are applied in the direction of
integration.
Default: hinit = 0.001|tend − t|

IMSL_HMIN, float hmin (Input)
Minimum value for the step size h.
Default: hmin = 0.0

IMSL_HMAX, float hmax (Input)
Maximum value for the step size h.
Default: hmax = imsl_amach(2)

IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
Maximum number of steps allowed.
Default: max_steps = 500

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
Maximum number of evaluations of y′ allowed.
Default: max_fcn_evals = No enforced limit

IMSL_SCALE, float scale (Input)
A measure of the scale of the problem, such as an approximation to the
Jacobian along the trajectory.
Default: scale = 1

IMSL_NORM, int norm (Input)
Switch determining the error norm. In the following, eL is the absolute value of
the error estimate for yL.

0 minimum of the absolute error and the relative error, equals
the maximum of eL�/ (max (|yL|, 1)) for i = 1, …, neq.

1 absolute error, equals maxLeL.
2 maxL (eL / wL)where wL = max (|yL|, floor). The value of floor

is reset using IMSL_FLOOR.

Default: norm = 0.

IMSL_FLOOR, float floor (Input)
This is used with IMSL_NORM. It provides a positive lower bound for the error
norm option with value 2.
Default: floor = 1.0

IMSL_NSTEP, int *nstep (Output)
Returns the number of steps taken.

IMSL_NFCN, int *nfcn (Output)
Returns the number of evaluations of y′ used.

IMSL_NFCNJ, int *nfcnj (Output)
Returns the number of Jacobian matrix evaluations used. This value will be
nonzero only if the option IMSL_JACOBIAN is used.

292 • ode_adams_gear IMSL C/Math/Library

Description

The function imsl_f_ode_adams_gear finds an approximation to the solution of a
system of first-order differential equations of the form

dy

dt
y f t y= ′ = ,b g

with given initial conditions for y at the starting value for t. The function attempts to
keep the global error proportional to a user-specified tolerance. The proportionality
depends on the differential equation and the range of integration.

The code is based on using backward difference formulas not exceeding order five as
outlined in Gear (1971) and implemented by Hindmarsh (1974). There is an optional
use of the code that employs implicit Adams formulas. This use is intended for nonstiff
problems with expensive functions y′ = ƒ(t, y).

Examples

Example 1

This is a mildly stiff example problem (F2) from the test set of Enright and Pryce
(1987):

y′� = −y� − y�y� + k�y�

y′� = −k�y� + k� (1 − y�) y�

y� (0) = 1

y� (0) = 0

k� = 294.

k� = 3.

k� = 0.01020408

tend = 240.

The ODE solver is initialized by a call to imsl_f_ode_adams_gear_mgr with
IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default
values are changed. The function imsl_f_ode_adams_gear is then called to integrate
from t = 0 to t = 240.

#include <stdio.h>
#include <imsl.h>

void fcn (int neq, float t, float y[], float yprime[]);

float k1 = 294.0; /* Model data */
float k2 = 3.0;
float k3 = 0.01020408;

main()
{
 int neq = 2; /* Number of ode’s */
 float t = 0.0; /* Initial time */
 float tend = 240.0; /* Final time */

Chapter 5: Differential Equations ode_adams_gear • 293

 float y[2] = {1.0, 0.0}; /* Initial condition */
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state, 0);
 /* Integrate from t=0 to tend=240 */
 imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn);
 /* Print the solution */
 printf("y[%f] = %f, %f\n", t, y[0], y[1]);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = -y[0] - y[0]*y[1] + k1*y[1];
 yprime[1] = -k2*y[1] + k3*(1.0-y[1])*y[0];
}

Output
y[240.000000] = 0.392391, 0.001334

Example 2

This problem is a stiff example (F5) from the test set of Enright and Pryce (1987). An
initial step size of h = 10�� is suggested by these authors. It is necessary to provide for
more evaluations of y′ and for more steps than the default value allows. Both have been
set to 4000.

y′� = k� (− k�y�y� + k�y� − k�y�y�)

y′� = −k�k�y�y� + k�y�

y′� = k� (−k�y�y� + k�y�)

y′� = k� (k�y�y� − k�y� + k�y�y�)

y�(0) = 3.365 × 10��

y�(0) = 8.261 × 10��

y�(0) = 1.641 × 10��

y�(0) = 9.380 × 10��

k� = 10��

k� = 3.

k� = 0.0012

k� = 9.

k� = 2 × 10�

k� = 0.001

tend = 100.

The last call to imsl_f_ode_adams_gear_mgr with IMSL_ODE_RESET releases
workspace.

#include <stdio.h>
#include <imsl.h>

294 • ode_adams_gear IMSL C/Math/Library

void fcn (int neq, float t, float y[], float yprime[]);

float k1 = 1.e11; /* Model data */
float k2 = 3.0;
float k3 = 0.0012;
float k4 = 9.0;
float k5 = 2.e7;
float k6 = 0.001;

main()
{
 int neq = 4; /* Number of ode’s */
 float t = 0.0; /* Initial time */
 float tend = 100.0; /* Final time */
 /* Initial condition */
 float y[4] = {3.365e-7, 8.261e-3, 1.642e-3, 9.380e-6};
 void *state;
 int *nfcn;
 /* Initialize the ODE solver */
 imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state,
 IMSL_HINIT, 1.e-7,
 IMSL_MAX_NUMBER_STEPS, 4000,
 IMSL_MAX_NUMBER_FCN_EVALS, 4000,
 IMSL_NFCN, &nfcn,
 0);
 /* Integrate from t=0 to tend=100 */
 imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn);
 /* Release workspace and reset */
 imsl_f_ode_adams_gear_mgr(IMSL_ODE_RESET, &state, 0);
 /* Print the solution */
 printf("y[%f] = %f, %f, %f, %f\n", t, y[0], y[1], y[2], y[3]);
 /* Print the number of evaluations
 of yprime[] */
 printf("Number of yprime[] evaluations: %d\n", nfcn);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = k1*(-k2*y[0]*y[1]+k3*y[3]-k4*y[0]*y[2]);
 yprime[1] = -k1*k2*y[0]*y[1] + k5*y[3];
 yprime[2] = k1*(-k4*y[0]*y[2] + k6*y[3]);
 yprime[3] = k1*(k2*y[0]*y[1] - k3*y[3] + k4*y[0]*y[2]);
}

Output
y[100.000000] = 0.000000, 0.003352, 0.005586, 0.000009
Number of yprime[] evaluations: 3630

Fatal Errors

IMSL_ODE_TOO_MANY_EVALS Completion of the next step would make the
number of function evaluations #, but only # are
allowed.

IMSL_ODE_TOO_MANY_STEPS Maximum number of steps allowed, # have been
used. Try increasing the maximum number of
steps allowed or increase the tolerance.

Chapter 5: Differential Equations pde_method_of_lines • 295

pde_method_of_lines
Solves a system of partial differential equations of the form uW = f(x, t, u, u[, u[[) using
the method of lines. The solution is represented with cubic Hermite polynomials.

Synopsis

#include <imsl.h>

void imsl_f_pde_method_of_lines_mgr (int task, void **state, ..., 0)

void imsl_f_pde_method_of_lines (int npdes, float *t, float tend, int nx,
float xbreak[], float y[], void *state, void fcn_ut(), void
fcn_bc())

Required Arguments for imsl_f_pde_method_of_lines_mgr

int task (Input)
This function must be called with task set to IMSL_PDE_INITIALIZE to set
up memory and default values prior to solving a problem and with task equal
to IMSL_PDE_RESET to clean up after it has solved. These values for task are
defined in the header file imsl.h.

void **state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by
state. It cannot be directly manipulated.

Required Arguments for imsl_f_pde_method_of_lines

int npdes (Input)
Number of differential equations.

float *t (Input/Output)
Independent variable. On input, t supplies the initial time, t�. On output, t is set
to the value to which the integration has been updated. Normally, this new
value is tend.

float tend (Input)
Value of t = tend at which the solution is desired.

int nx (Input)
Number of mesh points or lines.

float xbreak[] (Input)
Array of length nx containing the breakpoints for the cubic Hermite splines
used in the x discretization. The points in xbreak must be strictly increasing.
The values xbreak[0] and xbreak[nx − 1] are the endpoints of the interval.

float y[] (Input/Output)
Array of size npdes by nx containing the solution. The array y contains the
solution as y[k,i] = uN(x, tend) at x = xbreak[i]. On input, y contains the
initial values. It must satisfy the boundary conditions. On output, y contains
the computed solution.

296 • pde_method_of_lines IMSL C/Math/Library

void *state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by state.
It must be initialized by a call to imsl_f_pde_method_of_lines_mgr. It
cannot be directly manipulated.

void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[],
float ut[])
User-supplied function to evaluate uW.

int npdes (Input)
Number of equations.

float x (Input)
Space variable, x.

float t (Input)
Time variable, t.

float u[] (Input)
Array of length npdes containing the dependent values, u.

float ux[] (Input)
Array of length npdes containing the first derivatives, u[.

float uxx[] (Input)
Array of length npdes containing the second derivative, u[[.

float ut[] (Output)
Array of length npdes containing the computed derivatives uW.

void fcn_bc(int npdes, float x, float t, float alpha[], float beta[], float
gammap[])
User-supplied function to evaluate the boundary conditions. The boundary
conditions accepted by imsl_f_pde_method_of_lines are

α β
γ

γk k k
k

ku
x

+ ≡
2

2

Note: Users must supply the values αN and βN, which determine the
values γN. Since γN can depend on t values of γN′ also are required.

int npdes (Input)
Number of equations.

float x (Input)
Space variable, x.

float t (Input)
Time variable, t.

float alpha[] (Output)
Array of length npdes containing the αN values.

float beta[] (Output)
Array of length npdes containing the βN values.

float gammap[] (Output)
Array of length npdes containing the derivatives,

Chapter 5: Differential Equations pde_method_of_lines • 297

d

dt
k

k
γ

γ= ’

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_pde_method_of_lines_mgr (int task, void **state,
IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[],
IMSL_HTRIAL, float *htrial,
0)

Optional Arguments

IMSL_TOL, float tol (Input)
Differential equation error tolerance. An attempt is made to control the local
error in such a way that the global relative error is proportional to tol.
Default: tol = 100.0*imsl_f_machine(4)

IMSL_HINIT, float hinit (Input)
Initial step size in the t integration. This value must be nonnegative. If hinit
is zero, an initial step size of 0.001|tend - t�| will be arbitrarily used. The step
will be applied in the direction of integration.
Default: hinit = 0.0

IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[] (Input/Output)
Supply the derivative values u[(x, t�). This derivative information is input as

deriv[k i], =
∂
∂
u

u
x tk

x

, 0b g

The array initial_deriv contains the derivative values as output:

deriv[k i] tend, at = =
∂
∂
u

u
x x x ik

x

,b g

Default: Derivatives are computed using cubic spline interpolation

IMSL_HTRIAL, float *htrial (Output)
Return the current trial step size.

Description

Let M = NPDES, N = NX and xL = XBREAK(I). The routine
imsl_f_pde_method_of_lines uses the method of lines to solve the partial
differential equation system

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u

t
f x t u u

u

x

u

x

u

x

u

x
k

k M
M M=

F
HG

I
KJ, , , , , , ,1

1
2

1
2

2

2
K K K

298 • pde_method_of_lines IMSL C/Math/Library

with the initial conditions

uN = uN(x, t) at t = t�
and the boundary conditions

α β
∂
∂

γk k k
k

k Nu
u

x
x x x x+ = = =at and at 1

for k = 1, …, M.

Cubic Hermite polynomials are used in the x variable approximation so that the trial
solution is expanded in the series

$, , ,u x t a t x t xk i k i i k i
i

M

bb g b g b g b g b gd i= +
=
∑ φ ψ

1

where φL(x) and ψL(x) are the standard basis functions for the cubic Hermite
polynomials with the knots x� < x� < … < x1. These are piecewise cubic polynomials
with continuous first derivatives. At the breakpoints, they satisfy

φ δ ψ
φ ψ

δ

i l il i l

i
l

i
l il

x x

d

dx
x

d

dx
x

b g b g
b g b g

= =

= =

0

0

According to the collocation method, the coefficients of the approximation are obtained
so that the trial solution satisfies the differential equation at the two Gaussian points in
each subinterval,

p x x x

p x x x

j j j j

j j j j

2 1 1

2 1

3 3

6

3 3

6

− +

+

= + − −

= + − +

d i

d i
for j = 1, …, N. The collocation approximation to the differential equation is

da

dt
p

db

dt
p

f p t u p u p u p u p

i k
i j

i k
i j

k j j M j xx j M xx j

, ,

, , $, , $, , $, , $

φ ψd i d i

d i d i b g d i b g d ie j

+ =

1 1K K K

for k = 1, …, M and j = 1, …, 2(N − 1).

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown
coefficient functions, aL�N and bL�N. This system can be written in the matrix−vector form
as A dc/dt = F (t, y) with c(t�) = c� where c is a vector of coefficients of length 2M N
and c� holds the initial values of the coefficients. The last 2M equations are obtained by
differentiating the boundary conditions

α β
γ

k
k

k
k kda

dt

db

dt

d

dt
+ =

for k = 1, …, M.

Chapter 5: Differential Equations pde_method_of_lines • 299

The initial conditions uN(x, t�) must satisfy the boundary conditions. Also, the
γN(t) must be continuous and have a smooth derivative, or the boundary conditions will
not be properly imposed for t > t�.

If αN = βN = 0, it is assumed that no boundary condition is desired for the k-th unknown
at the left endpoint. A similar comment holds for the right endpoint. Thus, collocation
is done at the endpoint. This is generally a useful feature for systems of first-order
partial differential equations.

If the number of partial differential equations is M = 1 and the number of breakpoints is
N = 4, then

A

p p p p

p p p p

p p p p

p p p p

p p p p

p p p p

=

L

N

M
M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P
P

α β
φ ψ φ ψ
φ ψ φ ψ

φ ψ φ ψ
φ ψ φ ψ

φ ψ φ ψ
φ ψ φ ψ

α β

1 1

1 1 1 1 2 1 2 1

1 2 1 2 2 2 2 2

3 3 3 3 4 3 4 3

3 4 3 4 4 4 4 4

5 5 5 5 6 5 6 5

5 6 5 6 6 6 6 6

4 4

b g b g b g b g
b g b g b g b g

b g b g b g b g
b g b g b g b g

b g b g b g b g
b g b g b g b g

The vector c is

c = [a�, b�, a�, b�, a�, b�, a�, b�]7

and the right-side F is

F x f p f p f p f p f p f p x
T

= ′ ′γ γ1 1 2 3 4 5 6 4b g b g b g b g b g b g b g b g, , , , , , ,

If M > 1, then each entry in the above matrix is replaced by an M × M diagonal matrix.
The element α� is replaced by diag(α�,�, …, α��0). The elements α1, β� and β1 are
handled in the same manner. The φL(pM) and ψL(pM) elements are replaced by φL(pM)I0 and
ψL(pM)I0 where I0 is the identity matrix of order M. See Madsen and Sincovec (1979)
for further details about discretization errors and Jacobian matrix structure.

The input/output array Y contains the values of the aN�L. The initial values of the bN�L are
obtained by using the IMSL cubic spline routine imsl_f_cub_spline_interp_e_cnd
(Chapter 3, “Interpolation and Approximation”) to construct functions

$,u x tk 0b g
such that

$,u x t ak i ki0b g =

The IMSL routine imsl_f_cub_spline_value , Chapter 3, “Interpolation and
Approximation” is used to approximate the values

du

dx
x t bk

i k i

$
, ,0b g ≡

300 • pde_method_of_lines IMSL C/Math/Library

There is an optional use of imsl_f_pde_method_of_lines that allows the user to
provide the initial values of bN�L.

The order of matrix A is 2M N and its maximum bandwidth is 6M − 1. The band structure
of the Jacobian of F with respect to c is the same as the band structure of A. This system
is solved using a modified version of imsl_f_ode_adams_gear, page 288. Some of the
linear solvers were removed. Numerical Jacobians are used exclusively. The algorithm is
unchanged. Gear’s BDF method is used as the default because the system is typically stiff.

Four examples of PDEs are now presented that illustrate how users can interface their
problems with IMSL PDE solving software. The examples are small and not indicative
of the complexities that most practitioners will face in their applications. A set of seven
sample application problems, some of them with more than one equation, is given in
Sincovec and Madsen (1975). Two further examples are given in Madsen and Sincovec
(1979).

Examples

Example 1

The normalized linear diffusion PDE, uW = u[[, 0 ≤ x ≤ 1, t > t�, is solved. The initial
values are t� = 0, u(x, t�) = u� = 1. There is a “zero-flux” boundary condition at
x = 1, namely u[(1, t) = 0, (t > t�). The boundary value of u(0, t) is abruptly changed
from u� to the value u� = 0.1. This transition is completed by
t = tG = 0.09.

Due to restrictions in the type of boundary conditions successfully processed by
imsl_f_pde_method_of_lines, it is necessary to provide the derivative boundary
value function γ′ at x = 0 and at x = 1. The function γ at x = 0 makes a smooth transition
from the value u� at t = t��to the value u� at t = tG. The transition phase for γ′ is computed
by evaluating a cubic interpolating polynomial. For this purpose, the function subprogram
imsl_f_cub_spline_value, Chapter 3, Interpolation and Approximation” is used.
The interpolation is performed as a first step in the user-supplied routine fcn_bc. The
function and derivative values γ(t�) = u�, γ′(t�) = 0, γ(tG) = u�, and γ′(tG) = 0, are used as
input to routine imsl_f_cub_spline_interp_e_cnd, to obtain the coefficients
evaluated by imsl_f_cub_spline_value. Notice that γ′(t) = 0, t > tG. The evaluation
routine imsl_f_cub_spline_value will not yield this value so logic in the routine
fcn_bc assigns γ′(t) = 0, t > tG.

#include <imsl.h>
#include <math.h>

main()
{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *,
 float *);
 int npdes = 1;
 int nx = 8;
 int i;
 int j = 1;
 int nstep = 10;

Chapter 5: Differential Equations pde_method_of_lines • 301

 float t = 0.0;
 float tend;
 float xbreak[8];
 float y[8];
 char title[50];
 void *state;

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 1.0;
 }

 /* Initialize the solver */

 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 0);

 while (j <= nstep) {
 tend = (float) j++ / (float) nstep;
 tend *= tend;

 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Print results at current t=tend */

 sprintf(title, "solution at t = %4.2f\0", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
 }
}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 *ut = *uxx;
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)
{
 static int ndata;
 static int first = 1;
 static float delta = 0.09;
 static float u0 = 1.0;
 static float u1 = 0.1;
 static float dfdata[2];
 static float xdata[2];
 static float fdata[2];
 static Imsl_f_ppoly *ppoly;

 /* Compute interpolant first time only */

 if (first) {

302 • pde_method_of_lines IMSL C/Math/Library

 first = 0;
 ndata = 2;
 xdata[0] = 0.0;
 xdata[1] = delta;
 fdata[0] = u0;
 fdata[1] = u1;
 dfdata[0] = dfdata[1] = 0.0;
 ppoly = imsl_f_cub_spline_interp_e_cnd(ndata, xdata, fdata,
 IMSL_LEFT, 1, dfdata[0],
 IMSL_RIGHT, 1, dfdata[1],
 0);
 }

 /* Define boundary conditions */

 if (x == 0.0) {

 /* These are for x = 0 */

 *alpha = 1.0;
 *beta = 0.0;
 *gamp = 0.0;

 /* If in the boundary layer, compute
 nonzero gamma prime */

 if (t <= delta)
 *gamp = imsl_f_cub_spline_value(t, ppoly,
 IMSL_DERIV, 1,
 0);
 } else {
 /* These are for x = 1 */

 *alpha = 0.0;
 *beta = 1.0;
 *gamp = 0.0;
 }
}

Output
 solution at t = 0.01
 1 2 3 4 5 6
 0.969 0.997 1.000 1.000 1.000 1.000

 7 8
 1.000 1.000

 solution at t = 0.04
 1 2 3 4 5 6
 0.625 0.871 0.962 0.991 0.998 1.000
 7 8
 1.000 1.000

 solution at t = 0.09
 1 2 3 4 5 6
 0.1000 0.4602 0.7169 0.8671 0.9436 0.9781

 7 8
 0.9917 0.9951

Chapter 5: Differential Equations pde_method_of_lines • 303

 solution at t = 0.16
 1 2 3 4 5 6
 0.1000 0.3130 0.5071 0.6681 0.7893 0.8708

 7 8
 0.9168 0.9315

 solution at t = 0.25
 1 2 3 4 5 6
 0.1000 0.2567 0.4045 0.5354 0.6428 0.7224

 7 8
 0.7710 0.7874

 solution at t = 0.36
 1 2 3 4 5 6
 0.1000 0.2176 0.3292 0.4292 0.5125 0.5751

 7 8
 0.6139 0.6270

 solution at t = 0.49
 1 2 3 4 5 6
 0.1000 0.1852 0.2661 0.3386 0.3992 0.4448

 7 8
 0.4731 0.4827

 solution at t = 0.64
 1 2 3 4 5 6
 0.1000 0.1588 0.2147 0.2648 0.3066 0.3381

 7 8
 0.3577 0.3643

 solution at t = 0.81
 1 2 3 4 5 6
 0.1000 0.1387 0.1754 0.2083 0.2358 0.2565

 7 8
 0.2694 0.2738

 solution at t = 1.00
 1 2 3 4 5 6
 0.1000 0.1242 0.1472 0.1678 0.1850 0.1980

 7 8
 0.2060 0.2087

Example 2

Here, Problem C is solved from Sincovec and Madsen (1975). The equation is of
diffusion-convection type with discontinuous coefficients. This problem illustrates a
simple method for programming the evaluation routine for the derivative, uW. Note that
the weak discontinuities at x = 0.5 are not evaluated in the expression for uW. The
problem is defined as

304 • pde_method_of_lines IMSL C/Math/Library

u u t x D x u x v x u x

x t

t = = −

∈ >

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂/ / / /

, ,

b gc h b g
0 1 0

D x
x

x
b g =

≤ <
< ≤

RST
5 0 05

1 05 10

if

if

.

. .

v x
x

x

u x
x

x

u t u t

b g

b g

b g b g

=
≤ <

< ≤
RST

=
=
>

RST
= =

1000 0 0 05

1 05 10

0
1 0

0 0

0 1 1 0

. .

. .

,

, , ,

if

if

 if

 if

#include <imsl.h>
#include <math.h>

main()
{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *,
 float *);
 int npdes = 1;
 int nx = 100;
 int i;
 int j = 1;
 int nstep = 10;
 float t = 0.0;
 float tend;
 float xbreak[100];
 float y[100];
 float tol, hinit;
 char title[50];
 void *state;

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 0.0;
 }
 y[0] = 1.0;

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));
 hinit = 0.01*tol;
 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_HINIT, hinit,
 0);

 while (j <= nstep) {
 tend = (float) j++ / (float) nstep;

Chapter 5: Differential Equations pde_method_of_lines • 305

 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);
 }
 /* Print results at t=tend */

 sprintf(title, "solution at t = %4.2f\0", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 float v;
 float d;

 if (x <= 0.5) {
 d = 5.0;
 v = 1000.0;
 }
 else
 d = v = 1.0;

 ut[0] = d*uxx[0] - v*ux[0];
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)
{
 *alpha = 1.0;
 *beta = 0.0;
 *gamp = 0.0;
}

Output
 solution at t = 1.00
 1 2 3 4 5 6
 1.000 1.000 1.000 1.000 1.000 1.000

 7 8 9 10 11 12
 1.000 1.000 1.000 1.000 1.000 1.000

 13 14 15 16 17 18
 1.000 1.000 1.000 1.000 1.000 1.000

 19 20 21 22 23 24
 1.000 1.000 1.000 1.000 1.000 1.000

 25 26 27 28 29 30
 1.000 1.000 1.000 1.000 1.000 1.000

 31 32 33 34 35 36
 1.000 1.000 1.000 1.000 1.000 1.000

306 • pde_method_of_lines IMSL C/Math/Library

 37 38 39 40 41 42
 1.000 1.000 1.000 1.000 1.000 1.000

 43 44 45 46 47 48
 1.000 1.000 1.000 1.000 1.000 1.000

 49 50 51 52 53 54
 1.000 0.997 0.984 0.969 0.953 0.937

 55 56 57 58 59 60
 0.921 0.905 0.888 0.872 0.855 0.838

 61 62 63 64 65 66
 0.821 0.804 0.786 0.769 0.751 0.733

 67 68 69 70 71 72
 0.715 0.696 0.678 0.659 0.640 0.621

 73 74 75 76 77 78
 0.602 0.582 0.563 0.543 0.523 0.502

 79 80 81 82 83 84
 0.482 0.461 0.440 0.419 0.398 0.376

 85 86 87 88 89 90
 0.354 0.332 0.310 0.288 0.265 0.242

 91 92 93 94 95 96
 0.219 0.196 0.172 0.148 0.124 0.100

 97 98 99 100
 0.075 0.050 0.025 0.000

Example 3

In this example, using imsl_f_pde_method_of_lines, the linear normalized
diffusion PDE uW = u[[is solved but with an optional use that provides values of the
derivatives, u[, of the initial data. Due to errors in the numerical derivatives computed
by spline interpolation, more precise derivative values are required when the initial data
is u(x, 0) = 1 + cos[(2n − 1)πx], n > 1. The boundary conditions are “zero flux”
conditions u[(0, t) = u[(1, t) = 0 for t > 0. Note that the initial data is compatible with
these end conditions since the derivative function

u x
du x

dx
n n xx ,

,
sin0

0
2 1 2 1b g b g b g b g= = − − −π π

vanishes at x = 0 and x = 1.

This optional usage signals that the derivative of the initial data is passed by the user.
The values u(x, tend) and u[(x, tend) are output at the breakpoints with the optional
usage.

#include <imsl.h>
#include <math.h>

main()

Chapter 5: Differential Equations pde_method_of_lines • 307

{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *, float *);
 int npdes = 1;
 int nx = 10;
 int i;
 int j = 1;
 int nstep = 10;
 float t = 0.0;
 float tend = 0.0;
 float xbreak[10];
 float y[10], deriv[10];
 float tol, hinit;
 float pi, arg;
 char title1[50];
 char title2[50];
 void *state;

 pi = imsl_d_constant("pi", 0);
 arg = 9.0 * pi;

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 1.0 + cos(arg * xbreak[i]);
 deriv[i] = -arg * sin(arg * xbreak[i]);
 }

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));
 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE,
 deriv,
 0);

 while (j <= nstep) {
 j++;
 tend += 0.001;

 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Print results at at every other t=tend */

 if (j % 2) {
 sprintf(title1, "\nsolution at t = %5.3f\0", t);
 sprintf(title2, "\nderivative at t = %5.3f\0", t);
 imsl_f_write_matrix(title1, npdes, nx, y, 0);
 imsl_f_write_matrix(title2, npdes, nx, deriv, 0);
 }
 }

}

308 • pde_method_of_lines IMSL C/Math/Library

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 ut[0] = uxx[0];
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)
{
 /* Define the boundary conditions */

 alpha[0] = 0.0;
 beta[0] = 1.0;
 gamp[0] = 0.0;
}

 Output
 solution at t = 0.002
 1 2 3 4 5 6
 1.233 0.767 1.233 0.767 1.233 0.767

 7 8 9 10
 1.233 0.767 1.233 0.767

 derivative at t = 0.002
 1 2 3 4 5 6
 0.000e+00 -5.172e-07 1.911e-06 1.818e-06 -5.230e-07 2.408e-06

 7 8 9 10
-2.517e-06 3.194e-06 -3.608e-06 2.023e-06

 solution at t = 0.004
 1 2 3 4 5 6
 1.053 0.947 1.053 0.947 1.053 0.947

 7 8 9 10
 1.053 0.947 1.053 0.947

 derivative at t = 0.004
 1 2 3 4 5 6
 0.000e+00 -1.332e-06 -9.059e-06 -4.401e-06 5.006e-06 -2.134e-06

 7 8 9 10
-1.733e-06 4.625e-06 6.741e-07 2.023e-06

 solution at t = 0.006
 1 2 3 4 5 6
 1.012 0.988 1.012 0.988 1.012 0.988

 7 8 9 10

Chapter 5: Differential Equations pde_method_of_lines • 309

 1.012 0.988 1.012 0.988

 derivative at t = 0.006
 1 2 3 4 5 6
 0.000e+00 -1.408e-06 -1.018e-06 -6.572e-07 -8.213e-07 -1.151e-06

 7 8 9 10
 1.051e-06 1.257e-06 -2.920e-07 2.023e-06

 solution at t = 0.008
 1 2 3 4 5 6
 1.003 0.997 1.003 0.997 1.003 0.997

 7 8 9 10
 1.003 0.997 1.003 0.997

 derivative at t = 0.008
 1 2 3 4 5 6
 0.000e+00 -1.028e-06 4.270e-06 3.114e-06 -3.085e-06 -1.492e-06

 7 8 9 10
 2.126e-06 -1.280e-06 -1.541e-06 2.023e-06

 solution at t = 0.010
 1 2 3 4 5 6
 1.001 0.999 1.001 0.999 1.001 0.999

 7 8 9 10
 1.001 0.999 1.001 0.999

 derivative at t = 0.010
 1 2 3 4 5 6
 0.000e+00 -7.596e-07 2.819e-07 1.547e-07 -1.469e-06 -9.516e-07

 7 8 9 10
 2.889e-07 8.956e-08 5.992e-07 2.023e-06

Example 4

In this example, consider the linear normalized hyperbolic PDE, uWW = u[[, the “vibrating
string” equation. This naturally leads to a system of first order PDEs. Define a new
dependent variable uW = v. Then, vW = u[[is the second equation in the system. Take as
initial data u(x, 0) = sin(πx) and uW(x, 0) = v(x, 0) = 0. The ends of the string are fixed so
u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. The exact solution to this problem is
u(x, t) = sin(πx) cos(πt). Residuals are computed at the output values of t for 0 < t ≤ 2.
Output is obtained at 200 steps in increments of 0.01.

Even though the sample code imsl_f_pde_method_of_lines gives satisfactory
results for this PDE, users should be aware that for nonlinear problems, “shocks” can
develop in the solution. The appearance of shocks may cause the code to fail in

310 • pde_method_of_lines IMSL C/Math/Library

unpredictable ways. See Courant and Hilbert (1962), pp 488-490, for an introductory
discussion of shocks in hyperbolic systems.

#include <imsl.h>
#include <math.h>

main()
{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *, float *);
 int npdes = 2;
 int nx = 10;
 int i;
 int j = 1;
 int nstep = 200;
 float t = 0.0;
 float tend = 0.0;
 float xbreak[20];
 float y[20], deriv[20];
 float tol, hinit;
 float pi;
 float error[10], erru;
 void *state;

 pi = imsl_d_constant("pi", 0);

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = sin(pi * xbreak[i]);
 y[nx + i] = 0.0;
 deriv[i] = pi * cos(pi * xbreak[i]);
 deriv[nx + i] = 0.0;
 }

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));
 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE,
 deriv,
 0);

 while (j <= nstep) {
 j++;
 tend += 0.01;
 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Look at output at steps of 0.01
 and compute errors */

Chapter 5: Differential Equations fast_poisson_2d • 311

 for (i = 0; i < nx; i++) {
 error[i] = y[i] - sin(pi * xbreak[i]) *
 cos(pi *tend);
 erru = imsl_f_max(erru, fabs(error[i]));
 }
 }
 printf("Maximum error in u(x,t) = %e\n", erru);

}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 ut[0] = u[1];
 ut[1] = uxx[0];
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)
{
 /* Define the boundary conditions */

 alpha[0] = 1.0;
 beta[0] = 0.0;
 gamp[0] = 0.0;
 alpha[1] = 1.0;
 beta[1] = 0.0;
 gamp[1] = 0.0;
}

Output
Maximum error in u(x,t) = 6.228203e-04

fast_poisson_2d
Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a fast
Poisson solver based on the HODIE finite-difference scheme on a uniform mesh.

Synopsis

#include <imsl.h>

float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float
coeff_u, int nx, int ny, float ax, float bx, float ay, float by,
Imsl_bc_type bc_type[], ..., 0)

Required Arguments

float rhs_pde (float x, float y)
User-supplied function to evaluate the right-hand side of the partial differential
equation at x and y.

312 • fast_poisson_2d IMSL C/Math/Library

float rhs_bc(Imsl_pde_side side, float x, float y)
User-supplied function to evaluate the right-hand side of the boundary
conditions, on side side, at x and y. The value of side will be one of the
following: IMSL_RIGHT, IMSL_BOTTOM, IMSL_LEFT, or IMSL_TOP.

float coeff_u (Input)
Value of the coefficient of u in the differential equation.

int nx (Input)
Number of grid lines in the x-direction. nx must be at least 4. See the
description section for further restrictions on nx.

int ny (Input)
Number of grid lines in the y-direction. ny must be at least 4. See the
“Description” section for further restrictions on ny.

float ax (Input)
The value of x along the left side of the domain.

float bx (Input)
The value of x along the right side of the domain.

float ay (Input)
The value of y along the bottom of the domain.

float by (Input)
The value of y along the top of the domain.

Imsl_bc_type bc_type[4] (Input)
Array of size 4 indicating the type of boundary condition on each side of the
domain or that the solution in periodic. The sides are numbered as follows:

Side Location
IMSL_RIGHT_SIDE(0) x = bx
IMSL_BOTTOM_SIDE(1) y = ay
IMSL_LEFT_SIDE(2) x = ax
IMSL_TOP_SIDE(3) y = by

The three possible boundary condition types are as follows:

Type Condition
IMSL_DIRICHLET Value of u is given.
IMSL_NEUMANN Value of du/dx is given (on the right or

left sides) or du/dy (on the bottom or
top of the domain).

IMSL_PERIODIC Periodic.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float
coeff_u, int nx, int ny, float ax, float bx, float ay, float by,
Imsl_bc_type bc_type[],
IMSL_RETURN_USER, float u_user[],

Chapter 5: Differential Equations fast_poisson_2d • 313

IMSL_ORDER, int order,
0)

Optional Arguments

IMSL_RETURN_USER, float u_user[] (Output)
User-supplied array of size nx*ny containing solution at the grid points.

IMSL_ORDER, int order (Input)
Order of accuracy of the finite-difference approximation. It can be either 2 or
4.
Default: order = 4

Description

Let c = COEFU, a[= AX, b[= BX, a\ = AY, b\ = BY, n[= NX and n\ = NY.

imsl_f_fast_poisson_2d is based on the code HFFT2D by Boisvert (1984). It
solves the equation

∂
∂

∂
∂

2

2

2

2

u

x

u

y
cu p+ + =

on the rectangular domain (a[, b[) × (a\, b\) with a user-specified combination of
Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic
boundary conditions. The sides are numbered clockwise, starting with the right side.

b\

y

Side 4

Side 2

Side 3 Side 1

a \
[a b[

x

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then
any constant may be added to the solution to obtain another solution to the problem. In
this case, the solution of minimum ∞-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of linear

314 • fast_poisson_2d IMSL C/Math/Library

algebraic equations is solved using fast Fourier transform techniques. The algorithm
relies on the fact that n[− 1 is highly composite (the product of small primes). For
details of the algorithm, see Boisvert (1984). If n[− 1 is highly composite then the
execution time of imsl_f_fast_poisson_2d is proportional to n[n\�log��n[. If
evaluations of p(x, y) are inexpensive, then the difference in running time between
IORDER = 2 and IORDER = 4 is small.

The grid spacing is the distance between the (uniformly spaced) grid lines. It is given
by the formulas hx = (bx − ax)/(nx − 1) and hy = (by − ay)/(ny − 1). The grid
spacings in the x and y directions must be the same, i.e., nx and ny must be such that
hx is equal to hy. Also, as noted above, nx and ny must be at least 4. To increase the
speed of the fast Fourier transform, nx − 1 should be the product of small primes. Good
choices are 17, 33, and 65.

If -coeff_u is nearly equal to an eigenvalue of the Laplacian with homogeneous
boundary conditions, then the computed solution might have large errors.

Example

In this example, the equation

∂
∂

∂
∂

2

2

2

2
2 33 2 2 16

u

x

u

y
u x y e x y+ + = − + + +sinb g

with the boundary conditions ∂
∂
u

y
x y e x y= + + +2 2 3 2 3cosb g

on the bottom side and
m x y e x y= + + +sin)2 2 3e j

on the other three sides is solved. The domain is the rectangle [0, ¼] × [0, ½]. The
output of imsl_f_fast_poisson_3d is a 17 × 33 table of values. The functions
imsl_f_spline_2d_value are used to print a different table of values.

#include <imsl.h>
#include <math.h>

main()
{
 float rhs_pde(float, float);
 float rhs_bc(Imsl_pde_side, float, float);

 int nx = 17;
 int nxtabl = 5;
 int ny = 33;
 int nytabl = 5;

 int i;
 int j;
 Imsl_f_spline *sp;
 Imsl_bc_type bc_type[4];

 float ax, ay, bx, by;

Chapter 5: Differential Equations fast_poisson_2d • 315

 float x, y, xdata[17], ydata[33];
 float coefu, *u;
 float u_table;
 float abs_error;

 /* Set rectangle size */

 ax = 0.0;
 bx = 0.25;
 ay = 0.0;
 by = 0.50;

 /* Set boundary conditions */

 bc_type[IMSL_RIGHT_SIDE] = IMSL_DIRICHLET_BC;
 bc_type[IMSL_BOTTOM_SIDE] = IMSL_NEUMANN_BC;
 bc_type[IMSL_LEFT_SIDE] = IMSL_DIRICHLET_BC;
 bc_type[IMSL_TOP_SIDE] = IMSL_DIRICHLET_BC;

 /* Coefficient of u */
 coefu = 3.0;

 /* Solve the PDE */

 u = imsl_f_fast_poisson_2d(rhs_pde, rhs_bc, coefu, nx, ny,
 ax, bx, ay, by, bc_type, 0);

 /* Set up for interpolation */

 for (i = 0; i < nx; i++)
 xdata[i] = ax + (bx - ax) * (float) i / (float) (nx - 1);

 for (i = 0; i < ny; i++)
 ydata[i] = ay + (by - ay) * (float) i / (float) (ny - 1);

 /* Compute interpolant */

 sp = imsl_f_spline_2d_interp(nx, xdata, ny, ydata, u, 0);

 printf(" x y u error\n\n");
 for (i = 0; i < nxtabl; i++)
 for (j = 0; j < nytabl; j++) {
 x = ax + (bx - ax) * (float) j / (float) (nxtabl -
 1);
 y = ay + (by - ay) * (float) i / (float) (nytabl -
 1);
 u_table = imsl_f_spline_2d_value(x, y, sp, 0);
 abs_error = fabs(u_table - sin(x + 2.0 * y) -
 exp(2.0 * x + 3.0 * y));

 /* Print computed answer and absolute on
 nxtabl by nytabl grid */

 printf(" %6.4f %6.4f %6.4f %8.2e\n",
 x, y, u_table, abs_error);
 }
}

float rhs_pde(float x, float y)

316 • fast_poisson_2d IMSL C/Math/Library

{
 /* Define the right side of the PDE */

 return (-2.0 * sin(x + 2.0 * y) + 16.0 * exp(2.0 * x + 3.0 * y));
}

float rhs_bc(Imsl_pde_side side, float x, float y)
{
 /* Define the boundary conditions */

 if (side == IMSL_BOTTOM_SIDE)
 return (2.0 * cos(x + 2.0 * y) + 3.0 * exp(2.0 * x + 3.0 *
 y));
 else
 return (sin(x + 2.0 * y) + exp(2.0 * x + 3.0 * y));
}

Output
 x y u error
 0.0000 0.0000 1.0000 0.00e+00
 0.0625 0.0000 1.1956 5.12e-06
 0.1250 0.0000 1.4087 7.19e-06
 0.1875 0.0000 1.6414 5.10e-06
 0.2500 0.0000 1.8961 8.67e-08
 0.0000 0.1250 1.7024 1.73e-07
 0.0625 0.1250 1.9562 6.39e-06
 0.1250 0.1250 2.2345 9.50e-06
 0.1875 0.1250 2.5407 6.36e-06
 0.2500 0.1250 2.8783 1.66e-07
 0.0000 0.2500 2.5964 2.60e-07
 0.0625 0.2500 2.9322 9.25e-06
 0.1250 0.2500 3.3034 1.34e-05
 0.1875 0.2500 3.7148 9.27e-06
 0.2500 0.2500 4.1720 9.40e-08
 0.0000 0.3750 3.7619 4.84e-07
 0.0625 0.3750 4.2163 9.16e-06
 0.1250 0.3750 4.7226 1.36e-05
 0.1875 0.3750 5.2878 9.44e-06
 0.2500 0.3750 5.9199 5.72e-07
 0.0000 0.5000 5.3232 5.93e-07
 0.0625 0.5000 5.9520 9.84e-07
 0.1250 0.5000 6.6569 1.34e-06
 0.1875 0.5000 7.4483 4.55e-07
 0.2500 0.5000 8.3380 2.27e-06

Chapter 6: Transforms Routines • 317

Chapter 6: Transforms

Routines
6.1 Real Trigonometric FFTs

Real FFT..fft_real 319
Real FFT initialization ... fft_real_init 323

6.2 Complex Exponential FFTs
Complex FFT ... fft_complex 325
Complex FFT initialization .. fft_complex_init 328

6.3 Real Sine and Cosine FFTs
Fourier cosine transform... fft_cosine 329
Fourier cosine transform initializationfft_cosine_init 332
Fourier sine transform .. fft_sine 334
Fourier sine transform initialization .. fft_sine_init 336

6.4 Two-Dimensional FFTs
Complex two-dimensional FFT .. fft_2d_complex 338

6.5 Convolution and Correlation
Real convolution/correlation... convolution 342
Complex convolution/correlation............................convolution (complex) 348

6.6 Laplace Transform
Approximate inverse Laplace transform
of a complex function...inverse_laplace 354

Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed
efficiently. Basically, the straightforward method for computing the Fourier transform
takes approximately n� operations where n is the number of points in the transform,
while the FFT (which computes the same values) takes approximately n log n
operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965)

318 • Usage Notes IMSL C/Math/Library

algorithm. Hence, these functions are most efficient for integers that are highly
composite; that is, integers that are a product of small primes.

For the two functions imsl_f_fft_real and imsl_c_fft_complex, there is a
corresponding initialization function. Use these functions only when repeatedly
transforming sequences of the same length. In this situation, the initialization function
computes the initial setup once; subsequently, the user calls the corresponding main
function with the appropriate option. This may result in substantial computational
savings. For more information on the use of these functions, consult the documentation
under the appropriate function name.

In addition to the one-dimensional transformations described above, we also provide a
complex two-dimensional FFT and its inverse.

Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the
continuous Fourier transform. Recall that the continuous Fourier transform is defined
(Brigham 1974) as

$f f f t e dti tω ω π ωb g b gb g b g= ℑ =
−∞

∞ −z 2

We begin by making the following approximation:

$

/

/

/

/

/

f f t e dt

f t T e dt

e f t T e dt

T

T
i t

T
i t T

i T
T

i t

ω π ω

π ω

π ω π ω

b g b g

b g

b g

b g

≈

= −

= −

−

−

− −

−

z
z

z

2

2
2

0

2 2

0

2

2

2

If we approximate the last integral using the rectangle rule with spacing h = T / n, we
have

$ /f e h e f kh Ti T i kh

k

n

ω π ω π ωb g b g≈ −−

=

−

∑ 2

0

1

2

Finally, setting ω = j/T for j = 0, …, n − 1 yields

$ / // /f j T e h e f kh T e fij ijk n

k

n
j ijk n

k

n

k
hb g b g b g≈ − = −−

=

−
−

=

−

∑ ∑π π π2

0

1
2

0

1

2 1

where the vector f K = (f(−T/2), …, f((n − 1)h − T/2)). Thus, after scaling the
components by (−1)Mh, the discrete Fourier transform, as computed in
imsl_c_fft_complex (with input f K) is related to an approximation of the
continuous Fourier transform by the above formula.

If the function f is expressed as a C function, then the continuous Fourier transform

Chapter 6: Transforms fft_real • 319

$f

can be approximated using the IMSL function imsl_f_int_fcn_fourier
(Chapter 4, “Quadrature”).

fft_real
Computes the real discrete Fourier transform of a real sequence.

Synopsis

#include <imsl.h>

float *imsl_f_fft_real (int n, float p[], …, 0)

The type double function is imsl_d_fft_real.

Required Arguments

int n (Input)
Length of the sequence to be transformed.

float p[] (Input)
Array with n components containing the periodic sequence.

Return Value

A pointer to the transformed sequence. To release this space, use free. If no value can
be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_fft_real (int n, float p[],
IMSL_BACKWARD,
IMSL_PARAMS, float params[],
IMSL_RETURN_USER, float q[],
0)

Optional Arguments

IMSL_BACKWARD

Compute the backward transform and return a pointer to the (backward)
transformed sequence.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_real_init. If
imsl_f_fft_real is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.

320 • fft_real IMSL C/Math/Library

IMSL_RETURN_USER, float q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_f_fft_real returns q. The
array q must be at least n long.

Description

The function imsl_f_fft_real computes the discrete Fourier transform of a real
vector of size n. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when n is a product of small prime factors. If n satisfies this condition,
then the computational effort is proportional to n log n.

By default, imsl_f_fft_real computes the forward transform. If n is even, then the
forward transform is

q p
km

n
m n

q p
km

n
m n

q p

m k

k

n

m k
k

n

k

k

n

2 1
0

1

2 2
0

1

0
0

1

2
1 2

2
1 2 1

−
=

−

−
=

−

=

−

= =

= − = −

=

∑

∑

∑

cos , , /

sin , , /

π

π

K

K

If n is odd, qP is defined as above for m from 1 to (n − 1)/2.

Let f be a real valued function of time. Suppose we sample f at n equally spaced time
intervals of length ∆ seconds starting at time t�. That is, we have

pL:= f(t� + i∆) i = 0, 1, …, n − 1

We will assume that n is odd for the remainder of this discussion. The function
imsl_f_fft_real treats this sequence as if it were periodic of period n. In particular,
it assumes that f(t�) = f(t� + n∆). Hence, the period of the function is assumed to be
T = n∆. We can invert the above transform for p as follows:

p
n

q q
km

n
q

km

nm k

k

n

k

k

n

= + −
L

N
M
M

O

Q
P
P+

=

−

+
=

−

∑ ∑1
2

2
2

2
0 2 1

0

3 2

2 2
0

3 2b g b g/ /

cos sin
π π

This formula is very revealing. It can be interpreted in the following manner. The
coefficients q produced by imsl_f_fft_real determine an interpolating
trigonometric polynomial to the data. That is, if we define

Chapter 6: Transforms fft_real • 321

g t
n

q q
k t t

n
q

k t t

n

n
q q

k t t

T
q

k t t

T

k
k

n

k
k

n

k
k

n

k
k

n

b g b g b g

b g b g

b g b g

b g b g

= +
−

−
−L

N
M
M

O

Q
P
P

= +
−

−
−L

N
M
M

O

Q
P
P

+
=

−

+
=

−

+
=

−

+
=

−

∑ ∑

∑ ∑

1
2

2
2

2

1
2

2
2

2

0 2 1
0

3 2
0

2 2
0

3 2
0

0 2 1
0

3 2
0

2 2
0

3 2
0

/ /

/ /

cos sin

cos sin

π π

π π

∆ ∆

then we have

f(t� + (i − 1) ∆) = g(t� + (i − 1) ∆

Now suppose we want to discover the dominant frequencies, forming the vector P of
length (n + 1)/2 as follows:

P q

P q q k nk k k

0 0

2 2
2

2 1
2 1 2 1 2

:

: , , , /

=

= + = −− − K b g

These numbers correspond to the energy in the spectrum of the signal. In particular,
PN corresponds to the energy level at frequency

k

T

k

n
k

n= = −
∆

0 1
1

2
, , ,K

Furthermore, note that there are only (n + 1)/2 ≈ T/(2∆) resolvable frequencies when
n observations are taken. This is related to the Nyquist phenomenon, which is induced
by discrete sampling of a continuous signal. Similar relations hold for the case when n
is even.

If the optional argument IMSL_BACKWARD is specified, then the backward transform is
computed. If n is even, then the backward transform is

q p p p
km

n
p

km

nm
m

n k

k

n

k

k

n

= + − + −− +
=

−

+
=

−

∑ ∑0 1 2 1
0

2 1

2 2
0

2 2

1 2
2

2
2b g

/ /

cos sin
π π

If n is odd,

q p p
km

n
p

km

nm k

k

n

k

k

n

= + −+
=

−

+
=

−

∑ ∑0 2 1
0

3 2

2 2
0

3 2

2
2

2
2

b g b g/ /

cos sin
π π

The backward Fourier transform is the unnormalized inverse of the forward Fourier
transform.

The function imsl_f_fft_real is based on the real FFT in FFTPACK, which was
developed by Paul Swarztrauber at the National Center for Atmospheric Research.

322 • fft_real IMSL C/Math/Library

Examples

Example 1

In this example, a pure cosine wave is used as a data vector, and its Fourier series is
recovered. The Fourier series is a vector with all components zero except at the
appropriate frequency where it has an n.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 float p[8], *q;
 /* Fill q with a pure exponential signal */
 for (k = 0; k < n; k++)
 p[k] = cos(k*two_pi/n);

 q = imsl_f_fft_real (n, p, 0);

 printf(" index p q\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
}

Output
index p q
 0 1.00 0.00
 1 0.62 3.50
 2 -0.22 0.00
 3 -0.90 -0.00
 4 -0.90 -0.00
 5 -0.22 0.00
 6 0.62 -0.00

Example 2

This example computes the Fourier transform of the vector x, where xM = (−1)M for j = 0 to n − 1.
The backward transform of this vector is now computed by using the optional argument
IMSL_BACKWARD. Note that s = nx, that is,
sM = (−1)Mn, for j = 0 to n − 1.

#include <imsl.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float *q, *s, x[8];
 /* Fill data vector */
 x[0] = 1.0;
 for (k = 1; k<n; k++)
 x[k] = -x[k-1];
 /* Compute the forward transform of x */

Chapter 6: Transforms fft_real_init • 323

 q = imsl_f_fft_real (n, x, 0);
 /* Compute the backward transform of x */
 s = imsl_f_fft_real (n, q,
 IMSL_BACKWARD,
 0);
 printf(" index x q s\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f\n", k, x[k], q[k], s[k]);
}

Output
index x q s
 0 1.00 1.00 7.00
 1 -1.00 1.00 -7.00
 2 1.00 0.48 7.00
 3 -1.00 1.00 -7.00
 4 1.00 1.25 7.00
 5 -1.00 1.00 -7.00
 6 1.00 4.38 7.00

fft_real_init
Computes the parameters for imsl_f_fft_real.

Synopsis

#include <imsl.h>

float *imsl_f_fft_real_init (int n)

The type double function is imsl_d_fft_real_init.

Required Arguments

int n (Input)
Length of the sequence to be transformed.

Return Value

A pointer to the parameter vector of length 2n + 15 that can then be used by
imsl_f_fft_real when the optional argument IMSL_PARAMS is specified. To
release this space, use free. If no value can be computed, then NULL is returned.

Description

The function imsl_f_fft_real_init should be used when many calls are to be
made to imsl_f_fft_real without changing the sequence length n. This function
computes the parameters that are necessary for the real Fourier transform.

The function imsl_f_fft_real_init is based on the routine RFFTI in FFTPACK,
which was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

324 • fft_real_init IMSL C/Math/Library

Example

This example computes three distinct real FFTs by calling imsl_f_fft_real_ init
once and then calling imsl_f_fft_real three times.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 float p[8], *q, *work;
 work = imsl_f_fft_real_init (n);
 for (j = 0; j < 3; j++){
 /* Fill p with a pure sinusoidal signal */
 for (k = 0; k < n; k++)
 p[k] = cos(k*two_pi*j/n);

 q = imsl_f_fft_real (n, p,
 IMSL_PARAMS, work, 0);

 printf(" index p q\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
 }
}

Output
index p q
 0 1.00 7.00
 1 1.00 0.00
 2 1.00 0.00
 3 1.00 0.00
 4 1.00 0.00
 5 1.00 -0.00
 6 1.00 0.00

 index p q
 0 1.00 0.00
 1 0.62 3.50
 2 -0.22 0.00
 3 -0.90 -0.00
 4 -0.90 -0.00
 5 -0.22 0.00
 6 0.62 -0.00

 index p q
 0 1.00 -0.00
 1 -0.22 0.00
 2 -0.90 -0.00
 3 0.62 3.50
 4 0.62 -0.00
 5 -0.90 0.00
 6 -0.22 0.00

Chapter 6: Transforms fft_complex • 325

fft_complex
Computes the complex discrete Fourier transform of a complex sequence.

Synopsis

#include <imsl.h>

f_complex *imsl_c_fft_complex (int n, f_complex p[], …, 0)

The type d_complex function is imsl_z_fft_complex.

Required Arguments

int n (Input)
Length of the sequence to be transformed.

f_complex p[] (Input)
Array with n components containing the periodic sequence.

Return Value

If no optional arguments are used, imsl_c_fft_complex returns a pointer to the
transformed sequence. To release this space, use free. If no value can be computed,
then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_fft_complex (int n, f_complex p[],
IMSL_BACKWARD,
IMSL_PARAMS, float params[],
IMSL_RETURN_USER, f_complex q[],
0)

Optional Arguments

IMSL_BACKWARD

Compute the backward transform.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_c_fft_complex_init. If
imsl_c_fft_complex is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_c_fft_complex returns q.
The array q must be of length at least n.

326 • fft_complex IMSL C/Math/Library

Description

The function imsl_c_fft_complex computes the discrete Fourier transform of a real
vector of size n. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when n is a product of small prime factors. If n satisfies this condition,
then the computational effort is proportional to n log n.

By default, imsl_c_fft_complex computes the forward transform below.

q p ej m
imj n

m

n

= −

=

−

∑ 2

0

1
π /

Note that we can invert the Fourier transform as follows below.

p q em n j
j

n
ijm n=

=

−

∑1

0

1
2π /

This formula reveals the fact that, after properly normalizing the Fourier coefficients,
you have the coefficients for a trigonometric interpolating polynomial to the data. The
function imsl_c_fft_complex is based on the complex FFT in FFTPACK, which
was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

If the option IMSL_BACKWARD is selected, then the following computation is
performed.

q p ej m

m

n
imj n=

=

−

∑
0

1
2π /

Furthermore, the relation between the forward and backward transforms is that they are
unnormalized inverses of each other. That is, the following code fragment begins with a
vector p and concludes with a vector p� = np.
q = imsl_c_fft_complex(n, p, 0);

p2 = imsl_c_fft_complex(n, q, IMSL_BACKWARD, 0);

Examples

Example 1

This example inputs a pure exponential data vector and recovers its Fourier series,
which is a vector with all components zero except at the appropriate frequency where it
has an n.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);

Chapter 6: Transforms fft_complex • 327

 f_complex p[8], *q, z;
 /* Fill p with a pure exponential signal */
 for (k = 0; k < n; k++) {
 z.re = 0.;
 z.im = k*two_pi/n;
 p[k] = imsl_c_exp(z);
 }
 q = imsl_c_fft_complex (n, p, 0);

 printf(" index p.re p.im q.re q.im\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 q[k].re, q[k].im);
}

Output
 index p.re p.im q.re q.im
 0 1.00 0.00 0.00 -0.00
 1 0.62 0.78 7.00 0.00
 2 -0.22 0.97 -0.00 -0.00
 3 -0.90 0.43 0.00 -0.00
 4 -0.90 -0.43 0.00 0.00
 5 -0.22 -0.97 -0.00 0.00
 6 0.62 -0.78 0.00 -0.00

Example 2

The backward transform is used to recover the original sequence. Notice that the
forward transform followed by the backward transform multiplies the entries in the
original sequence by the length of the sequence.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[7], *q, *pp;
 /* Fill p with an increasing signal */
 for (k = 0; k < n; k++) {
 p[k].re = (float) k;
 p[k].im = 0.;
 }
 q = imsl_c_fft_complex (n, p, 0);
 pp = imsl_c_fft_complex (n, q,
 IMSL_BACKWARD,
 0);
 printf(" index p.re p.im pp.re pp.im \n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 pp[k].re , pp[k].im);
}

328 • fft_complex_init IMSL C/Math/Library

Output
index p.re p.im pp.re pp.im
 0 0.00 0.00 0.00 0.00
 1 1.00 0.00 7.00 0.00
 2 2.00 0.00 14.00 0.00
 3 3.00 0.00 21.00 0.00
 4 4.00 0.00 28.00 0.00
 5 5.00 0.00 35.00 0.00
 6 6.00 0.00 42.00 0.00

fft_complex_init
Computes the parameters for imsl_c_fft_complex.

Synopsis

#include <imsl.h>

float *imsl_c_fft_complex_init (int n)

The type double function is imsl_z_fft_complex_init.

Required Arguments

int n (Input)
Length of the sequence to be transformed.

Return Value

A pointer to the parameter vector of type float and length 2n + 15 which can then be
used by imsl_c_fft_complex when the optional argument IMSL_PARAMS is
specified. To release this space, use free. If no value can be computed, then NULL is
returned.

Description

The routine imsl_c_fft_complex_init should be used when many calls are to be
made to imsl_c_fft_complex without changing the sequence length n. This routine
computes constants which are necessary for the real Fourier transform.

The function imsl_c_fft_complex_init is based on the routine CFFTI in
FFTPACK, which was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

This example computes three distinct complex FFTs by calling
imsl_c_fft_complex_init once, then calling imsl_c_fft_complex 3 times.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

Chapter 6: Transforms fft_complex_init • 329

main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0), *work;
 f_complex p[8], *q, z;
 work = imsl_c_fft_complex_init (n);
 for (j = 0; j < 3; j++){
 /* Fill p with a pure exponential signal */
 for (k = 0; k < n; k++) {
 z.re = 0.;
 z.im = k*two_pi*j/n;
 p[k] = imsl_c_exp(z);
 }
 q = imsl_c_fft_complex (n, p,
 IMSL_PARAMS, work, 0);

 printf("\n index p.re p.im q.re q.im\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 q[k].re, q[k].im);
 }
}

Output
index p.re p.im q.re q.im
 0 1.00 0.00 7.00 0.00
 1 1.00 0.00 0.00 0.00
 2 1.00 0.00 0.00 0.00
 3 1.00 0.00 0.00 0.00
 4 1.00 0.00 0.00 0.00
 5 1.00 0.00 0.00 0.00
 6 1.00 0.00 0.00 0.00

index p.re p.im q.re q.im
 0 1.00 0.00 0.00 -0.00
 1 0.62 0.78 7.00 0.00
 2 -0.22 0.97 -0.00 -0.00
 3 -0.90 0.43 0.00 -0.00
 4 -0.90 -0.43 0.00 0.00
 5 -0.22 -0.97 -0.00 0.00
 6 0.62 -0.78 0.00 -0.00

index p.re p.im q.re q.im
 0 1.00 0.00 -0.00 -0.00
 1 -0.22 0.97 0.00 -0.00
 2 -0.90 -0.43 7.00 0.00
 3 0.62 -0.78 -0.00 -0.00
 4 0.62 0.78 0.00 -0.00
 5 -0.90 0.43 0.00 0.00
 6 -0.22 -0.97 -0.00 0.00

330 • fft_cosine IMSL C/Math/Library

fft_cosine
Computes the discrete Fourier cosine transformation of an even sequence.

Synopsis

#include <imsl.h>

float *imsl_f_fft_cosine (int n, float p[], …, 0)

The type double procedure is imsl_d_fft_cosine.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)
Array of size n containing the sequence to be transformed.

Return Value

A pointer to the transformed sequence. To release this space, use free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_fft_cosine (int n, float p[],
IMSL_RETURN_USER, float q[],
IMSL_PARAMS, float params[],
0)

Optional Arguments

IMSL_RETURN_USER, float q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_f_fft_cosine returns q. The
array must be of length n at least.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_cosine_init. If
imsl_f_fft_cosine is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.
Default: Initializing parameters computed each time imsl_f_fft_cosine is
entered

Description

The function imsl_f_fft_cosine computes the discrete Fourier cosine transform of
a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm,
which is most efficient when N − 1 is a product of small prime factors. If N satisfies this

Chapter 6: Transforms fft_cosine • 331

condition, then the computational effort is proportional to N logN. Specifically, given
an N-vector p, imsl_f_fft_cosine returns in q

q p
mn

N
s sm n

n

N

N
m=

−
+ + −

=

−

−∑2
1

1
1

2

0 1sin()
π b g

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. The
imsl_f_fft_cosine function is based on the sine FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

This example inputs a pure cosine wave as a data vector and recovers its Fourier cosine
series, which is a vector with all components zero, except n − 1 at the appropriate
frequency.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i;
 float p[7];
 float *q;
 float pi;

 pi = imsl_f_constant("pi", 0);

 /* Fill p with a pure cosine wave */

 for (i=0; i<n; i++)
 p[i] = cos((float)(i)*pi/(float)(n-1));

 q = imsl_f_fft_cosine (n, p, 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}

Output
 index p q
 0 1.00 -0.00
 1 0.87 6.00
 2 0.50 0.00
 3 -0.00 0.00
 4 -0.50 -0.00
 5 -0.87 -0.00
 6 -1.00 -0.00

332 • fft_cosine_init IMSL C/Math/Library

fft_cosine_init
Computes the parameters needed for imsl_f_fft_cosine.

Synopsis

#include <imsl.h>

float *imsl_f_fft_cosine_init (int n)

The type double procedure is imsl_d_fft_cosine_init.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

Return Value

A pointer to parameter vector of length (3*n + 15) that can then be used by
imsl_f_fft_cosine when the optional argument IMSL_PARAMS is specified. To
release this space, use free. If no solution was computed, then NULL is returned.

Description

The function imsl_f_fft_cosine_init should be used when many calls must be
made to imsl_f_fft_cosine without changing the sequence length n. The function
imsl_f_fft_cosine_init is based on the routine COSTI in FFTPACK. The
package FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

This example computes three distinct sine FFTs by calling
imsl_f_fft_cosine_init once, then calling imsl_f_fft_cosine three times.
The internal parameter initialization in imsl_f_fft_cosine is now skipped.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i, k;
 float p[7];
 float q[7];
 float pi;
 float *params;

 pi = imsl_f_constant("pi", 0);

 /* Compute parameters for transform of
 length n */

Chapter 6: Transforms fft_cosine_init • 333

 params = imsl_f_fft_cosine_init (n);

 /* Different frequencies of the same
 wave will be transformed */
 for (k=0; k<3; k++) {
 printf("\n");

 /* Fill p with a pure cosine wave */

 for (i=0; i<n; i++)
 p[i] = cos((float)((k+1)*i)*pi/(float)(n-1));

 /* Compute the transform of p */

 imsl_f_fft_cosine (n, p,
 IMSL_PARAMS, params,
 IMSL_RETURN_USER, q,
 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);

 }
}

Output
 index p q
 0 1.00 -0.00
 1 0.87 6.00
 2 0.50 0.00
 3 -0.00 0.00
 4 -0.50 -0.00
 5 -0.87 -0.00
 6 -1.00 -0.00

 index p q
 0 1.00 0.00
 1 0.50 -0.00
 2 -0.50 6.00
 3 -1.00 0.00
 4 -0.50 0.00
 5 0.50 0.00
 6 1.00 -0.00

 index p q
 0 1.00 -0.00
 1 -0.00 0.00
 2 -1.00 -0.00
 3 0.00 6.00
 4 1.00 0.00
 5 -0.00 -0.00
 6 -1.00 0.00

334 • fft_sine IMSL C/Math/Library

fft_sine
Computes the discrete Fourier sine transformation of an odd sequence.

Synopsis

#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[], …, 0)

The type double procedure is imsl_d_fft_sine.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)
Array of size n containing the sequence to be transformed.

Return Value

A pointer to the transformed sequence. To release this space, use free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[],
IMSL_RETURN_USER, float q[],
IMSL_PARAMS, float params[],
0)

Optional Arguments

IMSL_RETURN_USER, float q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_f_fft_sine returns q. The
array must be of length at least n + 1.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_sine_init. If
imsl_f_fft_sine is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.
Default: Initializing parameters computed each time imsl_f_fft_sine is
entered

Description

The function imsl_f_fft_sine computes the discrete Fourier sine transform of a real
vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when N + 1 is a product of small prime factors. If N satisfies this

Chapter 6: Transforms fft_sine • 335

condition, then the computational effort is proportional to N logN. Specifically, given
an N-vector p, imsl_f_fft_sine returns in q

q p
m n

Nm n

n

N

=
+ +

+
F
HG

I
KJ=

−

∑2
1 1

1
0

1

sin
b gb gπ

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The
function imsl_f_fft_sine is based on the sine FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

This example inputs a pure sine wave as a data vector and recovers its Fourier sine
series, which is a vector with all components zero, except n at the appropriate
frequency.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i;
 float p[7];
 float *q;
 float pi;

 pi = imsl_f_constant("pi", 0);

 /* fill p with a pure sine wave */

 for (i=0; i<n; i++)
 p[i] = sin((float)(i+1)*pi/(float)(n+1));

 q = imsl_f_fft_sine (n, p, 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}

Output
 index p q
 0 0.38 8.00
 1 0.71 0.00
 2 0.92 0.00
 3 1.00 0.00
 4 0.92 0.00
 5 0.71 0.00
 6 0.38 0.00

336 • fft_sine_init IMSL C/Math/Library

fft_sine_init
Computes the parameters needed for imsl_f_fft_sine.

Synopsis

#include <imsl.h>

float *imsl_f_fft_sine_init (int n)

The type double procedure is imsl_d_fft_sine_init.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

Return Value

A pointer to parameter vector of length (int) (2.5*n + 15) that can then be used by
imsl_f_fft_sine when the optional argument IMSL_PARAMS is specified. To release
this space, use free. If no solution was computed, then NULL is returned.

Description

The function imsl_f_fft_sine_init should be used when many calls must be made
to imsl_f_fft_sine without changing the sequence length n. The function
imsl_f_fft_sine_init is based on the routine SINTI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

This example computes three distinct sine FFTs by calling imsl_f_fft_sine_init
once, then calling imsl_f_fft_sine three times. The internal parameter initialization
in imsl_f_fft_sine is now skipped.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i, k;
 float p[7];
 float q[8];
 float pi;
 float *params;

 pi = imsl_f_constant("pi", 0);

 /* Compute parameters for transform of
 length n */

Chapter 6: Transforms fft_sine_init • 337

 params = imsl_f_fft_sine_init (n);

 /* Different frequencies of the same
 wave will be transformed */
 for (k=0; k<3; k++) {
 printf("\n");

 /* Fill p with a pure sine wave */

 for (i=0; i<n; i++)
 p[i] = sin((float)((k+1)*(i+1))*pi/(float)(n+1));

 /* Compute the transform of p */

 imsl_f_fft_sine (n, p,
 IMSL_PARAMS, params,
 IMSL_RETURN_USER, q,
 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);

 }
}

Output
 index p q
 0 0.38 8.00
 1 0.71 0.00
 2 0.92 0.00
 3 1.00 0.00
 4 0.92 0.00
 5 0.71 0.00
 6 0.38 0.00

 index p q
 0 0.71 -0.00
 1 1.00 8.00
 2 0.71 0.00
 3 -0.00 -0.00
 4 -0.71 0.00
 5 -1.00 -0.00
 6 -0.71 0.00

 index p q
 0 0.92 0.00
 1 0.71 -0.00
 2 -0.38 8.00
 3 -1.00 0.00
 4 -0.38 0.00
 5 0.71 0.00
 6 0.92 0.00

338 • fft_2d_complex IMSL C/Math/Library

fft_2d_complex
Computes the complex discrete two-dimensional Fourier transform of a complex two-
dimensional array.

Synopsis

#include <imsl.h>

f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[], …, 0)

The type d_complex function is imsl_z_fft_2d_complex.

Required Arguments

int n (Input)
Number of rows in the two-dimensional transform.

int m (Input)
Number of columns in the two-dimensional transform.

f_complex p[] (Input)
Two-dimensional array of size n × m containing the sequence that is to be
transformed.

Return Value

A pointer to the transformed array. To release this space, use free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[],
IMSL_P_COL_DIM, int p_col_dim,
IMSL_BACKWARD,
IMSL_RETURN_USER, f_complex q[],
IMSL_Q_COL_DIM, int q_col_dim,
0)

Optional Arguments

IMSL_P_COL_DIM, int p_col_dim (Input)
The column dimension of p.
Default: p_col_dim = m

IMSL_BACKWARD

Compute the backward transform.

Chapter 6: Transforms fft_2d_complex • 339

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_c_fft_2d_complex returns
q. The array must be of length at least n × m.

IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of q.
Default: q_col_dim = m

Description

The function imsl_c_fft_2d_complex computes the discrete Fourier transform of
a two-dimensional complex array of size n × m. The method used is a variant of the
Cooley-Tukey algorithm, which is most efficient when both n and m are a product of
small prime factors. If n and m satisfy this condition, then the computational effort is
proportional to nm log nm.

By default, imsl_c_fft_2d_complex computes the forward transform below.

q p e ejk st

t

m

s

n
ijs n ikt m=

=

−

=

−
− −∑∑

0

1

0

1
2 2π π/ /

Note that we can invert the Fourier transform as follows.

p
nm

q e ejk st

t

m

s

n
ijs n ikt m=

=

−

=

−

∑∑1

0

1

0

1
2 2π π/ /

This formula reveals the fact that, after properly normalizing the Fourier coefficients,
you have the coefficients for a trigonometric interpolating polynomial to the data. The
function imsl_c_fft_2d_complex is based on the complex FFT in FFTPACK,
which was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

If the option IMSL_BACKWARD is selected, then the following computation is
performed.

p q e ejk st

t

m

s

n
ijs n ikt m=

=

−

=

−

∑∑
0

1

0

1
2 2π π/ /

The relation between the forward and backward transforms is that they are
unnormalized inverses of each other. That is, the following code fragment begins with a
vector p and concludes with a vector p� = nmp.
q = imsl_c_fft_2d_complex(n, m, p, 0);

p2 = imsl_c_fft_2d_complex(n, m, q, IMSL_BACKWARD, 0);

340 • fft_2d_complex IMSL C/Math/Library

Examples

Example 1

This example computes the Fourier transform of the pure frequency input for a 5 × 4
array

pVW = e�SL�V�� e�SLW����

for 0 ≤ n ≤ 4 and 0 ≤ m ≤ 3. The result, $p q= , has all zeros except in the [2][3]
position.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int s, t, n = 5, m =4;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[5][4], *q, z, w;
 /* Fill p with a pure exponential signal */
 for (s = 0; s < n; s++) {
 z.re = 0.;
 z.im = s*two_pi*2./n;
 for(t =0; t < m; t++){
 w.re = 0.;
 w.im = t*two_pi*3./m;
 p[s][t] = imsl_c_mul(imsl_c_exp(z),imsl_c_exp(w));
 }
 }
 q = imsl_c_fft_2d_complex (n, m, p, 0);
 /* Write the input */
 imsl_c_write_matrix ("The input matrix is ", 5, 4, p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
 imsl_c_write_matrix ("The output matrix is ", 5, 4, q,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
}

Output
 The input matrix is
 0 1 2
0 (1.000, 0.000) (0.000, -1.000) (-1.000, -0.000)
1 (-0.809, 0.588) (0.588, 0.809) (0.809, -0.588)
2 (0.309, -0.951) (-0.951, -0.309) (-0.309, 0.951)
3 (0.309, 0.951) (0.951, -0.309) (-0.309, -0.951)
4 (-0.809, -0.588) (-0.588, 0.809) (0.809, 0.588)

 3
0 (-0.000, 1.000)
1 (-0.588, -0.809)
2 (0.951, 0.309)
3 (-0.951, 0.309)
4 (0.588, -0.809)

Chapter 6: Transforms fft_2d_complex • 341

 The output matrix is
 0 1 2
0 (-0, -0) (0, -0) (0, -0)
1 (0, 0) (0, -0) (-0, 0)
2 (-0, -0) (0, -0) (0, -0)
3 (0, 0) (0, -0) (-0, 0)
4 (-0, -0) (0, -0) (0, -0)

 3
0 (0, -0)
1 (0, -0)
2 (20, 0)
3 (-0, -0)
4 (-0, -0)

Example 2

This example uses the backward transform to recover the original sequence. Notice that
the forward transform followed by the backward transform multiplies the entries in the
original sequence by the product of the lengths of the two dimensions.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int s, t, n = 5, m =4;
 f_complex p[5][4], *q, *p2;
 /* Fill p with a pure exponential signal */
 for (s = 0; s < n; s++) {
 for(t =0; t < m; t++){
 p[s][t].re = s + 5*t;
 p[s][t].im = 0.;
 }
 } /* Forward transform */
 q = imsl_c_fft_2d_complex (n, m, p, 0);
 /* Backward transform */
 p2 = imsl_c_fft_2d_complex (n, m, q,
 IMSL_BACKWARD, 0);
 /* Write the input */
 imsl_c_write_matrix ("The input matrix is ", 5, 4, p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
 imsl_c_write_matrix ("The output matrix is ", 5, 4, p2,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
}

Output
 The input matrix is
 0 1 2
0 (0, 0) (5, 0) (10, 0)
1 (1, 0) (6, 0) (11, 0)
2 (2, 0) (7, 0) (12, 0)
3 (3, 0) (8, 0) (13, 0)
4 (4, 0) (9, 0) (14, 0)

342 • convolution IMSL C/Math/Library

 3
0 (15, 0)
1 (16, 0)
2 (17, 0)
3 (18, 0)
4 (19, 0)

 The output matrix is
 0 1 2
0 (0, 0) (100, 0) (200, 0)
1 (20, 0) (120, 0) (220, 0)
2 (40, 0) (140, 0) (240, 0)
3 (60, 0) (160, 0) (260, 0)
4 (80, 0) (180, 0) (280, 0)

 3
0 (300, 0)
1 (320, 0)
2 (340, 0)
3 (360, 0)
4 (380, 0)

convolution
Computes the convolution, and optionally, the correlation of two real vectors.

Synopsis

#include <imsl.h>

float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz, …
, 0)

The type double function is imsl_d_convolution.

Required Arguments

int nx (Input)
Length of the vector x.

float x[] (Input)
Real vector of length nx.

int ny (Input)
Length of the vector y.

float y[] (Input)
Real vector of length ny.

int *nz (Output)
Length of the output vector.

Chapter 6: Transforms convolution • 343

Return Value

A pointer to an array of length nz containing the convolution of x and y. To release this
space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz,
IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, float z[],
IMSL_Z_TRANS, float *zhat,
0)

Optional Arguments

IMSL_PERIODIC

The input is periodic.

IMSL_CORRELATION

Return the correlation of x and y.

IMSL_FIRST_CALL

If the function is called multiple times with the same nx and ny, select this
option on the first call.

IMSL_CONTINUE_CALL

If the function is called multiple times with the same nx and ny, select this
option on intermediate calls.

IMSL_LAST_CALL

If the function is called multiple times with the same nx and ny, select this
option on the final call.

IMSL_RETURN_USER, float z[] (Output)
User-supplied array of length at least nz containing the convolution or
correlation of x and y.

IMSL_Z_TRANS, float zhat[](Output)
User-supplied array of length at least nz containing on output the discrete
Fourier transform of z.

Description

The function imsl_f_convolution, by default, computes the discrete convolution of
two sequences x and y. More precisely, let n[be the length of x, and n\ denote the
length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC
must be selected. We set

n] = max {n\, n[},

344 • convolution IMSL C/Math/Library

and we pad out the shorter vector with zeros. Then, we compute

z x yi i j
j

n

j

z

= − +
=

∑ 1
1

where the index on x is interpreted as a positive number between 1 and n], modulo n].

The technique used to compute the zL’s is based on the fact that the (complex discrete)
Fourier transform maps convolution into multiplication. Thus, the Fourier transform of
z is given by

$ $ $z n x n y nb g b g b g=

where the following equation is true.

$ /z n z em

m

n
i m n n

z

zb g b gb g=
=

− − −∑
1

2 1 1π

The technique used here to compute the convolution is to take the discrete Fourier
transform of x and y, multiply the results together component-wise, and then take the
inverse transform of this product. It is very important to make sure that n] is the product
of small primes if option IMSL_PERIODIC is selected. If n] is a product of small
primes, then the computational effort will be proportional to n]log(n]). If option
IMSL_PERIODIC is not selected, then a good value is chosen for n] so that the Fourier
transforms are efficient and n] ≥ n[+ n\ − 1. This will mean that both vectors will be
padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are
real, and real transforms can simulate the complex transform above. Such a strategy is
six times faster and requires less space than when using the complex transform.

Optionally, the function imsl_f_convolution computes the discrete correlation of
two sequences x and y. More precisely, let n be the length of x and y. If a circular
correlation is desired, then option IMSL_PERIODIC must be selected. We set (on
output)

n] = n if IMSL_PERIODIC is chosen

(n] = 2D3E5J ≥ 2n − 1) if IMSL_PERIODIC is not chosen

where α, β, and γ are nonnegtive integers yielding the smallest number of the type
2D3E5J satisfying the inequality. Once n] is determined, we pad out the vectors with
zeros. Then, we compute

z x yi i j j
j

nz

= + −
=

∑ 1
1

Chapter 6: Transforms convolution • 345

where the index on x is interpreted as a positive number between one and n], modulo n].
Note that this means that

zn kz −

contains the correlation of x(k − 1) with y as k = 0, 1, …, n]/2. Thus, if
x(k − 1) = y(k) for all k, then we would expect

znz

to be the largest component of z. The technique used to compute the zL’s is based on the
fact that the (complex discrete) Fourier transform maps correlation into multiplication.
Thus, the Fourier transform of z is given by

$ $z x yj j j=

where the following equation is true.

$ /z z ej m
i m j n

m

n
z

z

= − − −

=
∑ 2 1 1

1

π b gb g

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the
results together component-wise, and then take the inverse transform of this product. It
is very important to make sure that n] is the product of small primes if
IMSL_PERIODIC is selected. If n] is the product of small primes, then the
computational effort will be proportional to n]log (n]). If IMSL_PERIODIC is not
chosen, then a good value is chosen for n] so that the Fourier transforms are efficient
and n] ≥ 2n − 1. This will mean that both vectors will be padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are
real, and real transforms can simulate the complex transform above. Such a strategy is
six times faster and requires less space than when using the complex transform.

Examples

Example 1

This example computes a nonperiodic convolution. The idea here is that you can
compute a moving average of the type found in digital filtering using this function. The
averaging operator in this case is especially simple and is given by averaging five
consecutive points in the sequence. We try to recover the values of an exponential
function contaminated by noise. The large error for the last value has to do with the fact
that the convolution is averaging the zeros in the “pad” rather than the function values.
Notice that the signal size is 100, but only reports the errors at 10 points.

#include <imsl.h>
#include <math.h>

#define NFLTR 5

346 • convolution IMSL C/Math/Library

#define NY 100

 /* Define function */

#define F1(A) exp(A)
main()
{
 int i, k, nz;
 float fltr[NFLTR], fltrer, origer, total1, total2, twopi,
 x, y[NY], *z, *noise;

 /* Set up the filter */
 for (i = 0; i < NFLTR; i++) fltr[i] = 0.2;

 /*
 * Set up y-vector for the nonperiodic casE.
 */

 twopi = 2.0*imsl_f_constant ("Pi", 0);
 imsl_random_seed_set(1234579);
 noise = imsl_f_random_uniform(NY, 0);

 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 y[i] = F1(x) + 0.5 *noise[i] - 0.25;
 }
 /*
 * Call the convolution routine for the nonperiodic case.
 */

 z = imsl_f_convolution(NFLTR, fltr, NY, y, &nz, 0);
 /*
 * Call test routines to check z & zhat here. Print results
 */
 printf("\n Nonperiodic Case\n");
 printf(" x F1(x) Original Error");
 printf(" Filtered Error\n");

 total1 = 0.0;
 total2 = 0.0;
 for (i = 0; i < NY; i++) {
 if (i >= NY-2)
 k = i - NY + 2;
 else
 k = i + 2;
 x = (float)(i) / (float) (NY - 1);
 origer = fabs(y[i] - F1(x));
 fltrer = fabs(z[i+2] - F1(x));
 if ((i % 11) == 0) {
 printf(" %10.4f%13.4f%18.4f%18.4f\n",
 x, F1(x), origer, fltrer);
 }
 total1 += origer;
 total2 += fltrer;
 }
 printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
 printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));

Chapter 6: Transforms convolution • 347

}

Output
Nonperiodic Case
 x F1(x) Original Error Filtered Error
 0.0000 1.0000 0.0811 0.3523
 0.1111 1.1175 0.0226 0.0754
 0.2222 1.2488 0.1526 0.0488
 0.3333 1.3956 0.0959 0.0161
 0.4444 1.5596 0.1747 0.0276
 0.5556 1.7429 0.1035 0.0250
 0.6667 1.9477 0.0402 0.0562
 0.7778 2.1766 0.0673 0.0835
 0.8889 2.4324 0.1044 0.0050
 1.0000 2.7183 0.0154 1.1255
Average absolute error before filter: 0.12481
Average absolute error after filter: 0.06785

Example 2

This example computes both a periodic correlation between two distinct signals x and y.
There are 100 equally spaced points on the interval [0, 2π] and f�(x) = sin (x). Define x
and y as follows:

x f
i

n
i n

y f
i

n
i n

i

i

=
−

F
HG

I
KJ = −

=
−

+F
HG

I
KJ = −

1

1

2

1
0 1

2

1 2
0 1

π

π π

, ,

, ,

K

K

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which
corresponds to the offset.

#include <imsl.h>
#include <math.h>

#define N 100

 /* Define function */

#define F1(A) sin(A)

main()
{
 int i, k, nz;
 float pi, max,
 x[N], y[N], *z, xnorm, ynorm;

 /*
 * Set up y-vector for the nonperiodic case.
 */

 pi = imsl_f_constant ("Pi", 0);

 for (i = 0; i < N; i++) {

348 • convolution (complex) IMSL C/Math/Library

 x[i] = F1(2.0*pi*(float)(i) / (N-1));
 y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
 }
 /*
 * Call the correlation function for the nonperiodic case.
 */

 z = imsl_f_convolution(N, x, N, y, &nz,
 IMSL_CORRELATION, IMSL_PERIODIC,0);

 xnorm = imsl_f_vector_norm (N, x, 0);
 ynorm = imsl_f_vector_norm (N, y, 0);
 for (i = 0; i < N; i++) {
 z[i] /= xnorm*ynorm;
 }

 max = z[0];
 k = 0;
 for (i = 1; i < N; i++) {
 if (max < z[i]) {
 max = z[i];
 k = i;
 }
 }

 printf("The element of Z with the largest normalized\n");
 printf("value is Z(%2d).\n", k);
 printf("The normalized value of Z(%2d) is %6.3f\n", k, z[k]);

}

Output
The element of Z with the largest normalized
value is Z(25).
The normalized value of Z(25) is 1.000

convolution (complex)
Computes the convolution, and optionally, the correlation of two complex vectors.

Synopsis

#include <imsl.h>

f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex
y[], int *nz, …, 0)

The type double function is imsl_d_convolution.

Required Arguments

int nx (Input)
Length of the vector x.

Chapter 6: Transforms convolution (complex) • 349

f_complex x[] (Input)
Real vector of length nx.

int ny (Input)
Length of the vector y.

f_complex y[] (Input)
Real vector of length ny.

int *nz (Output)
Length of the output vector.

Return Value

A pointer to an array of length nz containing the convolution of x and y. To release this
space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex
y[], int*nz,
IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, f_complex z[],
IMSL_Z_TRANS, f_complex *zhat,
0)

Optional Arguments

IMSL_PERIODIC

The input is periodic.

IMSL_CORRELATION

Return the correlation of x and y.

IMSL_FIRST_CALL

If the function is called multiple times with the same nx and ny, select this
option on the first call.

IMSL_CONTINUE_CALL

If the function is called multiple times with the same nx and ny, select this
option on intermediate calls.

IMSL_LAST_CALL

If the function is called multiple times with the same nx and ny, select this
option on the final call.

350 • convolution (complex) IMSL C/Math/Library

IMSL_RETURN_USER, f_complex z[] (Output)
User-supplied array of length at least nz containing the convolution or
correlation of x and y.

IMSL_Z_TRANS, f_complex zhat[] (Output)
User-supplied array of length at least nz containing on output the discrete
Fourier transform of z.

Description

The function imsl_c_convolution, by default, computes the discrete convolution of
two sequences x and y. More precisely, let n[be the length of x, and n\�denote the
length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC
must be selected. We set

n] = max {n\, n[}

and we pad out the shorter vector with zeros. Then, we compute

z x yi i j j
j

nz

= − +
=

∑ 1
1

where the index on x is interpreted as a positive number between 1 and n], modulo n].

The technique used to compute the zL’s is based on the fact that the (complex discrete)
Fourier transform maps convolution into multiplication. Thus, the Fourier transform of
z is given by

$ $ $z n x n y nb g b g b g=

where the following equation is true.

$ /z n z em
i m n n

m

n
z

z

b g b gb g= − − −

=
∑ 2 1 1

1

π

The technique used here to compute the convolution is to take the discrete Fourier
transform of x and y, multiply the results together component-wise, and then take the
inverse transform of this product. It is very important to make sure that n]�is the product
of small primes if option IMSL_PERIODIC is selected. If n]�is a product of small
primes, then the computational effort will be proportional to n]log (n]). If option
IMSL_PERIODIC is not selected, then a good value is chosen for n] so that the Fourier
transforms are efficient and n] ≥ n[+ n\ − 1. This will mean that both vectors will be
padded with zeros.

Optionally, the function imsl_c_convolution computes the discrete correlation of
two sequences x and y. More precisely, let n be the length of x and y. If a circular
correlation is desired, then option IMSL_PERIODIC must be selected.

Chapter 6: Transforms convolution (complex) • 351

We set (on output)

n] = n if IMSL_PERIODIC is chosen

(n] = 2D3E5J ≥ 2n − 1) if IMSL_PERIODIC is not chosen

where α, β, and γ are nonnegative integers yielding the smallest number of the type
2D3E5J satisfying the inequality. Once n] is determined, we pad out the vectors with
zeros. Then, we compute

z x yi i j j
j

nz

= + −
=

∑ 1
1

where the index on x is interpreted as a positive number between one and n], modulo n].
Note that this means that

zn kz −

contains the correlation of x (k − 1) with y as k = 0, 1, …, n]/2. Thus, if
x(k − 1) = y(k) for all k, then we would expect

ℜznz

to be the largest component of ℜz. The technique used to compute the zL’s is based on
the fact that the (complex discrete) Fourier transform maps correlation into
multiplication.

Thus, the Fourier transform of z is given by

$ $z x yj j j=

where the following equation is true.

$ /z z ej m
i m j n

m

n
z

z

= − − −

=
∑ 2 1 1

1

π b gb g

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the
results together component-wise, and then take the inverse transform of this product. It
is very important to make sure that n] is the product of small primes if
IMSL_PERIODIC is selected. If n]�is the product of small primes, then the
computational effort will be proportional to n]log (n]). If IMSL_PERIODIC is not
chosen, then a good value is chosen for n] so that the Fourier transforms are efficient
and n] ≥ 2n − 1. This will mean that both vectors will be padded with zeros.

No complex transforms of x or y are taken since both sequences are real, and real
transforms can simulate the complex transform above. Such a strategy is six times faster
and requires less space than when using the complex transform.

352 • convolution (complex) IMSL C/Math/Library

Examples

Example 1

This example computes a nonperiodic convolution. The purpose is to compute a
moving average of the type found in digital filtering. The averaging operator in this
case is especially simple and is given by averaging five consecutive points in the
sequence. We try to recover the values of an exponential function contaminated by
noise. The large error for the last value has to do with the fact that the convolution is
averaging the zeros in the “pad” rather than the function values. Notice that the signal
size is 100, but only report the errors at ten points.

#include <imsl.h>
#include <math.h>

#define NFLTR 5
#define NY 100

#define F1(A) (imsl_c_mul(imsl_cf_convert(exp(A),0.0), \
 imsl_cf_convert(cos(A),sin(A))))

main()
{
 int i, k, nz;
 f_complex fltr[NFLTR], temp,
 y[NY], *z;
 float x, twopi, total1, total2, *noise, origer, fltrer;

 /* Set up the filter */
 for (i = 0; i < NFLTR; i++) fltr[i] = imsl_cf_convert(0.2,0.0);

 /* Set up y-vector for the periodic case */

 twopi = 2.0*imsl_f_constant ("Pi", 0);
 imsl_random_seed_set(1234579);
 noise = imsl_f_random_uniform(2*NY, 0);

 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 temp = imsl_cf_convert(0.5*noise[i]-0.25, 0.5*noise[NY+i]-0.25);
 y[i] = imsl_c_add(F1(x), temp);
 }
 /* Call the convolution routine for the periodic case */
 z = imsl_c_convolution(NFLTR, fltr, NY, y, &nz, 0);

 /* Print results */
 printf(" Periodic Case\n");
 printf(" x F1(x) Original Error");
 printf(" Filtered Error\n");

 total1 = 0.0;
 total2 = 0.0;
 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 origer = imsl_c_abs(imsl_c_sub(y[i],F1(x)));
 fltrer = imsl_c_abs(imsl_c_sub(z[i+2],F1(x)));

Chapter 6: Transforms convolution (complex) • 353

 if ((i % 11) == 0)
 printf(" %10.4f (%6.4f,%6.4f) %12.4f %15.4f\n",
 x, (F1(x)).re, (F1(x)).im, origer, fltrer);

 total1 += origer;
 total2 += fltrer;
 }
 printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
 printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));
}

Output
Periodic Case
 x F1(x) Original Error Filtered Error
 0.0000 (1.0000,0.0000) 0.1684 0.3524
 0.1111 (1.1106,0.1239) 0.0582 0.0822
 0.2222 (1.2181,0.2752) 0.1991 0.1054
 0.3333 (1.3188,0.4566) 0.1487 0.1001
 0.4444 (1.4081,0.6706) 0.2381 0.1004
 0.5556 (1.4808,0.9192) 0.1037 0.0708
 0.6667 (1.5307,1.2044) 0.1312 0.0904
 0.7778 (1.5508,1.5273) 0.1695 0.0856
 0.8889 (1.5331,1.8885) 0.1851 0.0698
 1.0000 (1.4687,2.2874) 0.2130 1.0760
Average absolute error before filter: 0.19057
Average absolute error after filter: 0.10024

Example 2

This example computes both a periodic correlation between two distinct signals x and y.
There are 100 equally spaced points on the interval [0, 2π] and f� (x) = cos (x) + i sin
(x). Define x and y as follows:

x f
i

n
i n

y f
i

n
i n

i

i

=
−

−
F
HG

I
KJ =

=
−

−
+

F
HG

I
KJ =

1

1

2 1

1
1

2 1

1 2
1

π

π π

b g

b g

, ,

, ,

K

K

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which
corresponds to the offset.

#include <imsl.h>
#include <math.h>

#define N 100

 /* Define function */

#define F1(A) imsl_cf_convert(cos(A),sin(A)

main()
{

354 • inverse_laplace IMSL C/Math/Library

 int i, k, nz;
 float zreal[4*N], pi, max, xnorm, ynorm, sumx, sumy;
 f_complex x[N], y[N], *z;

 /* Set up y-vector for the nonperiodic case */

 pi = imsl_f_constant ("Pi", 0);

 for (i = 0; i < N; i++) {
 x[i] = F1(2.0*pi*(float)(i) / (N-1));
 y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
 }
 /* Call the correlation function for the
 nonperidic case */

 z = imsl_c_convolution(N, x, N, y, &nz,
 IMSL_CORRELATION, IMSL_PERIODIC,0);

 sumx = sumy = 0.0;
 for (i = 0; i < N; i++) {
 sumx += imsl_c_abs(imsl_c_mul(x[i], x[i]));
 sumy += imsl_c_abs(imsl_c_mul(y[i], y[i]));
 }
 xnorm = sqrt((sumx));
 ynorm = sqrt((sumy));
 for (i = 0; i < N; i++) {
 zreal[i] = (z[i].re/(xnorm*ynorm));
 }

 max = zreal[0];
 k = 0;
 for (i = 1; i < N; i++) {
 if (max < zreal[i]) {
 max = zreal[i];
 k = i;
 }
 }

 printf("The element of Z with the largest normalized\n");
 printf("value is Z(%2d).\n", k);
 printf("The normalized value of Z(%2d) is %6.3f\n", k, zreal[k]);

}

Output
The element of Z with the largest normalized
value is Z(25).
The normalized value of Z(25) is 1.000

inverse_laplace
Computes the inverse Laplace transform of a complex function.

Chapter 6: Transforms inverse_laplace • 355

Synopsis

#include <imsl.h>

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float
t[], …, 0)

The type double procedure is imsl_d_inverse_laplace.

Required Arguments

f_complex fcn(f_complex z) (Input)
User-supplied function for which the inverse Laplace transform will be
computed.

float sigma0 (Input)
An estimate for the maximum of the real parts of the singularities of fcn. If
unknown, set sigma0 = 0.0.

int n (Input)
The number of points at which the inverse Laplace transform is desired.

float t[] (Input)
Array of size n containing the points at which the inverse Laplace transform is
desired.

Return Value

A pointer to the array of length n whose i-th component contains the approximate value
of the inverse Laplace transform at the point t[i]. To release this space, use free. If
no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float
t[],
IMSL_RETURN_USER, float x[],
IMSL_PSEUDO_ACCURACY, float pseudo_accuracy,
IMSL_FIRST_LAGUERRE_PARAMETER, float sigma,
IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue,
IMSL_MAXIMUM_COEFFICIENTS, int mtop,
IMSL_ERR_EST, float *error_est,
IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est,
IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est,
IMSL_CONDITION_ERROR_EST, float *cond_error_est,
IMSL_DECAY_FUNCTION_COEFFICIENT, float *k,
IMSL_DECAY_FUNCTION_BASE, float *r,
IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs,
IMSL_LOG_SMALLEST_COEFFICIENTS,
float *log_smallest_coefs,

356 • inverse_laplace IMSL C/Math/Library

IMSL_UNDER_OVERFLOW_INDICATORS,
Imsl_laplace_flow *indicators,

0)

Optional Arguments

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the approximate value of the
inverse Laplace transform.

IMSL_PSEUDO_ACCURACY, float pseudo_accuracy (Input)
The required absolute uniform pseudo accuracy for the coefficients and
inverse Laplace transform values.

Default: pseudo_accuracy = ε , where ε is machine epsilon

IMSL_FIRST_LAGUERRE_PARAMETER, float sigma (Input)
The first parameter of the Laguerre expansion. If sigma is not greater than
sigma0, it is reset to sigma0 + 0.7.
Default: sigma + 0.7

IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue (Input)
The second parameter of the Laguerre expansion. If bvalue is less than
2.0*(sigma − sigma0), it is reset to 2.5*(sigma − sigma0).
Default: bvalue = 2.5*(sigma − sigma0)

IMSL_MAXIMUM_COEFFICIENTS, int mtop (Input)
An upper limit on the number of coefficients to be computed in the Laguerre
expansion. Argument mtop must be a multiple of four.
Default: mtop = 1024

IMSL_ERR_EST, float *error_est (Output)
Overall estimate of the pseudo error, disc_error_est +
trunc_error_est + cond_error_est. Pseudo error = absolute error /
exp(sigma*bvalue).

IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est (Output)
Estimate of the pseudo discretization error.

IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est (Output)
Estimate of the pseudo truncation error.

IMSL_CONDITION_ERROR_EST, float *cond_error_est (Output)
Estimate of the pseudo condition error on the basis of minimal noise levels in
the function values.

IMSL_DECAY_FUNCTION_COEFFICIENT, float *k (Output)
The coefficient of the decay function for acoef, the coefficients of the
Laguerre expansion.

IMSL_DECAY_FUNCTION_BASE, float *r (Output)
The base of the decay function for acoef. Here |acoef[j]| ≤ k/r�M��� for some j
≥ m/2 − 1, where m is the number of Laguerre coefficients actually computed.

Chapter 6: Transforms inverse_laplace • 357

IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs (Output)
The logarithm of the largest acoef.

IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs (Output)
The logarithm of the smallest nonzero acoef.

IMSL_UNDER_OVERFLOW_INDICATORS, Imsl_laplace_flow **indicators
(Output)
The address of a pointer initialized by imsl_f_inverse_laplace to point
to an array of length n containing the overflow/underflow indicators for the
computed approximate inverse Laplace transform. For the i-th point at which
the transform is computed, indicators[i] signifies the following:

indicators [i] meaning

IMSL_NORMAL_TERMINATION Normal termination.

IMSL_TOO_LARGE The value of the inverse Laplace
transform is too large to be
representable. This component of the
result is set to NaN.

IMSL_TOO_SMALL The value of the inverse Laplace
transform is found to be too small to
be representable. This component of
the result is set to 0.0.

IMSL_TOO_LARGE_BEFORE_EXPANSION The value of the inverse Laplace
transform is estimated to be too large,
even before the series expansion, to be
representable. This component of the
result is set to NaN.

IMSL_TOO_SMALL_BEFORE_EXPANSON The value of the inverse Laplace
transform is estimated to be too small,
even before the series expansion, to be
representable. This component of the
result is set to 0.0.

Description

The function imsl_f_inverse_laplace computes the inverse Laplace transform of
a complex-valued function. Recall that if f is a function that vanishes on the negative
real axis, then the Laplace transform of f is defined by

L f s e f x dxsxb g b g= −∞z0
It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks’
method (see Weeks (1966)) due to Garbow et al. (1988). This method is suitable when f
has continuous derivatives of all orders on [0, ∞). In particular, given a complex-valued

358 • inverse_laplace IMSL C/Math/Library

function F(s) = L[f] (s), f can be expanded in a Laguerre series whose coefficients are
determined by F. This is fully described in Garbow et al. (1988) and Lyness and Giunta
(1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

g t f t

e t

b g b g−
<σ ε

where ε = pseudo_accuracy and σ = sigma > sigma0. The expression on the left is
called the pseudo error. An estimate of the pseudo error in available in error_est.

The first step in the method is to transform F to φ where

φ σz
b

z
F

b

z

bb g =
− −

− +
1 1 2

()

Then, if f is smooth, it is known that φ is analytic in the unit disc of the complex plane
and hence has a Taylor series expansion

φ z a zs

s

sb g =
=

∞

∑
0

which converges for all z whose absolute value is less than the radius of convergence
RF. This number is estimated in r, obtained through the optional argument
IMSL_DECAY_FUNCTION_BASE. Using optional argument
IMSL_DECAY_FUNCTION_COEFFICIENT, the smallest number K is estimated which
satisfies

| |a
K

R
s s

<

for all R < RF.

The coefficients of the Taylor series for φ can be used to expand f in a Laguerre series

f t e a e L btt
s

s

bt
sb g b g=

=

∞
−∑σ

0

2/

Examples

Example 1

This example computes the inverse Laplace transform of the function (s − 1)��, and
prints the computed approximation, true transform value, and difference at five points.
The correct inverse transform is xe[. From Abramowitz and Stegun (1964).

#include <imsl.h>
#include <math.h>

main()

Chapter 6: Transforms inverse_laplace • 359

{
 f_complex f(f_complex);
 int n = 5;
 float t[5];
 float true_inverse[5];
 float relative_diff[5];
 int i;
 float *inverse;

 /* Initialize t and compute inverse */
 for (i=0; i<n; i++)
 t[i] = (float)i + 0.5;

 inverse = imsl_f_inverse_laplace(f, 1.5, n, t, 0);

 /* Compute true inverse, relative difference */

 for (i=0; i<n; i++) {
 true_inverse[i] = t[i]*exp(t[i]);
 relative_diff[i] = fabs(inverse[i] - true_inverse[i])/
 true_inverse[i];
 }

 printf("\t t\t\t f_inv\t\t true\t\t diff\n");
 for (i=0; i<n; i++)
 printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n", t[i],
 inverse[i], true_inverse[i], relative_diff[i]);

}

f_complex f(f_complex s)
{
 /* Return 1/(s-1)**2 */

 f_complex one = {1.0, 0.0};

 return (imsl_c_div(one,
 imsl_c_mul(imsl_c_sub(s, one), imsl_c_sub(s, one))));
}

Output
 t f_inv true diff
 0.5 0.824 0.824 1.5e-05
 1.5 6.722 6.723 1.0e-05
 2.5 30.456 30.456 5.6e-07
 3.5 115.906 115.904 1.8e-05
 4.5 405.054 405.077 5.8e-05

Example 2

This example computes the inverse Laplace transform of the function e���V/s, and prints
the computed approximation, true transform value, and difference at five points.
Additionally, the inverse is returned in user-suppled space, and a required accuracy for
the inverse transform values is specified. The correct inverse transform is

J x0 2e j

360 • inverse_laplace IMSL C/Math/Library

From Abramowitz and Stegun (1964).
#include <imsl.h>
#include <math.h>

main()
{
 f_complex f(f_complex);
 int n = 5;
 int i;
 float finv[5];
 float t[5];
 float true_inverse[5];
 float relative_diff[5];
 float inverse[5];
 Imsl_laplace_flow *indicators;

 /* Initialize t and compute inverse */

 for (i=0; i<n; i++) t[i] = (float)i + 0.5;

 imsl_f_inverse_laplace(f, 0.0, n, t,
 IMSL_PSEUDO_ACCURACY, 1.0e-6,
 IMSL_UNDER_OVERFLOW_INDICATORS, &indicators,
 IMSL_RETURN_USER, inverse,
 0);
 /* Compute true inverse, relative
 difference */

 for (i=0; i<n; i++) {
 true_inverse[i] = imsl_f_bessel_J0(2.0*sqrt(t[i]));
 relative_diff[i] = fabs((inverse[i] - true_inverse[i])/
 true_inverse[i]);
 }

 /* Print results, noting if any results
 overflowed or underflowed */

 printf("\t T\t\t f_inv\t\t true\t\t diff\n");
 for (i=0; i<n; i++)
 if (indicators[i] == IMSL_NORMAL_TERMINATION)
 printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n",
 t[i],
 inverse[i], true_inverse[i],
 relative_diff[i]);
 else
 printf("Overflow or underflow noted.\n");
}

f_complex f(f_complex s)
{

 /* Return (1/s)(exp(-1/s) */

 f_complex one = {1.0, 0.0};
 f_complex s_inverse;

 s_inverse = imsl_c_div(one, s);
 return (imsl_c_mul(s_inverse, imsl_c_exp(imsl_c_neg(s_inverse))));

Chapter 6: Transforms inverse_laplace • 361

}

Output
 T f_inv true diff
 0.5 0.559 0.559 2.1e-07
 1.5 -0.023 -0.023 8.5e-06
 2.5 -0.310 -0.310 9.6e-08
 3.5 -0.401 -0.401 7.4e-08
 4.5 -0.370 -0.370 6.4e-07

Chapter 7: Nonlinear Equations Routines • 363

Chapter 7: Nonlinear Equations

Routines
7.1 Zeros of a Polynomial

Real coefficients using Jenkins-Traub method....................... zeros_poly 364
Complex coefficients
using Jenkins-Traub method zeros_poly (complex) 366

7.2 Zeros of a Function
Real zeros of a real function ... zeros_fcn 368

7.3 Root of a System of Equations
Powell’s hybrid method...zeros_sys_eqn 373

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = aQzQ + aQ�� zQ�� + … + a�z + a�

where aQ ≠ 0. The function imsl_f_zeros_poly finds zeros of a polynomial with real
coefficients using the Jenkins-Traub method.

Zeros of a Function

The function imsl_f_zeros_fcn uses Müller’s method to find the real zeros of a
real-valued function.

Root of System of Equations

A system of equations can be stated as follows:

fL(x) = 0, for i = 1, 2, …, n

364 • zeros_poly IMSL C/Math/Library

where x ∈ RQ, and fL : RQ → R.The function imsl_f_zeros_sys_eqn uses a
modified hybrid method due to M.J.D. Powell to find the zero of a system of nonlinear
equations.

zeros_poly
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub, three-
stage algorithm.

Synopsis

#include <imsl.h>

f_complex *imsl_f_zeros_poly (int ndeg, float coef[], …, 0)

The type d_complex function is imsl_d_zeros_poly.

Required Arguments

int ndeg (Input)
Degree of the polynomial.

float coef[] (Input)
Array with ndeg + 1 components containing the coefficients of the polynomial
in increasing order by degree. The polynomial is
coef[n] zQ + coef [n − 1] zQ�� + … + coef [0], where n = ndeg.

Return Value

A pointer to the complex array of zeros of the polynomial. To release this space, use
free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_f_zeros_poly (int ndeg, float coef[],
IMSL_RETURN_USER, f_complex root[],
0)

Optional Arguments

IMSL_RETURN_USER, f_complex root[] (Output)
Array with ndeg components containing the zeros of the polynomial.

Description

The function imsl_f_zeros_poly computes the n zeros of the polynomial

p z a z a z a z an
n

n
nb g = + + + +−

−
1

1
1 0K

Chapter 7: Nonlinear Equations zeros_poly • 365

where the coefficients aL for i = 0, 1, …, n are real and n is the degree of the
polynomial.

The function imsl_f_zeros_poly uses the Jenkins-Traub, three-stage algorithm
(Jenkins and Traub 1970; Jenkins 1975). The zeros are computed one at a time for real
zeros or two at a time for a complex conjugate pair. As the zeros are found, the real
zero, or quadratic factor, is removed by polynomial deflation.

Examples

Example 1

This example finds the zeros of the third-degree polynomial

p(z) = z� − 3z� + 4z − 2

where z is a complex variable.
#include <imsl.h>

#define NDEG 3

main()
{
 int i;
 f_complex *zeros;
 static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};

 zeros = imsl_f_zeros_poly(NDEG, coeff, 0);

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output
 The complex zeros found are
 1 2 3
(1, 0) (1, 1) (1, -1)

Example 2

The same problem is solved with the return option.
#include <imsl.h>

#define NDEG 3

main()
{
 int i;
 f_complex zeros[3];
 static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};

 imsl_f_zeros_poly(NDEG, coeff,
 IMSL_RETURN_USER, zeros, 0);

366 • zeros_poly (complex) IMSL C/Math/Library

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

 The complex zeros found are
 1 2 3
(1, 0) (1, 1) (1, -1)

Warning Errors

IMSL_ZERO_COEFF The first several coefficients of the polynomial are
equal to zero. Several of the last roots will be set to
machine infinity to compensate for this problem.

IMSL_FEWER_ZEROS_FOUND Fewer than ndeg zeros were found. The root vector
will contain the value for machine infinity in the
locations that do not contain zeros.

zeros_poly (complex)
Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub,
three-stage algorithm.

Synopsis

#include <imsl.h>

f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[], …, 0)

The type d_complex function is imsl_z_zeros_poly.

Required Arguments

int ndeg (Input)
Degree of the polynomial.

f_complex coef[] (Input)
Array with ndeg + 1 components containing the coefficients of the polynomial
in increasing order by degree. The degree of the polynomial is

coef [n] zQ + coef [n − 1] zQ�� + … + coef [0]

where n = ndeg.

Return Value

A pointer to the complex array of zeros of the polynomial. To release this space, use
free. If no zeros are computed, then NULL is returned.

Chapter 7: Nonlinear Equations zeros_poly (complex) • 367

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[],
IMSL_RETURN_USER, f_complex root[],
0)

Optional Arguments

IMSL_RETURN_USER, f_complex root[] (Output)
Array with ndeg components containing the zeros of the polynomial.

Description

The function imsl_c_zeros_poly computes the n zeros of the polynomial

p(z) = aQzQ + aQ�� zQ�� + … + a�z + a�

where the coefficients aL for i = 0, 1, …, n are complex and n is the degree of the
polynomial.

The function imsl_c_zeros_poly uses the Jenkins-Traub, three-stage complex
algorithm (Jenkins and Traub 1970, 1972). The zeros are computed one at a time in
roughly increasing order of modulus. As each zero is found, the polynomial is deflated
to one of lower degree.

Examples

Example 1

This example finds the zeros of the third-degree polynomial

p(z) = z� − (3 + 6i) z� − (8 − 12i) z + 10

where z is a complex variable.
#include <imsl.h>

#define NDEG 3

main()
{
 int i;
 f_complex *zeros;
 f_complex coeff[NDEG + 1] = { {10.0, 0.0},
 {-8.0, 12.0},
 {-3.0, -6.0},
 { 1.0, 0.0} };

 zeros = imsl_c_zeros_poly(NDEG, coeff, 0);

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

368 • zeros_fcn IMSL C/Math/Library

Output
 The complex zeros found are
 1 2 3
(1, 1) (1, 2) (1, 3)

Example 2

The same problem is solved with the return option.
#include <imsl.h>

#define NDEG 3

main()
{
 int i;
 f_complex zeros[3];
 f_complex coeff[NDEG + 1] = { {10.0, 0.0},
 {-8.0, 12.0},
 {-3.0, -6.0},
 { 1.0, 0.0} };

 imsl_c_zeros_poly(NDEG, coeff, IMSL_RETURN_USER, zeros, 0);

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

 The complex zeros found are
 1 2 3
(1, 1) (1, 2) (1, 3)

Warning Errors

IMSL_ZERO_COEFF The first several coefficients of the polynomial are
equal to zero. Several of the last roots will be set to
machine infinity to compensate for this problem.

IMSL_FEWER_ZEROS_FOUND Fewer than ndeg zeros were found. The root vector
will contain the value for machine infinity in the
locations that do not contain zeros.

zeros_fcn
Finds the real zeros of a real function using Müller’s method.

Synopsis

#include <imsl.h>

float *imsl_f_zeros_fcn (float fcn(), …, 0)

The type double function is imsl_d_zeros_fcn.

Chapter 7: Nonlinear Equations zeros_fcn • 369

Required Arguments

float fcn (float x) (Input/Output)
User-supplied function to compute the value of the function of which the zeros
will be found, where x is the point at which the function is evaluated.

Return Value

A pointer to the zeros x of the function. To release this space, use free. If no zeros can
be found, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_zeros_fcn (float fcn(),
IMSL_XGUESS, float xguess[],
IMSL_NUM_ROOTS, int nroot,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ETA, float eta,
IMSL_EPS, float eps,
IMSL_MAX_ITN, int max_itn,
IMSL_RETURN_USER, float x[],
IMSL_INFO, int **info,
IMSL_INFO_USER, int info[],
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with nroot components containing the initial guesses for the zeros.
Default: xguess = 0

IMSL_NUM_ROOTS, int nroot (Input)
The number of zeros to be found by imsl_f_zeros_fcn.
Default: nroot = 1

IMSL_ERR_ABS, float err_abs (Input)
First stopping criterion. A zero xL is accepted if |f(xL)| < err_abs.
Default:

err_ abs = ε

where e is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Second stopping criterion. A zero xL is accepted if the relative change of two
successive approximations to xL is less than err_rel.
Default:

err_ rel = ε

where ε is the machine precision

370 • zeros_fcn IMSL C/Math/Library

IMSL_ETA, float eta (Input)
Spread criteria for multiple zeros. If the zero xL has been computed and
|xL − xM| < eps, where xM is a previously computed zero, then the computation
is restarted with a guess equal to xL + eta.
Default: eta = 0.01

IMSL_EPS, float eps (Input)
See eta.
Default:

eps = ε

where ε is the machine precision

IMSL_MAX_ITN, int max_itn (Input)
The maximum allowable number of iterations per zero.
Default: max_itn = 100

IMSL_RETURN_USER, float x[] (Output)
Array with nroot components containing the computed zeros.

IMSL_INFO, int **info (Output)
The address of a pointer info to an array of length nroot containing
convergence information. On return, the necessary space is allocated by
imsl_f_zeros_fcn. The value info[j − 1] is the number of iterations used
in finding the j-th zero when convergence is achieved. If convergence is not
obtained in max_itn iterations, info[j − 1] would be greater than max_itn.

IMSL_INFO_USER, int info[] (Output)
A user-allocated array with nroot components. On return, the value
info[j − 1] is the number of iterations used in finding the j-th zero when
convergence is achieved. If convergence is not obtained in max_itn
iterations, info[j − 1] would be greater than max_itn.

Description

The function imsl_f_zeros_fcn computes n real zeros of a real function f. Given a
user-supplied function f(x) and an n-vector of initial guesses x�, x�, …, xQ, the function
uses Müller’s method to locate n real zeros of f. The function has two convergence
criteria: the first requires that

f xi
mb ge j

be less than err_abs; the second requires that the relative change of any two
successive approximations to an xL be less than err_rel. Here,

xi
mb g

is the m-th approximation to xL. Let err_abs be denoted by ε� and err_rel be
denoted by ε�. The criteria may be stated mathematically as follows:

Chapter 7: Nonlinear Equations zeros_fcn • 371

Criterion 1:

f xi
mb ge j < ε1

Criterion 2:

x x

x

i
m

i
m

i
m

+ −
<

1

2

b g b g

b g ε

“Convergence” is the satisfaction of either criterion.

Examples

Example 1

This example finds a real zero of the third-degree polynomial

f(x) = x� − 3x� + 3x − 1

#include <imsl.h>

float fcn(float x);

main()
{
 float *x;
 /* Solve fcn(x)=0 for x */
 x = imsl_f_zeros_fcn (fcn, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 1, x, 0);
}

float fcn(float x)
{
 return x * x * x - 3.0 * x * x + 3.0 * x - 1.0;
}

Output
 x
 1

Example 2

This example finds three real zeros of the third-degree polynomial

f(x) = x� + 3x� − 4x − 6

with the three initial guesses (4.6, 0.0, −193.3).

#include <imsl.h>

float fcn(float x);

main()

372 • zeros_fcn IMSL C/Math/Library

{
 float xguess[] = {4.6, 0.0, -193.3};
 int nroot = 3;
 float eps = 1.0e-5;
 float err_abs = 1.0e-5;
 float err_rel = 1.0e-5;
 float eta = 1.0e-2;
 int max_itn = 100;
 float *x;
 /* Solve fcn(x)=0 for x */
 x = imsl_f_zeros_fcn (fcn,
 IMSL_XGUESS, xguess,
 IMSL_ERR_REL, err_rel,
 IMSL_ERR_ABS, err_abs,
 IMSL_ETA, eta,
 IMSL_EPS, eps,
 IMSL_NUM_ROOTS, nroot,
 IMSL_MAX_ITN, max_itn,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 3, x, 0);
}

float fcn(float x)
{
 return x * x * x + 3.0 * x * x - 4.0 * x - 6.0;
}

Output
 x
 1 2 3
 1.646 -1.000 -3.646

In the following plot, the initial guesses x = 0.0 and x = 4.6 are marked with hollow
circles, and the solutions are marked with filled circles. The other initial guess
x = −193.3 does not fit on this plot.

Figure 7-1 Plot of x� + 3x� − 4x − 6

Chapter 7: Nonlinear Equations zeros_sys_eqn • 373

Warning Errors

IMSL_NO_CONVERGE_MAX_ITER Failure to converge within max_itn iterations for
at least one of the nroot roots.

zeros_sys_eqn
Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid
algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_zeros_sys_eqn (void fcn(), int n, …, 0)

The type double function is imsl_d_zeros_sys_eqn.

Required Arguments

void fcn (int n, float x[], float f[]) (Input/Output)
User-supplied function to evaluate the system of equations to be solved, where
n is the size of x and f, x is the point at which the functions are evaluated, and
f contains the computed function values at the point x.

int n (Input)
The number of equations to be solved and the number of unknowns.

Return Value

A pointer to the vector x that is a solution of the system of equations. To release this
space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_zeros_sys_eqn (void fcn(), int n,
IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_ERR_REL, float err_rel,
IMSL_MAX_ITN, int max_itn,
IMSL_RETURN_USER, float x[],
IMSL_FNORM, float *fnorm,
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing the initial estimate of the root.
Default: xguess = 0

374 • zeros_sys_eqn IMSL C/Math/Library

IMSL_JACOBIAN, void jacobian (int n, float x[], float fjac[])
(Input/Output)
User-supplied function to evaluate the Jacobian, where n is the number of
components in x, x is the point at which the Jacobian is evaluated, and fjac is
the computed n × n Jacobian matrix at the point x. Note that each derivative
∂fL / ∂xL should be returned in fjac[(i-1)*n+j-1].

IMSL_ERR_REL, float err_rel (Input)
Stopping criterion. The root is accepted if the relative error between two
successive approximations to this root is less than err_rel.
Default:

err_ rel = ε

where ε is the machine precision

IMSL_MAX_ITN, int max_itn (Input)
The maximum allowable number of iterations.
Default: max_itn = 200

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the best estimate of the root found by
f_zeros_sys_eqn.

IMSL_FNORM, float *fnorm (Output)
Scalar with the value

f fn1
2 2+ +K

at the point x.

Description

The function imsl_f_zeros_sys_eqn is based on the MINPACK subroutine
HYBRDJ, which uses a modification of the hybrid algorithm due to M.J.D. Powell.
This algorithm is a variation of Newton’s method, which takes precautions to avoid
undesirable large steps or increasing residuals. For further description, see Moré et al.
(1980).

Examples

Example 1

The following 2 × 2 system of nonlinear equations

f x x x

f x x x

1 1 2

2 1
2

2
2

3

9

b g
b g

= + −

= + −

is solved.

Chapter 7: Nonlinear Equations zeros_sys_eqn • 375

#include <imsl.h>
#include <stdio.h>

#define N 2

void fcn(int, float[], float[]);

void main()
{
 float *x;

 x = imsl_f_zeros_sys_eqn(fcn, N, 0);
 imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
}

void fcn(int n, float x[], float f[])
{
 f[0] = x[0] + x[1] - 3.0;
 f[1] = x[0]*x[0] + x[1] * x[1] - 9.0;
}

Output
The solution to the system is
 1 2
 0 3

Example 2

The following 3 × 3 system of nonlinear equations

f x x e x x

f x e x x

f x x x x

x

x

1 1
1

2 3
2

2
2

1 3
2

3 3 2 2
2

1

2

27

10

2 7

b g b g
b g
b g b g

= + + + −

= + −

= + − + −

−

− /

sin

is solved with the initial guess (4.0, 4.0, 4.0).
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define N 3

void fcn(int, float[], float[]);

void main()
{
 int maxitn = 100;
 float *x, err_rel = 0.0001, fnorm;
 float xguess[N] = {4.0, 4.0, 4.0};

 x = imsl_f_zeros_sys_eqn(fcn, N,
 IMSL_ERR_REL, err_rel,
 IMSL_MAX_ITN, maxitn,
 IMSL_XGUESS, xguess,
 IMSL_FNORM, &fnorm,

376 • zeros_sys_eqn IMSL C/Math/Library

 0);
 imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
 printf("\nwith fnorm = %5.4f\n", fnorm);
}

void fcn(int n, float x[], float f[])
{
 f[0] = x[0] + exp(x[0] - 1.0) + (x[1] + x[2]) * (x[1] + x[2]) - 27.0;
 f[1] = exp(x[1] - 2.0) / x[0] + x[2] * x[2] - 10.0;
 f[2] = x[2] + sin(x[1] - 2.0) + x[1] * x[1] - 7.0;
}

Output
The solution to the system is
 1 2 3
 1 2 3

with fnorm = 0.0000

Warning Errors

IMSL_TOO_MANY_FCN_EVALS The number of function evaluations has exceeded
max_itn. A new initial guess may be tried.

IMSL_NO_BETTER_POINT Argument err_rel is too small. No further
improvement in the approximate solution is
possible.

IMSL_NO_PROGRESS The iteration has not made good progress. A new
initial guess may be tried.

Chapter 8: Optimization Routines • 377

Chapter 8: Optimization

Routines
8.1 Unconstrained Minimization

Univariate Function
Using function values only ..min_uncon 379
Using function and first derivative values min_uncon_deriv 383

Multivariate Function
Using quasi-Newton method.................................... min_uncon_multivar 387

Nonlinear Least Squares
Using Levenberg-Marquardt algorithmnonlin_least_squares 394

8.2 Linearly Constrained Minimization
Dense linear programming .. lin_prog 402
Quadratic programming ..quadratic_prog 406
Minimize a general objective function........................... min_con_gen_lin 410
Nonlinear least-squares
with simple bounds on the variables.................. bounded_least_squares 416

8.3 Nonlinearly Constrained Minimization
Using successive quadratic
programming method ... min_con_nonlin 423

Usage Notes
Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

min
x n

f x
∈R

b g

where f : RQ → R is continuous and has derivatives of all orders required by the
algorithms. The functions for unconstrained minimization are grouped into three
categories: univariate functions, multivariate functions, and nonlinear least-squares
functions.

378 • Usage Notes IMSL C/Math/Library

For the univariate functions, it is assumed that the function is unimodal within the
specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function
imsl_f_min_uncon_multivar. The default is to use a finite-difference
approximation of the gradient of f(x). Here, the gradient is defined to be the vector

∇ =
L
NM

O
QP

f x
f x

x

f x

x

f x

xn
b g b g b g b g∂

∂
∂
∂

∂
∂1 2

, , ,K

However, when the exact gradient can be easily provided, the keyword IMSL_GRAD
should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm.
The most common application of the function is the nonlinear data-fitting problem
where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function
may have many local minima. Try different initial points and intervals to obtain a better
local solution.

Double-precision arithmetic is recommended for the functions when the user provides
only the function values.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min
x n

f x

A x b

∈

=
R

b g
subject to 1 1

where f : RQ → R, A� and A� are coefficient matrices, and b� and b� are vectors. If
f(x) is linear, then the problem is a linear programming problem. If f(x) is quadratic,
the problem is a quadratic programming problem.

The function imsl_f_lin_prog uses a revised simplex method to solve small- to
medium-sized linear programming problems. No sparsity is assumed since the
coefficients are stored in full matrix form.

The function imsl_f_quadratic_prog is designed to solve convex quadratic
programming problems using a dual quadratic programming algorithm. If the given
Hessian is not positive definite, then imsl_f_quadratic_prog modifies it to be
positive definite. In this case, output should be interpreted with care because the
problem has been changed slightly. Here, the Hessian of f(x) is defined to be the
n × n matrix

∇ =
L
N
M
M

O
Q
P
P

2
2

f x
x x

f x
i j

b g b g∂
∂ ∂

Chapter 8: Optimization min_uncon • 379

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

min

, , ,

, ,

x

i

i

n
f x

g x i m

g x i m m

∈

= =

≥ = +

R
b g

b g
b g

subject to for

for

0 1 2

0 1

1

1

K

K

where f : RQ → R and gL : RQ → R, for i = 1, 2, …, m.

The function imsl_f_min_con_nonlin uses a successive quadratic programming
algorithm to solve this problem. A more complete discussion of this algorithm can be
found in the documentation.

min_uncon
Find the minimum point of a smooth function f(x) of a single variable using only
function evaluations.

Synopsis

#include <imsl.h>

float imsl_f_min_uncon (float fcn(), float a, float b, …, 0)

The type double function is imsl_d_min_uncon.

Required Arguments

float fcn(float x) (Input/Output)
User-supplied function to compute the value of the function to be minimized
where x is the point at which the function is evaluated, and fcn is the
computed function value at the point x.

float a (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be
located.

float b (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be
located.

Return Value

The point at which a minimum value of fcn is found. If no value can be computed,
NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

380 • min_uncon IMSL C/Math/Library

float imsl_f_min_uncon (float fcn(), float a, float b,
IMSL_XGUESS, float xguess,
IMSL_STEP, float step,
IMSL_ERR_ABS, float err_abs,
IMSL_MAX_FCN, int max_fcn,
0)

Optional Arguments

IMSL_XGUESS, float xguess (Input)
An initial guess of the minimum point of fcn.
Default: xguess = (a + b)/2

IMSL_STEP, float step (Input)
An order of magnitude estimate of the required change in x.
Default: step = 1.0

IMSL_ERR_ABS, float err_abs (Input)
The required absolute accuracy in the final value of x. On a normal return,
there are points on either side of x within a distance err_abs at which fcn is
no less than fcn at x.
Default: err_abs = 0.0001

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

Description

The function imsl_f_min_uncon uses a safeguarded quadratic interpolation method
to find a minimum point of a univariate function. Both the code and the underlying
algorithm are based on the subroutine ZXLSF written by M.J.D. Powell at the
University of Cambridge.

The function imsl_f_min_uncon finds the least value of a univariate function, f,
which is specified by the function fcn. Other required data are two points a and b that
define an interval for finding a minimum point from an initial estimate of the solution,
x� where x� = xguess. The algorithm begins the search by moving from
x� to x = x� + s where s = step is an estimate of the required change in x and may be
positive or negative. The first two function evaluations indicate the direction to the
minimum point and the search strides out along this direction until a bracket on a
minimum point is found or until x reaches one of the endpoints a or b. During this
stage, the step length increases by a factor of between two and nine per function
evaluation. The factor depends on the position of the minimum point that is predicted
by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we have three points,

x�, x�, x�, with x� < x� < x�, f(x�) ≥ f(x�), and f(x�) ≤ f(x�).

Chapter 8: Optimization min_uncon • 381

There are three main rules in the technique for choosing the new x from these three
points. They are (i) the estimate of the minimum point that is given by quadratic
interpolation of the three function values, (ii) a tolerance parameter η, which depends
on the closeness of f to a quadratic, and (iii) whether x� is near the center of the range
between x� and x� or is relatively close to an end of this range. In outline, the new value
of x is as near as possible to the predicted minimum point, subject to being at least
ε from x�, and subject to being in the longer interval between x� and x�, or x� and x�,
when x� is particularly close to x� or x�.

The algorithm is intended to provide fast convergence when f has a positive and
continuous second derivative at the minimum. Also, the algorithim avoids gross
inefficiencies in pathological cases, such as

f(x) = x + 1.001|x|

The algorithm can automatically make ε large in the pathological cases. In this case, it
is usual for a new value of x to be at the midpoint of the longer interval that is adjacent
to the least-calculated function value. The midpoint strategy is used frequently when
changes to f are dominated by computer rounding errors, which will almost certainly
happen if the user requests an accuracy that is less than the square root of the machine
precision. In such cases, the subroutine claims to have achieved the required accuracy if
it decides that there is a local minimum point within distance δ of x, where
δ = err_abs, even though the rounding errors in f may cause the existence of other
local minimum points nearby. This difficulty is inevitable in minimization routines that
use only function values, so high precision arithmetic is recommended.

Examples

Example 1

A minimum point of f(x) = e[− 5x is found.
#include <imsl.h>
#include <math.h>

float fcn(float);

void main ()
{
 float a = -100.0;
 float b = 100.0;
 float fx, x;

 x = imsl_f_min_uncon (fcn, a, b, 0);
 fx = fcn(x);

 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

float fcn(float x)
{

382 • min_uncon IMSL C/Math/Library

 return exp(x) - 5.0*x;
}

Output
The solution is: 1.6094
The function evaluated at the solution is: -3.0472

Example 2

A minimum point of f(x) = x(x� − 1) + 10 is found with an initial guess x� = 3.
#include <imsl.h>

float fcn(float);

void main ()
{
 int max_fcn = 50;
 float a = -10.0;
 float b = 10.0;
 float xguess = 3.0;
 float step = 0.1;
 float err_abs = 0.001;
 float fx, x;

 x = imsl_f_min_uncon (fcn, a, b,
 IMSL_XGUESS, xguess,
 IMSL_STEP, step,
 IMSL_ERR_ABS, err_abs,
 IMSL_MAX_FCN, max_fcn,
 0);
 fx = fcn(x);

 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

float fcn(float x)
{
 return x*(x*x*x-1.0) + 10.0;
}

Output
The solution is: 0.6298
The function evaluated at the solution is: 9.5275

Warning Errors

IMSL_MIN_AT_BOUND The final value of x is at a bound.

IMSL_NO_MORE_PROGRESS Computer rounding errors prevent further
refinement of x.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

Chapter 8: Optimization min_uncon_deriv • 383

min_uncon_deriv
Finds the minimum point of a smooth function f(x) of a single variable using both
function and first derivative evaluations.

Synopsis

#include <imsl.h>

float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b,
…, 0)

The type double function is imsl_d_min_uncon_deriv.

Required Arguments

float fcn (float x) (Input/Output)
User-supplied function to compute the value of the function to be minimized
where x is the point at which the function is evaluated, and fcn is the
computed function value at the point x.

float grad (float x) (Input/Output)
User-supplied function to compute the first derivative of the function where
x is the point at which the derivative is evaluated, and grad is the computed
value of the derivative at the point x.

float a (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be
located.

float b (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be
located.

Return Value

The point at which a minimum value of fcn is found. If no value can be computed,
NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b,
IMSL_XGUESS, float xguess,
IMSL_ERR_REL, float err_rel,
IMSL_GRAD_TOL, float grad_tol,
IMSL_MAX_FCN, int max_fcn,
IMSL_FVALUE, float *fvalue,
IMSL_GVALUE, float *gvalue,
0)

384 • min_uncon_deriv IMSL C/Math/Library

Optional Arguments

IMSL_XGUESS, float xguess (Input)
An initial guess of the minimum point of fcn.
Default: xguess = (a + b)/2

IMSL_ERR_REL, float err_rel (Input)
The required relative accuracy in the final value of x. This is the first stopping
criterion. On a normal return, the solution x is in an interval that contains a
local minimum and is less than or equal to
max (1.0, |x|) * err_rel. When the given err_rel is less than zero,

ε

is used as err_rel where ε is the machine precision.
Default:

err_ rel = ε

IMSL_GRAD_TOL, float grad_tol (Input)
The derivative tolerance used to decide if the current point is a local minimum.
This is the second stopping criterion. x is returned as a solution when grad is
less than or equal to grad_tol. grad_tol should be nonnegative; otherwise,
zero would be used.
Default:

grad_ tol = ε

where ε is the machine precision

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FVALUE, float *fvalue (Output)
The function value at point x.

IMSL_GVALUE, float *gvalue (Output)
The derivative value at point x.

Description

The function f_min_uncon_deriv uses a descent method with either the secant
method or cubic interpolation to find a minimum point of a univariate function. It starts
with an initial guess and two endpoints. If any of the three points is a local minimum
point and has least function value, the function terminates with a solution. Otherwise,
the point with least function value will be used as the starting point.

From the starting point, say xF, the function value fF = f(xF), the derivative value
gF = g(xF), and a new point xQ defined by xQ = xF − gF are computed. The function
fQ = f(xQ), and the derivative gQ = g(xQ) are then evaluated. If either

Chapter 8: Optimization min_uncon_deriv • 385

fQ ≥ fF or gQ has the opposite sign of gF, then there exists a minimum point between
xF and xQ, and an initial interval is obtained. Otherwise, since xF is kept as the point that
has lowest function value, an interchange between xQ and xF is performed. The secant
method is then used to get a new point

x x g
g g

x xs c c
n c

n c

= −
−
−

F
HG

I
KJ

Let xQ = xV, and repeat this process until an interval containing a minimum is found or
one of the convergence criteria is satisfied. The convergence criteria are as follows:

Criterion 1: |xF − xQ| ≤ εF

Criterion 2: |gF| ≤ εJ

where εF = max {1.0, |xF|} ε, ε is an error tolerance, and εJ is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new
point. Function and derivative are then evaluated at that point, and accordingly a
smaller interval that contains a minimum point is chosen. A safeguarded method is used
to ensure that the interval be reduced by at least a fraction of the previous interval.
Another cubic interpolation is then performed, and this function is repeated until one of
the stopping criteria is met.

Examples

Example 1

In this example, a minimum point of f(x) = e[− 5x is found.
#include <imsl.h>
#include <math.h>

float fcn(float);
float deriv(float);

void main ()
{
 float a = -10.0;
 float b = 10.0;
 float fx, gx, x;

 x = imsl_f_min_uncon_deriv (fcn, deriv, a, b, 0);
 fx = fcn(x);
 gx = deriv(x);

 printf ("The solution is: %7.3f\n", x);
 printf ("The function evaluated at the solution is: %9.3f\n", fx);
 printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}

float fcn(float x)
{
 return exp(x) - 5.0*(x);

386 • min_uncon_deriv IMSL C/Math/Library

}

float deriv (float x)
{
 return exp(x) - 5.0;
}

Output
The solution is: 1.609
The function evaluated at the solution is: -3.047
The derivative evaluated at the solution is: -0.001

Example 2

A minimum point of f(x) = x(x� − 1) + 10 is found with an initial guess x� = 3.
#include <imsl.h>
#include <stdio.h>

float fcn(float);
float deriv(float);

void main ()
{
 int max_fcn = 50;
 float a = -10.0;
 float b = 10.0;
 float xguess = 3.0;
 float fx, gx, x;

 x = imsl_f_min_uncon_deriv (fcn, deriv, a, b,
 IMSL_XGUESS, xguess,
 IMSL_MAX_FCN, max_fcn,
 IMSL_FVALUE, &fx,
 IMSL_GVALUE, &gx,
 0);
 printf ("The solution is: %7.3f\n", x);
 printf ("The function evaluated at the solution is: %7.3f\n", fx);
 printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}

float fcn(float x)
{
 return x*(x*x*x-1) + 10.0;
}

float deriv(float x)
{
 return 4.0*(x*x*x) - 1.0;
}

Output
The solution is: 0.630
The function evaluated at the solution is: 9.528
The derivative evaluated at the solution is: 0.000

Chapter 8: Optimization min_uncon_multivar • 387

Warning Errors

IMSL_MIN_AT_LOWERBOUND The final value of x is at the lower bound.

IMSL_MIN_AT_UPPERBOUND The final value of x is at the upper bound.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

min_uncon_multivar
Minimizes a function f(x) of n variables using a quasi-Newton method.

Synopsis

#include <imsl.h>

float *imsl_f_min_uncon_multivar (float fcn(), int n, …, 0)

The type double function is imsl_d_min_uncon_multivar.

Required Arguments

float fcn (int n, float x[]) (Input/Output)
User-supplied function to evaluate the function to be minimized where n is the
size of x, x is the point at which the function is evaluated, and fcn is the
computed function value at the point x.

int n (Input)
Number of variables.

Return Value

A pointer to the minimum point x of the function. To release this space, use free. If no
solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_min_uncon_multivar (float fcn(), int n,
IMSL_XGUESS, float xguess[],
IMSL_GRAD, void grad (int n, float x[], float g[]),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale,
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,

388 • min_uncon_multivar IMSL C/Math/Library

IMSL_MAX_GRAD, int max_grad,
IMSL_INIT_HESSIAN, int ihess,
IMSL_RETURN_USER, float x[],
IMSL_FVALUE, float *fvalue,
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess of the computed solution.
Default: xguess = 0

IMSL_GRAD, void grad (int n, float x[], float g[]) (Input/Output)
User-supplied function to compute the gradient at the point x where n is the
size of x, x is the point at which the gradient is evaluated, and g is the
computed gradient at the point x.

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables.
xscale is used mainly in scaling the gradient and the distance between two
points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more detail.
Default: xscale[] = 1.0

IMSL_FSCALE, float fscale (Input)
Scalar containing the function scaling. fscale is used mainly in scaling the
gradient. See keyword IMSL_GRAD_TOL for more detail.
Default: fscale = 1.0

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is
calculated as

g x s

f x f

i i i

s

∗ max , /

max ,

1c h
b ge j

where g = ∇ f(x), s = xscale, and fV = fscale.
Default: grad_ tol = ε , ε3 in double where ε is the machine precision.

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two
points x and y is computed as

x y

x s
i i

i i

−
max , /1c h

where s = xscale.
Default: step_tol = ε���

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.
Default: rfcn_tol = max (10���, ε���), max (10���, ε���) in double

Chapter 8: Optimization min_uncon_multivar • 389

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000max (ε�, ε�) where,

ε1
2

1
=

=∑ s ti ii

n b g

ε� = ||s||�, s = xscale, and t = xguess.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function. The default is machine dependent.

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_GRAD, int max_grad (Input)
Maximum number of gradient evaluations.
Default: max_grad = 400

IMSL_INIT_HESSIAN, int ihess (Input)
Hessian initialization parameter. If ihess is zero, the Hessian is initialized to
the identity matrix; otherwise, it is initialized to a diagonal matrix containing

max ,f t f ss ib ge j∗ 2

on the diagonal where t = xguess, fV = fscale, and s = xscale.
Default: ihess = 0

IMSL_RETURN_USER, float x[] (Output)
User-supplied array with n components containing the computed solution.

IMSL_FVALUE, float *fvalue (Output)
Address to store the value of the function at the computed solution.

390 • min_uncon_multivar IMSL C/Math/Library

Description

The function f_min_uncon_multivar uses a quasi-Newton method to find the
minimum of a function f(x) of n variables. The problem is stated as follows:

min
x n

f x
∈R

b g

Given a starting point xF, the search direction is computed according to the formula

d = −B�� gF

where B is a positive definite approximation of the Hessian, and gF is the gradient
evaluated at xF. A line search is then used to find a new point

xQ = xF + λd, λ > 0
such that

f(xQ) ≤ f(xF) + αg7d, α ∈ (0, 0.5)

Finally, the optimality condition ||g(x)|| ≤ ε is checked where ε is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

B B
Bss B

s Bs

yy

y s

T

T

T

T
← − +

where s = xQ − xF and y = gQ − gF. Another search direction is then computed to begin
the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for imsl_f_min_uncon_multivar
occurs when the norm of the gradient is less than the given gradient tolerance
grad_tol. The second stopping criterion for imsl_f_min_uncon_multivar occurs
when the scaled distance between the last two steps is less than the step tolerance
step_tol.

Since by default, a finite-difference method is used to estimate the gradient for some
single precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is
recommended; the keyword IMSL_GRAD should be used to provide more accurate
gradient evaluation.

Chapter 8: Optimization min_uncon_multivar • 391

Figure 8-1 Plot of the Rosenbrock Function

Examples

Example 1

The function

f x x x xb g e j b g= − + −100 12 1
2 2

1
2

is minimized. In the following plot, the solid circle marks the minimum.
#include <stdio.h>
#include <imsl.h>

void main()
{
 int i, n=2;
 float *result, fx;
 static float rosbrk(int, float[]);
 /* Minimize Rosenbrock function */

 result = imsl_f_min_uncon_multivar(rosbrk, n, 0);
 fx = rosbrk(n, result);

 /* Print results */

 printf(" The solution is ");

392 • min_uncon_multivar IMSL C/Math/Library

 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf("\n\n The function value is %8.3f\n", fx);
} /* end of main */

static float rosbrk(int n, float x[])
{
 float f1, f2;

 f1 = x[1] - x[0]*x[0];
 f2 = 1.0 - x[0];

 return 100.0 * f1 * f1 + f2 * f2;
} /* end of function */

Output
The solution is 1.000 1.000

The function value is 0.000

Example 2

The function

f x x x xb g e j b g= − + −100 12 1
2 2

1
2

is minimized with the initial guess x = (−1.2, 1.0). The initial guess is marked with an
open circle in the figure on page 391.

#include <stdio.h>
#include <imsl.h>

void main()
{
 int i, n=2;
 float *result, fx;
 static float rosbrk(int, float[]);
 static void rosgrd(int, float[], float[]);
 static float xguess[2] = {-1.2e0, 1.0e0};
 static float grad_tol = .0001;

/* Minimize Rosenbrock function using initial guesses of -1.2 and 1.0 */

 result = imsl_f_min_uncon_multivar(rosbrk, n, IMSL_XGUESS, xguess,
 IMSL_GRAD, rosgrd,
 IMSL_GRAD_TOL, grad_tol,
 IMSL_FVALUE, &fx, 0);

/* Print results */

 printf(" The solution is ");
 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf("\n\n The function value is %8.3f\n", fx);
} /* End of main */

Chapter 8: Optimization min_uncon_multivar • 393

static float rosbrk(int n, float x[])
{
 float f1, f2;

 f1 = x[1] - x[0]*x[0];
 f2 = 1.0e0 - x[0];

 return 100.0 * f1 * f1 + f2 * f2;
} /* End of function */

static void rosgrd(int n, float x[], float g[])
{

 g[0] = -400.0*(x[1]-x[0]*x[0])*x[0] - 2.0*(1.0-x[0]);
 g[1] = 200.0*(x[1]-x[0]*x[0]);

} /* End of function */

Output
 The solution is 1.000 1.000

 The function value is 0.000

Informational Errors

IMSL_STEP_TOLERANCE Scaled step tolerance satisfied. The current point
may be an approximate local solution, but it is
also possible that the algorithm is making very
slow progress and is not near a solution, or that
step_tol is too big.

Warning Errors

IMSL_REL_FCN_TOLERANCE Relative function convergence—Both the actual
and predicted relative reductions in the function
are less than or equal to the relative function
convergence tolerance rfcn_tol = #.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_TOO_MANY_GRAD_EVAL Maximum number of gradient evaluations
exceeded.

IMSL_UNBOUNDED Five consecutive steps have been taken with the
maximum step length.

IMSL_NO_FURTHER_PROGRESS The last global step failed to locate a lower point
than the current x value.

394 • nonlin_least_squares IMSL C/Math/Library

Fatal Errors

IMSL_FALSE_CONVERGENCE False convergence—The iterates appear to be
converging to a noncritical point. Possibly
incorrect gradient information is used, or the
function is discontinuous, or the other stopping
tolerances are too tight.

nonlin_least_squares
Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt
algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_nonlin_least_squares (void fcn(), int m, int n, …, 0)

The type double function is imsl_d_nonlin_least_squares.

Required Arguments

void fcn (int m, int n, float x[], float f[]) (Input/Output)
User-supplied function to evaluate the function that defines the least-squares
problem where x is a vector of length n at which point the function is
evaluated, and f is a vector of length m containing the function values at point
x.

int m (Input)
Number of functions.

int n (Input)
Number of variables where n ≤ m.

Return Value

A pointer to the solution x of the nonlinear least-squares problem. To release this space,
use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_nonlin_least_squares (void fcn(), int m, int n,
IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,

Chapter 8: Optimization nonlin_least_squares • 395

IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_TOLERANCE, float tolerance,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_RANK, int *rank,
IMSL_JTJ_INVERSE, float **jtj_inv,
IMSL_JTJ_INVERSE_USER, float jtj_inv[],
IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim,
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[],
int fjac_col_dim)(Input)
User-supplied function to compute the Jacobian where x is a vector of length n
at which point the Jacobian is evaluated, fjac is the computed m × n Jacobian
at the point x, and fjac_col_dim is the column dimension of fjac. Note
that each derivative ∂fL/∂xM should be returned in fjac[(i-
1)*fjac_col_dim+j-1]

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables.
xscale is used mainly in scaling the gradient and the distance between two
points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more detail.
Default: xscale[] = 1

IMSL_FSCALE, float fscale[] (Input)
Array with m components containing the diagonal scaling matrix for the
functions. The i-th component of fscale is a positive scalar specifying the
reciprocal magnitude of the i-th component function of the problem.
Default: fscale[] = 1

396 • nonlin_least_squares IMSL C/Math/Library

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is
calculated as

g x s

F x

i i i∗max , /1

1
2 2

2

c h
b g

where g = ∇ F(x), s = xscale, and

F x f xii

mb g b g
2

2

1

2=
=∑

Default:

grad_ tol = ε

ε3 in double where ε is the machine precision

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two
points x and y is computed as

x y

x s

i y

i i

−

max , /1c h

where s = xscale.
Default: step_tol = ε��� where ε is the machine precision.

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.
Default: rfcn_tol = max (10���, ε���), max (10���, ε���) in double, where ε is
the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol (Input)
Absolute function tolerance.
Default: afcn_tol = max (10���, ε�), max (10���, ε�) in double, where ε is the
machine precision.

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max (ε�, ε�) where,

ε ε1
2

1 2 2
= =

=∑ s t si ii

n b g ,

s = xscale, and t = xguess

IMSL_INIT_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled
Cauchy step.

Chapter 8: Optimization nonlin_least_squares • 397

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSL_INTERN_SCALE

Internal variable scaling option. With this option, the values for xscale are set
internally.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence for the computation of
the inverse of J7J. For imsl_f_nonlin_least_squares, if
IMSL_JACOBIAN is specified, then tolerance = 100 × imsl_d_machine(4)
is the default. Otherwise, the square root of imsl_f_machine(4) is the
default. For imsl_d_nonlin_least_ squares, if IMSL_JACOBIAN is
specified, then tolerance = 100 × imsl_machine(4) is the default.
Otherwise, the square root of imsl_d_machine(4) is the default.
See imsl_f_machine (Chapter 12, “Utilities”).

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
The address of a pointer to a real array of length m containing the residuals at
the approximate solution. On return, the necessary space is allocated by
imsl_f_nonlin_least_squares. Typically, float *fvec is declared, and
&fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)
A user-allocated array of size m containing the residuals at the approximate
solution.

IMSL_FJAC, float **fjac (Output)
The address of a pointer to an array of size m × n containing the Jacobian at
the approximate solution. On return, the necessary space is allocated by
imsl_f_nonlin_least_squares. Typically, float *fjac is declared, and
&fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)
A user-allocated array of size m × n containing the Jacobian at the
approximate solution.

398 • nonlin_least_squares IMSL C/Math/Library

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
The column dimension of fjac.
Default: fjac_col_dim = n

IMSL_RANK, int *rank (Output)
The rank of the Jacobian is returned in *rank.

IMSL_JTJ_INVERSE, float **jtj_inv (Output)
The address of a pointer to an array of size n × n containing the inverse matrix of
J7J where the J is the final Jacobian. If J7J is singular, the inverse is a symmetric
g� inverse of J7J. (See imsl_f_lin_sol_nonnegdef in Chapter 1,
“Linear Systems” for a discussion of generalized inverses and definition of the
g� inverse.) On return, the necessary space is allocated by
imsl_f_nonlin_least_squares.

IMSL_JTJ_INVERSE_USER, float jtj_inv[] (Output)
A user-allocated array of size n × n containing the inverse matrix of J7J where
the J is the Jacobian at the solution.

IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim (Input)
The column dimension of jtj_inv.
Default: jtj_inv_col_dim = n

Description

The function imsl_f_nonlin_least_squares is based on the MINPACK routine
LMDER by Moré et al. (1980). It uses a modified Levenberg-Marquardt method to
solve nonlinear least-squares problems. The problem is stated as follows:

min
1

2

1

2
2

1

F x F x f x
T

i

i

m

b g b g b g=
=
∑

where m ≥ n, F : RQ → RP, and fL(x) is the i-th component function of F(x). From a
current point, the algorithm uses the trust region approach,

min
x

c c n c

n c c

n
F x J x x x

x x

∈
+ −

− ≤
R

b g b gb g
2

2
subject to δ

to get a new point xQ, which is computed as

xQ = xF − (J(xF)7 J(xF) + µFI)�� J(xF)7 F(xF)

where µF = 0 if δF ≥ ||(J(xF)7 J(xF))�� J(xF)7 F(xF)||� and µF > 0, otherwise. The value
µF is defined by the function. The vector and matrix F(xF) and J(xF) are the function
values and the Jacobian evaluated at the current point xF, respectively. This function is
repeated until the stopping criteria are satisfied.

The first stopping criterion for imsl_f_nonlin_least_squares occurs when the
norm of the function is less than the absolute function tolerance fcn_tol. The second
stopping criterion occurs when the norm of the scaled gradient is less than the given

Chapter 8: Optimization nonlin_least_squares • 399

gradient tolerance grad_tol. The third stopping criterion for
imsl_f_nonlin_least_squares occurs when the scaled distance between the last
two steps is less than the step tolerance step_tol. For more details, see Levenberg
(1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

Figure 8-2 Plot of the Nonlinear Fit

Examples

Example 1

In this example, the nonlinear data-fitting problem found in Dennis and Schnabel
(1983, p. 225),

min
1

2
1

3
2

f xi

i=
∑ b g

where

f x e yi
t x

i
ib g = −

is solved with the data t = (1, 2, 3) and y = (2, 4, 3).
#include <stdio.h>
#include <imsl.h>
#include <math.h>

void fcn(int, int, float[], float[]);

void main()
{
 int m=3, n=1;
 float *result, fx[3];

400 • nonlin_least_squares IMSL C/Math/Library

 result = imsl_f_nonlin_least_squares(fcn, m, n, 0);
 fcn(m, n, result, fx);

/* Print results */

 imsl_f_write_matrix("The solution is", 1, 1, result, 0);
 imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
} /* End of main */

void fcn(int m, int n, float x[], float f[])
{
 int i;
 float y[3] = {2.0, 4.0, 3.0};
 float t[3] = {1.0, 2.0, 3.0};

 for (i=0; i<m; i++)
 f[i] = exp(x[0]*t[i]) - y[i];

} /* End of function */

Output

 The solution is
 0.4401

 The function values are
 1 2 3
 -0.447 -1.589 0.744

Example 2

In this example, imsl_f_nonlin_least_squares is first invoked to fit the
following nonlinear regression model discussed by Neter et al. (1983, pp. 475−478):

y e ii
x

i
i= + =θ εθ

1
2 1 2 15, , ,K

where the εL’s are independently distributed each normal with mean zero and variance
σ�. The estimate of σ� is then computed as

s
e

J

ii2

2

1

15

15
=

−
=∑

rankb g
where eL is the i-th residual and J is the Jacobian. The estimated asymptotic variance-
covariance matrix of $θ1 and $θ2 is computed as

est. asy. var $θe j e j=
−

s J JT2 1

Finally, the diagonal elements of this matrix are used together with imsl_f_t_inverse_cdf
(Chapter 9) to compute 95% confidence intervals on θ� and θ�.

#include <math.h>
#include <imsl.h>

void exampl(int, int, float[], float[]);

Chapter 8: Optimization nonlin_least_squares • 401

void main()
{
 int i, j, m=15, n=2, rank;
 float a, *result, e[15], jtj_inv[4], s2, dfe;
 char *fmt="%12.5e";
 static float xguess[2] = {60.0, -0.03};
 static float grad_tol = 1.0e-3;

 result = imsl_f_nonlin_least_squares(exampl, m, n,
 IMSL_XGUESS, xguess,
 IMSL_GRAD_TOL, grad_tol,
 IMSL_FVEC_USER, e,
 IMSL_RANK, &rank,
 IMSL_JTJ_INVERSE_USER, jtj_inv,
 0);
 dfe = (float) (m - rank);
 s2 = 0.0;
 for (i=0; i<m; i++)
 s2 += e[i] * e[i];
 s2 = s2 / dfe;
 j = n * n;
 for (i=0; i<j; i++)
 jtj_inv[i] = s2 * jtj_inv[i];
 /* Print results */

 imsl_f_write_matrix (
 "Estimated Asymptotic Variance-Covariance Matrix",
 2, 2, jtj_inv, IMSL_WRITE_FORMAT, fmt, 0);
 printf(" \n 95%% Confidence Intervals \n ");
 printf(" Estimate Lower Limit Upper Limit \n ");
 for (i=0; i<n; i++) {
 j = i * (n+1);
 a = imsl_f_t_inverse_cdf (0.975, dfe) * sqrt(jtj_inv[j]);
 printf(" %10.3f %12.3f %12.3f \n", result[i],
 result[i] - a, result[i] + a);
 }
} /* End of main */

void exampl(int m, int n, float x[], float f[])
{
 int i;
 float y[15] = { 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,
 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0 };
 float xdata[15] = { 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
 34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0 };

 for (i=0; i<m; i++)
 f[i] = y[i] - x[0]*exp(x[1]*xdata[i]);

} /* End of function */

Output

Estimated Asymptotic Variance-Covariance Matrix
 1 2
 1 2.17524e+00 -1.80141e-03

402 • lin_prog IMSL C/Math/Library

 2 -1.80141e-03 2.97216e-06

 95% Confidence Intervals
 Estimate Lower Limit Upper Limit
 58.608 55.422 61.795
 -0.040 -0.043 -0.036

Informational Errors

IMSL_STEP_TOLERANCE Scaled step tolerance satisfied. The current
point may be an approximate local solution,
but it is also possible that the algorithm is
making very slow progress and is not near a
solution, or that step_tol is too big.

Warning Errors

IMSL_LITTLE_FCN_CHANGE Both the actual and predicted relative
reductions in the function are less than or equal
to the relative function tolerance.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian evaluations
exceeded.

IMSL_UNBOUNDED Five consecutive steps have been taken with
the maximum step length.

Fatal Errors

IMSL_FALSE_CONVERGE The iterates appear to be converging to a
noncritical point.

lin_prog
Solves a linear programming problem using the revised simplex algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_lin_prog (int m, int n, float a[], float b[],
float c[], …, 0)

The type double function is imsl_d_lin_prog.

Required Arguments

int m (Input)
Number of constraints.

Chapter 8: Optimization lin_prog • 403

int n (Input)
Number of variables.

float a[] (Input)
Array of size m × n containing a matrix with coefficients of the m constraints.

float b[] (Input)
Array with m components containing the right-hand side of the constraints; if
there are limits on both sides of the constraints, then b contains the lower limit
of the constraints.

float c[] (Input)
Array with n components containing the coefficients of the objective function.

Return Value

A pointer to the solution x of the linear programming problem. To release this space,
use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_prog (int m, int n, float a[], float b[], float c[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_UPPER_LIMIT, float bu[],
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, float xlb[],
IMSL_UPPER_BOUND, float xub[],
IMSL_MAX_ITN, int max_itn,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_UPPER_LIMIT, float bu[] (Input)
Array with m components containing the upper limit of the constraints that
have both the lower and the upper bounds. If no such constraint exists, then
bu is not needed.

IMSL_CONSTR_TYPE, int irtype[] (Input)
Array with m components indicating the types of general constraints in the
matrix a. Let rL = aL�x� + … + aLQxQ. Then, the value of irtype(i) signifies
the following:

404 • lin_prog IMSL C/Math/Library

irtype(i) Constraint

0 rL = bL

1 rL ≤ buL

2 rL ≥ bL

3 bL ≤ rL ≤ buL

Default: irtype = 0

IMSL_LOWER_BOUND, float xlb[] (Input)
Array with n components containing the lower bound on the variables. If there
is no lower bound on a variable, then 10�� should be set as the lower bound.
Default: xlb = 0

IMSL_UPPER_BOUND, float xub[] (Input)
Array with n components containing the upper bound on the variables. If there
is no upper bound on a variable, then −10�� should be set as the upper bound.
Default: xub = ∞

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 10000

IMSL_OBJ, float *obj (Output)
Optimal value of the objective function.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the primal solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with m components containing the dual
solution. On return, the necessary space is allocated by imsl_f_lin_prog.
Typically, float *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array of size m. On return, y contains the dual solution.

Description

The function imsl_f_lin_prog uses a revised simplex method to solve linear
programming problems, i.e., problems of the form

min
x

T
l x u

l u

n
c x b A b

x x x

∈
≤ ≤

≤ ≤
R

subject to

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors
bO, bX, xO, and xX are the lower and upper bounds on the constraints and the variables,
respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or
Murty (1983).

Chapter 8: Optimization lin_prog • 405

Examples

Example 1

The linear programming problem in the standard form

min

.

.

.

.

, , ,

f x x x

x x x

x x x

x x

x x

x ii

b g = − −
+ + =
+ − =

+ =
+ =

≥ =

1 2

1 2 3

1 2 4

1 5

2 6

3

15

05

10

10

0 1 6

subject to

 for K

is solved.
#include <imsl.h>

main()
{
 int m = 4;
 int n = 6;
 float a[] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 0.0, 1.0, 0.0,
 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
 float b[] = {1.5, 0.5, 1.0, 1.0};
 float c[] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
 float *x;
 /* Solve the LP problem */

 x = imsl_f_lin_prog (m, n, a, b, c, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 6, x, 0);
}

Output
 x
 1 2 3 4 5 6
 0.5 1.0 0.0 1.0 0.5 0.0

Example 2

The linear programming problem in the previous example can be formulated as follows:
min f(x) = −x� − 3x�

subject to 0.5 ≤ x� + x� ≤ 1.5
 0 ≤ x� ≤1.0
 0 ≤ x� ≤ 1.0

This problem can be solved more efficiently.
#include <imsl.h>

main()
{
 int irtype[] = {3};
 int m = 1;
 int n = 2;

406 • quadratic_prog IMSL C/Math/Library

 float xub[] = {1.0, 1.0};
 float a[] = {1.0, 1.0};
 float b[] = {0.5};
 float bu[] = {1.5};
 float c[] = {-1.0, -3.0};
 float d[1];
 float obj, *x;
 /* Solve the LP problem */

 x = imsl_f_lin_prog (m, n, a, b, c,
 IMSL_UPPER_LIMIT, bu,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_UPPER_BOUND, xub,
 IMSL_DUAL_USER, d,
 IMSL_OBJ, &obj,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 2, x, 0);
 /* Print d */
 imsl_f_write_matrix ("d", 1, 1, d, 0);
 printf("\n obj = %g \n", obj);
}

Output
 x
 1 2
 0.5 1.0

 d
 -1

 obj = -3.5

Warning Errors

IMSL_PROB_UNBOUNDED The problem is unbounded.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_PROB_INFEASIBLE The problem is infeasible.

Fatal Errors

IMSL_NUMERIC_DIFFICULTY Numerical difficulty occurred. If float is
currently being used, using double may help.

IMSL_BOUNDS_INCONSISTENT The bounds are inconsistent.

quadratic_prog
Solves a quadratic programming problem subject to linear equality or inequality
constraints.

Synopsis

#include <imsl.h>

float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[],
float g[], float h[], …, 0)

Chapter 8: Optimization quadratic_prog • 407

The type double function is imsl_d_quadratic_prog.

Required Arguments

int m (Input)
The number of linear constraints.

int n (Input)
The number of variables.

int meq (Input)
The number of linear equality constraints.

float a[] (Input)
Array of size m × n containing the equality constraints in the first meq rows,
followed by the inequality constraints.

float b[] (Input)
Array with m components containing right-hand sides of the linear constraints.

float g[] (Input)
Array with n components containing the coefficients of the linear term of the
objective function.

float h[] (Input)
Array of size n × n containing the Hessian matrix of the objective function. It
must be symmetric positive definite. If h is not positive definite, the algorithm
attempts to solve the QP problem with h replaced by h + diag* I such that
h + diag* I is positive definite.

Return Value

A pointer to the solution x of the QP problem. To release this space, use free. If no
solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[],
float g[], float h[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_H_COL_DIM, int h_col_dim,

 IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
IMSL_ADD_TO_DIAG_H, float *diag,
IMSL_OBJ, float *obj,
0)

Optional Arguments

IMSL_A_COL_DIM, int a_col_dim (Input)
Leading dimension of A exactly as specified in the dimension statement of the

408 • quadratic_prog IMSL C/Math/Library

calling program.
Default: a_col_dim = n

IMSL_H_COL_DIM, int h_col_dim (Input)
Leading dimension of h exactly as specified in the dimension statement of the
calling program.
Default: n_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with n components containing the
Lagrange multiplier estimates. On return, the necessary space is allocated by
imsl_f_quadratic_prog. Typically, float *y is declared, and &y is used as
an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array with n components. On return, y contains the Lagrange
multiplier estimates.

IMSL_ADD_TO_DIAG_H, float *diag (Output)
Scalar equal to the multiple of the identity matrix added to h to give a positive
definite matrix.

IMSL_OBJ, float *obj (Output)
The optimal object function found.

Description

The function imsl_f_quadratic_prog is based on M.J.D. Powell’s implementation
of the Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP
problems subject to general linear equality/inequality constraints (Goldfarb and Idnani
1983); i.e., problems of the form

min
x

T T
n

g x x Hx

A x b

A x b

∈
+

=
≥

R

1

2

1 1

2 2

subject to

given the vectors b�, b�, and g, and the matrices H, A�, and A�. H is required to be
positive definite. In this case, a unique x solves the problem or the constraints are
inconsistent. If H is not positive definite, a positive definite perturbation of H is used in
place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, then H + αI also should be
used in the definition of the Lagrange multipliers.

Chapter 8: Optimization quadratic_prog • 409

Examples

Example 1

The quadratic programming problem

min f x x x x x x x x x x x

x x x x x

x x x

b g = + + + + − − −
+ + + + =
− − = −

1
2

2
2

3
2

4
2

5
2

2 3 4 5 1

1 2 3 4 5

3 4 5

2 2 2

5

2 2 3

subject to

is solved.
#include <imsl.h>

main()
{
 int m = 2;
 int n = 5;
 int meq = 2;
 float *x;
 float h[] = {2.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 2.0,-2.0, 0.0, 0.0,
 0.0,-2.0, 2.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 2.0,-2.0,
 0.0, 0.0, 0.0,-2.0, 2.0};
 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 1.0,-2.0,-2.0};
 float b[] = {5.0, -3.0};
 float g[] = {-2.0, 0.0, 0.0, 0.0, 0.0};
 /* Solve the QP problem */
 x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 5, x, 0);
}

Output
 x
 1 2 3 4 5
 1 1 1 1 1

Example 2

Another quadratic programming problem

min f x x x x x x x

x x x

b g = + + + − =
− + = −

1
2

2
2

3
2

1 2 3

1 2 3

2 4

2

subject to

is solved.
#include <imsl.h>

float h[] = {2.0, 0.0, 0.0,
 0.0, 2.0, 0.0,
 0.0, 0.0, 2.0};
float a[] = {1.0, 2.0, -1.0,
 1.0, -1.0, 1.0};
float b[] = {4.0, -2.0};
float g[] = {0.0, 0.0, 0.0};
main()

410 • min_con_gen_lin IMSL C/Math/Library

{
 int m = 2;
 int n = 3;
 int meq = 2;
 float obj;
 float d[2];
 float *x;
 /* Solve the QP problem */

 x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h,
 IMSL_OBJ, &obj,
 IMSL_DUAL_USER, d,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 3, x, 0);
 /* Print d */
 imsl_f_write_matrix ("d", 1, 2, d, 0);
 printf("\n obj = %g \n", obj);
}

Output
 x
 1 2 3
 0.286 1.429 -0.857

 d
 1 2
 1.143 -0.571

 obj = 2.85714

Warning Errors

IMSL_NO_MORE_PROGRESS Due to the effect of computer rounding error, a
change in the variables fail to improve the
objective function value; usually the solution is
close to optimum.

Fatal Errors

IMSL_SYSTEM_INCONSISTENT The system of equations is inconsistent. There is
no solution.

min_con_gen_lin
Minimizes a general objective function subject to linear equality/inequality constraints.

Synopsis

#include <imsl.h>

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int neq,
float a[], float b[], float xlb[], float xub[], ..., 0)

Chapter 8: Optimization min_con_gen_lin • 411

The type double function is imsl_d_min_con_gen_lin.

Required Arguments

void fcn (int n, float x[], float *f (Input/Output)
User-supplied function to evaluate the function to be minimized. Argument x
is a vector of length n at which point the function is evaluated, and f contains
the function value at x.

int nvar (Input)
Number of variables.

int ncon (Input)
Number of linear constraints (excluding simple bounds).

int neq (Input)
Number of linear equality constraints.

float a[] (Input)
Array of size ncon × nvar containing the equality constraint gradients in the
first neq rows followed by the inequality constraint gradients.

float b[] (Input)
Array of size ncon containing the right-hand sides of the linear constraints.
Specifically, the constraints on the variables
xL, i = 0, nvar − 1, are aN��x� + … + aN�QYDU��xQYDU�� = bN, k = 0, …,
neq − 1 and aN��x� + … + aN�QYDU��xQYDU�� ≤ bN, k = neq, …, ncon − 1. Note
that the data that define the equality constraints come before the data of the
inequalities.

float xlb[] (Input)
Array of length nvar containing the lower bounds on the variables; choose a
very large negative value if a component should be unbounded below or set
xub[i] = xub[i] to freeze the i-th variable. Specifically, these simple bounds
are xlb[i] ≤ xL, for i = 1, …, nvar.

float xub[] (Input)
Array of length nvar containing the upper bounds on the variables; choose a
very large positive value if a component should be unbounded above.
Specifically, these simple bounds are xL ≤ xub[i], for i = 1, nvar.

Return Value

A pointer to the solution x. To release this space, use free. If no solution can be
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int a,
float b, float xlb[], float xub[],
IMSL_XGUESS, float xguess[],

412 • min_con_gen_lin IMSL C/Math/Library

IMSL_GRADIENT, void gradient(),
IMSL_MAX_FCN, int max_fcn,
IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact,
IMSL_ACTIVE_CONSTRAINT, int **iact,
IMSL_ACTIVE_CONSTRAINT_USER, int *iact_user,
IMSL_LAGRANGE_MULTIPLIERS, float **lagrange,
IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user,
IMSL_TOLERANCE, float tolerance,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_GRADIENT, void gradient (int n, float x[], float g[]) (Input)
User-supplied function to compute the gradient at the point x, where x is a
vector of length n, and g is the vector of length n containing the values of the
gradient of the objective function.

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact (Output)
Final number of active constraints.

IMSL_ACTIVE_CONSTRAINT, int **iact (Output)
The address of a pointer to an int, which on exit, points to an array containing
the nact indices of the final active constraints.

IMSL_ACTIVE_CONSTRAINT_USER, int *iact_user (Output)
A user-supplied array of length at least ncon + 2*nvar containing the indices
of the final active constraints in the first nact locations.

IMSL_LAGRANGE_MULTIPLIERS, float **lagrange (Output)
The address of a pointer, which on exit, points to an array containing the
Lagrange multiplier estimates of the final active constraints in the first nact
locations.

IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user (Output)
A user-supplied array of length at least nvar containing the Lagrange
multiplier estimates of the final active constraints in the first nact locations.

IMSL_TOLERANCE, float tolerance (Input)
The nonnegative tolerance on the first order conditions at the calculated
solution.
Default: tolerance = ε , where ε is machine epsilon

Chapter 8: Optimization min_con_gen_lin • 413

IMSL_OBJ, float *obj (Output)
The value of the objective function.

IMSL_RETURN_USER, float x[] (Output)
User-supplied array with nvar components containing the computed solution.

Description

The function imsl_f_min_con_gen_lin is based on M.J.D. Powell’s TOLMIN,
which solves linearly constrained optimization problems, i.e., problems of the form

min f (x)

subject to
A�x = b�
A�x ≤ b�

xO ≤ x ≤ xX

given the vectors b�, b�, xO ,and xX and the matrices A� and A�.

The algorithm starts by checking the equality constraints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise x�, the
initial guess, to satisfy

A�x = b�

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done
by solving a sequence of quadratic programming subproblems to minimize the sum of
the constraint or bound violations.

Now, for each iteration with a feasible xN, let JN be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as inequality
constraints. Let IN be the set of indices of active constraints. The following quadratic
programming problem

min f x d f x d B dk T k T ke j e j+ ∇ + 1

2
subject to

aMd = 0, j ∈ IN

aMd ≤ 0, j ∈ JN

is solved to get (dN, λN) where aM is a row vector representing either a constraint in
A� or A� or a bound constraint on x. In the latter case, the aM = eL for the bound
constraint xL ≤ (xX)L and aM = −eL for the constraint −xL ≤ (xO)L. Here, eL is a vector with 1
as the i-th component, and zeros elsewhere. Variables λN are the Lagrange multipliers,
and BN is a positive definite approximation to the second derivative ∇� f(xN).

After the search direction dN is obtained, a line search is performed to locate a better
point. The new point xN�� = xN +αNdN has to satisfy the conditions

f(xN + αNdN) ≤ f(xN) + 0.1 αN (dN)7 ∇ f(xN)
and

(d.)7∇ f(xN + αNdN) ≥ 0.7 (dN)7∇ f(x.)

414 • min_con_gen_lin IMSL C/Math/Library

The main idea in forming the set JN is that, if any of the equality constraints restricts the
step-length αN, then its index is not in JN. Therefore, small steps are likely to be
avoided.

Finally, the second derivative approximation B., is updated by the BFGS formula, if
the condition

(d.)7∇ f(xN + αNdN) − ∇ f(xN) > 0

holds. Let xN ← xN��, and start another iteration.

The iteration repeats until the stopping criterion

|| ∇ f(xN) − ANλ.||� ≤ τ

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 1989).

Since a finite difference method is used to approximate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the algorithm to
terminate at a noncritical point. In such cases, high precision arithmetic is
recommended. Also, if the gradient can be easily provided, the option IMSL_GRADIENT
should be used.

Example 1

In this example, the problem

min f x x x x x x x x x x x

x x x x x

x x x

x

b g = + + + + − − −
+ + + + =

− − = −
≤ ≤

1
2

2
2

3
2

4
2

5
2

2 3 4 5 1

1 2 3 4 5

3 4 5

2 2 2

5

2 2 3

0 10

subject to

is solved.
#include <imsl.h>

main()
{
 void fcn(int, float *, float *);
 int neq = 2;
 int ncon = 2;
 int nvar = 5;
 float obj;

 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 1.0, -2.0, -2.0};
 float b[] = {5.0, -3.0};
 float xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};
 float xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};
 float *x;

 x = imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
 0);

 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
}

Chapter 8: Optimization min_con_gen_lin • 415

void fcn(int n, float *x, float *f)
{
 *f = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] + x[4]*x[4]
 - 2.0*x[1]*x[2] - 2.0*x[3] * x[4] - 2.0*x[0];
}

Output
 Solution
 1 2 3 4 5
 1 1 1 1 1

Example 2

In this example, the problem from Schittkowski (1987)
minf(x) = −x�x�x�

subject to −x� − 2x� − 2x� ≤ 0

x� + 2x� + 2x� ≤ 72

0 ≤ x� ≤ 20

0 ≤ x� ≤ 11

0 ≤ x� ≤ 42

is solved with an initial guess of x� = 10, x� = 10 and x� = 10.
#include <imsl.h>

main()
{
 void fcn(int, float *, float *);
 void grad(int, float *, float *);
 int neq = 0;
 int ncon = 2;
 int nvar = 3;
 int lda = 2;
 float obj, x[3];
 float a[] = {-1.0, -2.0, -2.0,
 1.0, 2.0, 2.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {20.0, 11.0, 42.0};
 float xguess[] = {10.0, 10.0, 10.0};
 float b[] = {0.0, 72.0};

 imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
 IMSL_GRADIENT, grad,
 IMSL_XGUESS, xguess,
 IMSL_OBJ, &obj,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
 printf("Objective value = %f\n", obj);
}

void fcn(int n, float *x, float *f)
{

416 • bounded_least_squares IMSL C/Math/Library

 *f = -x[0] * x[1] * x[2];
}

void grad(int n, float *x, float *g)
{
 g[0] = -x[1]*x[2];
 g[1] = -x[0]*x[2];
 g[2] = -x[0]*x[1];
}

Output
 Solution
 1 2 3
 20 11 15

Objective value = -3300.000000

bounded_least_squares
Solves a nonlinear least-squares problem subject to bounds on the variables using a
modified Levenberg-Marquardt algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_bounded_least_squares (void fcn(), int m, int n,
int ibtype, float xlb[], float xub[], ..., 0)

The type double function is imsl_d_bounded_least_squares.

Required Arguments

void fcn (int m, int n, float x[], float f[]) (Input/Output)
User-supplied function to evaluate the function that defines the least-squares
problem where x is a vector of length n at which point the function is
evaluated, and f is a vector of length m containing the function values at point
x.

int m (Input)
Number of functions.

int n (Input)
Number of variables where n ≤ m.

int ibtype (Input)
Scalar indicating the types of bounds on the variables.

ibtype Action

0 User will supply all the bounds.

1 All variables are nonnegative

2 All variables are nonpositive.

Chapter 8: Optimization bounded_least_squares • 417

ibtype Action

3 User supplies only the bounds on 1st variable, all other
variables will have the same bounds

float xlb[] (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input,
if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value
should be set to −10�.

float xub[] (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input,
if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value
should be set to 10�.

Return Value

A pointer to the solution x of the nonlinear least-squares problem. To release this space,
use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_bounded_least_squares (void fcn(), int m, int n,
int ibtype, float xlb[], float xub[],
IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],

418 • bounded_least_squares IMSL C/Math/Library

IMSL_FJAC_COL_DIM, int fjac_col_dim,
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[], int
fjac_col_dim) (Input)
User-supplied function to compute the Jacobian where x is a vector of length n
at which point the Jacobian is evaluated, fjac is the computed m × n Jacobian
at the point x, and fjac_col_dim is the column dimension of fjac. Note
that each derivative fL/xM should be returned in fjac[(i−1)*fjac_col_dim+j
−1].

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables.
Argument xscale is used mainly in scaling the gradient and the distance
between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for
more detail.
Default: xscale[] = 1

IMSL_FSCALE, float fscale[] (Input)
Array with m components containing the diagonal scaling matrix for the
functions. The i-th component of fscale is a positive scalar specifying the
reciprocal magnitude of the i-th component function of the problem.
Default: fscale[] = 1

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is
calculated as

| | max , /

|| ||

g x s

F x

i i i∗ 1

1
2 2

2

c h
b g

where g = ∇ F(x), s = xscale, and

F x f xii

mb g b g
2

2

1

2

=
=∑

Default: grad_tol = ε ε,3 in double where ε is the machine precision

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two
points x, and y, is computed as

| |

max | |, /

x y

x s
i y

i i

−
1b g

Chapter 8: Optimization bounded_least_squares • 419

where s = xscale.
Default: step_tol = ε���, where ε is the machine precision

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.
Default: rfcn_tol = max(10���, ε���), max(10���, ε���) in double, where ε is
the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol (Input)
Absolute function tolerance.
Default: afcn_tol = max(10���, ε�), max(10���, ε�) in double, where ε is the
machine precision

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max(ε�, ε�), where

ε ε1
2

1 2 2= =
=∑ s t si ii

n b g , || ||

for s = xscale and t = xguess.

IMSL_INIT_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled
Cauchy step.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSL_INTERN_SCALE

Internal variable scaling option. With this option, the values for xscale are
set internally.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
The address of a pointer to a real array of length m containing the residuals at
the approximate solution. On return, the necessary space is allocated by

420 • bounded_least_squares IMSL C/Math/Library

imsl_f_bounded_least_squares. Typically, float *fvec is declared, and
&fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)
A user-allocated array of size m containing the residuals at the approximate
solution.

IMSL_FJAC, float **fjac (Output)
The address of a pointer to an array of size m × n containing the Jacobian at
the approximate solution. On return, the necessary space is allocated by
imsl_f_bounded_least_squares. Typically, float *fjac is declared, and
&fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)
A user-allocated array of size m × n containing the Jacobian at the
approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
The column dimension of fjac.
Default: fjac_col_dim = n

Description

The function imsl_f_bounded_least_squares uses a modified Levenberg-
Marquardt method and an active set strategy to solve nonlinear least-squares problems
subject to simple bounds on the variables. The problem is stated as follows:

min
1

2

1

2
1

2
F x F x f x

T
i

i

m

b g b g b g=
=
∑

subject to l ≤ x ≤ u

where m ≥ n, F : RQ → RP, and fL(x) is the i-th component function of F(x). From a
given starting point, an active set IA, which contains the indices of the variables at their
bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the
formula

d = −(J7J + µ I)�� J7F

where µ is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with
respect to the free variables. The search direction for the variables in IA is set to zero.
The trust region approach discussed by Dennis and Schnabel (1983) is used to find the
new point. Finally, the optimality conditions are checked. The conditions are

||g (xL)|| ≤ ε, lL < xL < uL

g (xL) < 0, xL = uL

g (xL) >0, xL = lL

Chapter 8: Optimization bounded_least_squares • 421

where ε is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or
the optimality condition is met for the free variables but not for all variables in IA, the
active set. In the latter case, a variable that violates the optimality condition will be
dropped out of IA. For more detail on the Levenberg-Marquardt method, see
Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see
Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single-
precision calculations, an inaccurate estimate of the Jacobian may cause the algorithm
to terminate at a noncritical point. In such cases, high-precision arithmetic is
recommended. Also, whenever the exact Jacobian can be easily provided, the option
IMSL_JACOBIAN should be used.

Examples

Example 1

In this example, the nonlinear least-squares problem

min

.

1

2

2 05

1 2

2

0

1

0

1

f x

x

x

i
i

b g
=
∑

− ≤ ≤
− ≤ ≤

where
f x x x f x x0 1 0

2
1 010 1() () () ()= − = − and

is solved with an initial guess (−1.2, 1.0).
#include <imsl.h>
#include <math.h>

#define M 2
#define N 2
#define LDFJAC 2

main()
{
 void rosbck(int, int, float *, float *);
 int ibtype = 0;
 float xlb[N] = {-2.0, -1.0};
 float xub[N] = {0.5, 2.0};
 float *x;

 x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb,
 xub, 0);

 printf("x[0] = %f\n", x[0]);
 printf("x[1] = %f\n", x[1]);
}

422 • bounded_least_squares IMSL C/Math/Library

void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}

Output
x[0] = 0.500000
x[1] = 0.250000

Example 2

This example solves the nonlinear least-squares problem

min

.

1

2

2 05

1 2

2

0

1

0

1

f x

x

x

i
i

b g
=
∑

− ≤ ≤
− ≤ ≤

where
f x x x f x x0 1 0

2
1 010 1() () () ()= − = − and

This time, an initial guess (−1.2, 1.0) is supplied, as well as the analytic Jacobian. The
residual at the approximate solution is returned.

#include <imsl.h>
#include <math.h>

#define M 2
#define N 2
#define LDFJAC 2

main()
{
 void rosbck(int, int, float *, float *);
 void jacobian(int, int, float *, float *, int);
 int ibtype = 0;
 float xlb[N] = {-2.0, -1.0};
 float xub[N] = {0.5, 2.0};
 float xguess[N] = {-1.2, 1.0};
 float *fvec;
 float *x;

 x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,
 IMSL_JACOBIAN, jacobian,
 IMSL_XGUESS, xguess,
 IMSL_FVEC, &fvec,
 0);

 printf("x[0] = %f\n", x[0]);
 printf("x[1] = %f\n\n", x[1]);
 printf("fvec[0] = %f\n", fvec[0]);
 printf("fvec[1] = %f\n\n", fvec[1]);
}

Chapter 8: Optimization min_con_nonlin • 423

void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}

void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)
{
 fjac[0] = -20.0*x[0];
 fjac[1] = 10.0;
 fjac[2] = -1.0;
 fjac[3] = 0.0;
}

Output
x[0] = 0.500000
x[1] = 0.250000

fvec[0] = 0.000000
fvec[1] = 0.500000

min_con_nonlin
Solves a general nonlinear programming problem using the successive quadratic
programming algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_min_con_nonlin (void fcn(), int m, int meq, int n,
int ibtype, float xlb[], float xub[], …, 0)

The type double function is imsl_d_min_con_nonlin.

Required Arguments

void fcn (int m, int meq, int n, float x[], int active[], float *f, float g[])
User-supplied function to evaluate the functions at a given point where

int m (Input)
Total number of constraints.

int meq (Input)
Number of equality constraints.

int n (Input)
Number of variables.

float x[] (Input)
Array with n components at which point the function is evaluated.

424 • min_con_nonlin IMSL C/Math/Library

int active[] (Input)
Array with mmax components indicating the active constraints, where
mmax is the maximum of (1, m).

float *f (Output)
The computed function value at the point x.

float g[] (Output)
Array with mmax components containing the values of the constraints
at point x where mmax is the maximum of (1, m).

int m (Input)
Total number of constraints.

int meq (Input)
Number of equality constraints.

int n (Input)
Number of variables.

int ibtype (Input)
Scalar indicating the types of bounds on variables.

ibtype Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on first
variable, all other variables will have the same
bounds.

float xlb[] (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input,
if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value
should be set to −10�.

float xub[] (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input,
if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value
should be set to 10�.

Return Value

A pointer to the solution x of the nonlinear programming problem. To release this
space, use free. If no solution can be computed, then NULL is returned.

Chapter 8: Optimization min_con_nonlin • 425

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_min_con_nonlin (void fcn(), int m, int meq, int n,
int ibtype, float xlb, float xub,
IMSL_XGUESS, float xguess[],
IMSL_GRADIENT, void grad(),
IMSL_ERR_REL, float err_rel,
IMSL_XSCALE, float xscale[],
IMSL_PRINT, int iprint,
IMSL_RETURN_USER, float x[],
IMSL_ITMAX, int itmax,
IMSL_OBJ, float *obj,
0)

Optional Arguments

IMSL_XGUESS, float xguess[] (Input)
Array with n components containing an initial guess of the computed solution.
Default: xguess = 0

IMSL_GRADIENT, void grad (int m, int meq, int mmax, int n, float x[], int
active[], float f, float g[], float df[], float dg[])
User-supplied function to evaluate the gradients at a given point where

int m (Input)
Total number of constraints.

int meq (Input)
Number of equality constraints.

int mmax (Input)
Maximum of (1, m).

int n (Input)
Number of variables.

float x[] (Input)
Array with n components at which point the function is evaluated.

int active[] (Input)
Array with mmax components indicating the active constraints.

float f (Input)
The computed function value at the point x.

float g[] (Input)
Array with mmax components containing the values of the constraints
at point x.

float df[] (Output)
Array with n components containing the values of the gradient of the
objective function.

426 • min_con_nonlin IMSL C/Math/Library

float dg[] (Output)
Array of size mmax × n containing the values of the gradients for the
active constraints.

IMSL_ERR_REL, float err_rel (Input)
The final accuracy.
Default: err_ rel = ε

where ε is the machine precision.

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the reciprocal magnitude of each
variable. The argument xscale is used to choose the finite-difference
stepsize, h. The i-th component of h is computed as

ε∗ ∗max , /x s xi i i1e j b gsign

where ε is the machine precision, s = xscale, and sign (xL) = 1 if
xL ≥ 0; otherwise, sign (xL) = −1.
Default: xscale[] = 1

IMSL_PRINT, int iprint (Input)
Parameter indicating the desired output level.

iprint Action

0 No output printed.

1 Only a final convergence analysis is given.

2 One line of intermediate results is printed for each iteration.

3 Detailed information is printed for each iteration.

Default: iprint = 0

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_ITMAX, int itmax (Input)
Maximum number of iterations allowed.
Default: itmax = 200

IMSL_OBJ, float *obj (Output)
Scalar containing the value of the objective function at the computed solution.

Description

The function f_min_con_nonlin is based on subroutine NLPQL developed by
Schittkowski (1986). It uses a successive quadratic programming method to solve the
general nonlinear programming problem. The problem is stated as follows:

Chapter 8: Optimization min_con_nonlin • 427

min

, , ,

, , ,

x

j e

j e

l u

n
f x

g x j m

g x j m m

x x x

∈

= =

≥ = +

≤ ≤

R
b g

b g
b g

b g

subject to for

 for

0 1

0 1

K

K

where all problem functions are assumed to be continuously differentiable. The method,
based on the iterative formulation and solution of quadratic programming (QP)
subproblems, obtains these subproblems by using a quadratic approximation of the
Lagrangian and by linearizing the constraints. That is,

min

, , ,

, , ,

x

T
k k

T

j k
T

j k e

j k
T

j k e

l k u k

n
d B d f x d

g x d g x j m

g x d g x j m m

x x d x x

∈
+ ∇

∇ + = =

∇ + ≥ = +

− ≤ ≤ −

R

1

2

0 1

0 1

b g

b g b g
b g b g

subject to for

 for

K

K

where BN is a positive definite approximation of the Hessian, and xN is the current
iterate. Let dN be the solution of the subproblem. A line search is used to find a new
point xN��,

xN�� = xN + λdN λ ∈ (0, 1]

such that a “merit function” will have a lower function value at the new point. Here, the
augmented Lagrange function (Schittkowski 1986) is used as the merit function.

When optimality is not achieved, BN is updated according to the modified BFGS
formula (Powell 1978). Note that this algorithm may generate infeasible points during
the solution process. Therefore, if feasibility must be maintained for intermediate
points, this function may not be suitable. For more theoretical and practical details,
see Stoer (1985), Schittkowski (1980, 1983, 1986) and Gill et al. (1985).

Examples

Example 1

The problem

min

/

F x x x

g x x x

g x x x

b g b g b g
b g
b g

= − + −

= − + =

= − − + ≥

1
2

2
2

1 1 2

2 1
2

2
2

2 1

2 1 0

4 1 0

subject to

is solved.
#include <imsl.h>

#define M 2
#define ME 1
#define N 2

428 • min_con_nonlin IMSL C/Math/Library

void main()
{
 int ibtype = 0;
 float *x;
 void fcn(int, int, int, float[], int[], float*, float[]);
 static float xlb[N] = {-1.0e6, -1.0e6};
 static float xub[N] = {1.0e6, 1.0e6};

 x = imsl_f_min_con_nonlin(fcn, M, ME, N, ibtype, xlb, xub, 0);

 imsl_f_write_matrix ("The solution is", 1, N, x, 0);
}

 /* Himmelblau problem 1 */
void fcn(int m, int me, int n, float x[], int active[], float *f,
 float g[])
{
 float tmp1, tmp2;

 tmp1 = x[0] - 2.0e0;
 tmp2 = x[1] - 1.0e0;
 *f = tmp1 * tmp1 + tmp2 * tmp2;

 if (active[0])
 g[0] = x[0] - 2.0e0 * x[1] + 1.0e0;
 if (active[1])
 g[1] = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;
 return;
}

Output
The solution is
 1 2
0.8229 0.9115

Example 2

The previous example is solved with an initial guess (2.0, 2.0).
#include <imsl.h>

#define M 2
#define ME 1
#define N 2

void main()
{
 int ibtype = 0;
 float *x;
 void fcn(int, int, int, float[], int[], float*,
 float[]);
 void grad(int, int, int, int, float[], int[], float,
 float[], float[], float[]);
 static float xguess[N] = {2.0e0, 2.0e0};
 static float xlb[N] = {-1.0e6, -1.0e6};
 static float xub[N] = {1.0e6, 1.0e6};

Chapter 8: Optimization min_con_nonlin • 429

 x = imsl_f_min_con_nonlin(fcn, M, ME, N, ibtype, xlb, xub,
 IMSL_XGUESS, xguess,
 IMSL_GRADIENT, grad,
 0);
 imsl_f_write_matrix ("The solution is", 1, N, x, 0);
}

 /* Himmelblau problem 1 */
void fcn(int m, int me, int n, float x[], int active[],
 float *f, float g[])
{
 float tmp1, tmp2;

 tmp1 = x[0] - 2.0e0;
 tmp2 = x[1] - 1.0e0;
 *f = tmp1 * tmp1 + tmp2 * tmp2;

 if (active[0])
 g[0] = x[0] - 2.0e0 * x[1] + 1.0e0;
 if (active[1])
 g[1] = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;
 return;
}

void grad(int m, int me, int mmax, int n, float x[], int active[],
 float f, float g[], float df[], float dg[])
{

 df[0] = 2.0 * (x[0] - 2.0);
 df[1] = 2.0 * (x[1] - 1.0);

 if (active[0]) {
 dg[0] = 1.0;
 dg[1] = -2.0;
 }
 if (active[1]) {
 dg[2] = -0.5 * x[0];
 dg[3] = -2.0 * x[1];
 }
 return;
}

Output
The solution is
 1 2
0.8229 0.9114

Warning Errors

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

Fatal Errors

IMSL_UPHILL_DIRECTION Search direction uphill.

IMSL_TOO_MANY_LINESEARCH Line search took more than five function calls.

IMSL_NO_PROGRESS_MADE Search direction is close to zero.

430 • min_con_nonlin IMSL C/Math/Library

IMSL_QP_INCONSISTENT The constraints for the QP subproblem are
inconsistent.

Chapter 9: Special Functions Routines • 431

Chapter 9: Special Functions

Routines
9.1 Error and Gamma Functions

Error Functions
Error function ... erf 433
Complementary error function ..erfc 434
Inverse error function..erf_inverse 436
Inverse complementary error functionerfc_inverse 437
Beta function..beta 439
Logarithmic beta function.. log_beta 441
Incomplete beta function.. beta_incomplete 442

Gamma Functions
Gamma function .. gamma 443
Logarithmic gamma function ...log_gamma 445
Incomplete gamma function gamma_incomplete 446

9.2 Bessel Functions
Bessel function J0.. bessel_J0 448
Bessel function J1.. bessel_J1 450
Bessel function Jn...bessel_Jx 451
Bessel function Y0 ...bessel_Y0 453
Bessel function Y1 ...bessel_Y1 455
Bessel function Yn ... bessel_Yx 456
Bessel function I0 ... bessel_I0 458
Bessel function e-|x|I0(x) .. bessel_exp_I0 459
Bessel function I1 ... bessel_I1 460
Bessel function e�_[_I�(x).. bessel_exp_I1 461
Bessel function In ... bessel_Ix 462
Bessel function K0 ...bessel_K0 464
Bessel function exK0(x) ... bessel_exp_K0 466
Bessel function K1 ...bessel_K1 467
Bessel function exK1(x) ... bessel_exp_K1 468
Bessel function Kn ... bessel_Kx 470

432 • Routines IMSL C/Math/Library

9.3 Elliptic Integrals
Complete elliptic integral of the first kind...................... elliptic_integral_K 471
Complete elliptic integral of the second kind................ elliptic_integral_E 472
Carlson’s elliptic integral of the first kindelliptic_integral_RF 473
Carlson’s elliptic integral of the second kind elliptic_integral_RD 474
Carlson’s elliptic integral of the third kind...................elliptic_integral_RJ 476
Special case of Carlson’s elliptic integral elliptic_integral_RC 477

9.4 Fresnel Integrals
Cosine Fresnel integral ... fresnel_integral_C 478
Sine Fresnel integral ... fresnel_integral_S 479

9.5 Airy Functions
Airy function... airy_Ai 480
Airy function of the second find ... airy_Bi 481
Derivative of the Airy function.......................................airy_Ai_derivative 482
Derivative of the Airy function of
the second kind ..airy_Bi_derivative 483

9.6 Kelvin Functions
Kelvin function ber of the first kind, order 0............................kelvin_ber0 484
Kelvin function bei of the first kind, order 0 kelvin_bei0 485
Kelvin function ker of the second kind, order 0kelvin_ker0 486
Kelvin function kei of the second kind, order 0....................... kelvin_kei0 487
Derivative of the Kelvin function ber..................... kelvin_ber0_derivative 488
Derivative of the Kelvin function beikelvin_bei0_derivative 489
Derivative of the Kelvin function ker..................... kelvin_ker0_derivative 490
Derivative of the Kelvin function keikelvin_kei0_derivative 491

9.7 Statistical Functions
Normal (Gaussian) distribution function normal_cdf 492
Inverse normal distribution functionnormal_inverse_cdf 494
Chi-squared distribution function....................................chi_squared_cdf 495
Inverse chi-squared
distribution function .. chi_squared_inverse_cdf 497
F distribution function .. F_cdf 498
Inverse F distribution function ... F_inverse_cdf 501
Student’s t distribution function .. t_cdf 502
Inverse of the Student’s t distribution function.....................t_inverse_cdf 504
Gamma distribution function ... gamma_cdf 505
Binomial distribution function..binomial_cdf 507
Hypergeometric distribution function........................ hypergeometric_cdf 509
Poisson distribution function..poisson_cdf 510
Beta distribution function.. beta_cdf 512
Inverse beta distribution function...................................beta_inverse_cdf 513
Bivariate normal distribution functionbivariate_normal_cdf 514

Chapter 9: Special Functions erf • 433

erf
Evaluates the real error function erf(x).

Synopsis

#include <imsl.h>

float imsl_f_erf (float x)

The type double procedure is imsl_d_erf.

Required Arguments

float x (Input)
Point at which the error function is to be evaluated.

Return Value

The value of the error function erf(x).

Description

The error function erf(x) is defined to be

erf x e dtt
x

b g = −z2 2

0π

All values of x are legal.

Figure 9-1 Plot of erf(x)

434 • erfc IMSL C/Math/Library

Example

Evaluate the error function at x = 1/2.
#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erf(x);
 printf("erf(%f) = %f\n", x, ans);
}

Output
erf(0.500000) = 0.520500

erfc
Evaluates the real complementary error function erfc(x).

Synopsis

#include <imsl.h>

float imsl_f_erfc (float x)

The type double procedure is imsl_d_erfc.

Required Arguments

float x (Input)
Point at which the complementary error function is to be evaluated.

Return Value

The value of the complementary error function erfc(x).

Description

The complementary error function erfc(x) is defined to be

erfc x e dtt

x
b g = −∞z2 2

π

The argument x must not be so large that the result underflows. Approximately,
x should be less than

− ln
/

πse j
1 2

where s is the smallest representable floating-point number.

Chapter 9: Special Functions erfc • 435

Figure 9-2 Plot of erfc(x)

Example

Evaluate the error function at x = 1/2.
#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erfc(x);
 printf("erfc(%f) = %f\n", x, ans);
}

Output
erfc(0.500000) = 0.479500

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW The argument x is so large that the result
underflows.

436 • erf_inverse IMSL C/Math/Library

erf_inverse
Evaluates the real inverse error function erf�� (x).

Synopsis

#include <imsl.h>

float imsl_f_erf_inverse (float x)

The type double procedure is imsl_d_erf_inverse.

Required Arguments

float x (Input)
Point at which the inverse error function is to be evaluated. It must be between
−1 and 1.

Return Value

The value of the inverse error function erf�� (x).

Description

The inverse error function erf�� (x) is such that x = erf (y), where

erf y e dtt
y

b g = −z2 2

0π

The inverse error function is defined only for −1 < x < 1.

Figure 9-3 Plot of erf �� (x)

Chapter 9: Special Functions erfc_inverse • 437

Example

Evaluate the inverse error function at x = 1/2.
#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erf_inverse(x);
 printf("inverse erf(%f) = %f\n", x, ans);
}

Output
inverse erf(0.500000) = 0.476936

Warning Errors

IMSL_LARGE_ABS_ARG_WARN The answer is less accurate than half precision
because |x| is too large.

Fatal Errors

IMSL_REAL_OUT_OF_RANGE The inverse error function is defined only for
−1 < x < 1.

erfc_inverse
Evaluates the real inverse complementary error function erfc�� (x).

Synopsis

#include <imsl.h>

float imsl_f_erfc_inverse (float x)

The type double procedure is imsl_d_erfc_inverse.

Required Arguments

float x (Input)
Point at which the inverse complementary error function is to be evaluated.
The argument x must be in the range 0 < x < 2.

Return Value

The value of the inverse complementary error function.

Description

The inverse complementary error function y = erfc�� (x) is such that x = erfc (y) where

erfc y e dtt

y
b g = −∞z2 2

π

438 • erfc_inverse IMSL C/Math/Library

Figure 9-4 Plot of erfc�� (x)

Example

Evaluate the inverse complementary error function at x = 1/2.
#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erfc_inverse(x);
 printf("inverse erfc(%f) = %f\n", x, ans);
}

Output
inverse erfc(0.500000) = 0.476936

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the result
underflows. Very approximately, x should be less
than

2 4− ε π/ b g

where ε is the machine precision.

Chapter 9: Special Functions beta • 439

Warning Errors

IMSL_LARGE_ARG_WARN |x| should be less than
1 / ε where ε is the machine precision, to
prevent the answer from being less accurate than
half precision.

Fatal Errors

IMSL_ERF_ALGORITHM The algorithm failed to converge.

IMSL_SMALL_ARG_OVERFLOW The computation of
e xx2

erfc
must not overflow.

IMSL_REAL_OUT_OF_RANGE The function is defined only for 0 < x < 2.

beta
Evaluates the real beta function β(x, y).

Synopsis

#include <imsl.h>

float imsl_f_beta (float x, float y)

The type double procedure is imsl_d_beta.

Required Arguments

float x (Input)
Point at which the beta function is to be evaluated. It must be positive.

float y (Input)
Point at which the beta function is to be evaluated. It must be positive.

Return Value

The value of the beta function β (x, y). If no result can be computed, NaN is returned.

Description

The beta function, β (x, y), is defined to be

β x y
x y

x y
t t dtx y

,b g b g b g
b g b g=

+
= −− −zΓ Γ

Γ
1

0

1 1
1

The beta function requires that x > 0 and y > 0. It underflows for large arguments.

440 • beta IMSL C/Math/Library

Figure 9-5 Plot of β(x,y)

Example

Evaluate the beta function β (0.5, 0.2).
#include <imsl.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsl_f_beta(x, y);
 printf("beta(%f,%f) = %f\n", x, y, ans);
}

Output
beta(0.500000,0.200000) = 6.268653

Alert Errors

IMSL_BETA_UNDERFLOW The arguments must not be so large that the result
underflows.

Fatal Errors

IMSL_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the
result overflows.

Chapter 9: Special Functions log_beta • 441

log_beta
Evaluates the logarithm of the real beta function ln β(x, y).

Synopsis

#include <imsl.h>

float imsl_f_log_beta (float x, float y)

The type double procedure is imsl_d_log_beta.

Required Arguments

float x (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be
positive.

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be
positive.

Return Value

The value of the logarithm of the beta function β(x, y).

Description

The beta function, β (x, y), is defined to be

β x y
x y

x y
t t dtx y

,b g b g b g
b g b g=

+
= −− −zΓ Γ

Γ
1

0

1 1
1

and imsl_f_log_beta returns ln β(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for
very large arguments.

Example

Evaluate the log of the beta function ln β(0.5, 0.2).
#include <imsl.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsl_f_log_beta(x, y);
 printf("log beta(%f,%f) = %f\n", x, y, ans);
}

442 • beta_incomplete IMSL C/Math/Library

Output
log beta(0.500000,0.200000) = 1.835562

Warning Errors

IMSL_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one
precision because the expression −x/(x + y)
is too close to −1.

beta_incomplete
Evaluates the real incomplete beta function I[= β[(a,b)/β(a,b).

Synopsis

#include <imsl.h>

float imsl_f_beta_incomplete (float x, float a, float b)

The type double procedure is imsl_d_beta_incomplete.

Required Arguments

float x (Input)
Point at which the incomplete beta function is to be evaluated.

float a (Input)
Point at which the incomplete beta function is to be evaluated.

float b (Input)
Point at which the incomplete beta function is to be evaluated.

Return Value

The value of the incomplete beta function.

Description

The incomplete beta function is defined to be

I a
a

a a
t t dtx

x a
x b

,b
,b

,b ,b
b g b g

b g b g b g= = −− −zβ
β β

1
11

0

1

The incomplete beta function requires that 0 ≤ x ≤ 1, a > 0, and b > 0. It underflows for
sufficiently small x and large a. This underflow is not reported as an error. Instead, the
value zero is returned.

Chapter 9: Special Functions gamma • 443

gamma
Evaluates the real gamma function Γ(x).

Synopsis

#include <imsl.h>

float imsl_f_gamma (float x)

The type double procedure is imsl_d_gamma.

Required Arguments

float x (Input)
Point at which the gamma function is to be evaluated.

Return Value

The value of the gamma function Γ(x).

Description

The gamma function, Γ(x), is defined to be

Γ x t e dtx tb g = −∞ −z 1

0

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows
for x << 0 and overflows for large x. It also overflows for values near negative integers.

Figure 9-6 Plot of Γ(x) and 1/Γ(x)

444 • gamma IMSL C/Math/Library

Example

In this example, Γ(1.5) is computed and printed.
#include <stdio.h>
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_gamma(x);
 printf("Gamma(%f) = %f\n", x, ans);
}

Output
Gamma(1.500000) = 0.886227

Alert Errors

IMSL_SMALL_ARG_UNDERFLOW The argument x must be large enough that Γ(x)
does not underflow. The underflow limit occurs
first for arguments close to large negative half
integers. Even though other arguments away from
these half integers may yield machine-
representable values of Γ(x), such arguments are
considered illegal. Users who need such values
should use the logΓ(x) function
imsl_f_log_gamma.

Warning Errors

IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half
precision because x is too close to a negative
integer.

Fatal Errors

IMSL_ZERO_ARG_OVERFLOW The argument for the gamma function is too close
to zero.

IMSL_NEAR_NEG_INT_FATAL The argument for the function is too close to a
negative integer.

IMSL_LARGE_ARG_OVERFLOW The function overflows because x is too large.

IMSL_CANNOT_FIND_XMIN The algorithm used to find x� failed. This error
should never occur.

IMSL_CANNOT_FIND_XMAX The algorithm used to find x� failed. This error
should never occur.

Chapter 9: Special Functions log_gamma • 445

log_gamma
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|.

Synopsis

#include <imsl.h>

float imsl_f_log_gamma (float x)

The type double procedure is imsl_d_log_gamma.

Required Arguments

float x (Input)
Point at which the logarithm of the absolute value of the gamma function is to
be evaluated.

Return Value

The value of the logarithm of gamma function, log |Γ(x)|.

Description

The logarithm of the absolute value of the gamma function log |Γ(x)| is computed.

Figure 9-7 Plot of log |Γ(x)|

446 • gamma_incomplete IMSL C/Math/Library

Example

In this example, log |Γ(3.5)| is computed and printed.
#include <stdio.h>
#include <imsl.h>

main()
{
 float x = 3.5;
 float ans;

 ans = imsl_f_log_gamma(x);
 printf("log gamma(%f) = %f\n", x, ans);
}

Output
log gamma(3.500000) = 1.200974

Warning Errors

IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half
precision because x is too close to a negative
integer.

Fatal Errors

IMSL_NEGATIVE_INTEGER The argument for the function cannot be a
negative integer.

IMSL_NEAR_NEG_INT_FATAL The argument for the function is too close to
a negative integer.

IMSL_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the result
overflows.

gamma_incomplete
Evaluates the incomplete gamma function γ(a, x).

Synopsis

#include <imsl.h>

float imsl_f_gamma_incomplete (float a, float x)

The type double procedure is imsl_d_gamma_incomplete.

Required Arguments

float a (Input)
Parameter of the incomplete gamma function is to be evaluated. It must be
positive.

Chapter 9: Special Functions gamma_incomplete • 447

float x (Input)
Point at which the incomplete gamma function is to be evaluated. It must be
nonnegative.

Return Value

The value of the incomplete gamma function γ(a, x).

Description

The incomplete gamma function, γ(a, x), is defined to be

γ a x t e dt xa
x

t,b g = >− −z 1

0
0for

The incomplete gamma function is defined only for a > 0. Although γ(a, x) is well
defined for x > −∞, this algorithm does not calculate γ(a, x) for negative x. For large
a and sufficiently large x, γ(a, x) may overflow. γ(a, x) is bounded by Γ (a), and users
may find this bound a useful guide in determining legal values for a.

Figure 9-8 Plot of γ(a, x)

448 • bessel_J0 IMSL C/Math/Library

Example

Evaluate the incomplete gamma function at a = 1 and x = 3.
#include <stdio.h>
#include <imsl.h>

main()
{
 float x = 3.0;
 float a = 1.0;
 float ans;

 ans = imsl_f_gamma_incomplete(a, x);
 printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}

Output
incomplete gamma(1.000000,3.000000) = 0.950213

Fatal Errors

IMSL_NO_CONV_200_TS_TERMS The function did not converge in 200 terms of
Taylor series.

IMSL_NO_CONV_200_CF_TERMS The function did not converge in 200 terms of the
continued fraction.

bessel_J0
Evaluates the real Bessel function of the first kind of order zero J�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_J0 (float x)

The type double procedure is imsl_d_bessel_J0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

J x x d0
0

1b g b g= zπ
θ θ

π
cos sin

If no solution can be computed, NaN is returned.

Chapter 9: Special Functions bessel_J0 • 449

Description

Because the Bessel function J�(x) is oscillatory, its computation becomes inaccurate as
|x| increases.

Figure 9-9 Plot of J0 (x) and J1 (x)

Example

The Bessel function J�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_J0(x);
 printf("J0(%f) = %f\n", x, ans);
}

Output
J0(1.500000) = 0.511828

Warning Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1 / ε
where ε is the machine precision, to prevent the
answer from being less accurate than half
precision.

450 • bessel_J1 IMSL C/Math/Library

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ε where ε is the machine
precision for the answer to have any precision.

bessel_J1
Evaluates the real Bessel function of the first kind of order one J�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_J1 (float x)

The type double procedure is imsl_d_bessel_J1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

J x x d1
0

1b g b g= −zπ
θ θ θ

π
cos sin

If no solution can be computed, NaN is returned.

Description

Because the Bessel function J�(x) is oscillatory, its computation becomes inaccurate as
|x| increases.

Example

The Bessel function J�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_J1(x);
 printf("J1(%f) = %f\n", x, ans);
}

Output
J1(1.500000) = 0.557937

Chapter 9: Special Functions bessel_Jx • 451

Alert Errors

IMSL_SMALL_ABS_ARG_UNDERFLOW To prevent J�(x) from underflowing, either
x must be zero, or |x| > 2s where s is the
smallest representable positive number.

Warning Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1 / ε
where ε is the machine precision to prevent
the answer from being less accurate than half
precision.

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ε where ε is the
machine precision for the answer to have
any precision.

bessel_Jx
Evaluates a sequence of Bessel functions of the first kind with real order and complex
arguments.

Synopsis

#include <imsl.h>

f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Jx.

Required Arguments

float xnu (Input)
The lowest order desired. The argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, …, n − 1.

452 • bessel_Jx IMSL C/Math/Library

Synopsis with Optional Arguments

f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n
IMSL_RETURN_USER, f_complex bessel[],
0)

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function JQ(z) is defined to be

J z z d e dt

z

z t t
ν

π ν

π
θ νθ θ

νπ
π

π

b g b g b g
= − −

<

z z −∞1

2

0 0
cos sin

sin

arg

sinh

for

This function is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987). This code computes JQ(z) from the modified Bessel function IQ(z), using
the following relation, with ρ = eLS��:

Y z
I z z

I z z
ν

ν

ν

ρ ρ π π

ρ ρ π π
b g

b g
e j

=
− < ≤

− < ≤

R
S|
T|

/ / arg

arg /

for

for

2

23 3

Example

In this example, J����Q�� (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.
#include <imsl.h>

main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Jx(xnu, z, n, 0);

 for (i = 0; i < n; i++)
 printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Chapter 9: Special Functions bessel_Y0 • 453

Output
I sub 0.30 ((1.20,0.50)) = (0.774,-0.107)
I sub 1.30 ((1.20,0.50)) = (0.400,0.159)
I sub 2.30 ((1.20,0.50)) = (0.087,0.092)
I sub 3.30 ((1.20,0.50)) = (0.008,0.024)

bessel_Y0
Evaluates the real Bessel function of the second kind of order zero Y�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_Y0 (float x)

The type double procedure is imsl_d_bessel_Y0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

Y x x d0
0

1b g b g= zπ
θ θ

π
sin sin

If no solution can be computed, NaN is returned.

Description

This function is sometimes called the Neumann function, N�(x), or Weber’s function.

Since Y�(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_Y0 is
defined only for x > 0. Because the Bessel function Y�(x) is oscillatory, its computation
becomes inaccurate as x increases.

454 • bessel_Y0 IMSL C/Math/Library

Figure 9-10 Plot of Y0(x) and Y1(x)

Example

The Bessel function Y�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_Y0(x);
 printf("Y0(%f) = %f\n", x, ans);
}

Output
Y0(1.500000) = 0.382449

Warning Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1 / ε where ε is the
machine precision to prevent the answer from
being less accurate than half precision.

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ε where ε is the machine
precision for the answer to have any precision.

Chapter 9: Special Functions bessel_Y1 • 455

bessel_Y1
Evaluates the real Bessel function of the second kind of order one Y�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_Y1 (float x)

The type double procedure is imsl_d_bessel_Y1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

Y x x d1
0

1b g b g= − −zπ
θ θ θ

π
sin sin

If no solution can be computed, then NaN is returned.

Description

This function is sometimes called the Neumann function, N�(x), or Weber’s function.

Since Y�(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_Y1 is
defined only for x > 0. Because the Bessel function Y�(x) is oscillatory, its computation
becomes inaccurate as x increases.

Example

The Bessel function Y�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_Y1(x);
 printf("Y1(%f) = %f\n", x, ans);
}

Output
Y1(1.500000) = -0.412309

456 • bessel_Yx IMSL C/Math/Library

Warning Errors

IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1 / ε where ε is the
machine precision to prevent the answer from
being less accurate than half precision.

Fatal Errors

IMSL_SMALL_ARG_OVERFLOW The argument x must be large enough
(x > max (1/b, s) where s is the smallest
repesentable positive number and b is the largest
repesentable number) that Y�(x) does not
overflow.

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/ε where ε is the machine
precision for the answer to have any precision.

bessel_Yx
Evaluates a sequence of Bessel functions of the second kind with real order and
complex arguments.

Synopsis

#include <imsl.h>

f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Yx.

Required Arguments

float xnu (Input)
The lowest order desired. The argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, …, n − 1.

Synopsis with Optional Arguments

f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n,
IMSL_RETURN_USER, f_complex bessel[],
0)

Chapter 9: Special Functions bessel_Yx • 457

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function YQ(z) is defined to be

Y z z d e e t e dt

z

t t z t
ν

π ν ν

π
θ νθ θ

νπ
π

ν

π

b g b g b g b g= − − +

<

z z −∞1

2

0 0
sin sin

sin
cos

arg

sinh

for

This function is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987). This code computes YQ(z) from the modified Bessel functions IQ(z) and
KQ(z), using the following relation:

Y z e I z e K z zi i
ν

ν π
ν

νπ
νπ

π πb g b g b gb g= − − < ≤+ −1 2 22

2
/ / argfor

Example

In this example, Y����Q�� (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.
#include <imsl.h>

main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Yx(xnu, z, n, 0);

 for (i = 0; i < n; i++)
 printf("Y sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output
Y sub 0.30 ((1.20,0.50)) = (-0.013,0.380)
Y sub 1.30 ((1.20,0.50)) = (-0.716,0.338)
Y sub 2.30 ((1.20,0.50)) = (-1.048,0.795)
Y sub 3.30 ((1.20,0.50)) = (-1.625,3.684)

458 • bessel_I0 IMSL C/Math/Library

bessel_I0
Evaluates the real modified Bessel function of the first kind of order zero I�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_I0 (float x)

The type double procedure is imsl_d_bessel_I0.

Required Arguments

float x (Input)
Point at which the modified Bessel function is to be evaluated.

Return Value

The value of the Bessel function

I x x d0
0

1b g b g= zπ
θ θ

π
cos cos

If no solution can be computed, NaN is returned.

Description

For large |x|, imsl_f_bessel_I0 will overflow.

Figure 9-11 Plot of I0(x) and I1(x)

Chapter 9: Special Functions bessel_exp_I0 • 459

Example

The Bessel function I�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_I0(x);
 printf("I0(%f) = %f\n", x, ans);
}

Output
I0(1.500000) = 1.646723

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL The absolute value of x must not be so large that
e_[_ overflows.

bessel_exp_I0
Evaluates the exponentially scaled modified Bessel function of the first kind of order
zero.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_I0 (float x)

The type double function is imsl_d_bessel_exp_I0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function e�_[_ I�(x). If no solution can be computed, NaN
is returned.

Description

The Bessel function is I�(x) is defined to be

I x x d0
0

1b g b g= zπ
θ θ

π
cos cos

460 • bessel_I1 IMSL C/Math/Library

Example

The expression e����I� (4.5) is computed directly by calling imsl_f_bessel_exp_I0
and indirectly by calling imsl_f_bessel_I0. The absolute difference is printed. For
large x, the internal scaling provided by imsl_f_bessel_exp_I0 avoids overflow
that may occur in imsl_f_bessel_I0.

#include <imsl.h>
#include <math.h>

main()
{
 float x = 4.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_I0 (x);
 printf("(e**(-4.5))I0(4.5) = %f\n\n", ans);

 error = fabs(ans - (exp(-x)*imsl_f_bessel_I0(x)));
 printf ("Error = %e\n", error);
}

Output
(e**(-4.5))I0(4.5) = 0.194198

Error = 4.898845e-09

bessel_I1
Evaluates the real modified Bessel function of the first kind of order one I�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_I1 (float x)

The type double procedure is imsl_d_bessel_I1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the Bessel function

I x e dx
1

0

1b g = zπ
θ θθπ

cos cos

If no solution can be computed, NaN is returned.

Chapter 9: Special Functions bessel_exp_I1 • 461

Description

For large |x|, imsl_f_bessel_I1 will overflow. It will underflow near zero.

Example

The Bessel function I�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_I1(x);
 printf("I1(%f) = %f\n", x, ans);
}

Output
I1(1.500000) = 0.981666

Alert Errors

IMSL_SMALL_ABS_ARG_UNDERFLOW The argument should not be so close to zero
that I�(x) ≈ x/2 underflows.

Fatal Errors

IMSL_LARGE_ABS_ARG_FATAL The absolute value of x must not be so large
that e_[_ overflows.

bessel_exp_I1
Evaluates the exponentially scaled modified Bessel function of the first kind of order
one.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_I1 (float x)

The type double function is imsl_d_bessel_exp_I1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

462 • bessel_Ix IMSL C/Math/Library

Return Value

The value of the scaled Bessel function e�_[_ I�(x). If no solution can be computed, NaN
is returned.

Description

The function imsl_f_bessel_I1 underflows if |x| / 2 underflows. The Bessel function
I�(x) is defined to be

I x e dx
1

0

1b g = zπ
θ θθπ

cos cos

Example

The expression e����I�(4.5) is computed directly by calling imsl_f_bessel_exp_I1
and indirectly by calling imsl_f_bessel_I1. The absolute difference is printed. For
large x, the internal scaling provided by imsl_f_bessel_exp_I1 avoids overflow
that may occur in imsl_f_bessel_I1.

#include <imsl.h>
#include <math.h>

main()
{
 float x = 4.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_I1 (x);
 printf("(e**(-4.5))I1(4.5) = %f\n\n", ans);

 error = fabs(ans - (exp(-x)*imsl_f_bessel_I1(x)));
 printf ("Error = %e\n", error);
}

Output
(e**(-4.5))I1(4.5) = 0.170959

Error = 1.469216e-09

bessel_Ix
Evaluates a sequence of modified Bessel functions of the first kind with real order and
complex arguments.

Synopsis

#include <imsl.h>

f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Ix.

Chapter 9: Special Functions bessel_Ix • 463

Required Arguments

float xnu (Input)
The lowest order desired. Argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, …, n − 1.

Synopsis with Optional Arguments

f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n,
IMSL_RETURN_USER, f_complex bessel[],
0)

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function IQ(z) is defined to be

I z e J ze zi i
ν

νπ
ν

π π πb g e j= − ≤− / / arg2 2

2
for <

For large arguments, z, Temme’s (1975) algorithm is used to find IQ(z). The IQ(z) values
are recurred upward (if this is stable). This involves evaluating a continued fraction. If
this evaluation fails to converge, the answer may not be accurate.

For moderate and small arguments, Miller’s method is used.

Example

In this example, J����Q�� (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.
#include <imsl.h>

main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Ix(xnu, z, n, 0);

464 • bessel_K0 IMSL C/Math/Library

 for (i = 0; i < n; i++)
 printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output
I sub 0.30 ((1.20,0.50)) = (1.163,0.396)
I sub 1.30 ((1.20,0.50)) = (0.447,0.332)
I sub 2.30 ((1.20,0.50)) = (0.082,0.127)
I sub 3.30 ((1.20,0.50)) = (0.006,0.029)

bessel_K0
Evaluates the real modified Bessel function of the third kind of order zero K�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_K0 (float x)

The type double procedure is imsl_d_bessel_K0.

Required Arguments

float x (Input)
Point at which the modified Bessel function is to be evaluated. It must be
positive.

Return Value

The value of the modified Bessel function

K x x t dt0
0

b g b g=
∞z cos sin

If no solution can be computed, then NaN is returned.

Description

Since K�(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_K0 is
defined only for x > 0. For large x, imsl_f_bessel_K0 will underflow.

Chapter 9: Special Functions bessel_K0 • 465

Figure 9-12 Plot of K�(x) and K�(x)

Example

The Bessel function K�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_K0(x);
 printf("K0(%f) = %f\n", x, ans);
}

Output
K0(1.500000) = 0.213806

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the result
(approximately equal to

π / 2x e xb g −

underflows.

466 • bessel_exp_K0 IMSL C/Math/Library

bessel_exp_K0
Evaluates the exponentially scaled modified Bessel function of the third kind of order
zero.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_K0 (float x)

The type double function is imsl_d_bessel_exp_K0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function e[K�(x). If no solution can be computed, NaN is
returned.

Description

The argument must be greater than zero for the result to be defined. The Bessel
function K�(x) is defined to be

K x x t dt0
0

b g b g=
∞z cos sin

Example

The expression
eK0 05(.)

is computed directly by calling imsl_f_bessel_exp_K0 and indirectly by calling
imsl_f_bessel_K0. The absolute difference is printed. For large x, the internal
scaling provided by imsl_f_bessel_exp_K0 avoids underflow that may occur in
imsl_f_bessel_K0.

#include <imsl.h>
#include <math.h>

main()
{
 float x = 0.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_K0 (x);
 printf("(e**0.5)K0(0.5) = %f\n\n", ans);

 error = fabs(ans - (exp(x)*imsl_f_bessel_K0(x)));
 printf ("Error = %e\n", error);
}

Chapter 9: Special Functions bessel_K1 • 467

Output
(e**0.5)K0(0.5) = 1.524109

Error = 2.028498e-08

bessel_K1
Evaluates the real modified Bessel function of the third kind of order one K�(x).

Synopsis

#include <imsl.h>

float imsl_f_bessel_K1 (float x)

The type double procedure is imsl_d_bessel_K1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated. It must be positive.

Return Value

The value of the Bessel function

K x x t t dt1
0

b g b g=
∞z sin sin sin

If no solution can be computed, NaN is returned.

Description

Since K�(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_K1 is
defined only for x > 0. For large x, imsl_f_bessel_K1 will underflow.
See Figure 9-12 for a graph of K�(x).

Example

The Bessel function K�(1.5) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_K1(x);
 printf("K1(%f) = %f\n", x, ans);
}

468 • bessel_exp_K1 IMSL C/Math/Library

Output
K1(1.500000) = 0.277388

Alert Errors

IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the
result, approximately equal to,

π / 2x e xb g −

underflows.

Fatal Errors

IMSL_SMALL_ARG_OVERFLOW The argument x must be large enough
(x > max (1/b, s) where s is the smallest
representable positive number and b is the largest
repesentable number) that K�(x) does not
overflow.

bessel_exp_K1
Evaluates the exponentially scaled modified Bessel function of the third kind of order
one.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_K1 (float x)

The type double function is imsl_d_bessel_exp_K1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value

The value of the scaled Bessel function e[K�(x). If no solution can be computed, NaN is
returned.

Chapter 9: Special Functions bessel_exp_K1 • 469

Description

The result

imsl_ f_ bessel_ exp_ K1 = ≈e K x
x

x
1

1b g

overflows if x is too close to zero. The definition of the Bessel function

K x x t t dt1
0

b g b g=
∞z sin sin sin

Example

The expression

eK1 0 5.b g

is computed directly by calling imsl_f_bessel_exp_K1 and indirectly by calling
imsl_f_bessel_K1. The absolute difference is printed. For large x, the internal
scaling provided by imsl_f_bessel_exp_K1 avoids underflow that may occur in
imsl_f_bessel_K1.

#include <imsl.h>
#include <math.h>

main()
{
 float x = 0.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_K1 (x);
 printf("(e**0.5)K1(0.5) = %f\n\n", ans);

 error = fabs(ans - (exp(x)*imsl_f_bessel_K1(x)));
 printf ("Error = %e\n", error);
}

Output
(e**0.5)K1(0.5) = 2.731010

Error = 5.890406e-08

470 • bessel_Kx IMSL C/Math/Library

bessel_Kx
Evaluates a sequence of modified Bessel functions of the third kind with real order and
complex arguments.

Synopsis

#include <imsl.h>

f_complex *imsl_c_bessel_Kx (float xnu, f_complex z, int n, …, 0)

The type d_complex function is imsl_z_bessel_Jx.

Required Arguments

float xnu (Input)
The lowest order desired. The argument xnu must be greater than −1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, …, n − 1.

Synopsis with Optional Arguments

f_complex *imsl_c_bessel_Kx (float xnu, f_complex z,
int IMSL_RETURN_USER, f_complex bessel[],
0)

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function KQ(z) is defined to be

K z e iJ iz Y iz zi
ν

νπ
ν ν

π π πb g b g b g= − − < ≤
2 2

2/ argfor

This function is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987).

For moderate or large arguments, z, Temme’s (1975) algorithm is used to find KQ(z).
This involves evaluating a continued fraction. If this evaluation fails to converge, the
answer may not be accurate. For small z, a Neumann series is used to compute KQ(z).
Upward recurrence of the KQ(z) is always stable.

Chapter 9: Special Functions elliptic_integral_K • 471

Example

In this example, K����Q�� (1.2 + 0.5i), ν = 1, …, 4 is computed and printed.
#include <imsl.h>

main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Kx(xnu, z, n, 0);

 for (i = 0; i < n; i++)
 printf("K sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output
K sub 0.30 ((1.20,0.50)) = (0.246,-0.200)
K sub 1.30 ((1.20,0.50)) = (0.336,-0.362)
K sub 2.30 ((1.20,0.50)) = (0.587,-1.126)
K sub 3.30 ((1.20,0.50)) = (0.719,-4.839)

elliptic_integral_K
Evaluates the complete elliptic integral of the kind K(x).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_K (float x)

The type double function is imsl_d_elliptic_integral_K.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The complete elliptic integral K(x).

Description

The complete elliptic integral of the first kind is defined to be

K x
d

x
xb g =

−
≤ <z θ

θ

π

1
0 1

2 1 20

2

sin
/

/
 for

472 • elliptic_integral_E IMSL C/Math/Library

The argument x must satisfy 0 ≤ x < 1; otherwise, imsl_f_elliptic_integral_K
returns imsl_f_machine(2), the largest representable floating-point number.

The function K(x) is computed using the routine imsl_f_elliptic_integral_RF (page 473)
and the relation K(x) = R)(0, 1 − x, 1).

Example

The integral K(0) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.0;
 float ans;

 x = imsl_f_elliptic_integral_K (x);

 printf ("K(0.0) = %f\n", x);
}

Output
K(0.0) = 1.570796

elliptic_integral_E
Evaluates the complete elliptic integral of the second kind E(x).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_E (float x)

The type double function is imsl_d_elliptic_integral_E.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The complete elliptic integral E(x).

Description

The complete elliptic integral of the second kind is defined to be

E x x d xb g = − ≤ <z 1 0 12 1 2

0

2
sin

//
θ θ

π
 for

Chapter 9: Special Functions elliptic_integral_RF • 473

The argument x must satisfy 0 ≤ x < 1; otherwise, imsl_f_elliptic_integral_E
returns imsl_f_machine(2), the largest representable floating-point number.

The function E(x) is computed using the routine imsl_f_elliptic_integral_RF
(page 473) and imsl_f_elliptic_integral_RD (page 474). The computation is
done using the relation

E x R x
x

R xF Db g b g b g= − − −0 1 1
3

0 1 1, , , ,

Example

The integral E(0.33) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.33;
 float ans;

 x = imsl_f_elliptic_integral_E (x);

 printf ("E(0.33) = %f\n", x);
}

Output
E(0.33) = 1.431832

elliptic_integral_RF
Evaluates Carlson’s elliptic integral of the first kind R)(x, y, z).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RF (float x, float y, float z)

The type double function is imsl_d_elliptic_integral_RF.

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be nonnegative.

474 • elliptic_integral_RD IMSL C/Math/Library

Return Value

The complete elliptic integral R)(x, y, z)

Description

Carlson’s elliptic integral of the first kind is defined to be

R x y z
dt

t x t y t z
F , ,

/b g
b gb gb g

=
+ + +

∞

z1

2 1 2
0

The arguments must be nonnegative and less than or equal to b/5. In addition,
x + y, x + z, and y + z must be greater than or equal to 5s. Should any of these
conditions fail, imsl_f_elliptic_integral_RF is set to b. Here,
b = imsl_f_machine(2) is the largest and s = imsl_f_machine(1) is the smallest
representable number.

The function imsl_f_elliptic_integral_RF is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Example

The integral R)(0, 1, 2) is computed.
#include <imsl.h>

main()
{
 float x = 0.0;
 float y = 1.0;
 float z = 2.0;
 float ans;

 x = imsl_f_elliptic_integral_RF (x, y, z);

 printf ("RF(0, 1, 2) = %f\n", x);
}

Output
RF(0, 1, 2) = 1.311029

elliptic_integral_RD
Evaluates Carlson’s elliptic integral of the second kind R'(x, y, z).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RD (float x, float y, float z)

The type double function is imsl_d_elliptic_integral_RD.

Chapter 9: Special Functions elliptic_integral_RD • 475

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be positive.

Return Value

The complete elliptic integral R'(x, y, z)

Description

Carlson’s elliptic integral of the first kind is define to be

R x y z
dt

t x t y t z
D , ,

/b g
b gb gb g

=
+ + +

∞

z3

2 3 1 2
0

The arguments must be nonnegative and less than or equal to 0.69(−lnε)���s���� where
ε = imsl_f_machine(4) is the machine precision, s = imsl_f_machine(1) is the
smallest representable positive number. Furthermore, x + y and z must be greater than
max{3s���, 3/b���}, where b = imsl_f_machine(2) is the largest floating point number.
If any of these conditions are false, then imsl_f_elliptic_integral_RD returns b.

The function imsl_f_elliptic_integral_RD is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Example

The integral R'(0, 2, 1) is computed.
#include <imsl.h>

main()
{
 float x = 0.0;
 float y = 2.0;
 float z = 1.0;
 float ans;

 x = imsl_f_elliptic_integral_RD (x, y, z);

 printf ("RD(0, 2, 1) = %f\n", x);
}

Output
RD(0, 2, 1) = 1.797210

476 • elliptic_integral_RJ IMSL C/Math/Library

elliptic_integral_RJ
Evaluates Carlson’s elliptic integral of the third kind R- (x, y, z, ρ)

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RJ (float x, float y, float z, float rho)

The type double function is imsl_d_elliptic_integral_RJ.

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be positive.

float rho (Input)
Fourth variable of the incomplete elliptic integral. It must be positive.

Return Value

The complete elliptic integral R- (x, y, z, ρ)

Description

Carlson’s elliptic integral of the third kind is defined to be

R x y z
dt

t x t y t z t
J , , ,

/
ρ

ρ
b g

b gb gb gb g
=

+ + + +

∞

z3

2 2 1 2
0

The arguments must be nonnegative. In addition, x + y, x + z, y + z and ρ must be
greater than or equal to (5s)��� and less than or equal to 0.3(b/5)���, where
s = imsl_f_machine(1) is the smallest representable floating-point number. Should
any of these conditions fail, imsl_f_elliptic_integral_RJ is set to
b = imsl_f_machine(2), the largest floating-point number.

The function imsl_f_elliptic_integral_RJ is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Chapter 9: Special Functions elliptic_integral_RC • 477

Example

The integral R- (2, 3, 4, 5) is computed.
#include <imsl.h>

main()
{
 float x = 2.0;
 float y = 3.0;
 float z = 4.0;
 float rho = 5.0;
 float ans;

 x = imsl_f_elliptic_integral_RJ (x, y, z, rho);

 printf ("RJ(2, 3, 4, 5) = %f\n", x);
}

Output
RJ(2, 3, 4, 5) = 0.142976

elliptic_integral_RC
Evaluates an elementary integral from which inverse circular functions, logarithms and
inverse hyperbolic functions can be computed.

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RC (float x, float y)

The type double function is imsl_d_elliptic_integral_RC.

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative and
must satisfy the conditions given below.

float y (Input)
Second variable of the incomplete elliptic integral. It must be positive and
must satisfy the conditions given below.

Return Value

The elliptic integral R& (x, y).

478 • fresnel_integral_C IMSL C/Math/Library

Description

Carlson’s elliptic integral of the third kind is defined to be

R x y
dt

t x t y
C ,

/b g
b gb g

=
+ +

∞

z1

2 2 1 2
0

The argument x must be nonnegative, y must be positive, and x + y must be less than or
equal to b/5 and greater than or equal to 5s. If any of these conditions are false, the
imsl_f_elliptic_integral_RC is set to b. Here,
b = imsl_f_machine(2) is the largest and s = imsl_f_machine(1) is the smallest
representable floating-point number.

The function imsl_f_elliptic_integral_RC is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Example

The integral R& (2.25, 2) is computed.
#include <imsl.h>

main()
{
 float x = 2.25;
 float y = 2.0;
 float ans;

 x = imsl_f_elliptic_integral_RC (x, y);

 printf ("RC(2.25, 2.0) = %f\n", x);
}

Output
RC(2.25, 2.0) = 0.693147

fresnel_integral_C
Evaluates the cosine Fresnel integral.

Synopsis

#include <imsl.h>

float imsl_f_fresnel_integral_C (float x)

The type double function is imsl_d_fresnel_integral_C.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Chapter 9: Special Functions fresnel_integral_S • 479

Return Value

The cosine Fresnel integral.

Description

The cosine Fresnel integral is defined to be

C x t dt
x

() cos()= z π
2

0

2

Example

The Fresnel integral C(1.75) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.75;
 float ans;

 x = imsl_f_fresnel_integral_C (x);

 printf ("C(1.75) = %f\n", x);
}

Output
C(1.75) = 0.321935

fresnel_integral_S
Evaluates the sine Fresnel integral.

Synopsis

#include <imsl.h>

float imsl_f_fresnel_integral_S (float x)

The type double function is imsl_d_fresnel_integral_S.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The sine Fresnel integral.

480 • airy_Ai IMSL C/Math/Library

Description

The sine Fresnel integral is defined to be

S x t dt
x

() sin()= z π
2

0

2

Example

The Fresnel integral S(1.75) is evaluated.
#include <imsl.h>

main()
{
 float x = 1.75;
 float ans;

 x = imsl_f_fresnel_integral_S (x);

 printf ("S(1.75) = %f\n", x);
}

Output
S(1.75) = 0.499385

airy_Ai
Evaluates the Airy function.

Synopsis

#include <imsl.h>

float imsl_f_airy_Ai (float x)

The type double function is imsl_d_airy_Ai.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The Airy function evaluated at x, Ai(x).

Description

The airy function Ai(x) is defined to be

Chapter 9: Special Functions airy_Bi • 481

Ai x xt t dt
x

K x() cos() ()/
/= + =

∞

z1 1

3 3

2

3
3

2
0

1 3
3 2

π π

The Bessel function KY(x) is defined on page 470.

If x < −1.31ε����, then the answer will have no precision. If x < −1.31ε����, the answer
will be less accurate than half precision. Here ε = imsl_f_machine(4) is the machine
precision.

Finally, x should be less than x� so the answer does not underflow. Very
approximately, x� = {−1.5lns}���, where s = imsl_f_machine(1), the smallest
representable positive number.

Example

In this example, Ai(−4.9) is evaluated.
#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Ai (x);

 printf ("Ai(-4.9) = %f\n", x);
}

Output
Ai(-4.9) = 0.374536

airy_Bi
Evaluates the Airy function of the second kind.

Synopsis

#include <imsl.h>

float imsl_f_airy_Bi (float x)

The type double function is imsl_d_airy_Bi.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The Airy function of the second kind evaluated at x, Bi(x).

482 • airy_Ai_derivative IMSL C/Math/Library

Description

The airy function Bi(x) is defined to be

Bi() exp() sin()x xt t dt xt t dt= − + +
∞ ∞

z z1 1

3

1 1

3
3

0

3

0
π π

It can also be expressed in terms of modified Bessel functions of the first kind, IY(x),
and Bessel functions of the first kind JY(x) (see bessel_Ix and bessel_Jx:

Bi for () () ()/
/

/
/x

x
I x I x x= +L
NM

O
QP >−3

2

3

2

3
01 3

3 2
1 3

3 2

and

Bi for () (| |) (| |)/
/

/
/x

x
J x J x x= − −L
NM

O
QP <−3

2

3

2

3
01 3

3 2
1 3

3 2

Let ε = imsl_f_machine(4), the machine precision. If x < −1.31ε����, then the answer
will have no precision. If x < −1.31ε����, the answer will be less accurate than half
precision. In addition, x should not be so large that exp[(2/3)x���] overflows.

Example

In this example, Bi(−4.9) is evaluated.
#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Bi (x);

 printf ("Bi(-4.9) = %f\n", x);
}

Output
Bi(-4.9) = -0.057747

airy_Ai_derivative
Evaluates the derivative of the Airy function.

Synopsis

#include <imsl.h>

float imsl_f_airy_Ai_derivative (float x)

Chapter 9: Special Functions airy_Bi_derivative • 483

The type double function is imsl_d_airy_Ai_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The derivative of the Airy function.

Description

The airy function Ai′(x) is defined to be the derivative of the Airy function,
Ai(x) (see page 480). If x < −1.31ε����, then the answer will have no precision. If
x < −1.31ε����, the answer will be less accurate than half precision. Here
ε = imsl_f_machine(4) is the machine precision. Finally, x should be less than
x� so that the answer does not underflow. Very approximately, x� = {−1.51lns},
where s = imsl_f_machine(1), the smallest representable positive number.

Example

In this example, Ai′(−4.9) is evaluated.
#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Ai_derivative (x);

 printf ("Ai’(-4.9) = %f\n", x);
}

Output
Ai’(-4.9) = 0.146958

airy_Bi_derivative
Evaluates the derivative of the Airy function of the second kind.

Synopsis

#include <imsl.h>

float imsl_f_airy_Bi_derivative (float x)

The type double function is imsl_d_airy_Bi_derivative .

484 • kelvin_ber0 IMSL C/Math/Library

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The derivative of the Airy function of the second kind.

Description

The airy function Bi′(x) is defined to be the derivative of the Airy function of the
second kind, Bi(x) (see page 481). If x < −1.31ε����, then the answer will have no
precision. If x < −1.31ε����, the answer will be less accurate than half precision. Here
ε = imsl_f_machine(4) is the machine precision. In addition, x should not be so large
that exp[(2/3)x���] overflows.

Example

In this example, Bi′(−4.9) is evaluated.
#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Bi_derivative (x);

 printf ("Bi’(-4.9) = %f\n", x);
}

Output
Bi’(-4.9) = 0.827219

kelvin_ber0
Evaluates the Kelvin function of the first kind, ber , of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ber0 (float x)

The type double function is imsl_d_kelvin_ber0 .

Required Arguments

float x (Input)
Argument for which the function value is desired.

Chapter 9: Special Functions kelvin_bei0 • 485

Return Value

The Kelvin function of the first kind, ber, of order zero evaluated at x.

Description

The Kelvin function ber�(x) is defined to be ℜJ�(xe�SL��). The Bessel function J�(x) is
defined

J x x d0
0

1b g b g= zπ
θ θ

π
cos sin

The function imsl_f_kelvin_ber0 is based on the work of Burgoyne (1963).

Example

In this example, ber� (0.4) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_ber0 (x);

 printf ("ber0(0.4) = %f\n", x);
}

Output
ber0(0.4) = 0.999600

kelvin_bei0
Evaluates the Kelvin function of the first kind, bei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_bei0 (float x)

The type double function is imsl_d_kelvin_bei0.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The Kelvin function of the first kind, bei, of order zero evaluated at x.

486 • kelvin_ker0 IMSL C/Math/Library

Description

The Kelvin function bie�(x) is defined to be ℑJ�(xe�SL��). The Bessel function J�(x) is
defined

J x x d0
0

1b g b g= zπ
θ θ

π
cos sin

The function imsl_f_kelvin_bei0 is based on the work of Burgoyne (1963).

In imsl_f_kelvin_bei0, x must be less than 119.

Example

In this example, bei�(0.4) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_bei0 (x);

 printf ("bei0(0.4) = %f\n", x);
}

Output
bei0(0.4) = 0.039998

kelvin_ker0
Evaluates the Kelvin function of the second kind, ker, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ker0 (float x)

The type double function is imsl_d_kelvin_ker0.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The Kelvin function of the second kind, ker, of order zero evaluated at x.

Chapter 9: Special Functions kelvin_kei0 • 487

Description

The modified Kelvin function ker�(x) is defined to be ℜK�(xeSL��). The Bessel function
K�(x) is defined

K x x t dt0
0

b g b g=
∞z cos sin

The function imsl_f_kelvin_ker0 is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, then zero is returned.

Example

In this example, ker�(0.4) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_ker0 (x);

 printf ("ker0(0.4) = %f\n", x);
}

Output
ker0(0.4) = 1.062624

kelvin_kei0
Evaluates the Kelvin function of the second kind, kei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_kei0 (float x)

The type double function is imsl_d_kelvin_kei0.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The Kelvin function of the second kind, kei, of order zero evaluated at x.

488 • kelvin_ber0_derivative IMSL C/Math/Library

Description

The modified Kelvin function kei�(x) is defined to be ℑK�(xeSL��). The Bessel function
K�(x) is defined

K x x t dt0
0

b g b g=
∞z cos sin

The function imsl_f_kelvin_kei0 is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, zero is returned.

Example

In this example, kei�(0.4) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_kei0 (x);

 printf ("kei0(0.4) = %f\n", x);
}

Output
kei0(0.4) = -0.703800

kelvin_ber0_derivative
Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ber0_derivative (float x)

The type double function is imsl_d_kelvin_ber0_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the first kind, ber, of order zero evaluated at x.

Chapter 9: Special Functions kelvin_bei0_derivative • 489

Description

The function ber�′(x) is defined to be

d

dx
xber0()

The function imsl_f_kelvin_ber0_derivative is based on the work of Burgoyne
(1963).

If |x| > 119, NaN is returned.

Example

In this example, ber�′ (0.6) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_ber0_derivative (x);

 printf ("ber0’(0.6) = %f\n", x);
}

Output
ber0’(0.6) = -0.013498

kelvin_bei0_derivative
Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_bei0_derivative (float x)

The type double function is imsl_d_kelvin_bei0_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the first kind, bei, of order zero evaluated at x.

490 • kelvin_ker0_derivative IMSL C/Math/Library

Description

The function bei�′(x) is defined to be

d

dx
xbei0()

The function imsl_f_kelvin_bei0_derivative is based on the work of Burgoyne
(1963).

If |x| > 119, NaN is returned.

Example

In this example, bei�′(0.6) is evaluated.
#include <imsl.h>
main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_bei0_derivative (x);

 printf ("bei0’(0.6) = %f\n", x);
}

Output
bei0’(0.6) = 0.299798

kelvin_ker0_derivative
Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ker0_derivative (float x)

The type double function is imsl_d_kelvin_ker0_derivative .

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the second kind, ker, of order zero evaluated at
x.

Chapter 9: Special Functions kelvin_kei0_derivative • 491

Description

The function ker�′(x) is defined to be

d

dx
xker0()

The function imsl_f_kelvin_ker0_derivative is based on the work of Burgoyne
(1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, zero is returned.

Example

In this example, ker�′(0.6) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_ker0_derivative (x);

 printf ("ker0’(0.6) = %f\n", x);
}

Output
ker0’(0.6) = -1.456538

kelvin_kei0_derivative
Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_kei0_derivative (float x)

The type double function is imsl_d_kelvin_kei0_derivative .

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value

The derivative of the Kelvin function of the second kind, kei , of order zero evaluated
at x.

492 • normal_cdf IMSL C/Math/Library

Description

The function kei�′(x) is defined to be

d

dx
xkei0()

The function imsl_f_kelvin_kei0_derivative is based on the work of Burgoyne
(1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, zero is returned.

Example

In this example, kei�′(0.6) is evaluated.
#include <imsl.h>

main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_kei0_derivative (x);

 printf ("kei0’(0.6) = %f\n", x);
}

Output
kei0’(0.6) = 0.348164

normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis

#include <imsl.h>

float imsl_f_normal_cdf (float x)

The type double function is imsl_d_normal_cdf .

Required Arguments

float x (Input)
Point at which the normal distribution function is to be evaluated.

Return Value

The probability that a normal random variable takes a value less than or equal to x.

Chapter 9: Special Functions normal_cdf • 493

Description

The function imsl_f_normal_cdf evaluates the distribution function, Φ, of a
standard normal (Gaussian) random variable; that is,

Φ x e dtt
x

b g = −

−∞z1

2

2 2

π
/

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x.

The standard normal distribution (for which imsl_f_normal_cdf is the distribution
function) has mean of 0 and variance of 1. The probability that a normal random
variable with mean µ and variance σ� is less than y is given by imsl_f_normal_cdf
evaluated at (y − µ)/σ.

Φ(x) is evaluated by use of the complementary error function, imsl_f_erfc. The
relationship is:

Φ x xb g e j= −erfc / . /2 0 2

Figure 9-13 Plot of Φ(x)

Example

Suppose X is a normal random variable with mean 100 and variance 225. This example
finds the probability that X is less than 90 and the probability that X is between 105 and
110.

#include <imsl.h>

main()
{
 float p, x1, x2;

494 • normal_inverse_cdf IMSL C/Math/Library

 x1 = (90.0-100.0)/15.0;
 p = imsl_f_normal_cdf(x1);
 printf("The probability that X is less than 90 is %6.4f\n\n", p);

 x1 = (105.0-100.0)/15.0;
 x2 = (110.0-100.0)/15.0;
 p = imsl_f_normal_cdf(x2) - imsl_f_normal_cdf(x1);
 printf("The probability that X is between 105 and 110 is %6.4f\n", p);
}

Output
The probability that X is less than 90 is 0.2525

The probability that X is between 105 and 110 is 0.1169

normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis

#include <imsl.h>

float imsl_f_normal_inverse_cdf (float p)

The type double procedure is imsl_d_normal_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the normal distribution function is to be
evaluated. The argument p must be in the open interval (0.0, 1.0).

Return Value

The inverse of the normal distribution function evaluated at p. The probability that a
standard normal random variable takes a value less than or equal to
imsl_f_normal_inverse_cdf is p.

Description

The function imsl_f_normal_inverse_cdf evaluates the inverse of the distribution
function, Φ, of a standard normal (Gaussian) random variable; that is,
imsl_f_normal_inverse_cdf(p) = Φ�� (p) where

Φ x e dtt
x

b g = −

−∞z1

2

2 2

π
/

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x. The standard normal distribution has a
mean of 0 and a variance of 1.

Chapter 9: Special Functions chi_squared_cdf • 495

The function imsl_f_normal_inverse_cdf(p) is evaluated by use of minimax
rational-function approximations for the inverse of the error function. General
descriptions of these approximations are given in Hart et al. (1968) and Strecok (1968).
The rational functions used in imsl_f_normal_inverse_cdf are described by
Kinnucan and Kuki (1968).

Example

This example computes the point such that the probability is 0.9 that a standard normal
random variable is less than or equal to this point.

#include <imsl.h>

main()
{
 float x;
 float p = 0.9;

 x = imsl_f_normal_inverse_cdf(p);
 printf("The 90th percentile of a standard normal is %6.4f.\n", x);
}

Output
The 90th percentile of a standard normal is 1.2816.

chi_squared_cdf
Evaluates the chi-squared distribution function.

Synopsis

#include <imsl.h>

float imsl_f_chi_squared_cdf (float chi_squared, float df)

The type double function is imsl_d_chi_squared_cdf.

Required Arguments

float chi_squared (Input)
Argument for which the chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. The argument
df must be greater than or equal to 0.5.

Return Value

The probability that a chi-squared random variable takes a value less than or equal to
chi_squared.

496 • chi_squared_cdf IMSL C/Math/Library

Description

The function imsl_f_chi_squared_cdf evaluates the distribution function, F, of a
chi-squared random variable x = chi_squared with ν = df. Then,

F x e t dtt
x

b g b g= − −z1

2 22
2 2 1

0ν
ν

ν/
/ /

/Γ

where Γ(⋅) is the gamma function. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.

For ν > 65, imsl_f_chi_squared_cdf uses the Wilson-Hilferty approximation
(Abramowitz and Stegun 1964, Equation 26.4.17) to the normal distribution, and
function imsl_f_normal_cdf is used to evaluate the normal distribution function.

For ν ≤ 65, imsl_f_chi_squared_cdf uses series expansions to evaluate the
distribution function. If x < max (ν/2, 26), imsl_f_chi_squared_cdf uses the series
6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the asymptotic expansion
6.5.32 in Abramowitz and Stegun.

Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. This example
finds the probability that X is less than 0.15 and the probability that X is greater than
3.0.

#include <imsl.h>

void main()
{
 float chi_squared = 0.15;
 float df = 2.0;
 float p;

 p = imsl_f_chi_squared_cdf(chi_squared, df);
 printf("%s %s %6.4f\n", "The probability that chi-squared",
 "with 2 df is less than 0.15 is", p);

 chi_squared = 3.0;
 p = 1.0 - imsl_f_chi_squared_cdf(chi_squared, df);
 printf("%s %s %6.4f\n", "The probability that chi-squared",
 "with 2 df is greater than 3.0 is", p);
}

Output
The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Informational Errors

IMSL_ARG_LESS_THAN_ZERO The input argument, chi_squared, is less than
zero.

Chapter 9: Special Functions chi_squared_inverse_cdf • 497

Alert Errors

IMSL_NORMAL_UNDERFLOW Using the normal distribution for large degrees of
freedom, underflow would have occurred.

chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis

#include <imsl.h>

float imsl_f_chi_squared_inverse_cdf (float p, float df)

The type double function is imsl_d_chi_squared_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the chi-squared distribution function is to
be evaluated. The argument p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. The argument
df must be greater than or equal to 0.5.

Return Value

The inverse of the chi-squared distribution function evaluated at p. The probability that
a chi-squared random variable takes a value less than or equal to
imsl_f_chi_squared_inverse_cdf is p.

Description

The function imsl_f_chi_squared_inverse_cdf evaluates the inverse distribution
function of a chi-squared random variable with ν = df and with probability p. That is, it
determines x = imsl_f_chi_squared_inverse_cdf(p,df) such that

p e t dtt
x

= − −z1

2 22
2 2 1

0ν
ν

ν/
/ /

/Γb g

where Γ(⋅) is the gamma function. The probability that the random variable takes a
value less than or equal to x is p.

For ν < 40, imsl_f_chi_squared_inverse_cdf uses bisection (if ν ≤ 2 or
p > 0.98) or regula falsi to find the point at which the chi-squared distribution function
is equal to p. The distribution function is evaluated using function
imsl_f_chi_squared_cdf.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun
1964, equation 26.4.18) to the normal distribution is used. The function

498 • F_cdf IMSL C/Math/Library

imsl_f_normal_cdf is used to evaluate the inverse of the normal distribution
function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.17) is used.

Example

In this example, the 99-th percentage point is calculated for a chi-squared random
variable with two degrees of freedom. The same calculation is made for a similar
variable with 64 degrees of freedom.

#include <imsl.h>

void main ()
{
 float df, x;
 float p = 0.99;

 df = 2.0;
 x = imsl_f_chi_squared_inverse_cdf(p, df);
 printf("For p = .99 with 2 df, x = %7.3f.\n", x);

 df = 64.0;
 x = imsl_f_chi_squared_inverse_cdf(p,df);
 printf("For p = .99 with 64 df, x = %7.3f.\n", x);
}

Output
For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

Warning Errors

IMSL_UNABLE_TO_BRACKET_VALUE The bounds that enclose p could not be
found. An approximation for
imsl_f_chi_squared_inverse_cdf is
returned.

IMSL_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared could
not be found within a specified number of
iterations. An approximation for
imsl_f_chi_squared_inverse_cdf is
returned.

F_cdf
Evaluates the F distribution function.

Synopsis

#include <imsl.h>

float imsl_f_F_cdf (float f, float df_denominator, float df_numerator)

Chapter 9: Special Functions F_cdf • 499

The type double function is imsl_d_F_cdf.

Required Arguments

float f (Input)
Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. The argument df_numerator must be
positive.

float df_denominator (Input)
The denominator degrees of freedom. The argument df_denominator must
be positive.

Return Value

The probability that an F random variable takes a value less than or equal to the input
point, f.

Description

The function imsl_f_F_cdf evaluates the distribution function of a Snedecor’s F
random variable with df_numerator and df_denominator. The function is
evaluated by making a transformation to a beta random variable and then by evaluating
the incomplete beta function. If X is an F variate with ν� and ν� degrees of freedom and
Y = (ν� X)/(ν� + ν� X), then Y is a beta variate with parameters p = ν�/2 and q = ν�/2.

The function imsl_f_F_cdf also uses a relationship between F random variables that
can be expressed as follows:

F)(f, ν�, ν�) = 1 − F)(1/f, ν�, ν�)where F) is the distribution function for an F random
variable.

500 • F_cdf IMSL C/Math/Library

Figure 9-14 Plot of F) (f, 1.0, 1.0)

Example

This example finds the probability that an F random variable with one numerator and
one denominator degree of freedom is greater than 648.

#include <imsl.h>

main()
{
 float p;
 float F = 648.0;
 float df_numerator = 1.0;
 float df_denominator = 1.0;

 p = 1.0 - imsl_f_F_cdf(F,df_numerator, df_denominator);
 printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate",
 "is greater than 648 is", p);
}

Output
The probability that an F(1,1) variate is greater than 648 is 0.0250.

Chapter 9: Special Functions F_inverse_cdf • 501

F_inverse_cdf
Evaluates the inverse of the F distribution function.

Synopsis

#include <imsl.h>

float imsl_f_F_inverse_cdf (float p, float df_numerator,
float df_denominator)

The type double procedure is imsl_d_F_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the F distribution function is to be
evaluated. The argument p must be in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be
positive.

Return Value

The value of the inverse of the F distribution function evaluated at p. The probability
that an F random variable takes a value less than or equal to imsl_f_F_inverse_cdf
is p.

Description

The function imsl_f_F_inverse_cdf evaluates the inverse distribution function of a
Snedecor’s F random variable with ν� = df_numerator numerator degrees of freedom
and ν� = df_denominator denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable and then by evaluating
the inverse of an incomplete beta function. If X is an F variate with ν� and ν� degrees of
freedom and Y = (ν�, X)/(ν� + ν� X), then Y is a beta variate with parameters
p = ν�/2 and q = ν�/2. If P ≤ 0.5, imsl_f_F_inverse_cdf uses this relationship
directly; otherwise, it also uses a relationship between F random variables that can be
expressed as follows:

F)(f, ν�, ν�) = 1 − F)(1/f, ν� , ν�)

Example

In this example, the 99-th percentage point is calculated for an F random variable with
seven degrees of freedom. The same calculation is made for a similar variable with one
degree of freedom.

502 • t_cdf IMSL C/Math/Library

#include <imsl.h>

main()
{
 float df_denominator = 1.0;
 float df_numerator = 7.0;
 float f;
 float p = 0.99;

 f = imsl_f_F_inverse_cdf(p, df_numerator, df_denominator);

 printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}

Output
The F(7,1) 0.01 critical value is 5928.370

Fatal Errors

IMSL_F_INVERSE_OVERFLOW Function imsl_f_F_inverse_cdf is set to
machine infinity since overflow would occur upon
modifying the inverse value for the F distribution
with the result obtained from the inverse beta
distribution.

t_cdf
Evaluates the Student’s t distribution function.

Synopsis

#include <imsl.h>

float imsl_f_t_cdf (float t, float df)

The type double function is imsl_d_t_cdf.

Required Arguments

float t (Input)
Argument for which the Student’s t distribution function is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Chapter 9: Special Functions t_cdf • 503

Return Value

The probability that a Student’s t random variable takes a value less than or equal to the
input t.

Description

The function imsl_f_t_cdf evaluates the distribution function of a Student’s t
random variable with ν� = df degrees of freedom. If the square of t is greater than or
equal to ν, the relationship of a t to an F random variable (and subsequently, to a beta
random variable) is exploited, and percentage points from a beta distribution are used.
Otherwise, the method described by Hill (1970) is used. If ν is not an integer, if ν is
greater than 19, or if ν is greater than 200, a Cornish-Fisher expansion is used to
evaluate the distribution function. If ν is less than 20 and |t| is less than 2.0, a
trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4,
with some rearrangement) is used. For the remaining cases, a series given by Hill
(1970) that converges well for large values of t is used.

Example

This example finds the probability that a t random variable with six degrees of freedom
is greater in absolute value than 2.447. The fact that t is symmetric about zero is used.

#include <imsl.h>

main ()
{
 float p;
 float t = 2.447;
 float df = 6.0;

 p = 2.0*imsl_f_t_cdf(-t,df);
 printf("Pr(|t(6)| > 2.447) = %6.4f\n", p);
}

Output
Pr(|t(6)| > 2.447) = 0.0500

504 • t_inverse_cdf IMSL C/Math/Library

Figure 9-15 Plot of FW(t, 6.0)

t_inverse_cdf
Evaluates the inverse of the Student’s t distribution function.

Synopsis

#include <imsl.h>

float imsl_f_t_inverse_cdf (float p, float df)

The type double function is imsl_d_t_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the Student’s t distribution function is to
be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value

The inverse of the Student’s t distribution function evaluated at p. The probability that
a Student’s t random variable takes a value less than or equal to
imsl_f_t_inverse_cdf is p.

Chapter 9: Special Functions gamma_cdf • 505

Description

The function imsl_f_t_inverse_cdf evaluates the inverse distribution function of a
Student’s t random variable with ν = df degrees of freedom. If ν equals 1 or 2, the
inverse can be obtained in closed form. If ν is between 1 and 2, the relationship of a t to
a beta random variable is exploited, and the inverse of the beta distribution is used to
evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values of
ν greater than 2, Hill’s algorithm inverts an integrated expansion in 1/(1 + t�/ν) of the
t density. For larger values, an asymptotic inverse Cornish-Fisher type expansion about
normal deviates is used.

Example

This example finds the 0.05 critical value for a two-sided t test with six degrees of
freedom.

#include <imsl.h>

void main()
{
 float df = 6.0;
 float p = 0.975;
 float t;

 t = imsl_f_t_inverse_cdf(p,df);

 printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}

Output
The two-sided t(6) 0.05 critical value is 2.447

Informational Errors

IMSL_OVERFLOW Function imsl_f_t_inverse_cdf is set to machine
infinity since overflow would occur upon modifying
the inverse value for the F distribution with the result
obtained from the inverse beta distribution.

gamma_cdf
Evaluates the gamma distribution function.

Synopsis

#include <imsl.h>

float imsl_f_gamma_cdf (float x, float a)

The type double procedure is imsl_d_gamma_cdf.

506 • gamma_cdf IMSL C/Math/Library

Required Arguments

float x (Input)
Argument for which the gamma distribution function is to be evaluated.

float a (Input)
The shape parameter of the gamma distribution. This parameter must be
positive.

Return Value

The probability that a gamma random variable takes a value less than or equal to x.

Description

The function imsl_f_gamma_cdf evaluates the distribution function, F, of a gamma
random variable with shape parameter a, that is,

F x
a

e t dtt a
x

b g b g= − −z1 1

0Γ

where Γ(⋅) is the gamma function. (The gamma function is the integral from zero to
infinity of the same integrand as above). The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale
parameter b (which must be positive) or even as a three-parameter distribution in which
the third parameter c is a location parameter.

In the most general case, the probability density function over
(c, ∞) is

f t
b a

e x c
a

t c b ab g b g b gb g= −− − −1 1

Γ
/

If T is such a random variable with parameters a, b, and c, the probability that
T ≤ t� can be obtained from imsl_f_gamma_cdf by setting x = (t� − c)/b.

If x is less than a or if x is less than or equal to 1.0, imsl_f_gamma_cdf uses a series
expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz and
Stegun 1964.)

Example

Let X be a gamma random variable with a shape parameter of four. (In this case, it has
an Erlang distribution since the shape parameter is an integer.) This example finds the
probability that X is less than 0.5 and the probability that X is between 0.5 and 1.0.

#include <imsl.h>

main()
{
 float p, x;

Chapter 9: Special Functions binomial_cdf • 507

 float a = 4.0;

 x = 0.5;
 p = imsl_f_gamma_cdf(x,a);
 printf("The probability that X is less than 0.5 is %6.4f\n", p);

 x = 1.0;
 p = imsl_f_gamma_cdf(x,a) - p;
 printf("The probability that X is between 0.5 and 1.0 is %6.4f\n", p);
}

Output
The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

Informational Errors

IMSL_LESS_THAN_ZERO The input argument, x, is less than zero.

Fatal Errors

IMSL_X_AND_A_TOO_LARGE The function overflows because x and a are too
large.

binomial_cdf
Evaluates the binomial distribution function.

Synopsis

#include <imsl.h>

float imsl_f_binomial_cdf (int k, int n, float p)

The type double procedure is imsl_d_binomial_cdf.

Required Arguments

int k (Input)
Argument for which the binomial distribution function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value

The probability that k or fewer successes occur in n independent Bernoulli trials, each
of which has a probability p of success.

508 • binomial_cdf IMSL C/Math/Library

Description

The function imsl_f_binomial_cdf evaluates the distribution function of a binomial
random variable with parameters n and p. It does this by summing probabilities of the
random variable taking on the specific values in its range. These probabilities are
computed by the recursive relationship

Pr PrX j
n j p

j p
X j= =

+ −
−

= −b g b g
b g b g1

1
1

To avoid the possibility of underflow, the probabilities are computed forward from zero
if k is not greater than n × p; otherwise, they are computed backward from n. The
smallest positive machine number, ε, is used as the starting value for summing the
probabilities, which are rescaled by (1 − p)Q ε if forward computation is performed and
by pQε if backward computation is done.

For the special case of p is zero, imsl_f_binomial_cdf is set to 1; and for the case
p is 1, imsl_f_binomial_cdf is set to 1 if k = n and is set to zero otherwise.

Example

Suppose X is a binomial random variable with an n = 5 and a p = 0.95. This example
finds the probability that X is less than or equal to three.

#include <imsl.h>

void main()
{
 int k = 3;
 int n = 5;
 float p = 0.95;
 float pr;

 pr = imsl_f_binomial_cdf(k,n,p);
 printf("Pr(x <= 3) = %6.4f\n", pr);
}

Output
Pr(x <= 3) = 0.0226

Informational Errors

IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

IMSL_GREATER_THAN_N The input argument, k, is greater than the number of
Bernoulli trials, n.

Chapter 9: Special Functions hypergeometric_cdf • 509

hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis

#include <imsl.h>

float imsl_f_hypergeometric_cdf (int k, int n, int m, int l)

The type double procedure is imsl_d_hypergeometric_cdf.

Required Arguments

int k (Input)
Argument for which the hypergeometric distribution function is to be
evaluated.

int n (Input)
Sample size n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size l must be greater than or equal to n and m.

Return Value

The probability that k or fewer defectives occur in a sample of size n drawn from a lot
of size l that contains m defectives.

Description

The function imsl_f_hypergeometric_cdf evaluates the distribution function of a
hypergeometric random variable with parameters n, l, and m. The hypergeometric
random variable x can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is

Pr x j j i n m
j
m

n j
l m

n
l

= = = +
−
−

b g e je j
e j

b gfor ,i , , min ,1 K

where i = max (0, n − l + m).

If k is greater than or equal to i and less than or equal to min (n, m),
imsl_f_hypergeometric_cdf sums the terms in this expression for j going from
i up to k. Otherwise, 0 or 1 is returned, as appropriate.

To avoid rounding in the accumulation, imsl_f_hypergeometric_cdf performs the
summation differently, depending on whether k is greater than the mode of the

510 • poisson_cdf IMSL C/Math/Library

distribution, which is the greatest integer in
(m + 1) (n + 1)/(l + 2).

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70.
This example evaluates the distribution function at 7.

#include <imsl.h>

void main()
{
 int k = 7;
 int l = 1000;
 int m = 70;
 int n = 100;
 float p;

 p = imsl_f_hypergeometric_cdf(k,n,m,l);
 printf("\nPr (x <= 7) = %6.4f", p);
}

Output
Pr (x <= 7) = 0.599

Informational Errors

IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

IMSL_K_GREATER_THAN_N The input argument, k, is greater than the sample
size.

Fatal Errors

IMSL_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to n and m.

poisson_cdf
Evaluates the Poisson distribution function.

Synopsis

#include <imsl.h>

float imsl_f_poisson_cdf (int k, float theta)

The type double function is imsl_d_poisson_cdf.

Required Arguments

int k (Input)
Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Chapter 9: Special Functions poisson_cdf • 511

Return Value

The probability that a Poisson random variable takes a value less than or equal to k.

Description

The function imsl_f_poisson_cdf evaluates the distribution function of a Poisson
random variable with parameter theta. The mean of the Poisson random variable,
theta, must be positive. The probability function (with θ = theta) is

f(x) = e�T θ[/x!, for x = 0, 1, 2, …
The individual terms are calculated from the tails of the distribution to the mode of the
distribution and summed. The function imsl_f_poisson_cdf uses the recursive
relationship

f(x + 1) = f(x)θ/(x + 1), for x = 0, 1, 2, …, k − 1
with f(0) = e�T.

Figure 9-16 Plot of FS(k, θ)

Example

Suppose X is a Poisson random variable with θ = 10. This example evaluates the
probability that X ≤ 7.

#include <imsl.h>

void main()
{
 int k = 7;
 float theta = 10.0;
 float p;

 p = imsl_f_poisson_cdf(k, theta);

512 • beta_cdf IMSL C/Math/Library

 printf("Pr(x <= 7) = %6.4f\n", p);
}

Output
Pr(x <= 7) = 0.2202

Informational Errors

IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

beta_cdf
Evaluates the beta probability distribution function.

Synopsis

#include <imsl.h>

float imsl_f_beta_cdf (float x, float pin, float qin)

The type double function is imsl_d_beta_cdf.

Required Arguments

float x (Input)
Argument for which the beta probability distribution function is to be
evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value

The probability that a beta random variable takes on a value less than or equal to x.

Description

Function imsl_f_beta_cdf evaluates the distribution function of a beta random
variable with parameters pin and qin. This function is sometimes called the
incomplete beta ratio and with p = pin and q = qin, is denoted by I[(p, q). It is given
by

I p q
p q

p q
t t dtx

p
x q

,b g b g b g
b g b g=

+
−− −zΓ Γ

Γ
1

0

1
1

where Γ(⋅) is the gamma function. The value of the distribution function by I[(p, q) is
the probability that the random variable takes a value less than or equal to x.

Chapter 9: Special Functions beta_inverse_cdf • 513

The integral in the expression above is called the incomplete beta function and is
denoted by β[(p, q). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at one) and is denoted by β(p, q).

Function beta_cdf uses the method of Bosten and Battiste (1974).

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric
distribution.) This example finds the probability that X is less than 0.6 and the
probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random variable,
the probability that it is less than 0.5 is 0.5.)

#include <imsl.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 x = 0.6;
 p = imsl_f_beta_cdf(x, pin, qin);
 printf(" The probability that X is less than 0.6 is %6.4f\n",
 p);
 x = 0.5;
 p -= imsl_f_beta_cdf(x, pin, qin);
 printf(" The probability that X is between 0.5 and 0.6 is %6.4f\n",
 p);
}

Output
 The probability that X is less than 0.6 is 0.8364
 The probability that X is between 0.5 and 0.6 is 0.3364

beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis

#include <imsl.h>

float imsl_f_beta_inverse_cdf (float p, float pin, float qin)

The type double function is imsl_d_beta_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the beta distribution function is to be
evaluated. Argument p must be in the open interval (0.0 ,1.0).

514 • bivariate_normal_cdf IMSL C/Math/Library

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value

Function imsl_f_beta_inverse_cdf evaluates the inverse distribution function of a
beta random variable with parameters pin and qin.

Description

With P = p, p = pin, and q = qin, function imsl_f_beta_inverse_cdf returns x such
that

P
p q

p q
t t dtp

x q=
+

−− −zΓ Γ
Γ
b g b g
b g b g1

0

1
1

where Γ(⋅) is the gamma function. The probability that the random variable takes a
value less than or equal to x is P.

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric
distribution.) This example finds the value x such that the probability that X ≤ x is 0.9.

#include <imsl.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 p = 0.9;
 x = imsl_f_beta_inverse_cdf(p, pin, qin);
 printf(" X is less than %6.4f with probability 0.9.\n",
 x);
}

Output
 X is less than 0.6299 with probability 0.9.

bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis

#include <imsl.h>

Chapter 9: Special Functions bivariate_normal_cdf • 515

float imsl_f_bivariate_normal_cdf (float x, float y, float rho)

The type double function is imsl_d_bivariate_normal_cdf.

Required Arguments

float x (Input)
The x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value

The probability that a bivariate normal random variable with correlation rho takes a
value less than or equal to x and less than or equal to y.

Example

Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-
covariance matrix

10 0 9

0 9 10

. .

. .

L
NM

O
QP

This example finds the probability that X is less than −2.0 and Y is less than 0.0.
#include <imsl.h>

main()
{
 float p, rho, x, y;

 x = -2.0;
 y = 0.0;
 rho = 0.9;
 p = imsl_f_bivariate_normal_cdf(x, y, rho);
 printf(" The probability that X is less than -2.0"
 " and Y is less than 0.0 is %6.4f\n", p);

}

Output
The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

Chapter 10: Statistics and Random Number Generation Routines • 517

Chapter 10: Statistics and Random
Number Generation

Routines
10.1 Statistics

Univariate summary statistics .. simple_statistics 519
One-way frequency table..table_oneway 524
Chi-squared one-sample goodness-of-fit test............... chi_squared_test 528
Correlation .. covariances 536
Multiple linear regression...regression 541
Polynomial regression... poly_regression 549
Numerical ranking..ranks 557

10.2 Random Numbers
Retrieve the current value of the seed.........................random_seed_get 563
Initialize a random seed...random_seed_set 564
Select the uniform (0, 1) generatorrandom_option 565
Generate pseudorandom numbers................................ random_uniform 566
Generate pseudorandom normal numbers..................... random_normal 568
Generate pseudorandom Poisson numbers.................. random_poisson 570
Generate pseudorandom gamma numbers random_gamma 571
Generate pseudorandom beta.. random_beta 573
Generate pseudorandom
standard exponential ... random_exponential 575

Usage Notes

Statistics

The functions in this section can be used to compute some common univariate summary
statistics, perform a one-sample goodness-of-fit test, produce measures of correlation,
perform multiple and polynomial regression analysis, and compute ranks
(or a transformation of the ranks, such as normal or exponential scores). The user is
referred to the individual functions for additional information.

518 • Usage Notes IMSL C/Math/Library

Overview of Random Number Generation

“Random Numbers” describes functions for the generation of random numbers and of
random samples and permutations. These functions are useful for applications in Monte
Carlo or simulation studies. Before using any of the random number generators, the
generator must be initialized by selecting a seed or starting value. This can be done by
calling the function imsl_random_seed_set. If the user does not select a seed, one is
generated using the system clock. A seed needs to be selected only once in a program,
unless two or more separate streams of random numbers are maintained. There are
other utility functions in this chapter for selecting the form of the basic generator, for
restarting simulations, and for maintaining separate simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates,”
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom” is
sometimes used to emphasize that the numbers generated are really not “random,” since
they result from a deterministic process. The usefulness of pseudorandom numbers is
derived from the similarity, in a statistical sense, of samples of the pseudorandom
numbers to samples of observations from the specified distributions. In short, while the
pseudorandom numbers are completely deterministic and repeatable, they simulate the
realizations of independent and identically distributed random variables.

The Basic Uniform Generator

The random number generators in this chapter use a multiplicative congruential
method. The form of the generator is

xL = cxL�� mod (2�� − 1).

Each xL is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root
modulo 2�� − 1 (which is a prime), then the generator will have a maximal period of
2�� − 2. There are several other considerations, however. See Knuth (1981) for a good
general discussion. The possible values for c in the IMSL generators are 16807,
397204094, and 950706376. The selection is made by the function
imsl_random_ option. The choice of 16807 will result in the fastest execution time,
but other evidence suggests that the performance of 950706376 is best among these three
choices (Fishman and Moore 1982). If no selection is made explicitly, the functions use
the multiplier 16807, which has been in use for some time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function
imsl_f_random_uniform. This function is portable in the sense that, given the same
seed, it produces the same sequence in all computer/compiler environments.

Shuffled Generators

The user also can select a shuffled version of these generators using
imsl_random_option. The shuffled generators use a scheme due to Learmonth and
Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) numbers
resulting from the simple multiplicative congruential generator. Then, for each xL from
the simple generator, the low-order bits of xL are used to select a random integer, j, from

Chapter 10: Statistics and Random Number Generation simple_statistics • 519

1 to 128. The j-th entry in the table is then delivered as the random number, and xL, after
being scaled into the unit interval, is inserted into the j-th position in the table. This
scheme is similar to that of Bays and Durham (1976), and their analysis is applicable to
this scheme as well.

Setting the Seed

The seed of the generator can be set in imsl_random_seed_set and can be retrieved
by imsl_random_seed_get. Prior to invoking any generator in this section, the user
can call imsl_random_seed_set to initialize the seed, which is an integer variable
with a value between 1 and 2147483647. If it is not initialized by
imsl_random_seed_set, a random seed is obtained from the system clock. Once it is
initialized, the seed need not be set again.

If the user wishes to restart a simulation, imsl_random_seed_get can be used to
obtain the final seed value of one run to be used as the starting value in a subsequent
run. Also, if two simultaneous random number streams are desired in one run,
imsl_random_seed_set and imsl_random_seed_get can be used before and after
the invocations of the generators in each stream.

simple_statistics
Computes basic univariate statistics.

Synopsis

#include <imsl.h>

float *imsl_f_simple_statistics (int n_observations, int _variables,
float x[] ,…, 0)

The type double procedure is imsl_d_simple_statistics.

Required Arguments

int n_observations (Input)
The number of observations.

int n_variables (Input)
The number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the data matrix.

Return Value

A pointer to a matrix containing some simple statistics for each of the columns in x. If
MEDIAN and MEDIAN_AND_SCALE are not used as optional arguments, the size of the
matrix is 14 by n_variables. The columns of this matrix correspond to the columns
of x and the rows contain the following statistics:

520 • simple_statistics IMSL C/Math/Library

Row Statistic

0 the mean

1 the variance

2 the standard deviation

3 the coefficient of skewness

4 the coefficient of excess (kurtosis)

5 the minimum value

6 the maximum value

7 the range

8 the coefficient of variation (when defined)

If the coefficient of variation is not defined, zero is returned.

9 the number of observations (the counts)

10 a lower confidence limit for the mean (assuming normality)

The default is a 95 percent confidence interval.

11 an upper confidence limit for the mean (assuming normality)

12 a lower confidence limit for the variance (assuming normality)

The default is a 95 percent confidence interval.

13 an upper confidence limit for the variance (assuming normality)

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_simple_statistics (int n_observations, int n_variables,
float x[],
IMSL_CONFIDENCE_MEANS, float confidence_means,
IMSL_CONFIDENCE_VARIANCES, float confidence_variances,
IMSL_X_COL_DIM, int x_col_dim,
IMSL_STAT_COL_DIM, int stat_col_dim,
IMSL_MEDIAN,
IMSL_MEDIAN_AND_SCALE,
IMSL_RETURN_USER, float simple_statistics[],
0)

Optional Arguments

IMSL_CONFIDENCE_MEANS, float confidence_means (Input)
The confidence level for a two-sided interval estimate of the means (assuming
normality) in percent. Argument confidence_means must be between 0.0
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval
with confidence level c, set confidence_means = 100.0 − 2(100 − c). If

Chapter 10: Statistics and Random Number Generation simple_statistics • 521

IMSL_CONFIDENCE_MEANS is not specified, a 95 percent confidence interval
is computed.

IMSL_CONFIDENCE_VARIANCES, float confidence_variances (Input)
The confidence level for a two-sided interval estimate of the variances
(assuming normality) in percent. The confidence intervals are symmetric in
probability (rather than in length). For a one-sided confidence interval with
confidence level c, set confidence_means = 100.0 − 2(100 − c). If
IMSL_CONFIDENCE_VARIANCES is not specified, a 95 percent confidence
interval is computed.

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_STAT_COL_DIM, int stat_col_dim (Input)
The column dimension of the returned value array, or if IMSL_RETURN_USER
is specified, the column dimension of array simple_statistics.
Default: stat_col_dim = n_variables

IMSL_MEDIAN, or
IMSL_MEDIAN_AND_SCALE

Exactly one of these optional arguments can be specified in order to indicate
the additional simple robust statistics to be computed. If IMSL_MEDIAN is
specified, the medians are computed and stored in one additional row (row
number 14) in the returned matrix of simple statistics. If
IMSL_MEDIAN_AND_SCALE is specified, the medians, the medians of the
absolute deviations from the medians, and a simple robust estimate of scale are
computed, then stored in three additional rows (rows 14, 15, and 16) in the
returned matrix of simple statistics.

IMSL_RETURN_USER, float simple_statistics[] (Output)
Store the matrix of statistics in the user-provided array simple_statistics.
If neither IMSL_MEDIAN nor IMSL_MEDIAN_AND_SCALE is specified, the
matrix is 14 by n_variables. If IMSL_MEDIAN is specified, the matrix is
15 by n_variables. If IMSL_MEDIAN_AND_SCALE is specified, the matrix is
17 by n_variables.

Description

For the data in each column of x, imsl_f_simple_statistics computes the sample
mean, variance, minimum, maximum, and other basic statistics. It also computes
confidence intervals for the mean and variance (under the hypothesis that the sample is
from a normal population).

The definitions of some of the statistics are given below in terms of a single variable
x of which the i-th datum is xL.

522 • simple_statistics IMSL C/Math/Library

Mean

x
x

n

i
= ∑

Variance

s
x x

n

i2

2

1
=

−

−
∑ b g

Skewness

x x n

x x n

i

i

−

−
∑

∑
b g

b g

3

2 3 2

/

[/] /

Excess or Kurtosis

x x n

x x n

i

i

−

−
−∑

∑
b g
b g

4

2 2
3

/

[/]

Minimum

x ximin min= b g
Maximum

x ximax max= b g

Range

x xmax min−

Coefficient of Variation

s x x/ for ≠ 0

Median

median
middle after sorting if is odd

average of middle two ’s if is even
x

x n

x ni
i

i
l q =

RST

Chapter 10: Statistics and Random Number Generation simple_statistics • 523

Median Absolute Deviation

MAD = median medianx xi j− n s{ }

Simple Robust Estimate of Scale

MAD / Φ−1 3 4/b g

where Φ��(3/4) ≈ 0.6745 is the inverse of the standard normal distribution function
evaluated at 3/4. This standardizes MAD in order to make the scale estimate consistent at
the normal distribution for estimating the standard deviation (Huber 1981, pp. 107−108).

Example

This example uses data from Draper and Smith (1981). There are five variables and 13
observations.

#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 13

main()
{
 float *simple_statistics;
 float x[] = {7., 26., 6., 60., 78.5,
 1., 29., 15., 52., 74.3,
 11., 56., 8., 20., 104.3,
 11., 31., 8., 47., 87.6,
 7., 52., 6., 33., 95.9,
 11., 55., 9., 22., 109.2,
 3., 71., 17., 6., 102.7,
 1., 31., 22., 44., 72.5,
 2., 54., 18., 22., 93.1,
 21., 47., 4., 26., 115.9,
 1., 40., 23., 34., 83.8,
 11., 66., 9., 12., 113.3,
 10., 68., 8., 12., 109.4};
 char *row_labels[] = {"means", "variances", "std. dev",
 "skewness", "kurtosis", "minima",
 "maxima", "ranges", "C.V.", "counts",
 "lower mean", "upper mean",
 "lower var", "upper var"};

 simple_statistics = imsl_f_simple_statistics(N_OBSERVATIONS,
 N_VARIABLES, x, 0);

 imsl_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
 simple_statistics,
 IMSL_ROW_LABELS, row_labels,
 IMSL_WRITE_FORMAT, "%7.3f",
 0);
}

524 • table_oneway IMSL C/Math/Library

Output
 * * * Statistics * * *

 1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

table_oneway
Tallies observations into a one-way frequency table.

Synopsis

#include <imsl.h>

float *imsl_f_table_oneway (int n_observations, float x[],
int _intervals, …, 0)

The type double function is imsl_d_table_oneway.

Required Arguments

int n_observations (Input)

Number of observations.

float x[] (Input)

Array of length n_observations containing the observations.

int n_intervals (Input)

Number of intervals (bins).

Return Value

Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_table_oneway (int n_observations, float x[],
int n_intervals,
IMSL_DATA_BOUNDS, float *minimum, float *maximum,

Chapter 10: Statistics and Random Number Generation table_oneway • 525

IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound,
IMSL_CUTPOINTS, float cutpoints[],
IMSL_CLASS_MARKS, float class_marks[],
IMSL_RETURN_USER, float table_oneway[],
0)

Optional Arguments

IMSL_DATA_BOUNDS, float *minimum, float *maximum (Output)
or

IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)
or

IMSL_CUTPOINTS, float cutpoints[] (Input)
or

IMSL_CLASS_MARKS, float class_marks[] (Input)
None, or exactly one, of these four optional arguments can be specified in
order to define the intervals or bins for the one-way table. If none is specified,
or if IMSL_DATA_BOUNDS is specified, n_intervals, intervals of equal
length, are used with the initial interval starting with the minimum value in
x and the last interval ending with the maximum value in x. The initial interval
is closed on the left and right. The remaining intervals are open on the left and
closed on the right. When IMSL_DATA_BOUNDS is explicitly specified, the
minimum and maximum values in x are output in minimum and maximum.
With this option, each interval is of (maximum−minimum)/ n_intervals
length. If IMSL_KNOWN_BOUNDS is specified, two semi-infinite intervals are
used as the initial and last interval. The initial interval is closed on the right
and includes lower_bound as its right endpoint. The last interval is open on
the left and includes all values greater than upper_ bound. The remaining
n_intervals − 2 intervals are each of length

upper_ bound lower_ bound

n_ intervals

-

− 2

and are open on the left and closed on the right. Argument n_intervals
must be greater than or equal to three for this option. If IMSL_CLASS_MARKS
is specified, equally spaced class marks in ascending order must be provided
in the array class_marks of length n_intervals. The class marks are the
midpoints of each of the n_intervals, and each interval is taken to have
length class_marks[1] − class_marks[0]. The argument n_intervals
must be greater than or equal to two for this option. If IMSL_ CUTPOINTS is
specified, cutpoints (boundaries) must be provided in the array cutpoints of
length n_intervals − 1. This option allows unequal interval lengths. The
initial interval is closed on the right and includes the initial cutpoint as its right
endpoint. The last interval is open on the left and includes all values greater
than the last cutpoint. The remaining n_intervals − 2 intervals are open on
the left and closed on the right. The argument n_interval must be greater
than or equal to three for this option.

526 • table_oneway IMSL C/Math/Library

IMSL_RETURN_USER, float table[] (Output)
Counts are stored in the user-supplied array table of length n_intervals.

Examples

Example 1

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981).
They are the measurements (in inches) of precipitation in Minneapolis/St. Paul during
the month of March for 30 consecutive years.

#include <imsl.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsl_f_table_oneway (n_observations, x, n_intervals, 0);
 imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 4 8 5 5 3 1

 7 8 9 10
 3 0 0 1

Example 2

This example selects IMSL_KNOWN_BOUNDS and sets lower_bound = 0.5 and
upper_bound = 4.5 so that the eight interior intervals each have width
(4.5 − 0.5)/(10 − 2) = 0.5. The 10 intervals are (−∞, 0.5], (0.5, 1.0], …, (4.0, .5],
and (4.5, ∞].

#include <imsl.h>
main()
{
 int n_observations=30;
 int n_intervals=10;
 float *table;
 float lower_bound=0.5, upper_bound=4.5;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsl_f_table_oneway (n_observations, x, n_intervals,
 IMSL_KNOWN_BOUNDS, lower_bound,
 upper_bound, 0);
 imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Chapter 10: Statistics and Random Number Generation table_oneway • 527

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 3

This example inputs 10 class marks 0.25, 0.75, 1.25, …, 4.75. This defines the class
intervals (0.0, 0.5], (0.5, 1.0], …, (4.0, 4.5], (4.5, 5.0]. Note that unlike the previous
example, the initial and last intervals are the same length as the remaining intervals.

#include <imsl.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25, 2.75,
 3.25, 3.75, 4.25, 4.75};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CLASS_MARKS, class_marks,
 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 4

This example inputs nine cutpoints 0.5, 1.0, 1.5, 2.0, …, 4.5 to define the same 10
intervals as in Example 3. Here again, the initial and last intervals are semi-infinite
intervals.

#include <imsl.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

528 • chi_squared_test IMSL C/Math/Library

 double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
 4.5};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CUTPOINTS, cutpoints,
 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output
 counts
1 2 3 4 5 6
2 7 6 6 4 2

7 8 9 10
2 0 0 1

chi_squared_test
Performs a chi-squared goodness-of-fit test.

Synopsis

#include <imsl.h>

float imsl_f_chi_squared_test (float user_proc_cdf(),
int n_observations, int n_categories, float x[], …, 0)

The type double function is imsl_d_chi_squared_test.

Required Arguments

float user_proc_cdf (float y) (Input)
User-supplied function that returns the hypothesized, cumulative distribution
function at the point y.

int n_observations (Input)
The number of data elements input in x.

int n_categories (Input)
The number of cells into which the observations are to be tallied.

float x[] (Input)
Array with n_observations components containing the vector of data
elements for this test.

Return Value

The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments

#include <imsl.h>

Chapter 10: Statistics and Random Number Generation chi_squared_test • 529

float imsl_f_chi_squared_test (float *user_proc_cdf(), int
n_observations, int n_categories, float x[],
IMSL_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSL_CUTPOINTS, float **p_cutpoints,
IMSL_CUTPOINTS_USER, float cutpoints[],
IMSL_CUTPOINTS_EQUAL,
IMSL_CHI_SQUARED, float *chi_squared,
IMSL_DEGREES_OF_FREEDOM, float *df,
IMSL_FREQUENCIES, float frequencies[],
IMSL_BOUNDS, float lower_bound, float upper_bound,
IMSL_CELL_COUNTS, float **p_cell_counts,
IMSL_CELL_COUNTS_USER, float cell_counts[],
IMSL_CELL_EXPECTED, float **p_cell_expected,
IMSL_CELL_EXPECTED_USER, float cell_expected[],
IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared,
IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
0)

Optional Arguments

IMSL_N_PARAMETERS_ESTIMATED, int n_parameters (Input)
The number of parameters estimated in computing the cumulative distribution
function.

IMSL_CUTPOINTS, float **p_cutpoints (Output)
The address of a pointer to the cutpoints array. On return, the pointer is
initialized (through a memory allocation request to malloc), and the array is
stored there. Typically, float *p_cutpoints is declared; &p_cutpoints is
used as an argument to this function; and free(p_cutpoints) is used to
free this array.

IMSL_CUTPOINTS_USER, float cutpoints[] (Input or Output)
Array with n_categories − 1 components containing the vector of cutpoints
defining the cell intervals. The intervals defined by the cutpoints are such that
the lower endpoint is not included, and the upper endpoint is included in any
interval. If IMSL_CUTPOINTS_EQUAL is specified, equal probability cutpoints
are computed and returned in cutpoints.

IMSL_CUTPOINTS_EQUAL

If IMSL_CUTPOINTS_USER is specified, then equal probability cutpoints can
still be used if, in addition, the IMSL_CUTPOINTS_EQUAL option is specified.
If IMSL_CUTPOINTS_USER is not specified, equal probability cutpoints are
used by default.

IMSL_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.

IMSL_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is
returned in *df.

530 • chi_squared_test IMSL C/Math/Library

IMSL_FREQUENCIES, float frequencies[] (Input)
Array with n_observations components containing the vector frequencies
for the observations stored in x.

IMSL_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSL_BOUNDS is specified, then lower_bound is the lower bound of the
range of the distribution, and upper_bound is the upper bound of this range.
If lower_bound = upper_bound, a range on the whole real line is used
(the default). If the lower and upper endpoints are different, points outside the
range of these bounds are ignored. Distributions conditional on a range can be
specified when IMSL_BOUNDS is used. By convention, lower_bound is
excluded from the first interval, but upper_bound is included in the last
interval.

IMSL_CELL_COUNTS, float **p_cell_counts (Output)
The address of a pointer to an array containing the cell counts. The cell counts
are the observed frequencies in each of the n_categories cells. On return,
the pointer is initialized (through a memory allocation request to malloc), and
the array is stored there. Typically, float *p_cell_counts is declared;
&p_cell_counts is used as an argument to this function; and
free(p_cell_counts) is used to free this array.

IMSL_CELL_COUNTS_USER, float cell_counts[] (Output)
If specified, the n_categories cell counts are returned in the array
cell_counts provided by the user.

IMSL_CELL_EXPECTED, float **p_cell_expected (Output)
The address of a pointer to the cell expected values. The expected value of a
cell is the expected count in the cell given that the hypothesized distribution is
correct. On return, the pointer is initialized (through a memory allocation
request to malloc), and the array is stored there. Typically, float
*p_cell_expected is declared; &p_cell_expected is used as an
argument to this function; and free(p_cell_expected) is used to free this
array.

IMSL_CELL_EXPECTED_USER, float cell_expected[] (Output)
If specified, the n_categories cell expected values are returned in the array
cell_expected provided by the user.

IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared (Output)
The address of a pointer to an array of length n_categories containing the
cell contributions to chi-squared. On return, the pointer is initialized (through
a memory allocation request to malloc), and the array is stored there.
Typically, float *p_cell_chi_squared is declared;
&p_cell_chi_squared is used as an argument to this function; and
free(p_cell_chi_squared) is used to free this array.

IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
If specified, the cell contributions to chi-squared are returned in the array
cell_chi_squared provided by the user.

Chapter 10: Statistics and Random Number Generation chi_squared_test • 531

Description

The function imsl_f_chi_squared_test performs a chi-squared goodness-of-fit
test that a random sample of observations is distributed according to a specified
theoretical cumulative distribution. The theoretical distribution, which may be
continuous, discrete, or a mixture of discrete and continuous distributions, is specified
via the user-defined function user_proc_cdf. Because the user is allowed to give a
range for the observations, a test conditional upon the specified range is performed.

Argument n_categories gives the number of intervals into which the observations
are to be divided. By default, equiprobable intervals are computed by
imsl_f_chi_squared_test, but intervals that are not equiprobable can be specified
(through the use of optional argument IMSL_CUTPOINTS).

Regardless of the method used to obtain the cutpoints, the intervals are such that the
lower endpoint is not included in the interval, while the upper endpoint is always
included. If the cumulative distribution function has discrete elements, then user-
provided cutpoints should always be used since imsl_f_chi_squared_test cannot
determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are − ∞ and + ∞,
respectively. If IMSL_BOUNDS is specified, the endpoints are defined by the user via the
two arguments lower_bound and upper_bound.

A tally of counts is maintained for the observations in x as follows. If the cutpoints are
specified by the user, the tally is made in the interval to which xL belongs using the
endpoints specified by the user. If the cutpoints are determined by
imsl_f_chi_squared_test, then the cumulative probability at xL, F(xL), is computed
via the function user_proc_cdf. The tally for xL is made in interval number

mF x mib g+ = ⋅1 where and n_ categories

is the function that takes the greatest integer that is no larger than the argument of the
function. Thus, if the computer time required to calculate the cumulative distribution
function is large, user-specified cutpoints may be preferred to reduce the total
computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-
squared approximation may be suspect. A warning message to this effect is issued in
this case, as well as when an expected value is less than 5.

Programming Notes

The user must supply a function user_proc_cdf with calling sequence
user_proc_cdf(y), that returns the value of the cumulative distribution function at
any point y in the (optionally) specified range. Many of the cumulative distribution
functions in Chapter 9, “Special Functions,” can be used for user_proc_cdf, either
directly, if the calling sequence is correct, or indirectly, if, for example, the sample
means and standard deviations are to be used in computing the theoretical cumulative
distribution function.

532 • chi_squared_test IMSL C/Math/Library

Examples

Example 1

This example illustrates the use of imsl_f_chi_squared_test on a randomly
generated sample from the normal distribution. One-thousand randomly generated
observations are tallied into 10 equiprobable intervals. The null hypothesis that the
sample is from a normal distribution is specified by use of the imsl_f_normal_cdf
as the hypothesized distribution function. In this example, the null hypothesis is not
rejected.

#include <imsl.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *x, p_value;

 imsl_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsl_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 p_value = imsl_f_chi_squared_test (imsl_f_normal_cdf, N_OBSERVATIONS,
 N_CATEGORIES, x, 0);
 /* Print results */
 printf ("p value %7.4f\n", p_value);
}

Output
p value 0.1546

Example 2

In this example, some optional arguments are used for the data in the initial example.
#include <imsl.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared", "degrees of freedom",
 "p-value"};
 imsl_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsl_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 chi_squared_statistics[2] =
 imsl_f_chi_squared_test (imsl_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,

Chapter 10: Statistics and Random Number Generation chi_squared_test • 533

 IMSL_CUTPOINTS, &cutpoints,
 IMSL_CELL_COUNTS, &cell_counts,
 IMSL_CELL_CHI_SQUARED, &cell_chi_squared,
 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsl_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1, cutpoints, 0);
 imsl_f_write_matrix ("Cell Counts", 1, N_CATEGORIES, cell_counts,
 0);
 imsl_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
 N_CATEGORIES, cell_chi_squared,
 0);
}

Output
 Chi Squared Statistics

chi-squared 13.18
degrees of freedom 9.00
p-value 0.15

 Cut Points
 1 2 3 4 5 6
 -1.282 -0.842 -0.524 -0.253 -0.000 0.253

 7 8 9
 0.524 0.842 1.282

 Cell Counts
 1 2 3 4 5 6
 106 109 89 92 83 87

 7 8 9 10
 110 104 121 99

 Cell Contributions to Chi-Squared
 1 2 3 4 5 6
 0.36 0.81 1.21 0.64 2.89 1.69

 7 8 9 10
 1.00 0.16 4.41 0.01

Example 3

In this example, a discrete Poisson random sample of size 1000 with parameter θ = 5.0
is generated via function imsl_f_random_poisson (page 570). In the call to
imsl_f_chi_squared_test, function imsl_f_poisson_cdf (see page 510) is
used as function user_proc_cdf.

#include <imsl.h>

#define SEED 123457

534 • chi_squared_test IMSL C/Math/Library

#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 5.0

float user_proc_cdf(float);

main()
{
 int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};
 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7", "8", "9"};
 char *stat_row_labels[] = {"chi-squared", "degrees of freedom",
 "p-value"};

 imsl_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsl_random_poisson(N_NUMBERS, THETA, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];

 chi_squared_statistics[2] =
 imsl_f_chi_squared_test(user_proc_cdf, N_NUMBERS, N_CATEGORIES, x,
 IMSL_CUTPOINTS_USER, cutpoints,
 IMSL_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSL_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSL_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsl_f_write_matrix("\nChi-squared statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSL_ROW_LABELS, cell_row_labels,
 IMSL_COL_LABELS, cell_col_labels,
 0);
}

float user_proc_cdf(float k)
{
 float cdf_v;

 cdf_v = imsl_f_poisson_cdf ((int) k, THETA);
 return cdf_v;
}

Chapter 10: Statistics and Random Number Generation chi_squared_test • 535

Output
 Chi-squared statistics

chi-squared 10.48
degrees of freedom 9.00
p-value 0.31

 Cell Statistics

Poisson value 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150.0
expected count 40.4 84.2 140.4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7

Poisson value 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expected count 146.2 104.4 65.3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0

Warning Errors

IMSL_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSL_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

Fatal Errors

IMSL_ALL_OBSERVATIONS_MISSING All observations contain missing values.

IMSL_INCORRECT_CDF_1 The function user_proc_cdf is not a
cumulative distribution function. The
value at the lower bound must be
nonnegative, and the value at the upper
bound must not be greater than one.

IMSL_INCORRECT_CDF_2 The function user_proc_cdf is not a
cumulative distribution function. The
probability of the range of the
distribution is not positive.

IMSL_INCORRECT_CDF_3 The function user_proc_cdf is not a
cumulative distribution function. Its
evaluation at an element in x is
inconsistent with either the evaluation at
the lower or upper bound.

IMSL_INCORRECT_CDF_4 The function user_proc_cdf is not a
cumulative distribution function. Its
evaluation at a cutpoint is inconsistent
with either the evaluation at the lower or
upper bound.

536 • covariances IMSL C/Math/Library

IMSL_INCORRECT_CDF_5 An error has occurred when inverting the
cumulative distribution function. This
function must be continuous and defined
over the whole real line.

covariances
Computes the sample variance-covariance or correlation matrix.

Synopsis

#include <imsl.h>

float *imsl_f_covariances (int n_observations, int n_variables, float
x[], …, 0)

The type double function is imsl_d_covariances.

Required Arguments

int n_observations (Input)
The number of observations.

int n_variables (Input)
The number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the matrix of
data.

Return Value

If no optional arguments are used, imsl_f_covariances returns a pointer to an
n_variables × n_variables matrix containing the sample variance-covariance
matrix of the observations. The rows and columns of this matrix correspond to the
columns of x.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_covariances (int n_observations, int n_variables, float
x[],
IMSL_X_COL_DIM, int x_col_dim,
IMSL_VARIANCE_COVARIANCE_MATRIX,
IMSL_CORRECTED_SSCP_MATRIX,
IMSL_CORRELATION_MATRIX,
IMSL_STDEV_CORRELATION_MATRIX,
IMSL_MEANS, float **p_means,
IMSL_MEANS_USER, float means[],
IMSL_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSL_RETURN_USER, float covariance[],
0)

Chapter 10: Statistics and Random Number Generation covariances • 537

Optional Arguments

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_VARIANCE_COVARIANCE_MATRIX, or
IMSL_CORRECTED_SSCP_MATRIX, or
IMSL_CORRELATION_MATRIX, or
IMSL_STDEV_CORRELATION_MATRIX

Exactly one of these options can be used to specify the type of matrix to be
computed.

Keyword Type of Matrix

IMSL_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix
(default)

IMSL_CORRECTED_SSCP_MATRIX corrected sums of squares and
crossproducts matrix

IMSL_CORRELATION_MATRIX correlation matrix

IMSL_STDEV_CORRELATION_MATRIX correlation matrix except for the
diagonal elements which are the
standard deviations

IMSL_MEANS, float **p_means (Output)
The address of a pointer to the array containing the means of the variables in
x. The components of the array correspond to the columns of x. On return, the
pointer is initialized (through a memory allocation request to malloc), and the
array is stored there. Typically, float *p_means is declared; &p_means is
used as an argument to this function; and free(p_means) is used to free this
array.

IMSL_MEANS_USER, float means[] (Output)
Calculate the n_variables means and store them in the memory provided by
the user. The elements of means correspond to the columns of x.

IMSL_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
The column dimension of array covariance, if IMSL_RETURN_USER is
specified, or the column dimension of the return value otherwise.
Default: covariance_col_dim = n_variables

IMSL_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size
n_variables × n_variables provided by the user.

Description

The function imsl_f_covariances computes estimates of correlations, covariances,
or sums of squares and crossproducts for a data matrix x. The means, (corrected) sums

538 • covariances IMSL C/Math/Library

of squares, and (corrected) sums of crossproducts are computed using the method of
provisional means. Let

xki

denote the mean based on i observations for the k-th variable, and let cMNL denote the
sum of crossproducts (or sum of squares if j = k) based on i observations. Then, the
method of provisional means finds new means and sums of crossproducts as follows:

The means and crossproducts are initialized as:

x k p

c j k p
k

jk

0

0

0 0 1

0 0 1

= =
= =

. , ,

. , , ,

K

K

where p denotes the number of variables. Letting xN�L�� denote the k-th variable on
observation i + 1, each new observation leads to the following updates for

xki

and cMNL using update constant rL��:

r
i

x x x x r

c c x x x x r

i

k i ki k i ki i

jk i jki j i ji k i ki i

+

+ + +

+ + + +

=
+

= + −

= + − − −

1

1 1 1

1 1 1 1

1

1

1

, ,

, , ,

c h
d ic hb g

Usage Notes

The function imsl_f_covariances uses the following definition of a sample mean:

x
x

nk

kii

n

= =∑ 1

where n is the number of observations. The following formula defines the sample
covariance, sM�N, between variables j and k:

s
x x x x

njk

ji j ki ki

n

=
− −

−
=∑ d ib g

1

1

The sample correlation between variables j and k, rMN, is defined as follows:

r
s

s s
jk

jk

jj kk

=

Chapter 10: Statistics and Random Number Generation covariances • 539

Examples

Example 1

The first example illustrates the use of imsl_f_covariances for the first 50
observations in the Fisher iris data (Fisher 1936). Note in this example that the first
variable is constant over the first 50 observations.

#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 float *covariances, *means;
 float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 covariances = imsl_f_covariances (N_OBSERVATIONS, N_VARIABLES, x, 0);
 imsl_f_write_matrix ("The default case: variances/covariances",
 N_VARIABLES, N_VARIABLES, covariances,
 IMSL_PRINT_UPPER,
 0);
}

Output
 The default case: variances/covariances
 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111

540 • covariances IMSL C/Math/Library

Example 2

This example illustrates the use of some optional arguments in imsl_f_covariances.
Once again, the first 50 observations in the Fisher iris data are used.

#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 char *title;
 float *means, *correlations;
 float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 correlations = imsl_f_covariances (N_OBSERVATIONS,
 N_VARIABLES-1, x+1,
 IMSL_STDEV_CORRELATION_MATRIX,
 IMSL_X_COL_DIM, N_VARIABLES,
 IMSL_MEANS, &means,
 0);
 imsl_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
 title = "Correlations with Standard Deviations on the Diagonal\n";
 imsl_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
 correlations, IMSL_PRINT_UPPER,
 0);
}

Output
 Means

 1 2 3 4
5.006 3.428 1.462 0.246

Chapter 10: Statistics and Random Number Generation regression • 541

Correlations with Standard Deviations on the Diagonal

 1 2 3 4
1 0.3525 0.7425 0.2672 0.2781
2 0.3791 0.1777 0.2328
3 0.1737 0.3316
4 0.1054

Warning Errors

IMSL_CONSTANT_VARIABLE Correlations are requested, but the observations
on one or more variables are constant. The
corresponding correlations are set to NaN.

regression
Fits a multiple linear regression model using least squares.

Synopsis

#include <imsl.h>

float *imsl_f_regression (int n_observations, int n_independent, float
x[], float y[], …, 0)

The type double function is imsl_d_regression.

Required Arguments

int n_observations (Input)
The number of observations.

int n_independent (Input)
The number of independent (explanatory) variables.

float x[] (Input)
Array of size n_observations × n_independent containing the matrix of
independent (explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

Return Value

If the optional argument IMSL_NO_INTERCEPT is not used, imsl_f_regression
returns a pointer to an array of length n_independent + 1 containing a least-squares
solution for the regression coefficients. The estimated intercept is the initial component
of the array.

542 • regression IMSL C/Math/Library

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_regression (int n_observations, int n_independent,
float x[], float y[],
IMSL_X_COL_DIM, int x_col_dim,
IMSL_NO_INTERCEPT,
IMSL_TOLERANCE, float tolerance,
IMSL_RANK, int *rank,
IMSL_COEF_COVARIANCES, float **p_coef_covariances,
IMSL_COEF_COVARIANCES_USER, float coef_covariances[],
IMSL_COV_COL_DIM, int cov_col_dim,
IMSL_X_MEAN, float **p_x_mean,
IMSL_X_MEAN_USER, float x_mean[],
IMSL_RESIDUAL, float **p_residual,
IMSL_RESIDUAL_USER, float residual[],
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of x.
Default: x_col_dim = n_independent

IMSL_NO_INTERCEPT

By default, the fitted value for observation i is

$ $ $β β β0 1 1+ + +x xk kK

where k = n_independent. If IMSL_NO_INTERCEPT is specified, the
intercept term

$β0

is omitted from the model.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence. For
imsl_f_regression, tolerance = 100 × imsl_f_machine(4) is the
default choice. For imsl_d_regression,
tolerance = 100 × imsl_d_machine(4) is the default. See
imsl_f_machine (page 635).

IMSL_RANK, int *rank (Output)
The rank of the fitted model is returned in *rank.

Chapter 10: Statistics and Random Number Generation regression • 543

IMSL_COEF_COVARIANCES, float **p_coef_covariances (Output)
The address of a pointer to the m × m array containing the estimated variances
and covariances of the estimated regression coefficients. Here, m is the
number of regression coefficients in the model. If IMSL_NO_INTERCEPT is
specified, m = n_independent; otherwise, m = n_independent + 1. On
return, the pointer is initialized (through a memory allocation request to
malloc), and the array is stored there. Typically, float
*p_coef_covariances is declared; &p_coef_covariances is used as an
argument to this function; and free(p_coef_covariances) is used to free
this array.

IMSL_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
If specified, coef_covariances is an array of length m × m containing the
estimated variances and covariances of the estimated coefficients where m is
the number of regression coefficients in the model.

IMSL_COV_COL_DIM, int cov_col_dim (Input)
The column dimension of array coef_covariance.
Default: cov_col_dim = m where m is the number of regression coefficients
in the model.

IMSL_X_MEAN, float **p_x_mean (Output)
The address of a pointer to the array containing the estimated means of the
independent variables. On return, the pointer is initialized (through a memory
allocation request to malloc), and the array is stored there. Typically, float
*p_x_mean is declared; &p_x_mean is used as an argument to this function;
and free(p_x_mean) is used to free this array.

IMSL_X_MEAN_USER, float x_mean[] (Output)
If specified, x_mean is an array of length n_independent provided by the
user. On return, x_mean contains the means of the independent variables.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the
pointer is initialized (through a memory allocation request to malloc), and the
array is stored there. Typically, float *p_residual is declared;
&p_residual is used as argument to this function; and free(p_residual)
is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length n_observations provided by
the user. On return, residual contains the residuals.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)
The address of a pointer to the array containing the analysis of variance table.
On return, the pointer is initialized (through a memory allocation request to
malloc), and the array is stored there. Typically, float *p_anova_table is
declared; &p_anova_table is used as argument to this function; and
free(p_anova_table) is used to free this array.

544 • regression IMSL C/Math/Library

The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R� (in percent)

11 adjusted R� (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
If specified, the 15 analysis of variance statistics listed above are computed
and stored in the array anova_table provided by the user.

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored
in array coefficients provided by the user. If IMSL_NO_INTERCEPT is
specified, the array requires m = n_independent units of memory;
otherwise, the number of units of memory required to store the coefficients is
m = n_independent + 1.

Description

The function imsl_f_regression fits a multiple linear regression model with or
without an intercept. By default, the multiple linear regression model is

yL = β� + β�xL� +β�xL� + … + βNxLN + εL i = 1, 2, …, n

where the observed values of the yL’s (input in y) are the responses or values of the
dependent variable; the xL�’s, xL�’s, …, xLN’s (input in x) are the settings of the k (input
in n_independent) independent variables; β�, β�, …, βN are the regression
coefficients whose estimated values are to be output by imsl_f_regression; and the
εL’s are independently distributed normal errors each with mean zero and variance σ�.
Here, n is the number of rows in the augmented matrix (x,y), i.e., n equals
n_observations. Note that by default, β� is included in the model.

Chapter 10: Statistics and Random Number Generation regression • 545

The function imsl_f_regression computes estimates of the regression coefficients
by minimizing the sum of squares of the deviations of the observed response yL from the
fitted response

$yi

for the n observations. This minimum sum of squares (the error sum of squares) is
output as one of the analysis of variance statistics if IMSL_ANOVA_TABLE (or
IMSL_ANOVA_TABLE_USER) is specified and is computed as

SSE = −
=
∑ y yi i

i

n

$b g2

1

Another analysis of variance statistic is the total sum of squares. By default, the total
sum of squares is the sum of squares of the deviations of yL from its mean

y

the so-called corrected total sum of squares. This statistic is computed as

SST = −
=
∑ y yi

i

n

b g2

1

When IMSL_NO_INTERCEPT is specified, the total sum of squares is the sum of squares
of yL, the so-called uncorrected total sum of squares. This is computed as

SST =
=
∑ yi

i

n
2

1

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, imsl_f_regression performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The reduction
is based on one pass through the rows of the augmented matrix (x, y) using fast Givens
transformations. (See Golub and Van Loan 1983, pp. 156−162; Gentleman 1974.) This
method has the advantage that the loss of accuracy resulting from forming the
crossproduct matrix used in the normal equations is avoided.

By default, the current means of the dependent and independent variables are used to
internally center the data for improved accuracy. Let xL be a column vector containing
the j-th row of data for the independent variables. Let xi represent the mean vector for
the independent variables given the data for rows 1, 2, …, i. The current mean vector is
defined to be

x
x

ii

jj

i

= =∑ 1

546 • regression IMSL C/Math/Library

The i-th row of data has xi subtracted from it and is then weighted by i/(i − 1).
Although a crossproduct matrix is not computed, the validity of this centering operation
can be seen from the following formula for the sum of squares and crossproducts
matrix:

x x x x
i

i
x x x xi n i n

T

i

n

i

n

i i i i
T− − =

−
− −

= =
∑ ∑b gb g b gb g

1 2
1

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column of the
estimated covariance matrix of the estimated coefficients are updated (if
IMSL_COEF_COVARIANCES or IMSL_COEF_COVARIANCES_USER is specified) to
reflect the statistics for the original (uncentered) data. This means that the estimate of
the intercept is for the uncentered data.

As part of the final computations, imsl_regression checks for linearly dependent
regressors. In particular, linear dependence of the regressors is declared if any of the
following three conditions are satisfied:

• A regressor equals zero.

• Two or more regressors are constant.

•

1 1 2 1
2− ⋅ −Ri i, , ,K

is less than or equal to tolerance. Here, RL.���� ~� L�� is the multiple
correlation coefficient of the i-th independent variable with the first
i − 1 independent variables. If no intercept is in the model, the “multiple
correlation” coefficient is computed without adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be linearly
dependent upon the previous i − 1 regressors, then the i-th coefficient estimate and all
elements in the i-th row and i-th column of the estimated variance-covariance matrix of
the estimated coefficients (if IMSL_COEF_COVARIANCES or
IMSL_COEF_COVARIANCES_USER is specified) are set to zero. Finally, if a linear
dependence is declared, an informational (error) message, code
IMSL_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1

A regression model

y x x x ii i i i i= + + + + =β β β β ε0 1 1 2 2 3 3 1 2 9, , ,K

is fitted to data taken from Maindonald (1984, pp. 203−204).
#include <imsl.h>

Chapter 10: Statistics and Random Number Generation regression • 547

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{
 float *coefficients;
 float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0};
 float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

 coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y, 0);
 imsl_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
 coefficients,
 IMSL_COL_NUMBER_ZERO,
 0);
}

Output
 Least-Squares Coefficients
 0 1 2 3
7.733 -0.200 2.333 -1.667

Example 2

A weighted least-squares fit is computed using the model

yL = β�xL� +β�xL� + β�xL� + εL i = 1, 2, …, 4

and weights 1/i� discussed by Maindonald (1984, pp. 67−68). In order to compute the
weighted least-squares fit, using an ordinary least-squares function
(imsl_f_regression), the regressors (including the column of ones for the intercept
term) and the responses must be transformed prior to invocation of
imsl_f_regression. Specifically, the i-th response and regressors are multiplied by
a square root of the i-th weight. IMSL_NO_INTERCEPT must be specified since the
column of ones corresponding to the intercept term in the untransformed model is
transformed by the weights and is regarded as an additional independent variable.

In the example, IMSL_ANOVA_TABLE is specified. The minimum sum of squares for
error in terms of the original untransformed regressors and responses for this weighted
regression is

SSE = −
=
∑w y yi i i

i

$b g2

1

4

548 • regression IMSL C/Math/Library

where wL = 1/i�. Also, since IMSL_NO_INTERCEPT is specified, the uncorrected total
sum-of-squares terms of the original untransformed responses is

SST =
=
∑w yi i

i

2

1

4

#include <imsl.h>
#include <math.h>

#define N_INDEPENDENT 3
#define N_COEFFICIENTS N_INDEPENDENT
#define N_OBSERVATIONS 4

main()
{
 int i, j;
 float *coefficients, w, anova_table[15], power;
 float x[][N_INDEPENDENT] = {1.0, -2.0, 0.0,
 1.0, -1.0, 2.0,
 1.0, 2.0, 5.0,
 1.0, 7.0, 3.0};
 float y[] = {-3.0, 1.0, 2.0, 6.0};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 power = 0.0;
 for (i = 0; i < N_OBSERVATIONS; i++) {
 power += 1.0;
 /* The square root of the weight */
 w = sqrt(1.0 / (power*power));
 /* Transform response */
 y[i] *= w;
 /* Transform regressors */
 for (j = 0; j < N_INDEPENDENT; j++)
 x[i][j] *= w;
 }

 coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSL_NO_INTERCEPT,
 IMSL_ANOVA_TABLE_USER,
 anova_table, 0);

 imsl_f_write_matrix("Least-Squares Coefficients", 1,
 N_COEFFICIENTS, coefficients, 0);
 imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table, IMSL_ROW_LABELS, anova_row_labels,

Chapter 10: Statistics and Random Number Generation poly_regression • 549

 IMSL_WRITE_FORMAT, "%10.2f", 0);
}

Output
Least-Squares Coefficients
 1 2 3
-1.431 0.658 0.748

 * * * Analysis of Variance * * *

degrees of freedom for regression 3.00
degrees of freedom for error 1.00
total (uncorrected) degrees of freedom 4.00
sum of squares for regression 10.93
sum of squares for error 1.01
total (uncorrected) sum of squares 11.94
regression mean square 3.64
error mean square 1.01
F-statistic 3.60
p-value 0.37
R-squared (in percent) 91.52
adjusted R-squared (in percent) 66.08
est. standard deviation of model error 1.01
overall mean of y -0.08
coefficient of variation (in percent) -1207.73

Warning Errors

IMSL_RANK_DEFICIENT The model is not full rank. There is not a unique
least-squares solution.

poly_regression
Performs a polynomial least-squares regression.

Synopsis

#include <imsl.h>

float *imsl_f_poly_regression (int n_observations, float x[], float y[],
int degree, …, 0)

The type double procedure is imsl_d_poly_regression.

Required Arguments

int n_observations (Input)
The number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
The degree of the polynomial.

550 • poly_regression IMSL C/Math/Library

Return Value

A pointer to the vector of size degree + 1 containing the coefficients of the fitted
polynomial. If a fit cannot be computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_poly_regression (int n_observations, float xdata[], float
ydata[], int degree,
IMSL_WEIGHTS, float weights[],
IMSL_SSQ_POLY, float **p_ssq_poly,
IMSL_SSQ_POLY_USER, float ssq_poly[],
IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,
IMSL_SSQ_LOF, float **p_ssq_lof,
IMSL_SSQ_LOF_USER, float ssq_lof[],
IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSL_X_MEAN, float *x_mean,
IMSL_X_VARIANCE, float *x_variance,
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_DF_PURE_ERROR, int *df_pure_error,
IMSL_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSL_RESIDUAL, float **p_residual,
IMSL_RESIDUAL_USER, float residual[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments

IMSL_WEIGHTS, float weights[] (Input)
Array with n_observations components containing the vector of weights
for the observation. If this option is not specified, all observations have equal
weights of one.

IMSL_SSQ_POLY, float **p_ssq_poly (Output)
The address of a pointer to the array containing the sequential sums of squares
and other statistics. On return, the pointer is initialized (through a memory
allocation request to malloc), and the array is stored there. Typically, float
*p_ssq_poly is declared; &p_ssq_poly is used as an argument to this
function; and free(p_ssq_poly) is used to free this array. Row i
corresponds to xL, i = 1, …, degree, and the columns are described as follows:

Chapter 10: Statistics and Random Number Generation poly_regression • 551

Column Description

1 degrees of freedom

2 sums of squares

3 F-statistic

4 p-value

IMSL_SSQ_POLY_USER, float ssq_poly[] (Output)
Array of size degree × 4 containing the sequential sums of squares for a
polynomial fit described under optional argument IMSL_SSQ_POLY.

IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
The column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

IMSL_SSQ_LOF, float **p_ssq_lof (Output)
The address of a pointer to the array containing the lack-of-fit statistics. On
return, the pointer is initialized (through a memory allocation request to
malloc), and the array is stored there. Typically, float *p_ssq_lof is
declared; &p_ssq_lof is used as an argument to this function; and
free(p_ssq_lof) is used to free this array. Row i corresponds to
xL, i = 1, …, degree, and the columns are described in the following table.

Column Description

1 degrees of freedom

2 lack-of-fit sums of squares

3 F-statistic for testing lack-of-fit for a
polynomial model of degree i

4 p-value for the test

IMSL_SSQ_LOF_USER, float ssq_lof[] (Output)
Array of size degree × 4 containing the matrix of lack-of-fit statistics
described under optional argument IMSL_SSQ_LOF.

IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
The column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSL_X_MEAN, float *x_mean (Output)
The mean of x.

IMSL_X_VARIANCE, float *x_variance (Output)
The variance of x.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)
The address of a pointer to the array containing the analysis of variance table.
On return, the pointer is initialized (through a memory allocation request to

552 • poly_regression IMSL C/Math/Library

malloc), and the array is stored there. Typically, float *p_anova_table is
declared; &p_anova_table is used as an argument to this function; and
free(p_anova_table) is used to free this array.

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R� (in percent)

11 adjusted R� (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
Array of size 15 containing the analysis variance statistics listed under
optional argument IMSL_ANOVA_TABLE.

IMSL_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in
df_pure_error.

IMSL_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in
ssq_pure_error.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the
pointer is initialized (through a memory allocation request to malloc), and the
array is stored there. Typically, float *p_residual is declared;
&p_residual is used as an argument to this function; and
free(p_residual)is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length n_observations provided by
the user. On return, residual contains the residuals.

Chapter 10: Statistics and Random Number Generation poly_regression • 553

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored
in array coefficients of size degree + 1 provided by the user.

Description

The function imsl_f_poly_regression computes estimates of the regression
coefficients in a polynomial (curvilinear) regression model. In addition to the
computation of the fit, imsl_f_poly_regression computes some summary
statistics. Sequential sums of squares attributable to each power of the independent
variable (stored in ssq_poly) are computed. These are useful in assessing the
importance of the higher order powers in the fit. Draper and Smith (1981, pp. 101−102)
and Neter and Wasserman (1974, pp. 278−287) discuss the interpretation of the
sequential sums of squares. The statistic R� is the percentage of the sum of squares of
y about its mean explained by the polynomial curve. Specifically,

R
y y

y y

i2

2

1
2

100=
−

−
∑
∑

$
%

b g
b g

where $yi is the fitted y value at xL and y is the mean of y. This statistic is useful in
assessing the overall fit of the curve to the data. R� must be between 0% and 100%,
inclusive. R� = 100% indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed using
orthogonal polynomials as the regressor variables. This reparameterization of the
polynomial model in terms of orthogonal polynomials has the advantage that the loss of
accuracy resulting from forming powers of the x-values is avoided. All results are
returned to the user for the original model (power form).

The function imsl_f_poly_regression is based on the algorithm of Forsythe
(1957). A modification to Forsythe’s algorithm suggested by Shampine (1975) is used
for computing the polynomial coefficients. A discussion of Forsythe’s algorithm and
Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342−347).

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp.
279−285). The data set contains the response variable y measuring coffee sales (in
hundred gallons) and the number of self-service coffee dispensers. Responses for
14 similar cafeterias are in the data set. A graph of the results also is given.

#include <imsl.h>

#define DEGREE 2
#define NOBS 14

main()
{
 float *coefficients;

554 • poly_regression IMSL C/Math/Library

 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

 coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE, 0);

 imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
 DEGREE + 1, 1, coefficients,
 IMSL_ROW_NUMBER_ZERO,
 0);
}

Output
Least-Squares Polynomial Coefficients
 0 503.3
 1 78.9
 2 -4.0

Figure 10-1 A Polynomial Fit

Example 2

This example is a continuation of the initial example. Here, many optional arguments
are used.

#include <stdio.h>
#include <imsl.h>

#define DEGREE 2
#define NOBS 14

void main()
{
 int iset = 1, dfpe;

Chapter 10: Statistics and Random Number Generation poly_regression • 555

 float *coefficients, *anova, sspe, *sspoly, *sslof;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 char *coef_rlab[2];
 char *coef_clab[] = {" ", "intercept", "linear", "quadratic"};
 char *stat_clab[] = {" ", "Degrees of\nFreedom",
 "Sum of\nSquares", "\nF-Statistic",
 "\np-value"};
 char *anova_rlab[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE,
 IMSL_SSQ_POLY, &sspoly,
 IMSL_SSQ_LOF, &sslof,
 IMSL_ANOVA_TABLE, &anova,
 IMSL_DF_PURE_ERROR, &dfpe,
 IMSL_SSQ_PURE_ERROR, &sspe,
 0);
 imsl_write_options(-1, &iset);
 imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
 1, DEGREE + 1, coefficients,
 IMSL_COL_LABELS, coef_clab, 0);
 coef_rlab[0] = coef_clab[2];
 coef_rlab[1] = coef_clab[3];
 imsl_f_write_matrix("Sequential Statistics", DEGREE, 4, sspoly,
 IMSL_COL_LABELS, stat_clab,
 IMSL_ROW_LABELS, coef_rlab,
 IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsl_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, sslof,
 IMSL_COL_LABELS, stat_clab,
 IMSL_ROW_LABELS, coef_rlab,
 IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova,
 IMSL_ROW_LABELS, anova_rlab,
 IMSL_WRITE_FORMAT, "%9.2f",
 0);
}

Output
 Least-Squares Polynomial Coefficients
 intercept linear quadratic

556 • poly_regression IMSL C/Math/Library

 503.3 78.9 -4.0

 Sequential Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 1.0 220644.2 3415.8 0.0000
 quadratic 1.0 4387.7 67.9 0.0000

 Lack-of-Fit Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 5.0 4793.7 22.0 0.0004
 quadratic 4.0 405.9 2.3 0.1548

 * * * Analysis of Variance * * *

 degrees of freedom for regression 2.00
 degrees of freedom for error 11.00
 total (corrected) degrees of freedom 13.00
 sum of squares for regression 225031.94
 sum of squares for error 710.55
 total (corrected) sum of squares 225742.48
 regression mean square 112515.97
 error mean square 64.60
 F-statistic 1741.86
 p-value 0.00
 R-squared (in percent) 99.69
 adjusted R-squared (in percent) 99.63
 est. standard deviation of model error 8.04
 overall mean of y 710.99
 coefficient of variation (in percent) 1.13

Warning Errors

IMSL_CONSTANT_YVALUES The y values are constant. A zero-order
polynomial is fit. High order coefficients
are set to zero.

IMSL_FEW_DISTINCT_XVALUES There are too few distinct x values to fit
the desired degree polynomial. High
order coefficients are set to zero.

IMSL_PERFECT_FIT A perfect fit was obtained with a
polynomial of degree less than degree.
High order coefficients are set to zero.

Fatal Errors

IMSL_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSL_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN (not a
number). There are no valid data.

IMSL_CONSTANT_XVALUES The x values are constant.

Chapter 10: Statistics and Random Number Generation ranks • 557

ranks
Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis

#include <imsl.h>

float *imsl_f_ranks (int n_observations, float x[], …, 0)

The type double function is imsl_d_ranks.

Required Arguments

int n_observations (Input)
The number of observations.

float x[] (Input)
Array of length n_observations containing the observations to be ranked.

Return Value

A pointer to a vector of length n_observations containing the rank (or optionally, a
transformation of the rank) of each observation.

Synopsis with Optional Arguments

#include <imsl.h>

float* imsl_f_ranks (int n_observations, float x[],
IMSL_AVERAGE_TIE,
IMSL_HIGHEST,
IMSL_LOWEST,
IMSL_RANDOM_SPLIT,
IMSL_FUZZ, float fuzz_value,
IMSL_RANKS,
IMSL_BLOM_SCORES,
IMSL_TUKEY_SCORES,
IMSL_VAN_DER_WAERDEN_SCORES,
IMSL_EXPECTED_NORMAL_SCORES,
IMSL_SAVAGE_SCORES,
IMSL_RETURN_USER, float ranks[],
0)

Optional Arguments

IMSL_AVERAGE_TIE, or
IMSL_HIGHEST, or
IMSL_LOWEST, or

558 • ranks IMSL C/Math/Library

IMSL_RANDOM_SPLIT

Exactly one of these optional arguments may be used to change the method
used to assign a score to tied observations.

Keyword Method

IMSL_AVERAGE_TIE average of the scores of the tied
observations (default)

IMSL_HIGHEST highest score in the group of ties

IMSL_LOWEST lowest score in the group of ties

IMSL_RANDOM_SPLIT tied observations are randomly split
using a random number generator.

IMSL_FUZZ, float fuzz_value (Input)
Value used to determine when two items are tied. If abs(x[i]-x[j]) is less
than or equal to fuzz_value, then x[i] and x[j] are said to be tied. The
default value for fuzz_value is 0.0.

IMSL_RANKS, or
IMSL_BLOM_SCORES, or
IMSL_TUKEY_SCORES, or
IMSL_VAN_DER_WAERDEN_SCORES, or
IMSL_EXPECTED_NORMAL_SCORES, or
IMSL_SAVAGE_SCORES

Exactly one of these optional arguments may be used to specify the type of
values returned.

Keyword Result

IMSL_RANKS ranks (default)

IMSL_BLOM_SCORES Blom version of normal scores

IMSL_TUKEY_SCORES Tukey version of normal scores

IMSL_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal
scores

IMSL_EXPECTED_NORMAL_SCORES expected value of normal order
statistics (For tied observations, the
average of the expected normal
scores.)

IMSL_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)

IMSL_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Chapter 10: Statistics and Random Number Generation ranks • 559

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation of the
ranks) of the data in x. If x[i] has the smallest value among the values in x and there is
no other element in x with this value, then ranks[i] = 1. If both x[i] and x[j] have the
same smallest value, then the output value depends upon the option used to break ties.

Keyword Result

IMSL_AVERAGE_TIE ranks[i] = ranks[j] = 1.5

IMSL_HIGHEST ranks[i] = ranks[j] = 2.0

IMSL_LOWEST ranks[i] = ranks [j] = 1.0

IMSL_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0

or, randomly,

ranks[i] = 2.0 and ranks[j] = 1.0

When the ties are resolved randomly, the function imsl_f_random_uniform is used
to generate random numbers. Different results may occur from different executions of
the program unless the “seed” of the random number generator is set explicitly by use
of the function imsl_random_seed_set (page 564).

The Scores

Normal and other functions of the ranks can optionally be returned. Normal scores can
be defined as the expected values, or approximations to the expected values, of order
statistics from a normal distribution. The simplest approximations are obtained by
evaluating the inverse cumulative normal distribution function,
imsl_f_normal_inverse_cdf, at the ranks scaled into the open interval (0,1). In the
Blom version (see Blom 1958), the scaling transformation for the rank
rL (1 ≤ rL ≤ n where n is the sample size, n_observations) is (rL − 3/8)/(n + 1/4).
The Blom normal score corresponding to the observation with rank rL is

Φ− −
+

1 3 8

1 4
(

/

/
)

r

n
i

where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if x[i]
equals x[j] (within fuzz_value) and their value is the k-th smallest in the data set, the
Blom normal scores are determined for ranks of k and k + 1. Then, these normal scores
are averaged or selected in the manner specified. (Whether the transformations are
made first or ties are resolved first makes no difference except when IMSL_AVERAGE
is specified.)

560 • ranks IMSL C/Math/Library

In the Tukey version (see Tukey 1962), the scaling transformation for the rank
rL�is (rL − 1/3)/(n + 1/3). The Tukey normal score corresponding to the observation with
rank rL is

Φ− −
+

1 1 3

1 3
(

/

/
)

r

n
i

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation
for the rank rL is rL/(n + 1). The Van der Waerden normal score corresponding to the
observation with rank rL is

Φ−

+
1

1
()

r

n
i

Ties are handled in the same way as for the Blom normal scores.

When option IMSL_EXPECTED_NORMAL_SCORES is used, the output values are the
expected values of the normal order statistics from a sample of size n_observations.
If the value in x[i] is the k-th smallest, then the value output in ranks[i] is E(zN) where
E(⋅) is the expectation operator, and zN is the k-th order statistic in a sample of size
n_observations from a standard normal distribution. Ties are handled in the same
way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a sample
of size n_observations. These values are called Savage scores because of their use
in a test discussed by Savage (1956) (see Lehmann 1975). If the value in x[i] is the
k-th smallest, then the value output in ranks[i] is E(yN) where yN is the k-th order
statistic in a sample of size n_observations from a standard exponential distribution.
The expected value of the k-th order statistic from an exponential sample of size n
(n_observations) is

1 1

1

1

1n n n k
+

−
+ +

− +
K

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1

The data for this example, from Hinkley (1977), contains 30 observations. Note that the
fourth and sixth observations are tied, and that the third and twentieth observations are
tied.

#include <imsl.h>

#define N_OBSERVATIONS 30

main()
{

Chapter 10: Statistics and Random Number Generation ranks • 561

 float *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

 ranks = imsl_f_ranks(N_OBSERVATIONS, x, 0);
 imsl_f_write_matrix("Ranks" , 1, N_OBSERVATIONS, ranks, 0);
}

Output
 Ranks
 1 2 3 4 5 6
5.0 18.0 6.5 11.5 21.0 11.5

 7 8 9 10 11 12
2.0 15.0 29.0 24.0 27.0 28.0

 13 14 15 16 17 18
16.0 23.0 3.0 17.0 13.0 1.0

 19 20 21 22 23 24
4.0 6.5 26.0 19.0 10.0 14.0

 25 26 27 28 29 30
30.0 25.0 9.0 20.0 8.0 22.0

Example 2

This example uses all of the score options with the same data set, which contains some
ties. Ties are handled in several different ways in this example.

#include <imsl.h>

#define N_OBSERVATIONS 30

void main()
{
 float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 char *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
 "Expected Value"};

 /* Blom scores using largest ranks */
 /* for ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_HIGHEST,
 IMSL_BLOM_SCORES,
 IMSL_RETURN_USER, &score[0][0],
 0);
 /* Tukey normal scores using smallest */
 /* ranks for ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_LOWEST,
 IMSL_TUKEY_SCORES,

562 • ranks IMSL C/Math/Library

 IMSL_RETURN_USER, &score[1][0],
 0);
 /* Van der Waerden scores using */
 /* randomly resolved ties */
 imsl_random_seed_set(123457);
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_RANDOM_SPLIT,
 IMSL_VAN_DER_WAERDEN_SCORES,
 IMSL_RETURN_USER, &score[2][0],
 0);
 /* Expected value of normal order */
 /* statistics using averaging to */
 /* break ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_EXPECTED_NORMAL_SCORES,
 IMSL_RETURN_USER, &score[3][0],
 0);
 imsl_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
 (float *)score,
 IMSL_ROW_LABELS, row_labels,
 0);
 /* Savage scores using averaging */
 /* to break ties */
 ranks = imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_SAVAGE_SCORES,
 0);
 imsl_f_write_matrix("Expected values of exponential order "
 "statistics", 1,
 N_OBSERVATIONS, ranks,
 0);
}

Output
 Normal Order Statistics
 1 2 3 4 5
Blom -1.024 0.209 -0.776 -0.294 0.473
Tukey -1.020 0.208 -0.890 -0.381 0.471
Van der Waerden -0.989 0.204 -0.753 -0.287 0.460
Expected Value -1.026 0.209 -0.836 -0.338 0.473

 6 7 8 9 10
Blom -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0.753
Expected Value -0.338 -1.616 -0.041 1.616 0.777

 11 12 13 14 15
Blom 1.176 1.361 0.041 0.668 -1.361
Tukey 1.171 1.354 0.041 0.666 -1.354
Van der Waerden 1.131 1.300 0.040 0.649 -1.300
Expected Value 1.179 1.365 0.041 0.669 -1.365

 16 17 18 19 20
Blom 0.125 -0.209 -2.040 -1.176 -0.776
Tukey 0.124 -0.208 -2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 -1.849 -1.131 -0.865
Expected Value 0.125 -0.209 -2.043 -1.179 -0.836

Chapter 10: Statistics and Random Number Generation random_seed_get • 563

 21 22 23 24 25
Blom 1.024 0.294 -0.473 -0.125 2.040
Tukey 1.020 0.293 -0.471 -0.124 2.015
Van der Waerden 0.989 0.287 -0.460 -0.122 1.849
Expected Value 1.026 0.294 -0.473 -0.125 2.043

 26 27 28 29 30
Blom 0.893 -0.568 0.382 -0.668 0.568
Tukey 0.890 -0.566 0.381 -0.666 0.566
Van der Waerden 0.865 -0.552 0.372 -0.649 0.552
Expected Value 0.894 -0.568 0.382 -0.669 0.568

 Expected values of exponential order statistics
 1 2 3 4 5 6
 0.179 0.892 0.240 0.474 1.166 0.474

 7 8 9 10 11 12
 0.068 0.677 2.995 1.545 2.162 2.495

 13 14 15 16 17 18
 0.743 1.402 0.104 0.815 0.555 0.033

 19 20 21 22 23 24
 0.141 0.240 1.912 0.975 0.397 0.614

 25 26 27 28 29 30
 3.995 1.712 0.350 1.066 0.304 1.277

random_seed_get
Retrieves the current value of the seed used in the IMSL random number generators.

Synopsis

#include <imsl.h>

int imsl_random_seed_get ()

Return Value

The value of the seed.

Description

The function imsl_random_seed_get retrieves the current value of the “seed” used
in the random number generators. A reason for doing this would be to restart a
simulation, using imsl_random_seed_set to reset the seed.

Example

This example illustrates the statements required to restart a simulation using
imsl_random_seed_get and imsl_random_seed_set. Also, the example shows
that restarting the sequence of random numbers at the value of the seed last generated is
the same as generating the random numbers all at once.

564 • random_seed_set IMSL C/Math/Library

#include <imsl.h>

#define N_RANDOM 5

main()
{
 int seed = 123457;
 float *r1, *r2, *r;

 imsl_random_seed_set(seed);
 r1 = imsl_f_random_uniform(N_RANDOM, 0);
 imsl_f_write_matrix ("First Group of Random Numbers", 1,
 N_RANDOM, r1, 0);
 seed = imsl_random_seed_get();

 imsl_random_seed_set(seed);
 r2 = imsl_f_random_uniform(N_RANDOM, 0);
 imsl_f_write_matrix ("Second Group of Random Numbers", 1,
 N_RANDOM, r2, 0);

 imsl_random_seed_set(123457);
 r = imsl_f_random_uniform(2*N_RANDOM, 0);
 imsl_f_write_matrix ("Both Groups of Random Numbers", 1,
 2*N_RANDOM, r, 0);
}

Output
 First Group of Random Numbers
 1 2 3 4 5
0.9662 0.2607 0.7663 0.5693 0.8448

 Second Group of Random Numbers
 1 2 3 4 5
0.0443 0.9872 0.6014 0.8964 0.3809

 Both Groups of Random Numbers
 1 2 3 4 5 6
0.9662 0.2607 0.7663 0.5693 0.8448 0.0443

 7 8 9 10
0.9872 0.6014 0.8964 0.3809

random_seed_set
Initializes a random seed for use in the IMSL random number generators.

Synopsis

#include <imsl.h>

void imsl_random_seed_set (int seed)

Chapter 10: Statistics and Random Number Generation random_option • 565

Required Arguments

int seed (Input)
The seed of the random number generator. The argument seed must be in the
range (0, 2147483646). If seed is zero, a value is computed using the system
clock. Hence, the results of programs using the IMSL random number
generators will be different at various times.

Description

The function imsl_random_seed_set is used to initialize the seed used in the IMSL
random number generators. The form of the generators is

xL ≡ cxL�� mod (2�� − 1)

The value of x� is the seed. If the seed is not initialized prior to invocation of any of the
routines for random number generation by calling imsl_random_seed_set, the seed
is initialized via the system clock. The seed can be reinitialized to a clock-dependent
value by calling imsl_random_seed_set with seed set to 0.

The effect of imsl_random_seed_set is to set some global values used by the
random number generators.

A common use of imsl_random_seed_set is in conjunction with
imsl_random_seed_get to restart a simulation.

Example

See function imsl_random_seed_get (page 563).

random_option
Selects the uniform (0,1) multiplicative congruential pseudorandom number generator.

Synopsis

#include <imsl.h>

void imsl_random_option (int generator_option)

Required Arguments

int generator_option (Input)
Indicator of the generator. The random number generator is a multiplicative
congruential generator with modulus 2�� − 1. Argument generator_option
is used to choose the multiplier and whether or not shuffling is done.

566 • random_uniform IMSL C/Math/Library

generator_option Generator

1 multiplier 16807 used

2 multiplier 16807 used with shuffling

3 multiplier 397204094 used

4 multiplier 397204094 used with shuffling

5 multiplier 950706376 used

6 multiplier 950706376 used with shuffling

Description

The IMSL uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not to use
shuffling are determined by imsl_random_option. The description of function
imsl_f_random_uniform may provide some guidance in the choice of the form of
the generator. If no selection is made explicitly, the generators use the multiplier 16807
without shuffling. This form of the generator has been in use for some time
(Lewis et al. 1969).

Example

The C statement

imsl_random_option(1)

selects the simple multiplicative congruential generator with multiplier 16807. Since
this is the same as the default, this statement has no effect unless
imsl_random_option had previously been called in the same program to select a
different generator.

random_uniform
Generates pseudorandom numbers from a uniform (0,1) distribution.

Synopsis

#include <imsl.h>

float *imsl_f_random_uniform (int n_random, …, 0)

The type double function is imsl_d_random_uniform.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Chapter 10: Statistics and Random Number Generation random_uniform • 567

Return Value

A pointer to a vector of length n_random containing the random uniform (0, 1)
deviates.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_random_uniform (int n_random,
IMSL_RETURN_USER, float r[],
0)

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)
If specified, the array of length n_random containing the random uniform
(0, 1) deviates is returned in the user-provided array r.

Description

The function imsl_f_random_uniform generates pseudorandom numbers from a
uniform (0, 1) distribution using a multiplicative congruential method. The form of the
generator is

xL ≡ cxL�� mod (2�� − 1)

Each xL is then scaled into the unit interval (0,1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by the
function imsl_random_option. The choice of 16807 will result in the fastest
execution time. If no selection is made explicitly, the functions use the multiplier
16807.

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table is
filled with the first 128 uniform (0, 1) numbers resulting from the simple multiplicative
congruential generator. Then, for each xL from the simple generator, the low-order bits
of xL are used to select a random integer, j, from 1 to 128. The j-th entry in the table is
then delivered as the random number; and xL, after being scaled into the unit interval, is
inserted into the j-th position in the table.

The values returned by imsl_f_random_uniform are positive and less than 1.0.
Some values returned may be smaller than the smallest relative spacing, however.
Hence, it may be the case that some value, for example r[i], is such that
1.0 − r[i] = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output from imsl_f_random_uniform. The following

568 • random_normal IMSL C/Math/Library

statements (in single precision) would yield random deviates from a uniform (a, b)
distribution.
float *r;
r = imsl_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i]*(b-a) + a;

Example

In this example, imsl_f_random_uniform is used to generate five pseudorandom
uniform numbers. Since imsl_random_option is not called, the generator used is a
simple multiplicative congruential one with a multiplier of 16807.

#include <imsl.h>
#include <stdio.h>

#define N_RANDOM 5

void main()
{
 float *r;

 imsl_random_seed_set(123457);

 r = imsl_f_random_uniform(N_RANDOM, 0);

 printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

random_normal
Generates pseudorandom numbers from a standard normal distribution using an inverse
CDF method.

Synopsis

#include <imsl.h>

float *imsl_f_random_normal (int n_random, …, 0)

The type double function is imsl_d_random_normal.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value

A pointer to a vector of length n_random containing the random standard normal
deviates. To release this space, use free.

Chapter 10: Statistics and Random Number Generation random_normal • 569

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_random_normal (int n_random,
IMSL_RETURN_USER, float r[],
0)

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)
Pointer to a vector of length n_random that will contain the generated random
standard normal deviates.

Description

Function imsl_f_random_normal generates pseudorandom numbers from a standard
normal (Gaussian) distribution using an inverse CDF technique. In this method, a
uniform (0, 1) random deviate is generated. Then, the inverse of the normal distribution
function is evaluated at that point, using the function imsl_f_normal_inverse_cdf.

Deviates from the normal distribution with mean mean and standard deviation
std_dev can be obtained by scaling the output from imsl_f_random_normal. The
following statements (in single precision) would yield random deviates from a normal
(mean, std_dev�) distribution.

 float *r;
 r = imsl_f_random_normal (n_random, 0);
 for (i=0; i<n_random; i++)
 r[i] = r[i]*std_dev + mean;

Example

In this example, imsl_f_random_normal is used to generate five pseudorandom
deviates from a standard normal distribution.

#include <imsl.h>

#define N_RANDOM 5

void main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

 imsl_random_seed_set (seed);
 r = imsl_f_random_normal(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145

570 • random_poisson IMSL C/Math/Library

Remark

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

random_poisson
Generates pseudorandom numbers from a Poisson distribution.

Synopsis

#include <imsl.h>

int *imsl_random_poisson (int n_random, float theta, …, 0)

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. The argument theta must be positive.

Return Value

If no optional arguments are used, imsl_random_poisson returns a pointer to a
vector of length n_random containing the random Poisson deviates. To release this
space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

int *imsl_random_poisson (int n_random, float theta,
IMSL_RETURN_USER, int r[],
0)

Optional Arguments

IMSL_RETURN_USER, int r[] (Output)
If specified, the vector of length n_random of random Poisson deviates is
returned in the user-provided array r.

Description

The function imsl_random_poisson generates pseudorandom numbers from
a Poisson distribution with positive mean theta. The probability function
(with θ = theta) is

f(x) = (e�Tθ[)/x!, for x = 0, 1,2, …

Chapter 10: Statistics and Random Number Generation random_gamma • 571

If theta is less than 15, imsl_random_poisson uses an inverse CDF method;
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see also
Schmeiser 1983) is used. The PTPE method uses a composition of four regions, a
triangle, a parallelogram, and two negative exponentials. In each region except the
triangle, acceptance/rejection is used. The execution time of the method is essentially
insensitive to the mean of the Poisson.

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

Example

In this example, imsl_random_poisson is used to generate five pseudorandom
deviates from a Poisson distribution with mean equal to 0.5.

#include <imsl.h>

#define N_RANDOM 5

void main()
{
 int *r;
 int seed = 123457;
 float theta = 0.5;

 imsl_random_seed_set (seed);
 r = imsl_random_poisson (N_RANDOM, theta, 0);
 imsl_i_write_matrix ("Poisson(0.5) random deviates", 1, 5, r, 0);
}

Output
Poisson(0.5) random deviates
 1 2 3 4 5
 2 0 1 0 1

random_gamma
Generates pseudorandom numbers from a standard gamma distribution.

Synopsis

#include <imsl.h>

float *imsl_f_random_gamma (int n_random, float a, …, 0)

The type double procedure is imsl_d_random_gamma.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

572 • random_gamma IMSL C/Math/Library

float a (Input)
The shape parameter of the gamma distribution. This parameter must be
positive.

Return Value

If no optional arguments are used, imsl_f_random_gamma returns a pointer to a
vector of length n_random containing the random standard gamma deviates. To release
this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_random_gamma (int n_random, float a,
IMSL_RETURN_USER, float r[],
0)

Optional Arguments

IMSL_USER_RETURN, float r[] (Output)
If specified, the vector of length n_random containing the random standard
gamma deviates is returned in the user-provided array r.

Description

The function imsl_f_random_gamma generates pseudorandom numbers from a
gamma distribution with shape parameter a and unit scale parameter. The probability
density function is

f x
a

x e xa xb g b g= ≥− −1
01

Γ
for

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates are
used; and for the special case of a = 1.0, exponential deviates are generated. Otherwise,
if a is less than 1.0, an acceptance-rejection method due to Ahrens, described in Ahrens
and Dieter (1974), is used. If a is greater than 1.0, a ten-region rejection procedure
developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and scale
parameter b can be generated by using imsl_f_random_gamma and then multiplying
each entry in r by b. The following statements (in single precision) would yield random
deviates from a gamma (a, b) distribution.
float *r;
r = imsl_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, imsl_f_random_gamma generates
pseudorandom deviates from an Erlang distribution with no modifications required.

Chapter 10: Statistics and Random Number Generation random_beta • 573

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

Example

In this example, imsl_f_random_gamma is used to generate five pseudorandom
deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0.

#include <imsl.h>

void main()
{
 int seed = 123457;
 int n_random = 5;
 float a = 3.0;
 float *r;

 imsl_random_seed_set(seed);
 r = imsl_f_random_gamma(n_random, a, 0);
 imsl_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}

Output
 Gamma(3) random deviates
 1 2 3 4 5
6.843 3.445 1.853 3.999 0.779

random_beta
Generates pseudorandom numbers from a beta distribution.

Synopsis

#include <imsl.h>

float *imsl_f_random_beta (float n_random, float pin, float qin, …, 0)

The type double function is imsl_d_random_beta.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

574 • random_beta IMSL C/Math/Library

Return Value

If no optional arguments are used, imsl_f_random_beta returns a pointer to a vector
of length n_random containing the random standard beta deviates. To release this
space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_random_beta (float n_random, float pin, float qin,
IMSL_RETURN_USER, float r[],
0)

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)
If specified, the vector of length n_random containing the random standard
beta deviates is returned in r.

Description

The function imsl_f_random_beta generates pseudorandom numbers from a beta
distribution with parameters pin and qin, both of which must be positive. With
p = pin and q = qin, the probability density function is

f x
p q

p q
x x xp qb g b g

b g b g b g=
+

− ≤ ≤− −Γ
Γ Γ

1 1
1 0 1for

where Γ(⋅) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of
p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is
used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng
(1978), which requires very little setup time, is used if n_random is less than 4; and
algorithm B4PE of Schmeiser and Babu (1980) is used if n_random is greater than or
equal to 4. Note that for p and q both greater than 1, calling imsl_f_random_beta in
a loop getting less than 4 variates on each call will not yield the same set of deviates as
calling imsl_f_random_beta once and getting all the deviates at once.

The values returned in r are less than 1.0 and greater than ε where ε is the smallest
positive number such that 1.0 − ε is less than 1.0.

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

Chapter 10: Statistics and Random Number Generation random_exponential • 575

Example

In this example, imsl_f_random_beta is used to generate five pseudorandom beta
(3, 2) variates.

#include <imsl.h>

main()
{

 int n_random = 5;
 int seed = 123457;
 float pin = 3.0;
 float qin = 2.0;
 float *r;

 imsl_random_seed_set (seed);
 r = imsl_f_random_beta (n_random, pin, qin, 0);
 imsl_f_write_matrix("Beta (3,2) random deviates", 1, n_random, r, 0);
}

Output
 Beta (3,2) random deviates
 1 2 3 4 5
0.2814 0.9483 0.3984 0.3103 0.8296

random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis

#include <imsl.h>

float *imsl_f_random_exponential (int n_random, …, 0)

The type double function is imsl_d_random_exponential.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value

A pointer to an array of length n_random containing the random standard exponential
deviates.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_random_exponential (int n_random,
IMSL_RETURN_USER, float r[],
0)

576 • random_exponential IMSL C/Math/Library

Optional Arguments

IMSL_RETURN_USER, float r[] (Output)
If specified, the array of length n_random containing the random standard
exponential deviates is returned in the user-provided array r.

Description

Function imsl_f_random_exponential generates pseudorandom numbers from a
standard exponential distribution. The probability density function is f(x) = e�[, for
x > 0. Function imsl_random_exponential uses an antithetic inverse CDF
technique; that is, a uniform random deviate U is generated, and the inverse of the
exponential cumulative distribution function is evaluated at 1.0 − U to yield the
exponential deviate.

Deviates from the exponential distribution with mean θ can be generated by using
imsl_f_random_exponential and then multiplying each entry in r by θ.

Example

In this example, imsl_f_random_exponential is used to generate five
pseudorandom deviates from a standard exponential distribution.

#include <imsl.h>

#define N_RANDOM 5

main()

{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

 imsl_random_seed_set(seed);
 r = imsl_f_random_exponential(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Exponential random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Exponential random deviates: 0.0344 1.3443 0.2662 0.5633 0.1686

Chapter 11: Printing Functions Routines • 577

Chapter 11: Printing Functions

Routines
Print a matrix or vector.. write_matrix 577
Set the page width and length ..page 583
Set the printing options ... write_options 584

write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis

#include <imsl.h>

void imsl_f_write_matrix (char *title, int nra, int nca, float a[], …, 0)

For int a[], use imsl_i_write_matrix .

For double a[] , use imsl_d_write_matrix .

For f_complex a[] , use imsl_c_write_matrix .

For d_complex a[] , use imsl_z_write_matrix .

Required Arguments

char *title (Input)
The matrix title. Use \n within a title to create a new line. Long titles are
automatically wrapped.

int nra (Input)
The number of rows in the matrix.

int nca (Input)
The number of columns in the matrix.

float a[] (Input)
Array of size nra × nca containing the matrix to be printed.

578 • write_matrix IMSL C/Math/Library

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_write_matrix (char *title, int nra, int nca, float a[],
IMSL_TRANSPOSE,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_PRINT_ALL,
IMSL_PRINT_LOWER,
IMSL_PRINT_UPPER,
IMSL_PRINT_LOWER_NO_DIAG,
IMSL_PRINT_UPPER_NO_DIAG,
IMSL_WRITE_FORMAT, char *fmt,
IMSL_ROW_LABELS, char *rlabel[],
IMSL_NO_ROW_LABELS,
IMSL_ROW_NUMBER,
IMSL_ROW_NUMBER_ZERO,
IMSL_COL_LABELS, char *clabel[],
IMSL_NO_COL_LABELS,
IMSL_COL_NUMBER,
IMSL_COL_NUMBER_ZERO,
IMSL_RETURN_STRING, char **string,
IMSL_WRITE_TO_CONSOLE,
0)

Optional Arguments

IMSL_TRANSPOSE

Print a7.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = nca

IMSL_PRINT_ALL, or
IMSL_PRINT_LOWER, or
IMSL_PRINT_UPPER, or
IMSL_PRINT_LOWER_NO_DIAG, or
IMSL_PRINT_UPPER_NO_DIAG

Exactly one of these optional arguments can be specified in order to indicate
that either a triangular part of the matrix or the entire matrix is to be printed.
If omitted, the entire matrix is printed.

Chapter 11: Printing Functions write_matrix • 579

Keyword Action

IMSL_PRINT_ALL The entire matrix is printed (the default).

IMSL_PRINT_LOWER The lower triangle of the matrix is printed,
including the diagonal.

IMSL_PRINT_UPPER The upper triangle of the matrix is printed,
including the diagonal.

IMSL_PRINT_LOWER_NO_DIAG The lower triangle of the matrix is printed,
without the diagonal.

IMSL_PRINT_UPPER_NO_DIAG The upper triangle of the matrix is printed,
without the diagonal.

IMSL_WRITE_FORMAT, char *fmt (Input)
Character string containing a list of C conversion specifications (formats) to be
used when printing the matrix. Any list of C conversion specifications suitable
for the data type may be given. For example, fmt = "%10.3f" specifies the
conversion character f for the entire matrix. (For the conversion character f,
the matrix must be of type float, double, f_complex, or d_complex).
Alternatively, fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the
conversion character e for columns 1 and 2 and the conversion character f for
columns 3, 4, and 5. (For complex matrices, two conversion specifications are
required for each column of the matrix so the conversion character e is used in
column 1. The conversion character f is used in column 2 and the real part of
column 3.) If the end of fmt is encountered and if some columns of the matrix
remain, format control continues with the first conversion specification in fmt.

Aside from restarting the format from the beginning, other exceptions to the
usual C formatting rules are as follows:

1. Characters not associated with a conversion specification are not
allowed. For example, in the format fmt = "1%d2%d", the characters
1 and 2 are not allowed and result in an error.

2. A conversion character d can be used for floating-point values
(matrices of type float, double, f_complex, or d_complex). The
integer part of the floating-point value is printed.

3. For printing numbers whose magnitudes are unknown, the conversion
character g is useful; however, the decimal points will generally not
be aligned when printing a column of numbers. The w (or W)
conversion character is a special conversion character used by this
function to select a conversion specification so that the decimal
points will be aligned. The conversion specification ending with w is
specified as "%n.dw". Here, n is the field width and d is the number
of significant digits generally printed. Valid values for n are 3, 4, …,
40. Valid values for d are 1, 2, …, n-2. If fmt specifies one
conversion specification ending with w, all elements of a are
examined to determine one conversion specification for printing.

580 • write_matrix IMSL C/Math/Library

If fmt specifies more than one conversion specification, separate
conversion specifications are generated for each conversion
specification ending with w. Set fmt = "10.4w" if you want a single
conversion specification selected automatically with field width 10
and with four significant digits.

IMSL_NO_ROW_LABELS, or
IMSL_ROW_NUMBER, or
IMSL_ROW_NUMBER_ZERO, or
IMSL_ROW_LABELS, char *rlabel[] (Input)

If IMSL_ROW_LABELS is specified, rlabel is a vector of length nra
containing pointers to the character strings comprising the row labels. Here,
nra is the number of rows in the printed matrix. Use \n within a label to
create a new line. Long labels are automatically wrapped. If no row labels are
desired, use the IMSL_NO_ROW_LABELS optional argument. If the numbers 1,
2, …, nra are desired, use the IMSL_ROW_NUMBER optional argument. If the
numbers 1, 2, …, nra − 1 are desired, use the IMSL_ROW_NUMBER_ZERO

optional argument. If none of these optional arguments is used, the numbers 1,
2, 3, …, nra are used for the row labels by default whenever nra > 1.
If nra = 1, the default is no row labels.

IMSL_NO_COL_LABELS, or
IMSL_COL_NUMBER, or
IMSL_COL_NUMBER_ZERO, or
IMSL_COL_LABELS, char *clabel[] (Input)

If IMSL_COL_LABELS is specified, clabel is a vector of length nca + 1
containing pointers to the character strings comprising the column headings.
The heading for the row labels is clabel[0], and clabel[i], i = 1, …,
nca, is the heading for the i-th column. Use \n within a label to create a new
line. Long labels are automatically wrapped. If no column labels are desired,
use the IMSL_NO_COL_LABELS optional argument. If the numbers 1, 2, …,
nca, are desired, use the IMSL_COL_NUMBER optional argument. If the
numbers 0, 1, …, nca − 1 are desired, use the IMSL_COL_NUMBER_ZERO

optional argument. If none of these optional arguments is used, the numbers
1, 2, 3, …, nca are used for the column labels by default whenever nca > 1.
If nca = 1, the default is no column labels.

IMSL_RETURN_STRING, char **string (Output)
The address of a pointer to a NULL-terminated string containing the matrix to
be printed. Lines are new-line separated and the last line does not have a
trailing new-line character. Typically char *string is declared, and &string
is used as the argument.

IMSL_WRITE_TO_CONSOLE

This matrix is printed to a console window. If a console has not been
allocated, a default console (80 × 24, white on black, no scrollbars) is created.

Chapter 11: Printing Functions write_matrix • 581

Description

The function imsl_write_matrix prints a real rectangular matrix (stored in a) with
optional row and column labels (specified by rlabel and clabel, respectively,
regardless of whether a or a7 is printed). An optional format, fmt, may be used to
specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the upper
or lower triangles of a matrix via the IMSL_TRIANGLE option. Generally, the
IMSL_TRIANGLE option is used with symmetric matrices, but this is not required.
Vectors can be printed by specifying a row or column dimension of 1.

Output is written to the file specified by the function imsl_output_file,
Chapter 12, “Utilities.” The default output file is standard output (corresponding to the
file pointer stdout).

A page width of 78 characters is used. Page width and page length can be reset by
invoking function imsl_page (page 583).

Horizontal centering, the method for printing large matrices, paging, the method for
printing NaN (Not a Number), and whether or not a title is printed on each page can be
selected by invoking function imsl_write_options (page 584).

Examples

Example 1

This example is representative of the most common situation in which no optional
arguments are given.

#include <imsl.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;
 f_complex a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j].re = (i+1+(j+1)*0.1);
 a[i][j].im = -a[i][j].re+100;
 }
 }
 /* Write matrix */
 imsl_c_write_matrix ("matrix\na", NRA, NCA, (f_complex *)a, 0);
}

582 • write_matrix IMSL C/Math/Library

Output
 matrix
 a
 1 2 3
1 (1.1, 98.9) (1.2, 98.8) (1.3, 98.7)
2 (2.1, 97.9) (2.2, 97.8) (2.3, 97.7)
3 (3.1, 96.9) (3.2, 96.8) (3.3, 96.7)

 4
1 (1.4, 98.6)
2 (2.4, 97.6)
3 (3.4, 96.6)

Example 2

In this example, some of the optional arguments available in the write_matrix
functions are demonstrated.

#include <imsl.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;
 float a[NRA][NCA];
 char *fmt = "%10.6W";
 char *rlabel[] = {"row 1", "row 2", "row 3"};
 char *clabel[] = { "", "col 1", "col 2", "col 3", "col 4"};

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }
 }
 /* Write matrix */
 imsl_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
 IMSL_WRITE_FORMAT, fmt,
 IMSL_ROW_LABELS, rlabel,
 IMSL_COL_LABELS, clabel,
 IMSL_PRINT_UPPER_NO_DIAG,
 0);
}

Output
 matrix
 a
 col 2 col 3 col 4
row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4

Example 3

In this example, a row vector of length four is printed.

Chapter 11: Printing Functions page • 583

#include <imsl.h>

#define NRA 1
#define NCA 4

main()
{
 int i;
 float a[NCA];
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

 for (i = 0; i < NCA; i++) {
 a[i] = i + 1;
 }
 /* Write matrix */
 imsl_f_write_matrix ("matrix\na", NRA, NCA, a,
 IMSL_COL_LABELS, clabel,
 0);
}

Output
 matrix
 a
 col 1 col 2 col 3 col 4
 1 2 3 4

page
Sets or retrieves the page width or length.

Synopsis

#include <imsl.h>

void imsl_page (Imsl_page_options option, int *page_attribute)

Required Arguments

Imsl_page_options option (Input)
Option giving which page attribute is to be set or retrieved. The possible
values are:

option Description

IMSL_SET_PAGE_WIDTH Set the page width.

IMSL_GET_PAGE_WIDTH Retrieve the page width.

IMSL_SET_PAGE_LENGTH Set the page length.

IMSL_GET_PAGE_LENGTH Retrieve the page length.

int *page_attribute (Input, if the attribute is set; Output, otherwise)
The value of the page attribute to be set or retrieved. The page width is the
number of characters per line of output (default 78), and the page length is
the number of lines of output per page (default 60). Ten or more characters per
line and 10 or more lines per page are required.

584 • write_options IMSL C/Math/Library

Example

The following example illustrates the use of imsl_page to set the page width to 40
characters. The IMSL function imsl_f_write_matrix is then used to print a 3 × 4
matrix A, where aLM = i + j/10.

#include <imsl.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j, page_attribute;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 page_attribute = 40;
 imsl_page(IMSL_SET_PAGE_WIDTH, &page_attribute);
 imsl_f_write_matrix("a", NRA, NCA, (float *)a, 0);
}

Output
 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3

 4
1 1.4
2 2.4
3 3.4

write_options
Sets or retrieves an option for printing a matrix.

Synopsis

#include <imsl.h>

void imsl_write_options (Imsl_write_options option, int* option_value)

Chapter 11: Printing Functions write_options • 585

Required Arguments

Imsl_write_options option (Input)
Option giving the type of the printing attribute to set or retrieve.

option for Setting option for Retrieving Attribute
Description

IMSL_SET_DEFAULTS Use the default settings
for all parameters

IMSL_SET_CENTERING IMSL_GET_CENTERING Horizontal centering

IMSL_SET_ROW_WRAP IMSL_GET_ROW_WRAP Row wrapping

IMSL_SET_PAGING IMSL_GET_PAGING Paging

IMSL_SET_NAN_CHAR IMSL_GET_NAN_CHAR Method for printing
NaN (not a number)

IMSL_SET_TITLE_PAGE IMSL_GET_TITLE_PAGE Whether or not titles
appear on each page

IMSL_SET_FORMAT IMSL_GET_FORMAT Default format for real
and complex numbers

int *option_value (Input, if option is to be set; Output, otherwise)
The value of the option attribute selected by option. The values to be used
when setting attributes are described in a table in the description section.

Description

The function imsl_write_options allows the user to set or retrieve an option for
printing a matrix. Options controlled by imsl_write_options are horizontal
centering, method for printing large matrices, paging, method for printing NaN
(not a number), method for printing titles, and the default format for real and complex
numbers. (NaN can be retrieved by functions imsl_f_machine and
imsl_d_machine, Chapter 12, “Utilities.”)

586 • write_options IMSL C/Math/Library

The values that may be used for the attributes are as follows:

Option Value Meaning

CENTERING 0

1

Matrix is left justified.

Matrix is centered.

ROW_WRAP 0

m

A complete row is printed before the next row is printed.
Wrapping is used if necessary.

Here m is a positive integer. Let n� be the maximum
number of columns that fit across the page, as determined
by the widths in the conversion specifications starting
with column 1. First, columns 1 through n� are printed for
rows 1 through m. Let n� be the maximum number of
columns that fit across the page, starting with column
n� + 1. Second, columns n�+1 through n� + n� are printed
for rows 1 through m. This continues until the last
columns are printed for rows 1 through m. Printing
continues in this fashion for the next m rows, etc.

PAGING −2

−1

0

k

No paging occurs.

Paging is on. Every invocation of a
imsl_f_write_matrix function begins on a new page,
and paging occurs within each invocation as is needed.

Paging is on. The first invocation of a
imsl_f_write_matrix function begins on a new page,
and subsequent paging occurs as is needed. Paging occurs
in the second and all subsequent calls to a
imsl_f_write_matrix function only as needed.

Turn paging on and set the number of lines printed on the
current page to k lines. If k is greater than or equal to the
page length, then the first invocation of a
imsl_f_write_matrix function begins on a new page.
In any case, subsequent paging occurs as is needed.

NAN_CHAR 0

1

. is printed for NaN.

A blank field is printed for NaN.

TITLE_PAGE 0

1

Title appears only on first page.

Title appears on the first page and all continuation pages.

FORMAT 0

1

2

Format is "%10.4x".

Format is "%12.6w".

Format is "%22.5e".

Chapter 11: Printing Functions write_options • 587

The w conversion character used by the FORMAT option is a special conversion character
that can be used to automatically select a pretty C conversion specification ending in
either e, f, or d. The conversion specification ending with w is specified as "%n.dw".
Here, n is the field width, and d is the number of significant digits generally printed.

The function imsl_write_options can be invoked repeatedly before using a
write_matrix function to print a matrix. The matrix printing functions retrieve the
values set by imsl_write_options to determine the printing options. It is not
necessary to call imsl_write_options if a default value of a printing option is
desired. The defaults are as follows:

Option Default Value

CENTERING 0 Left justified

ROW_WRAP 1000 Lines before wrapping

PAGING −2 No paging

NAN_CHAR 0

TITLE_PAGE 0 Title appears only on the first page

FORMAT 0 %10.4w

Example

The following example illustrates the effect of imsl_write_options when printing a
3 × 4 real matrix A with IMSL function imsl_f_write_matrix, where aLM = i + j/10.
The first call to imsl_write_options sets horizontal centering so that the matrix is
printed centered horizontally on the page. In the next invocation of
imsl_f_write_matrix, the left-justification option has been set via function
imsl_write_options, so the matrix is left justified when printed.

#include <imsl.h>

#define NRA 4
#define NCA 3

main()
{
 int i, j, option_value;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 /* Activate centering option */
 option_value = 1;
 imsl_write_options (IMSL_SET_CENTERING, &option_value);
 /* Write a matrix */

588 • write_options IMSL C/Math/Library

 imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
 /* Activate left justification */
 option_value = 0;
 imsl_write_options (IMSL_SET_CENTERING, &option_value);
 imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
}

Output
 a
 1 2 3
 1 1.1 1.2 1.3
 2 2.1 2.2 2.3
 3 3.1 3.2 3.3
 4 4.1 4.2 4.3

 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3

Chapter 12: Utilities Routines • 589

Chapter 12: Utilities

Routines
12.1 Set Output Files

Set output files ... output_file 590
Get library version and license number .. version 591

12.2 Time and Date
CPU time used... ctime 592
Date to days since epoch.. date_to_days 593
Days since epoch to date.. days_to_date 594

12.3 Error Handling
Error message options.. error_options 595
Get error code... error_code 598

12.4 Constants
Natural and mathematical constants .. constant 599
Integer machine constants..machine (integer) 603
Float machine constants...machine (float) 605

12.5 Sorting
Sort float vector...sort 607
Sort integer vector ... sort (integer) 610

12.6 Computing Vector Norms
Compute various norms ...vector_norm 612

12.7 Linear Algebra Support

Vector-Vector, Matrix-Vector, and
Matrix-Matrix-Multiplication
Real Matrix..mat_mul_rect 614
Complex matrix..mat_mul_rect (complex) 618
Real band matrix...mat_mul_rect_band 621
Complex band matrix...............................mat_mul_rect_band (complex) 625
Real coordinate matrix.....................................mat_mul_rect_coordinate 630
Complex coordinate matrixmat_mul_rect_coordinate (complex) 634

590 • output_file IMSL C/Math/Library

Vector-Vector, Matrix-Vector, and
Matrix-Matrix-Addition
Real band matrix .. mat_add_band 639
Complex band matrix mat_add_band (complex) 642
Real coordinate matrix .. mat_add_coordinate 646
Complex coordinate matrix mat_add_coordinate (complex) 649

Matrix Norm
Real matrix ...matrix_norm 653
Real band matrix ..matrix_norm_band 654
Real coordinate matrix matrix_norm_coordinate 657

Test Matrices of Class
Real matrix ... generate_test_band 660
Complex matrix generate_test_band (complex) 662
Real matrix .. generate_test_coordinate 664
Complex ... generate_test_coordinate (complex) 668

output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_output_file (
IMSL_SET_OUTPUT_FILE, FILE *ofile,
IMSL_GET_OUTPUT_FILE, FILE **pofile,
IMSL_SET_ERROR_FILE, FILE *efile,
IMSL_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments

IMSL_SET_OUTPUT_FILE, FILE *ofile (Input)
Set the output file to ofile.
Default: ofile = stdout

IMSL_GET_OUTPUT_FILE, FILE **pfile (Output)
Set the FILE pointed to by pfile to the current output file.

IMSL_SET_ERROR_FILE, FILE *efile (Input)
Set the error message output file to efile.
Default: efile = stderr

IMSL_GET_ERROR_FILE, FILE **pefile (Output)
Set the FILE pointed to by pefile to the error message output file.

Description

This function allows the file used for printing by IMSL routines to be changed.

Chapter 12: Utilities version • 591

Example

This example opens the file myfile and changes the output file to this new file.
The function imsl_f_write_matrix then writes to this file.

#include <stdio.h>
#include <imsl.h>

main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};

 imsl_f_write_matrix ("x (default file)", 1, 3, x, 0);

 ofile = fopen("myfile", "w");
 imsl_output_file(IMSL_SET_OUTPUT_FILE, ofile,
 0);
 imsl_f_write_matrix ("x (myfile)", 1, 3, x, 0);
}

Output

x (default file)
1 2 3
3 2 1

File myfile
x (myfile)
1 2 3
3 2 1

version
Returns integer information describing the version of the library, serial number,
operating system, and compiler.

Synopsis

#include <imsl.h>

char* imsl_version (Imsl_keyword code)

Required Arguments

Imsl_keyword code (Input)
Index indicating which value is to be returned. It must be
IMSL_LIBRARY_VERSION, IMSL_OS_VERSION, IMSL_COMPILER_VERSION,
or IMSL_LICENSE_NUMBER.

Return Value

The requested value is returned. If code is out of range, then NULL is returned. Use
free to release the returned string.

592 • ctime IMSL C/Math/Library

Description

The function imsl_version returns information describing the version of this library,
the version of the operating system under which it was compiled, the compiler used,
and the IMSL number.

Example

This example prints all the values returned by imsl_version on a particular machine.
The output is omitted because the results are system dependent.

#include <imsl.h>

main()
{
 char *library_version, *os_version;
 char *compiler_version, *license_number;

 library_version = imsl_version(IMSL_LIBRARY_VERSION);
 os_version = imsl_version(IMSL_OS_VERSION);
 compiler_version = imsl_version(IMSL_COMPILER_VERSION);
 license_number = imsl_version(IMSL_LICENSE_NUMBER);

 printf("Library version = %s\n", library_version);
 printf("OS version = %s\n", os_version);
 printf("Compiler version = %s\n", compiler_version);
 printf("Serial number = %s\n", license_number);
}

ctime
Returns the number of CPU seconds used.

Synopsis

#include <imsl.h>

double imsl_ctime ()

Return Value

The number of CPU seconds used so far by the program.

Example

The CPU time needed to compute

k
k =∑ 0

1 000 000, ,

is obtained and printed. The time needed is, of course, machine dependent. The CPU
time needed will also vary slightly from run to run on the same machine.

Chapter 12: Utilities date_to_days • 593

#include <imsl.h>

main()
{
 int k;
 double sum, time;
 /* Sum 1 million values */
 for (sum=0, k=1; k<=1000000; k++)
 sum += k;
 /* Get amount of CPU time used */
 time = imsl_ctime();
 printf("sum = %f\n", sum);
 printf("time = %f\n", time);
}

Output

sum = 500000500000.000000
time = 2.260000

date_to_days
Computes the number of days from January 1, 1900, to the given date.

Synopsis

#include <imsl.h>

int imsl_date_to_days (int day, int month, int year)

Required Arguments

int day (Input)
Day of the input date.

int month (Input)
Month of the input date.

int year (Input)
Year of the input date. The year 1950 would correspond to the year
1950 A.D., and the year 50 would correspond to year 50 A.D.

Return Value

Number of days from January 1, 1900, to the given date. If negative, it indicates the
number of days prior to January 1, 1900.

Description

The function imsl_date_to_days returns the number of days from January 1, 1900,
to the given date. The function imsl_date_to_days returns negative values for days
prior to January 1, 1900. A negative year can be used to specify B.C. Input dates in

594 • days_to_date IMSL C/Math/Library

year 0 and for October 5, 1582, through October 14, 1582, inclusive, do not exist;
consequently, in these cases, imsl_date_to_days issues a terminal error.

The beginning of the Gregorian calendar was the first day after October 4, 1582, which
became October 15, 1582. Prior to that, the Julian calendar was in use.

Example

The following example uses imsl_date_to_days to compute the number of days
from January 15, 1986, to February 28, 1986.

#include <imsl.h>

main()
{
 int day0, day1;

 day0 = imsl_date_to_days(15, 1, 1986);
 day1 = imsl_date_to_days(28, 2, 1986);
 printf("Number of days = %d\n", day1 - day0);
}

Output

Number of days = 44

days_to_date
Gives the date corresponding to the number of days since January 1, 1900.

Synopsis

#include <imsl.h>

void imsl_days_to_date (int days, int *day, int *month, int *year)

Required Arguments

int days (Input)
Number of days since January 1, 1900.

int *day (Output)
Day of the output date.

int *month (Output)
Month of the output date.

int *year (Output)
Year of the output date. The year 1950 would correspond to the year
1950 A.D., and the year 50 would correspond to year 50 A.D.

Chapter 12: Utilities error_options • 595

Description

The function imsl_days_to_date computes the date corresponding to the number of
days since January 1, 1900. For a negative input value of days, the date computed is
prior to January 1, 1900. This function is the inverse of function imsl_date_to_days
(see page 593).

The beginning of the Gregorian calendar was the first day after October 4, 1582, which
became October 15, 1582. Prior to that, the Julian calendar was in use.

Example

The following example uses imsl_days_to_date to compute the date for the 100th day
of 1986. This is accomplished by first using IMSL function imsl_date_to_days
(see page 593) to get the “day number” for December 31, 1985.

#include <imsl.h>

main()
{
 int day0, day, month, year;

 day0 = imsl_date_to_days(31, 12, 1985);
 imsl_days_to_date(day0+100, &day, &month, &year);
 printf("Day 100 of 1986 is (day-month-year) %d-%d-%d\n",
 day, month, year);
}

Output

Day 100 of 1986 is (day-month-year) 10-4-1986

error_options
Sets various error handling options.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_error_options (
IMSL_SET_PRINT, Imsl_error type, int setting,
IMSL_SET_STOP, Imsl_error type, int setting,
IMSL_SET_TRACEBACK, Imsl_error type, int setting,
IMSL_FULL_TRACEBACK, int setting,
IMSL_GET_PRINT, Imsl_error type, int *psetting,
IMSL_GET_STOP, Imsl_error type, int *psetting,
IMSL_GET_TRACEBACK, Imsl_error type, int *psetting,
IMSL_SET_ERROR_FILE, FILE *file,
IMSL_GET_ERROR_FILE, FILE **pfile,
IMSL_ERROR_MSG_PATH, char *path,
IMSL_ERROR_MSG_NAME, char *name,
IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc,
0)

596 • error_options IMSL C/Math/Library

Optional Arguments

IMSL_SET_PRINT, Imsl_error type, int setting (Output)
Printing of type type error messages is turned off if setting is 0; otherwise,
printing is turned on.
Default: Printing turned on for IMSL_WARNING, IMSL_FATAL,
IMSL_TERMINAL, IMSL_FATAL_IMMEDIATE, and
IMSL_WARNING_IMMEDIATE messages

IMSL_SET_STOP, Imsl_error type, int setting (Input)
Stopping on type type error messages is turned off if setting is 0;
otherwise, stopping is turned on.
Default: Stopping turned on for IMSL_FATAL, IMSL_TERMINAL, and
IMSL_FATAL_IMMEDIATE messages

IMSL_SET_TRACEBACK, Imsl_error type, int setting (Input)
Printing of a traceback on type type error messages is turned off if
setting is 0; otherwise, printing of the traceback turned on.
Default: Traceback turned off for all message types

IMSL_FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if setting is 0;
otherwise, internal function names also are listed.
Default: Full traceback turned off

IMSL_GET_PRINT, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of
type type error messages.

IMSL_GET_STOP, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for stopping on
type type error messages.

IMSL_GET_TRACEBACK, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of a
traceback for type type error messages.

IMSL_SET_ERROR_FILE, FILE *file (Input)
Sets the error output file.
Default: file = stderr

IMSL_GET_ERROR_FILE, FILE **pfile (Output)
Sets the FILE * pointed to by pfile to the error output file.

IMSL_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-separated
list of directories to be searched for the file containing the error messages.
Default: system dependent

IMSL_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file = “imslerror.bin”

Chapter 12: Utilities error_options • 597

IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the form
void print_proc (Imsl_error type, long code,
char *function_name, char *message).

In this case, type is the error message type number (IMSL_FATAL, etc.), code
is the error message code number (IMSL_MAJOR_VIOLATION, etc.),
function_name is the name of the function setting the error, and message is
the error message to be printed. If print_proc is NULL, then the default error
printing function is used.

Return Value

The return value for this function is void.

Description

This function allows the error handling system to be customized.

Examples

Example 1

In this example, the IMSL_TERMINAL print setting is retrieved. Next, stopping on
IMSL_TERMINAL errors is turned off, output to standard output is redirected, and an
error is deliberately caused by calling imsl_error_options with an illegal value.

#include <imsl.h>
#include <stdio.h>

main()
{
 int setting;
 /* Turn off stopping on IMSL_TERMINAL */
 /* error messages and write error */
 /* messages to standard output */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout,
 0);
 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(-1);
 /* Get setting for IMSL_TERMINAL */
 imsl_error_options(IMSL_GET_PRINT, IMSL_TERMINAL, &setting,
 0);
 printf("IMSL_TERMINAL error print setting = %d\n", setting);
}

Output

*** TERMINAL Error from imsl_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.

IMSL_TERMINAL error print setting = 1

598 • error_code IMSL C/Math/Library

Example 2

In this example, IMSL’s own error printing function has been substituted for the
standard function. Only the first four lines are printed below.

#include <imsl.h>
#include <stdio.h>

void print_proc(Imsl_error, long, char*, char*);

main()
{
 /* Turn off tracebacks on IMSL_TERMINAL */
 /* error messages and use a custom */
 /* print function */
 imsl_error_options(IMSL_ERROR_PRINT_PROC, print_proc,
 0);
 /* Call imsl_error_options() with an */
 /* illegal value */
 imsl_error_options(-1);
}

void print_proc(Imsl_error type, long code, char *function_name,
 char *message)
{
 printf("Error message type %d\n", type);
 printf("Error code %d\n", code);
 printf("From function %s\n", function_name);
 printf("%s\n", message);
}

Output

Error message type 5
Error code 103
From function imsl_error_options
There is an error with argument number 1. This may be caused by an
incorrect number of values following a previous optional argument name.

error_code
Gets the code corresponding to the error message from the last function called.

Synopsis

#include <imsl.h>

long imsl_error_code ()

Return Value

This function returns the error message code from the last IMSL function called. The
include file imsl.h defines a name for each error code.

Chapter 12: Utilities constant • 599

Example

This example turns off stopping on IMSL_TERMINAL error messages and generates an
error by calling imsl_error_options with an illegal value for IMSL_SET_PRINT.
The error message code number is retrieved and printed. In imsl.h,
IMSL_INTEGER_OUT_OF_RANGE is defined to be 132.

#include <imsl.h>
#include <stdio.h>

main()
{
 long code;
 /* Turn off stopping IMSL_TERMINAL */
 /* messages and print error messages */
 /* on standard output. */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout,
 0);
 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(IMSL_SET_PRINT, 100, 0,
 0);
 /* Get the error message code */
 code = imsl_error_code();
 printf("error code = %d\n", code);
}

Output

*** TERMINAL Error from imsl_error_options."type" must be between 1 and 5,
*** but "type" = 100.

error code = 132

constant
Returns the value of various mathematical and physical constants.

Synopsis

#include <imsl.h>

float imsl_f_constant (char name, char unit)

The type double function is imsl_d_constant.

Required Arguments

char *name (Input)
Character string containing the name of the desired constant. The case of the
character string name does not matter. The names “PI”, “ Pi”, “ pI”, and “pi”
are equivalent. Spaces and underscores are allowed and ignored.

600 • constant IMSL C/Math/Library

char *unit (Input)
Character string containing the units of the desired constant. If NULL, then
Système International d’Unités (SI) units are assumed. The case of the
character string unit does not matter. The names “METER”, “ Meter” and
“meter” are equivalent. unit has the form U1*U2*... *Um/V1/.../Vn,
where Ui and Vi are the names of basic units or are the names of basic units
raised to a power. Basic units must be separated by * or /. Powers are
indicated by ̂ , as in “m^2” for m�. Examples are,
“METER*KILOGRAM/SECOND”, “ M*KG/S”, “ METER”, or “M/KG^2”.

Return Value

By default, imsl_f_constant returns the desired constant. If no value can be
computed, NaN is returned.

Description

The names allowed are listed in the following table. Values marked with a ‡ are exact
(to machine precision). The references in the right-hand column are indicated by the
code numbers: [1] for Cohen and Taylor (1986), [2] for Liepman (1964), and [3] for
precomputed mathematical constants.

Name Description Value Reference

amu Atomic mass unit 1.6605655 × 10��� kg 1

ATM Standard atm pressure 1.01325 × 10� N/m��‡ 2

AU Astronomical unit 1.496 × 10�� m

Avogadro Avogadro's number, N 6.022045 × 10�� 1/mole 1

Boltzman Boltzman's constant, k 1.380662 × 10��� J/K 1

C Speed of light, c 2.997924580 × 10� m/s 1

Catalan Catalan's constant 0.915965… ‡ 3

E Base of natural logs, e 2.718… ‡ 3

ElectronCharge Electron charge, e 1.6021892 × 10��� C 1

ElectronMass Electron mass, mH 9.109534 × 10��� kg 1

ElectronVolt

Euler

ElectronVolt, ev

Euler's constant, γ
1.6021892 x10����J

0.577… ‡

1

3

Faraday Faraday constant, F 9.648456 × 10� C/mole 1

FineStructure Fine structure, α 7.2973506 × 10�� 1

Gamma Euler's constant, γ 0.577… ‡ 3

Gas Gas constant, R� 8.31441 J/mole/K 1

Chapter 12: Utilities constant • 601

Name Description Value Reference

Gravity Gravitational constant, G 6.6720 × 10��� N m�/kg� 1

Hbar Planck’s constant/2π 1.0545887 × 10��� J s 1

PerfectGasVolume Std vol ideal gas 2.241383 × 10�� m�/mole 1

Pi Pi, π 3.141… ‡ 3

Planck Planck's constant, h 6.626176 × 10��� J s 1

ProtonMass Proton mass, MS 1.6726485 × 10��� kg 1

Rydberg Rydberg's constant, Rw 1.097373177 × 10�/m 1

Speedlight Speed of light, c 2.997924580 × 10� m/s 1

StandardGravity Standard g 9.80665 m/s��‡ 2

StandardPressure Standard atm pressure 1.01325 × 10� N/m��‡ 2

StefanBoltzman Stefan-Boltzman, σ 5.67032 × 10��W/K�/m� 1

WaterTriple Triple point of water 2.7316 × 10� K 2

The units allowed are as follows:

Unit Description

Time day, hour = hr, min, minute, s = sec = second, year

Frequency Hertz = Hz

Mass AMU, g = gram, lb = pound, ounce = oz, slug

Distance Angstrom, AU, feet = foot, in = inch, m = meter = metre, micron, mile,
mill, parsec, yard

Area acre

Volume 1 = liter=litre

Force dyne, N = Newton

Energy BTU, Erg, J = Joule

Work W = watt

Pressure ATM = atmosphere, bar

Temperature degC = Celsius, degF = Fahrenheit, degK = Kelvin

Viscosity poise, stoke

Charge Abcoulomb, C = Coulomb, statcoulomb

Current A = ampere, abampere, statampere

Voltage Abvolt, V = volt

602 • constant IMSL C/Math/Library

Unit Description

Magnetic induction T = Telsa, Wb = Weber

Other units I, farad, mole, Gauss, Henry, Maxwell, Ohm

The following metric prefixes may be used with the above units. The one or two letter
prefixes may only be used with one letter unit abbreviations.

a atto 10��� d deci 10��
f femto 10��� dk deca 10�
p pico 10��� k kilo 10�
n nano 10�� myria 10�
u micro 10�� mega 10�
m milli 10�� g giga 10�
c centi 10�� t tera 10��

There is no one letter unit abbreviation for myria or mega since m means milli.

Examples

Example 1

In this example, Euler’s constant γ is obtained and printed. Euler’s constant is defined
to be

γ = −
L
N
M
M

O
Q
P
P→∞

=

−

∑lim ln
n

k

n

k
n

1

1

1

#include <stdio.h>
#include <imsl.h>

main()
{
 float gamma;
 /* Get gamma */
 gamma = imsl_f_constant("gamma", 0);
 /* Print gamma */
 printf("gamma = %f\n", gamma);
}

Output

gamma = 0.577216

Example 2

In this example, the speed of light is obtained using several different units.

Chapter 12: Utilities machine (integer) • 603

#include <stdio.h>
#include <imsl.h>

main()
{
 float speed_light;
 /* Get speed of light in meters/second */
 speed_light = imsl_f_constant("Speed Light", "meter/second");
 printf("speed of light = %g meter/second\n", speed_light);
 /* Get speed of light in miles/second */
 speed_light = imsl_f_constant("Speed Light", "mile/second");
 printf("speed of light = %g mile/second\n", speed_light);
 /* Get speed of light in */
 /* centimeters/nanosecond */
 speed_light = imsl_f_constant("Speed Light", "cm/ns");
 printf("speed of light = %g cm/ns\n", speed_light);
}

Output

speed of light = 2.99792e+08 meter/second
speed of light = 186282 mile/second
speed of light = 29.9793 cm/ns

Warning Errors

IMSL_MASS_TO_FORCE A conversion of units of mass to units of force was
required for consistency.

machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis

#include <imsl.h>

int imsl_i_machine (int n)

Required Arguments

int n (Input)
Index indicating which value is to be returned. It must be between 0 and 12.

Return Value

The requested value is returned. If n is out of range, then NaN is returned.

Description

The function imsl_i_machine returns information describing the computer’s
arithmetic. This can be used to make programs machine independent.

imsl_1_machine(0) = Number of bits per byte

604 • machine (integer) IMSL C/Math/Library

Assume that integers are represented in M-digit, base-A form as

σ x Ak
k

k

M

=∑ 0

where σ is the sign and 0 ≤ xN < A for k = 0, …, M. Then,

n Definition

0 C, bits per character

1 A, the base

2 MV, the number of base-A digits in a short int

3 A Ms −1, the largest short int

4 MO, the number of base-A digits in a long int

5 A M1 1− , the largest long int

Assume that floating-point numbers are represented in N-digit, base B form as

σB x BE
kk

N k

=
−∑ 1

where σ is the sign and 0 ≤ xN < B for k = 1, …, N for and E� ≤ E ≤ E�. Then,

n Definition

6 B, the base

7 NI, the number of base-B digits in float

8 E float
fmin , the smallest exponent

9 E float
fmax , the largest exponent

10 NG, the number of base-B digits in double

11 E
dmin , the smallest double exponent

12 E
dmax , the largest double exponent

Example

This example prints all the values returned by imsl_i_machine on a machine with
IEEE (Institute for Electrical and Electronics Engineer) arithmetic.

#include <imsl.h>

main()
{
 int n, ans;

 for (n = 0; n <= 12; n++) {
 ans = imsl_i_machine(n);

Chapter 12: Utilities machine (float) • 605

 printf("imsl_i_machine(%d) = %d\n", n, ans);
 }
}

Output

imsl_i_machine(0) = 8
imsl_i_machine(1) = 2
imsl_i_machine(2) = 15
imsl_i_machine(3) = 32767
imsl_i_machine(4) = 31
imsl_i_machine(5) = 2147483647
imsl_i_machine(6) = 2
imsl_i_machine(7) = 24
imsl_i_machine(8) = -125
imsl_i_machine(9) = 128
imsl_i_machine(10) = 53
imsl_i_machine(11) = -1021
imsl_i_machine(12) = 1024

machine (float)
Returns information describing the computer’s floating-point arithmetic.

Synopsis

#include <imsl.h>

float imsl_f_machine (int n)

The type double function is imsl_d_machine.

Required Arguments

int n (Input)
Index indicating which value is to be returned.The index must be between
1 and 8.

Return Value

The requested value is returned. If n is out of range, then NaN is returned.

Description

The function imsl_f_machine returns information describing the computer’s
floating-point arithmetic. This can be used to make programs machine independent. In
addition, some of the functions are also important in setting missing values (see below).

Assume that float numbers are represented in NI-digit, base B form as

σB x BE
kk

N kf

=
−∑ 1

where σ is the sign, 0 ≤ xN < B for k = 1, 2, …, NI, and

606 • machine (float) IMSL C/Math/Library

E E E
f fmin max≤ ≤

Note that B = imsl_i_machine(6), NI = imsl_i_machine(7),

E
fmin = imsl_ i_ machine(8)

and

E
fmax = imsl_ i_ machine(9)

The ANSI/IEEE Std 754-1985 standard for binary arithmetic uses NaN (not a number)
as the result of various otherwise illegal operations, such as computing 0/0. On
computers that do not support NaN, a value larger than imsl_d_machine(2) is
returned for imsl_f_machine(6). On computers that do not have a special
representation for infinity, imsl_f_machine(2) returns the same value as
imsl_f_machine(7).

The function imsl_f_machine is defined by the following table:

n Definition

1 B
E

fmin ,
−1

 the smallest positive number

2 B B
E Nf fmax (), the largest number

-
1−

3 B
N f−

, the smallest relative spacing

4 B
N f1−

, the largest relative spacing

5 log��(B)

6 NaN (not a number)

7 positive machine infinity

8 negative machine infinity

The function imsl_d_machine retrieves machine constants which define the
computer’s double arithmetic. Note that for double B = imsl_i_machine(6),
NG = imsl_i_machine(10),

E
fmin = imsl_ i_ machine(11)

and

E
fmax = imsl_ i_ machine(12)

Missing values in IMSL functions are always indicated by NaN (Not a Number). This
is imsl_f_machine(6) in single precision and imsl_d_machine(6) in double. There
is no missing-value indicator for integers. Users will almost always have to convert
from their missing value indicators to NaN.

Chapter 12: Utilities sort • 607

Example

This example prints all eight values returned by imsl_f_machine and by
imsl_d_machine on a machine with IEEE arithmetic.

#include <imsl.h>

main()
{
 int n;
 float fans;
 double dans;

 for (n = 1; n <= 8; n++) {
 fans = imsl_f_machine(n);
 printf("imsl_f_machine(%d) = %g\n", n, fans);
 }

 for (n = 1; n <= 8; n++) {
 dans = imsl_d_machine(n);
 printf("imsl_d_machine(%d) = %g\n", n, dans);
 }
}

Output

imsl_f_machine(1) = 1.17549e-38
imsl_f_machine(2) = 3.40282e+38
imsl_f_machine(3) = 5.96046e-08
imsl_f_machine(4) = 1.19209e-07
imsl_f_machine(5) = 0.30103
imsl_f_machine(6) = NaN
imsl_f_machine(7) = Inf
imsl_f_machine(8) = -Inf
imsl_d_machine(1) = 2.22507e-308
imsl_d_machine(2) = 1.79769e+308
imsl_d_machine(3) = 1.11022e-16
imsl_d_machine(4) = 2.22045e-16
imsl_d_machine(5) = 0.30103
imsl_d_machine(6) = NaN
imsl_d_machine(7) = Inf
imsl_d_machine(8) = -Inf

sort
Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute value,
and a sort permutation can be returned.

Synopsis

#include <imsl.h>

float *imsl_f_sort (int n, float *x, …, 0)

The type double function is imsl_d_sort.

608 • sort IMSL C/Math/Library

Required Arguments

int n (Input)
The length of the input vector.

float *x (Input)
Input vector to be sorted.

Return Value

A vector of length n containing the values of the input vector x sorted into ascending
order. If an error occurs, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_sort (int n, float *x,
IMSL_ABSOLUTE,
IMSL_PERMUTATION, int **perm,
IMSL_PERMUTATION_USER, int perm_user[],
IMSL_RETURN_USER, float y[],
0)

Optional Arguments

IMSL_ABSOLUTE

Sort x by absolute value.

IMSL_PERMUTATION, int **perm (Output)
Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, int perm_user[] (Output)
Return the sort permutation in user-supplied space.

IMSL_RETURN_USER, float y[] (Output)
Return the sorted data in user-supplied space.

Description

By default, imsl_f_sort sorts the elements of x into ascending order by algebraic
value. The vector is divided into two parts by choosing a central element T of the
vector. The first and last elements of x are compared with T and exchanged until the
three values appear in the vector in ascending order. The elements of the vector are
rearranged until all elements greater than or equal to the central elements appear in the
second part of the vector and all those less than or equal to the central element appear
in the first part. The upper and lower subscripts of one of the segments are saved, and
the process continues iteratively on the other segment. When one segment is finally
sorted, the process begins again by retrieving the subscripts of another unsorted portion
of the vector. On completion, xM ≤ xL for j < i. If the option IMSL_ABSOLUTE is selected,
the elements of x are sorted into ascending order by absolute value. If we denote the
return vector by y, on completion, |yM| ≤ |yL| for j < i.

Chapter 12: Utilities sort • 609

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the array x
is returned. That is, after the initialization of permL = i, the elements of perm are moved
in the same manner as are the elements of x.

Examples

Example 1

In this example, an input vector is sorted algebraically.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float *sorted_result;
 int n;

 n = 4;
 sorted_result = imsl_f_sort (n, x, 0);

 imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

 Sorted vector
 1 2 3 4
-2 1 3 4

Example 2

This example sorts an input vector by absolute value and prints the result stored in user-
allocated space.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float sorted_result[4];
 int n;

 n = 4;
 imsl_f_sort (n, x,
 IMSL_ABSOLUTE,
 IMSL_RETURN_USER, sorted_result,
 0);

 imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

610 • sort (integer) IMSL C/Math/Library

Output

 Sorted vector
1 2 3 4
1 -2 3 4

sort (integer)
Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by
absolute value, and a sort permutation can be returned.

Synopsis

#include <imsl.h>

int *imsl_i_sort (int n, int *x, …, 0)

Required Arguments

int n (Input)
The length of the input vector.

int *x (Input)
Input vector to be sorted.

Return Value

A vector of length n containing the values of the input vector x sorted into ascending
order. If an error occurs, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

int *imsl_i_sort (int, n int *x,
IMSL_ABSOLUTE,
IMSL_PERMUTATION, int **perm,
IMSL_PERMUTATION_USER, int perm_user[],
IMSL_RETURN_USER, int y[],
0)

Optional Arguments

IMSL_ABSOLUTE

Sort x by absolute value.

IMSL_PERMUTAION, int **perm (Output)
Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, int perm_user[] (Output)
Return the sort permutation in user-supplied space.

Chapter 12: Utilities sort (integer) • 611

IMSL_RETURN_USER, int y[] (Output)
Return the sorted data in user-supplied space.

Description

By default, imsl_i_sort sorts the elements of x into ascending order by algebraic
value. The vector is divided into two parts by choosing a central element T of the
vector. The first and last elements of x are compared with T and exchanged until the
three values appear in the vector in ascending order. The elements of the vector are
rearranged until all elements greater than or equal to the central elements appear in the
second part of the vector and all those less than or equal to the central element appear
in the first part. The upper and lower subscripts of one of the segments are saved, and
the process continues iteratively on the other segment. When one segment is finally
sorted, the process begins again by retrieving the subscripts of another unsorted portion
of the vector. On completion, xM ≤ xL for j < i. If the option IMSL_ABSOLUTE is selected,
the elements of x are sorted into ascending order by absolute value. If we denote the
return vector by y, on completion, |yM| ≤ |yL| for j < i.

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the array
x is returned. That is, after the initialization of permL = i, the elements of perm are
moved in the same manner as are the elements of x.

Examples

Example 1

In this example, an input vector is sorted algebraically.

#include <stdio.h>
#include <imsl.h>

main()
{
 int x[] = {1, 3, -2, 4};
 int *sorted_result;
 int n;

 n = 4;
 sorted_result = imsl_i_sort (n, x, 0);

 imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output
 Sorted vector
 1 2 3 4
-2 1 3 4

Example 2

This example sorts an input vector by absolute value and prints the result stored in user-
allocated space.

612 • vector_norm IMSL C/Math/Library

#include <stdio.h>
#include <imsl.h>

main()
{
 int x[] = {1, 3, -2, 4};
 int sorted_result[4];
 int n;

 n = 4;
 imsl_i_sort (n, x,
 IMSL_ABSOLUTE,
 IMSL_RETURN_USER, sorted_result,
 0);

 imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output

 Sorted vector
 1 2 3 4
 1 -2 3 4

vector_norm
Computes various norms of a vector or the difference of two vectors.

Synopsis

#include <imsl.h>

float imsl_f_vector_norm (int n, float *x, …., 0)

The type double function is imsl_d_vector_norm.

Required Arguments

int n (Input)
The length of the input vector(s).

float *x (Input)
Input vector for which the norm is to be computed

Return Value

The requested norm of the input vector. If the norm cannot be computed, NaN is
returned.

Synopsis with Optional Arguments

#include <imsl.h>

Chapter 12: Utilities vector_norm • 613

float imsl_f_vector_norm (int n, float *x,
IMSL_ONE_NORM,
IMSL_INF_NORM,
IMSL_SECOND_VECTOR, float *y,
0)

Description

By default, imsl_f_vector_norm computes the Euclidean norm

xi
i

n
2

0

1
1
2

=

−

∑
F
HG

I
KJ

If the option IMSL_ONE_NORM is selected, the 1-norm

xi

i

n

=

−

∑
0

1

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

max |xL|

is returned. In the case of the infinity norm, the program also returns the index of the
element with maximum modulus. If IMSL_SECOND_VECTOR is selected, then the norm
of x − y is computed.

Examples

Example 1

In this example, the Euclidean norm of an input vector is computed.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float norm;
 int n;

 n = sizeof(x)/sizeof(*x);
 norm = imsl_f_vector_norm (n, x, 0);

 printf("Euclidean norm of x = %f\n", norm);
}

Output

Euclidean norm of x = 5.477226

614 • mat_mul_rect IMSL C/Math/Library

Example 2

This example computes max |xL − yL| and prints the norm and index.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float y[] = {4.0, 2.0, -1.0, -5.0};
 float norm;
 int index;
 int n;

 n = sizeof(x)/sizeof(*x);
 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, y,
 IMSL_INF_NORM, &index, 0);

 printf("Infinity norm of x-y = %f ", norm);
 printf("at location %d\n", index);
}

Output

Infinity norm of x-y = 9.000000 at location 3

mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product,
the bilinear form, or any triple product.

Synopsis

#include <imsl.h>

float *imsl_f_mat_mul_rect (char *string, …, 0)

The type double procedure is imsl_d_mat_mul_rect.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. This is always a pointer to a float, even if the result is a
single number. To release this space, use free. If no answer was computed, then NULL
is returned.

Chapter 12: Utilities mat_mul_rect • 615

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_mat_mul_rect (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, float a[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_MATRIX, int nrowb, int ncolb, float b[],
IMSL_B_COL_DIM, int b_col_dim,
IMSL_X_VECTOR, int nx, float *x,
IMSL_Y_VECTOR, int ny, float *y,
IMSL_RETURN_USER, float ans[],
IMSL_RETURN_COL_DIM, int return_col_dim,
0)

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, float a[] (Input)
The nrowa × ncola matrix A.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, float b[] (Input)
The nrowb × ncolb matrix A.

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, float *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, float *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, float ans[] (Output)
A user-allocated array containing the result.

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description

This function computes a matrix-vector product, a matrix-matrix product, a bilinear
form of a matrix, or a triple product according to the specification given by string.
For example, if “A*x” is given, Ax is computed. In string, the matrices A and B and
the vectors x and y can be used. Any of these four names can be used with trans,
indicating transpose. The vectors x and y are treated as n × 1 matrices.

616 • mat_mul_rect IMSL C/Math/Library

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose, is returned. If string contains one multiplication, such as
“A*x” or “B*A”, then the indicated product is returned. Some other legal values for
string are “trans(y)*A”, “A*trans(B)”, “ x*trans(y)”, or “trans(x)*y”.

The matrices and/or vectors referred to in string must be given as optional arguments. If
string is “B*x”, then IMSL_B_MATRIX and IMSL_X_VECTOR must be given.

Example

Let

A B x y=
L
NM

O
QP

=
L

N
M
M
M

O

Q
P
P
P

=
L

N
M
M
M

O

Q
P
P
P

=
L

N
M
M
M

O

Q
P
P
P

1 2 9

5 4 7

3 2

7 4

9 1

7

2

1

3

4

2

The arrays A7, Ax, x7A7, AB, B7A7, x7y, xy7, and x7Ay are computed and printed.

#include <imsl.h>

main()
{
 float A[] = {1, 2, 9,
 5, 4, 7};
 float B[] = {3, 2,
 7, 4,
 9, 1};
 float x[] = {7, 2, 1};
 float y[] = {3, 4, 2};
 float *ans;

 ans = imsl_f_mat_mul_rect("trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_f_write_matrix("trans(A)", 3, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("A*x",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("A*x", 1, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_f_write_matrix("A*B", 2, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(B)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,

Chapter 12: Utilities mat_mul_rect • 617

 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(x)*y",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("trans(x)*y", 1, 1, ans, 0);

 ans = imsl_f_mat_mul_rect("x*trans(y)",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("x*trans(y)", 3, 3, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(x)*A*y",
 IMSL_A_MATRIX, 2, 3, A,
 /* use only the first 2 components of x */
 IMSL_X_VECTOR, 2, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Output

 trans(A)
 1 2
1 1 5
2 2 4
3 9 7

 A*x
 1 2
 20 50

 trans(x)*trans(A)
 1 2
 20 50

 A*B
 1 2
1 98 19
2 106 33

 trans(B)*trans(A)
 1 2
1 98 106
2 19 33

trans(x)*y
 31

 x*trans(y)
 1 2 3
1 21 28 14

618 • mat_mul_rect (complex) IMSL C/Math/Library

2 6 8 4
3 3 4 2

trans(x)*A*y
 293

mat_mul_rect (complex)
Computes the transpose of a matrix, the conjugate-transpose of a matrix, a matrix-
vector product, a matrix-matrix product, the bilinear form, or any triple product.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_mul_rect (char *string, …, 0)

The type d_complex function is imsl_z_mat_mul_rect.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. This is always a pointer to a f_complex, even if the
result is a single number. To release this space, use free. If no answer was computed,
then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_mat_mul_rect (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_Y_VECTOR, int ny, f_complex *y,
IMSL_RETURN_USER, f_complex ans[],
IMSL_RETURN_COL_DIM, int return_col_dim,
0)

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a (Input)
The nrowa × ncola matrix A.

Chapter 12: Utilities mat_mul_rect (complex) • 619

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b (Input)
The nrowb × ncolb matrix B.

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, f_complex *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, f_complex *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, f_complex ans[] (Output)
A user-allocated array containing the result.

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description

This function computes a matrix-vector product, a matrix-matrix product, a bilinear
form of a matrix, or a triple product according to the specification given by string.
For example, if “A*x” is given, Ax is computed. In string, the matrices A and B and
the vectors x and y can be used. Any of these four names can be used with trans,
indicating transpose, or with ctrans, indicating conjugate (or Hermitian) transpose.
The vectors x and y are treated as n × 1 matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose, is returned. If string contains one multiplication, such as
“A*x” or “B*A”, then the indicated product is returned. Some other legal values for
string are “trans(y)*A”, “ A*ctrans(B)”, “ x*trans(y)”, or “ctrans(x)*y”.

The matrices and/or vectors referred to in string must be given as optional arguments. If
string is “B*x”, then IMSL_B_MATRIX and IMSL_X_VECTOR must be given.

Example

Let

A
i i i

i i i
B

i i

i i

i i

x

i

i

i

y

i

i

i

=
+ + +
+ − +

L
NM

O
QP

=
− +
+ −
+ +

L

N
M
M
M

O

Q
P
P
P

=
+
+
−

L

N
M
M
M

O

Q
P
P
P

=
+
−
+

L

N
M
M
M

O

Q
P
P
P

1 4 2 3 9 6

5 2 4 3 7

3 6 2 4

7 3 4 5

9 2 1 3

7 4

2 2

1 5

3 4

4 2

2 3

620 • mat_mul_rect (complex) IMSL C/Math/Library

The arrays A+, Ax, x7A7, AB, B+A7, x7y, and xy+ are computed and printed.

#include <imsl.h>

main()
{
 f_complex A[] = {{1,4}, {2, 3}, {9,6},
 {5,2}, {4,-3}, {7,1}};

 f_complex B[] = {{3,-6}, {2, 4},
 {7, 3}, {4,-5},
 {9, 2}, {1, 3}};

 f_complex x[] = {{7,4}, {2, 2}, {1,-5}};
 f_complex y[] = {{3,4}, {4,-2}, {2, 3}};
 f_complex *ans;

 ans = imsl_c_mat_mul_rect("ctrans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_c_write_matrix("ctrans(A)", 3, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("A*x",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("A*x", 1, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_c_write_matrix("A*B", 2, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("ctrans(B)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_c_write_matrix("ctrans(B)*trans(A)", 2, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("trans(x)*y",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_c_write_matrix("trans(x)*y", 1, 1, ans, 0);

 ans = imsl_c_mat_mul_rect("x*ctrans(y)",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_c_write_matrix("x*ctrans(y)", 3, 3, ans, 0);
}

Chapter 12: Utilities mat_mul_rect_band • 621

Output

 ctrans(A)
 1 2
1 (1, -4) (5, -2)
2 (2, -3) (4, 3)
3 (9, -6) (7, -1)

 A*x
 1 2
(28, 3) (53, 2)

 trans(x)*trans(A)
 1 2
(28, 3) (53, 2)

 A*B
 1 2
1 (101, 105) (0, 47)
2 (125, -10) (7, 14)

 ctrans(B)*trans(A)
 1 2
1 (95, 69) (87, -2)
2 (38, 5) (59, -28)

 trans(x)*y
(34, 37)

 x*ctrans(y)
 1 2 3
1 (37, -16) (20, 30) (26, -13)
2 (14, -2) (4, 12) (10, -2)
3 (-17, -19) (14, -18) (-13, -13)

mat_mul_rect_band
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix
product, all matrices stored in band form.

Synopsis

#include <imsl.h>

float *imsl_f_mat_mul_rect_band (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_band.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication is returned. To release this space, use free.

622 • mat_mul_rect_band IMSL C/Math/Library

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_f_mat_mul_rect_band (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca,

float *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb,

float *b,
IMSL_X_VECTOR, int nx, float *x,
IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result,

int *nuc_result,
IMSL_RETURN_USER_VECTOR, float vector_user[],
0)

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, float *a (Input)
The sparse matrix

A ∈ℜ ×nrowa ncola

IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, float *b (Input)
The sparse matrix

B ∈ℜ ×nrowb xnolb

IMSL_X_VECTOR, int nx, float *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result,
(Output)
If the function imsl_f_mat_mul_rect_band returns data for a band matrix,
use this option to retrieve the number of lower and upper codiagonals of the
return matrix.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user
supplied sparse vector_user.

Description

The function imsl_f_mat_mul_rect_band computes a matrix-matrix product or a
matrix-vector product, where the matrices are specified in band format. The operation
performed is specified by string. For example, if “A*x” is given, Ax is computed. In
string, the matrices A and B and the vector x can be used. Any of these names can be
used with trans, indicating transpose. The vector x is treated as a dense n × 1 matrix.
If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional arguments.
Therefore, if string is “A*x”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be
given.

Chapter 12: Utilities mat_mul_rect_band • 623

Examples

Example 1

Consider the matrix

A =

−
− −

−

L

N

M
M
M
M

O

Q

P
P
P
P

2 1 0 0

3 1 2 0

0 0 1 2

0 0 2 1

After storing A in band format, multiply A by x = (1, 2, 3, 4)7 and print the result.

#include <imsl.h>
main()
{
 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};

 float x[] = {1.0, 2.0, 3.0, 4.0};
 int n = 4;
 int nuca = 1;
 int nlca = 1;
 float *b;

 /* Set b = A*x */

 b = imsl_f_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_f_write_matrix ("Product, Ax", 1, n, b, 0);
}

Output

 Product, Ax
 1 2 3 4
 0 -7 5 10

Example 2

This example uses the power method to determine the dominant eigenvector of
E(100, 10). The same computation is performed by using imsl_f_eig_sym. The
iteration stops when the component-wise absolute difference between the dominant
eigenvector found by imsl_f_eig_sym and the eigenvector at the current iteration is
less than the square root of machine unit roundoff.

624 • mat_mul_rect_band IMSL C/Math/Library

#include <imsl.h>
#include <math.h>

void main()
{
 int i;
 int j;
 int k;
 int n;
 int c;
 int nz;
 int index;
 int start;
 int stop;
 float *a;
 float *z;
 float *q;
 float *dense_a;
 float *dense_evec;
 float *dense_eval;
 float norm;
 float *evec;
 float error;
 float tolerance;

 n = 100;
 c = 10;
 tolerance = sqrt(imsl_f_machine(4));
 error = 1.0;

 evec = (float*) malloc (n*sizeof(*evec));
 z = (float*) malloc (n*sizeof(*z));
 q = (float*) malloc (n*sizeof(*q));
 dense_a = (float*) calloc (n*n, sizeof(*dense_a));
 a = imsl_f_generate_test_band (n, c, 0);

 /* Convert to dense format,
 starting with upper triangle */

 start = c;
 for (i=0; i<c; i++, start--)
 for (k=0, j=start; j<n; j++, k++)
 dense_a[k*n + j] = a[i*n + j];

 /* Convert diagonal */

 for (j=0; j<n; j++)
 dense_a[j*n + j] = a[c*n + j];

 /* Convert lower triangle */
 stop = n-1;
 for (i=c+1; i<2*c+1; i++, stop--)
 for (k=i-c, j=0; j<stop; j++, k++)
 dense_a[k*n + j] = a[i*n + j];

 /* Determine dominant eigenvector by a dense method
*/

 dense_eval = imsl_f_eig_sym (n, dense_a,

Chapter 12: Utilities mat_mul_rect_band (complex) • 625

 IMSL_VECTORS, &dense_evec,
 0);
 for (i=0; i<n; i++) evec[i] = dense_evec[n*i];

 /* Normalize */

 norm = imsl_f_vector_norm (n, evec, 0);
 for (i=0; i<n; i++) evec[i] /= norm;

 for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);

 /* Do power method */

 while (error > tolerance) {
 imsl_f_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, c, c, a,
 IMSL_X_VECTOR, n, q,
 IMSL_RETURN_USER_VECTOR, z,
 0);

 /* Normalize */

 norm = imsl_f_vector_norm (n, z, 0);
 for (i=0; i<n; i++) q[i] = z[i]/norm;

 /* Compute maximum absolute error between any
 two elements */

 error = imsl_f_vector_norm (n, q,
 IMSL_SECOND_VECTOR, evec,
 IMSL_INF_NORM, &index,
 0);
 }
 printf ("Maximum absolute error = %e\n", error);
}

Output

Maximum absolute error = 3.367960e-04

mat_mul_rect_band (complex)
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix
product for all matrices of complex type and stored in band form.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_mul_rect_band (char *string, ..., 0)

The equivalent d_complex function is imsl_z_mat_mul_rect_band.

626 • mat_mul_rect_band (complex) IMSL C/Math/Library

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication is returned. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_c_mat_mul_rect_band (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca,

f_complex *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb,

f_complex *b,
IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result,

int *nuc_result,
IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
0)

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, f_complex *a
(Input)
The sparse matrix

A ∈ℜ ×nrowa ncola

IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, f_complex *b
(Input)
The sparse matrix

B ∈ℜ ×nrowb xnolb

IMSL_X_VECTOR, int nx, f_complex *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result, int *nuc_result,
(Output)
If the function imsl_c_mat_mul_rect_band returns data for a band matrix,
use this option to retrieve the number of lower and upper codiagonals of the
return matrix.

IMSL_RETURN_USER_VECTOR, f_complex vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user
supplied sparse vector_user.

Chapter 12: Utilities mat_mul_rect_band (complex) • 627

Description

The function imsl_c_mat_mul_rect_band computes a matrix-matrix product or a
matrix-vector product, where the matrices are specified in band format. The operation
performed is specified by string. For example, if “A*x” is given, Ax is computed. In
string, the matrices A and B and the vector x can be used. Any of these names can be
used with trans, indicating transpose. The vector x is treated as a dense n × 1 matrix.
If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional arguments.
Therefore, if string is “A*x”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be
given.

Examples

Example 1

Let

A
i i i

i i i

i i

=

−
+ − + − +

+ − − −
−

L

N

M
M
M
M

O

Q

P
P
P
P

2 4 0 0

6 0 5 3 2 2 0

0 1 3 3 4

0 0 2 1

.

and

x
i

i

=
− +

− +

L

N

M
M
M
M

O

Q

P
P
P
P

3

1

3

1

This example computes the product Ax.

#include <imsl.h>

main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

 f_complex x[] =
 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};

628 • mat_mul_rect_band (complex) IMSL C/Math/Library

 /* Set b = A*x */

 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("Product, Ax", 1, n, b, 0);
}

Output

 Product, Ax
 1 2 3
(-10.0, -5.0) (9.5, 5.5) (12.0, -12.0)

 4
(0.0, 8.0)

Example 2

Using the same matrix A and vector x given in the last example, the products Ax, A7x,

A+x and AA+ are computed.

#include <imsl.h>

main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;
 f_complex *z;
 int i;
 int nlca_z;
 int nuca_z;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

 f_complex x[] =
 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};

 /* Set b = A*x */

 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("Ax", 1, n, b, 0);
 free(b);

Chapter 12: Utilities mat_mul_rect_band (complex) • 629

 /* Set b = trans(A)*x */

 b = imsl_c_mat_mul_rect_band ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b, 0);
 free(b);

 /* Set b = ctrans(A)*x */

 b = imsl_c_mat_mul_rect_band ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b, 0);
 free(b);

 /* Set z = A*ctrans(A) */

 z = imsl_c_mat_mul_rect_band ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 IMSL_RETURN_MATRIX_CODIAGONALS, &nlca_z, &nuca_z,
 0);

 imsl_c_write_matrix("A*ctrans(A)", nlca_z+nuca_z+1, n, z, 0);
}

Output
 Ax
 1 2 3
(-10.0, -5.0) (9.5, 5.5) (12.0, -12.0)

 4
(0.0, 8.0)

 trans(A)x
 1 2 3
(-13.0, -4.0) (12.5, -0.5) (7.0, -15.0)

 4
(-12.0, -1.0)

 ctrans(A)x
 1 2 3
(-11.0, 16.0) (18.5, -0.5) (15.0, 11.0)

 4
(-14.0, 3.0)

 A*ctrans(A)
 1 2 3

630 • mat_mul_rect_coordinate IMSL C/Math/Library

1 (0.00, 0.00) (0.00, 0.00) (4.00, -4.00)
2 (0.00, 0.00) (-17.00, -28.00) (-9.50, 3.50)
3 (29.00, 0.00) (54.25, 0.00) (37.00, 0.00)
4 (-17.00, 28.00) (-9.50, -3.50) (-9.00, 11.00)
5 (4.00, 4.00) (4.00, -4.00) (0.00, 0.00)

 4
1 (4.00, 4.00)
2 (-9.00, -11.00)
3 (6.00, 0.00)
4 (0.00, 0.00)
5 (0.00, 0.00)

mat_mul_rect_coordinate
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix
product for all matrices stored in sparse coordinate form.

Synopsis

#include <imsl.h>

void *imsl_f_mat_mul_rect_coordinate (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_coordinate.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. If the result is a vector, the return type is pointer to
float. If the result of the multiplication is a sparse matrix, the return type is pointer to
Imsl_f_sparse_elem. To release this space, use free.

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_f_mat_mul_rect_coordinate (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_f_sparse_elem
*a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_f_sparse_elem
*b,
IMSL_X_VECTOR, int nx, float *x,
IMSL_RETURN_MATRIX_SIZE, int *size,
IMSL_RETURN_USER_VECTOR, float vector_user[],
0)

Chapter 12: Utilities mat_mul_rect_coordinate • 631

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_f_sparse_elem *a

(Input)
The sparse matrix

A ∈ℜ ×nrowa ncola

with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_f_sparse_elem *b

(Input)
The sparse matrix

B ∈ℜ ×nrowb xnolb

with nzb nonzero elements.

IMSL_X_VECTOR, int nx, float *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)
If the function imsl_f_mat_mul_rect_coordinate returns a vector of
type Imsl_f_sparse_elem, use this option to retrieve the length of the return
vector, i.e. the number of nonzero elements in the sparse matrix generated by
the requested computations.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user
supplied sparse vector_user. It’s size depends on the computation.

Description

The function imsl_f_mat_mul_rect_coordinate computes a matrix-matrix
product or a matrix-vector product, where the matrices are specified in coordinate
representation. The operation performed is specified by string. For example, if
“A*x” is given, Ax is computed. In string, the matrices A and B and the vector x can
be used. Any of these names can be used with trans, indicating transpose. The vector
x is treated as a dense n × 1 matrix.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose is returned. Some multiplications, such as “A*trans(A)” or
“trans(x)*B”, will produce a sparse matrix in coordinate format as a result. Other
products such as “B*x” will produce a pointer to a floating type, containing the
resulting vector.

The matrices and/or vector referred to in string must be given as optional arguments.
Therefore, if string is “A*x”, then IMSL_A_MATRIX and IMSL_X_VECTOR must be
given.

632 • mat_mul_rect_coordinate IMSL C/Math/Library

Examples

Example 1

In this example, a sparse matrix in coordinate form is multipled by a vector.

#include <imsl.h>
main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;

 /* Set x = A*b */

 x = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, b,
 0);

 imsl_f_write_matrix ("Product Ab", 1, n, x, 0);
}

Output

 Product Ab
 1 2 3 4 5 6
 100 -98 675 344 -302 162

Example 2

This example uses the power method to determine the dominant eigenvector of E(100,
10). The same computation is performed by using imsl_f_eig_sym. The iteration
stops when the component-wise absolute difference between the dominant eigenvector
found by imsl_f_eig_sym and the eigenvector at the current iteration is less than the
square root of machine unit roundoff.

Chapter 12: Utilities mat_mul_rect_coordinate • 633

#include <imsl.h>
#include <math.h>

void main()
{
 int i;
 int n;
 int c;
 int nz;
 int index;
 Imsl_f_sparse_elem *a;
 float *z;
 float *q;
 float *dense_a;
 float *dense_evec;
 float *dense_eval;
 float norm;
 float *evec;
 float error;
 float tolerance;

 n = 100;
 c = 10;
 tolerance = sqrt(imsl_f_machine(4));
 error = 1.0;

 evec = (float*) malloc (n*sizeof(*evec));
 z = (float*) malloc (n*sizeof(*z));
 q = (float*) malloc (n*sizeof(*q));
 dense_a = (float*) calloc (n*n, sizeof(*dense_a));
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Convert to dense format */

 for (i=0; i<nz; i++)
 dense_a[a[i].col + n*a[i].row] = a[i].val;

 /* Determine dominant eigenvector by a dense method */

 dense_eval = imsl_f_eig_sym (n, dense_a,
 IMSL_VECTORS, &dense_evec,
 0);
 for (i=0; i<n; i++) evec[i] = dense_evec[n*i];

 /* Normalize */

 norm = imsl_f_vector_norm (n, evec, 0);
 for (i=0; i<n; i++) evec[i] /= norm;

 for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);

 /* Do power method */

 while (error > tolerance) {
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, q,
 IMSL_RETURN_USER_VECTOR, z,
 0);

634 • mat_mul_rect_coordinate (complex) IMSL C/Math/Library

 /* Normalize */

 norm = imsl_f_vector_norm (n, z, 0);
 for (i=0; i<n; i++) q[i] = z[i]/norm;

 /* Compute maximum absolute error between any
 two elements */
 error = imsl_f_vector_norm (n, q,
 IMSL_SECOND_VECTOR, evec,
 IMSL_INF_NORM, &index,
 0);
 }
 printf ("Maximum absolute error = %e\n", error);
}

Output

Maximum absolute error = 3.368035e-04

mat_mul_rect_coordinate (complex)
Computes the transpose of a matrix, a matrix-vector produce, or a matrix-matrix
product for all matrices stored in sparse coordinate form.

Synopsis

#include <imsl.h>

void *imsl_c_mat_mul_rect_coordinate (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_coordinate.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value

The result of the multiplication. If the result is a vector, the return type is pointer to
f_complex. If the result of the multiplication is a sparse matrix, the return type is pointer
to Imsl_c_sparse_elem.

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_c_mat_mul_rect_coordinate (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_c_sparse_elem
*a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_c_sparse_elem
*b,
IMSL_X_VECTOR, int nx, f_complex *x,

Chapter 12: Utilities mat_mul_rect_coordinate (complex) • 635

IMSL_RETURN_MATRIX_SIZE, int *size,
IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
0)

Optional Arguments

IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_c_sparse_elem *a

(Input)
The sparse matrix

A C∈ ×nrowa ncola

with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_c_sparse_elem *b

(Input)
The sparse matrix

B C∈ ×nrowb xnolb

with nzb nonzero elements.

IMSL_X_VECTOR, int nx, f_complex *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)
If the function imsl_c_mat_mul_rect_coordinate returns a vector of
type Imsl_c_sparse_elem, use this option to retrieve the length of the return
vector, i.e. the number of nonzero elements in the sparse matrix generated by
the requested computations.

IMSL_RETURN_USER_VECTOR, f_complex vector_user[], (Output)
If the result of the computation is a vector, return the answer in the user
supplied space vector_user. It’s size depends on the computation.

Description

The function imsl_c_mat_mul_rect_coordinate computes a matrix-matrix
product or a matrix-vector product, where the matrices are specified in coordinate
representation. The operation performed is specified by string. For example, if
“A*x” is given, Ax is computed. In string, the matrices A and B and the vector x can
be used. Any of these names can be used with trans or ctrans, indicating transpose
and conjugate transpose, respectively. The vector x is treated as a dense n × 1 matrix.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose is returned. Some multiplications, such as “A*ctrans(A)” or
“trans(x)*B”, will produce a sparse matrix in coordinate format as a result. Other
products such as “B*x” will produce a pointer to a complex type, containing the
resulting vector.

The matrix and/or vector referred to in string must be given as optional arguments.
Therefore, if string is “A*x”, IMSL_A_MATRIX and IMSL_X_VECTOR must be given.

To release this space, use free.

636 • mat_mul_rect_coordinate (complex) IMSL C/Math/Library

Examples

Example 1

Let

A

i

i i

i

i i i

i i i

i i i

=

+
+ − − +

+
− − + − +
− + − + − +
− + − + +

L

N

M
M
M
M
M
M
MM

O

Q

P
P
P
P
P
P
PP

10 7 0 0 0 0 0

0 3 2 3 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 12 2 7 7

1 12 2 8 0 0 0 3 7
and

x7 = (1 + i, 2 +2i, 3 + 3i, 4 + 4i, 5 +5i, 6 + 6i)

This example computes the product Ax.

#include <imsl.h>

main()
{
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex b[] = {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
 {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};

 int n = 6;
 int nz = 15;
 f_complex *x;

 /* Set x = A*b */

 x = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, b,
 0);

 imsl_c_write_matrix ("Product Ab", 1, n, x, 0);
}

Chapter 12: Utilities mat_mul_rect_coordinate (complex) • 637

Output

 Product Ab
 1 2 3
(3, 17) (-19, 5) (6, 18)

 4 5 6
(-38, 32) (-63, 49) (-57, 83)

Example 2

Using the same matrix A and vector x given in the last example, the products Ax, A7x,

A+x and AA+ are computed.

#include <imsl.h>

main()
{
 Imsl_c_sparse_elem *z;
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex x[] = {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
 {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};

 int n = 6;
 int nz = 15;
 int nz_z;
 int i;
 f_complex *b;

 /* Set b = A*x */

 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("Ax", 1, n, b, 0);
 free(b);

 /* Set b = trans(A)*x */

 b = imsl_c_mat_mul_rect_coordinate ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,

638 • mat_mul_rect_coordinate (complex) IMSL C/Math/Library

 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b, 0);
 free(b);

 /* Set b = ctrans(A)*x */

 b = imsl_c_mat_mul_rect_coordinate ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b, 0);
 free(b);

 /* Set z = A*ctrans(A) */

 z = imsl_c_mat_mul_rect_coordinate ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 IMSL_RETURN_MATRIX_SIZE, &nz_z,
 0);

 printf("\n\n\t\t\t z = A*ctrans(A)\n\n");

 for (i=0; i<nz_z; i++)
 printf ("\t\t\tz(%1d,%1d) = (%6.1f, %6.1f)\n",
 z[i].row, z[i].col, z[i].val.re, z[i].val.im);
}

Output

 Ax
 1 2 3
(3, 17) (-19, 5) (6, 18)

 4 5 6
(-38, 32) (-63, 49) (-57, 83)

 trans(A)x
 1 2 3
(-112, 54) (-58, 46) (0, 12)

 4 5 6
(-51, 5) (34, 78) (-94, 60)

 ctrans(A)x
 1 2 3
(54, -112) (46, -58) (12, 0)

 4 5 6
(5, -51) (78, 34) (60, -94)

Chapter 12: Utilities mat_add_band • 639

 z = A*ctrans(A)

 z(0,0) = (149.0, 0.0)
 z(0,3) = (-48.0, 26.0)
 z(0,4) = (-22.0, -75.0)
 z(0,5) = (74.0, -127.0)
 z(1,1) = (27.0, 0.0)
 z(1,2) = (-12.0, 6.0)
 z(1,3) = (11.0, 8.0)
 z(1,4) = (5.0, -10.0)
 z(1,5) = (10.0, -28.0)
 z(2,1) = (-12.0, -6.0)
 z(2,2) = (20.0, 0.0)
 z(3,0) = (-48.0, -26.0)
 z(3,1) = (11.0, -8.0)
 z(3,3) = (67.0, 0.0)
 z(3,4) = (-17.0, 36.0)
 z(3,5) = (-46.0, 28.0)
 z(4,0) = (-22.0, 75.0)
 z(4,1) = (5.0, 10.0)
 z(4,3) = (-17.0, -36.0)
 z(4,4) = (312.0, 0.0)
 z(4,5) = (81.0, 126.0)
 z(5,0) = (74.0, 127.0)
 z(5,1) = (10.0, 28.0)
 z(5,3) = (-46.0, -28.0)
 z(5,4) = (81.0, -126.0)
 z(5,5) = (271.0, 0.0)

mat_add_band
Adds two band matrices, both in band storage mode, C ← αA + βB.

Synopsis

#include <imsl.h>

float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha, float
a[], int nlcb, int nucb, float beta, float b[], int *nlcc, int *nucc,
..., 0)

The type double function is imsl_d_mat_add_band.

Required Arguments

int n (Input)
The order of the matrices A and B.

int nlca (Input)
Number of lower codiagonals of A.

int nuca (Input)
Number of upper codiagonals of A.

640 • mat_add_band IMSL C/Math/Library

float alpha (Input)
Scalar multiplier for A.

float a[] (Input)
An n by n band matrix with nlca lower codiagonals and nuca upper
codiagonals stored in band mode with dimension (nlca + nuca + 1) by n.

int nlcb (Input)
Number of lower codiagonals of B.

int nucb (Input)
Number of upper codiagonals of B.

float beta (Input)
Scalar multiplier for B.

float b[] (Input)
An n by n band matrix with nlcb lower codiagonals and nucb upper
codiagonals stored in band mode with dimension (nlcb + nucb + 1) by n.

int *nlcc (Output)
Number of lower codiagonals of C.

int *nucc (Output)
Number of upper codiagonals of C.

Return Value

A pointer to an array of type float containing the computed sum. NULL is returned in the
event of an error or if the return matrix has no nonzero elements.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha, float
a[], int nlcb, int nucb, float beta, float b[], int *nlcc, int *nucc,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_SYMMETRIC,
0)

Optional Arguments

IMSL_A_TRANSPOSE,
Replace A with A7 in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with B7 in the expression αA + βB.

IMSL_SYMMETRIC,
A, B and C are stored in band symmetric storage mode.

Chapter 12: Utilities mat_add_band • 641

Description

The function imsl_f_mat_add_band forms the sum αA + βB, given the scalars α and
β, and, the matrices A and B in band format. The transpose of A and/or B may be used
during the computation if optional arguments are specified. Symmetric storage mode
may be used if the optional argument is specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower codiagonals,
nlcc, will be equal to 0.

If the return matrix equals NULL, the return value for the number of lower codiagonals,
nlcc, will be equal to −1 and the number of upper codiagonals, nucc, will be equal to 0.

Examples

Example 1

Add two real matrices of order 4 stored in band mode. Matrix A has one upper
codiagonal and one lower codiagonal. Matrix B has no upper codiagonals and two
lower codiagonals.

#include <imsl.h>

void main()
{
 float a[] = {0.0, 2.0, 3.0, -1.0,
 1.0, 1.0, 1.0, 1.0,
 0.0, 3.0, 4.0, 0.0};
 float b[] = {3.0, 3.0, 3.0, 3.0,
 1.0, -2.0, 1.0, 0.0,
 -1.0, 2.0, 0.0, 0.0};
 int nucb = 0, nlcb = 2;
 int nuca = 1, nlca = 1;
 int nucc, nlcc;
 int n = 4, m;
 float alpha = 1.0, beta = 1.0;
 float *c;

 c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc, 0);

 m = nlcc + nucc + 1;
 imsl_f_write_matrix("C = A + B", m, n, c, 0);
 free(c);
}

 C = A + B
 1 2 3 4
1 0 2 3 -1
2 4 4 4 4
3 1 1 5 0
4 -1 2 0 0

642 • mat_add_band (complex) IMSL C/Math/Library

Example 2

Compute 4*A + 2*B, where

A B=

L

N

M
M
M
M

O

Q

P
P
P
P

=

L

N

M
M
M
M

O

Q

P
P
P
P

3 4 0 0

4 2 3 0

0 3 1 1

0 0 1 2

5 2 0 0

2 1 3 0

0 3 2 1

0 0 1 2

 and

#include <imsl.h>

void main()
{
 float a[] = {0.0, 4.0, 3.0, 1.0,
 3.0, 2.0, 1.0, 2.0};
 float b[] = {0.0, 2.0, 3.0, 1.0,
 5.0, 1.0, 2.0, 2.0};
 int nuca = 1, nlca = 1;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 float alpha = 4.0, beta = 2.0;
 float *c;

 c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc,
 IMSL_SYMMETRIC, 0);

 m = nucc + nlcc + 1;
 imsl_f_write_matrix("C = 4*A + 2*B\n", m, n, c, 0);
 free(c);
}

Output

 C = 4*A + 2*B

 1 2 3 4
1 0 20 18 6
2 22 10 8 12

mat_add_band (complex)
Adds two band matrices, both in band storage mode, C ← αA + βB.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex
alpha, f_complex a[], int nlcb, int nucb, f_complex beta, f_complex
b[], int *nlcc, int *nucc, ..., 0)

The type double function is imsl_z_mat_add_band.

Chapter 12: Utilities mat_add_band (complex) • 643

Required Arguments

int n (Input)
The order of the matrices A and B.

int nlca (Input)
Number of lower codiagonals of A.

int nuca (Input)
Number of upper codiagonals of A.

f_complex alpha (Input)
Scalar multiplier for A.

f_complex a[] (Input)
An n by n band matrix with nlca lower codiagonals and nuca upper
codiagonals stored in band mode with dimension (nlca + nuca + 1) by n.

int nlcb (Input)
Number of lower codiagonals of B.

int nucb (Input)
Number of upper codiagonals of B.

f_complex beta (Input)
Scalar multiplier for B.

f_complex b[] (Input)
An n by n band matrix with nlcb lower codiagonals and nucb upper
codiagonals stored in band mode with dimension (nlcb + nucb + 1) by n.

int *nlcc (Output)
Number of lower codiagonals of C.

int *nucc (Output)
Number of upper codiagonals of C.

Return Value

A pointer to an array of type f_complex containing the computed sum. In the event of
an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex
alpha, f_complex a[], int nlcb, int nucb, f_complex beta, f_complex
b[], int *nlcc, int *nucc,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
IMSL_SYMMETRIC,
0)

644 • mat_add_band (complex) IMSL C/Math/Library

Optional Arguments

IMSL_A_TRANSPOSE,
Replace A with A7 in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with B7 in the expression αA + βB.

IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with A+ in the expression αA + βB.

IMSL_B_CONJUGATE_TRANSPOSE,
Replace B with B+ in the expression αA + βB.

IMSL_SYMMETRIC,
Matrix A, B, and C are stored in band symmetric storage mode.

Description

The function imsl_c_mat_add_band forms the sum αA + βB, given the scalars α and
β, and the matrices A and B in band format. The transpose or conjugate transpose of
A and/or B may be used during the computation if optional arguments are specified.
Symmetric storage mode may be used if the optional argument is specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower codiagonals,
nlcc, will be equal to 0.

If the return matrix equals NULL, the return value for the number of lower codiagonals,
nlcc, will be equal to −1 and the number of upper codiagonals, nucc, will be equal to 0.

Examples

Example 1

Add two complex matrices of order 4 stored in band mode. Matrix A has one upper
codiagonal and one lower codiagonal. Matrix B has no upper codiagonals and two
lower codiagonals.

#include <imsl.h>

void main()
{
 f_complex a[] =
 {{0.0, 0.0}, {2.0, 1.0}, {3.0, 3.0}, {-1.0, 0.0},
 {1.0, 1.0}, {1.0, 3.0}, {1.0, -2.0}, {1.0, 5.0},
 {0.0, 0.0}, {3.0, -2.0}, {4.0, 0.0}, {0.0, 0.0}};
 f_complex b[] =
 {{3.0, 1.0}, {3.0, 5.0}, {3.0, -1.0}, {3.0, 1.0},
 {1.0, -3.0}, {-2.0, 0.0}, {1.0, 2.0}, {0.0, 0.0},
 {-1.0, 4.0}, {2.0, 1.0}, {0.0, 0.0}, {0.0, 0.0}};
 int nucb = 0, nlcb = 2;
 int nuca = 1, nlca = 1;
 int nucc, nlcc;
 int n = 4, m;
 f_complex *c;
 f_complex alpha = {1.0, 0.0};

Chapter 12: Utilities mat_add_band (complex) • 645

 f_complex beta = {1.0, 0.0};

 c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc, 0);

 m = nlcc + nucc + 1;
 imsl_c_write_matrix("C = A + B", m, n, c, 0);
 free(c);
}

Output

 C = A + B
 1 2 3
1 (0, 0) (2, 1) (3, 3)
2 (4, 2) (4, 8) (4, -3)
3 (1, -3) (1, -2) (5, 2)
4 (-1, 4) (2, 1) (0, 0)

 4
1 (-1, 0)
2 (4, 6)
3 (0, 0)
4 (0, 0)

Example 2

Compute

(3 + 2i)A+ + (4 + i) B+

where

A

i i

i i

i i

i

B

i i

i i i

i i i

i i

=

+ +
+ +

+ +
+

L

N

M
M
M
M

O

Q

P
P
P
P

=

+ +
+ + +

+ + +
+ +

L

N

M
M
M
M

O

Q

P
P
P
P

2 3 1 3 0 0

0 6 2 3 0

0 0 4 2 5

0 0 0 1 2

1 2 5 0 0

4 1 3 2 3 0

0 2 3 3 2 4 2

0 0 2 6 1 4

 and

#include <imsl.h>

void main()
{
 f_complex a[] =
 {{0.0, 0.0}, {1.0, 3.0}, {3.0, 1.0}, {2.0, 5.0},
 {2.0, 3.0}, {6.0, 2.0}, {4.0, 1.0}, {1.0, 2.0}};
 f_complex b[] =
 {{0.0, 0.0}, {5.0, 1.0}, {2.0, 3.0}, {4.0, 2.0},
 {1.0, 2.0}, {1.0, 3.0}, {3.0, 2.0}, {1.0, 4.0},
 {4.0, 1.0}, {2.0, 3.0}, {2.0, 6.0}, {0.0, 0.0}};
 int nuca = 1, nlca = 0;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 f_complex *c;
 f_complex alpha = {3.0, 2.0};
 f_complex beta = {4.0, 1.0};
 c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,

646 • mat_add_coordinate IMSL C/Math/Library

 &nlcc, &nucc,
 IMSL_A_CONJUGATE_TRANSPOSE,
 IMSL_B_CONJUGATE_TRANSPOSE, 0);

 m = nlcc + nucc + 1;
 imsl_c_write_matrix("C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)\n",
 m, n, c, 0);
 free(c);
}

Output

 C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)

 1 2 3
1 (0, 0) (17, 0) (11, -10)
2 (18, -12) (29, -5) (28, 0)
3 (30, -6) (22, -7) (34, -15)

 4
1 (14, -22)
2 (15, -19)
3 (0, 0)

mat_add_coordinate
Performs element-wise addition on two real matrices stored in coordinate format,
C ← αA + βB.

Synopsis

#include <imsl.h>

Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float
alpha, Imsl_f_sparse_elem a[], int nz_b, float beta,
Imsl_f_sparse_elem b[], int *nz_c, ..., 0)

The type double function is imsl_d_mat_add_coordinate.

Required Arguments

int n (Input)
The order of the matrices A and B.

int nz_a (Input)
Number of nonzeros in the matrix A.

float alpha (Input)
Scalar multiplier for A.

Imsl_f_sparse_elem a[] (Input)
Vector of length nz_a containing the location and value of each nonzero entry
in the matrix A.

int nz_b (Input)
Number of nonzeros in the matrix B.

Chapter 12: Utilities mat_add_coordinate • 647

float beta (Input)
Scalar multiplier for B.

Imsl_f_sparse_elem b[] (Input)
Vector of length nz_b containing the location and value of each nonzero entry
in the matrix B.

int *nz_c (Output)
The number of nonzeros in the sum αA + βB.

Return Value

A pointer to an array of type Imsl_f_sparse_elem containing the computed sum. In the
event of an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float
alpha, Imsl_f_sparse_elem a[], int nz_b, float beta,
Imsl_f_sparse_elem b[], int *nz_c,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
0)

Optional Arguments

IMSL_A_TRANSPOSE,
Replace A with A7 in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with B7 in the expression αA + βB.

Description

The function imsl_f_mat_add_coordinate forms the sum αA + βB, given the
scalars α and β, and the matrices A and B in coordinate format. The transpose of A
and/or B may be used during the computation if optional arguments are specified. The
method starts by storing A in a linked list data structure, and performs the multiply by
α. Next the data in matrix B is traversed and if the coordinates of a nonzero element
correspond to those of a nonzero element in A, that entry in the linked list is updated.
Otherwise, a new node in the linked list is created. The multiply by β occurs at this
time. Lastly, the linked list representation of C is converted to coordinate representa-
tion, omitting any elements that may have become zero through cancellation.

Examples

Example 1

Add two real matrices of order 4 stored in coordinate format. Matrix A has five nonzero
elements. Matrix B has seven nonzero elements.

648 • mat_add_coordinate IMSL C/Math/Library

#include <imsl.h>

void main ()
{
 Imsl_f_sparse_elem a[] = {0, 0, 3,
 0, 3, -1,
 1, 2, 5,
 2, 0, 1,
 3, 1, 3};
 Imsl_f_sparse_elem b[] = {0, 1, -2,
 0, 3, 1,
 1, 0, 3,
 2, 2, 5,
 2, 3, 1,
 3, 0, 4,
 3, 1, 3};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 float alpha = 1.0, beta = 1.0;
 Imsl_f_sparse_elem *c;

 c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);

 free(c);
}

Output

 row column value
 0 0 3.00
 0 1 -2.00
 1 0 3.00
 1 2 5.00
 2 0 1.00
 2 2 5.00
 2 3 1.00
 3 0 4.00
 3 1 6.00

Example 2

Compute 2*A7 + 2*B7, where

A B=

−L

N

M
M
M
M

O

Q

P
P
P
P

=

−L

N

M
M
M
M

O

Q

P
P
P
P

3 0 0 1

0 0 5 0

1 0 0 0

0 3 0 0

0 2 0 1

3 0 0 0

0 0 5 1

4 3 0 0

 and

#include <imsl.h>

void main ()
{
 Imsl_f_sparse_elem a[] = {0, 0, 3,

Chapter 12: Utilities mat_add_coordinate (complex) • 649

 0, 3, -1,
 1, 2, 5,
 2, 0, 1,
 3, 1, 3};
 Imsl_f_sparse_elem b[] = {0, 1, -2,
 0, 3, 1,
 1, 0, 3,
 2, 2, 5,
 2, 3, 1,
 3, 0, 4,
 3, 1, 3};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 float alpha = 2.0, beta = 2.0;
 Imsl_f_sparse_elem *c;

 c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c,
 IMSL_A_TRANSPOSE,
 IMSL_B_TRANSPOSE, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);

 free(c);
}

Output

 row column value
 0 0 6.00
 0 1 6.00
 0 2 2.00
 0 3 8.00
 1 0 -4.00
 1 3 12.00
 2 1 10.00
 2 2 10.00
 3 2 2.00

mat_add_coordinate (complex)
Performs element-wise addition on two complex matrices stored in coordinate format,
C ← αA + βB.

Synopsis

#include <imsl.h>

Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a,
f_complex alpha, Imsl_c_sparse_elem a[], int nz_b, f_complex beta,
Imsl_c_sparse_elem b[], int *nz_c, ..., 0)

The type double function is imsl_z_mat_add_coordinate.

650 • mat_add_coordinate (complex) IMSL C/Math/Library

Required Arguments

int n (Input)
The order of the matrices A and B.

int nz_a (Input)
Number of nonzeros in the matrix A.

f_complex alpha (Input)
Scalar multiplier for A.

Imsl_c_sparse_elem a[] (Input)
Vector of length nz_a containing the location and value of each nonzero entry
in the matrix A.

int nz_b (Input)
Number of nonzeros in the matrix B.

f_complex beta (Input)
Scalar multiplier for B.

Imsl_c_sparse_elem b[] (Input)
Vector of length nz_b containing the location and value of each nonzero entry
in the matrix B.

int *nz_c (Output)
The number of nonzeros in the sum αA + βB.

Return Value

A pointer to an array of type Imsl_c_sparse_elem containing the computed sum. In the
event of an error or if the return matrix has no nonzero elements, NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a,
f_complex alpha, Imsl_c_sparse_elem a[], int nz_b, f_complex beta,
Imsl_c_sparse_elem b[], int *nz_c,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
0)

Optional Arguments

IMSL_A_TRANSPOSE,
Replace A with A7 in the expression αA + βB.

IMSL_B_TRANSPOSE,
Replace B with B7 in the expression αA + βB.

Chapter 12: Utilities mat_add_coordinate (complex) • 651

IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with A+ in the expression αA + βB.

IMSL_B_CONJUGATE_TRANSPOSE,
Replace B with B+ in the expression αA + βB.

Description

The function imsl_c_mat_add_coordinate forms the sum αA + βB, given the
scalars α and β, and the matrices A and B in coordinate format. The transpose or
conjugate transpose of A and/or B may be used during the computation if optional
arguments are specified. The method starts by storing A in a linked list data structure,
and performs the multiply by α. Next the data in matrix B is traversed and if the
coordinates of a nonzero element correspond to those of a nonzero element in A, that
entry in the linked list is updated. Otherwise, a new node in the linked list is created.
The multiply by β occurs at this time. Lastly, the linked list representation of C is
converted to coordinate representation, omitting any elements that may have become
zero through cancellation.

Examples

Example 1

Add two complex matrices of order 4 stored in coordinate format. Matrix A has five
nonzero elements. Matrix B has seven nonzero elements.

#include <imsl.h>

void main ()
{
 Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
 0, 3, -1, 2,
 1, 2, 5, -1,
 2, 0, 1, 2,
 3, 1, 3, 0};
 Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
 0, 3, 1, -2,
 1, 0, 3, 0,
 2, 2, 5, 2,
 2, 3, 1, 4,
 3, 0, 4, 0,
 3, 1, 3, -2};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 f_complex alpha = {1.0, 0.0}, beta = {1.0, 0.0};
 Imsl_c_sparse_elem *c;

 c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f %8.2f\n",
 c[i].row, c[i].col, c[i].val.re, c[i].val.im);

652 • mat_add_coordinate (complex) IMSL C/Math/Library

 free(c);
}

Output

 row column value
 0 0 3.00 4.00
 0 1 -2.00 1.00
 1 0 3.00 0.00
 1 2 5.00 -1.00
 2 0 1.00 2.00
 2 2 5.00 2.00
 2 3 1.00 4.00
 3 0 4.00 0.00
 3 1 6.00 -2.00

Example 2

Compute 2+3i*A7 + 2−i*B7, where

A

i i

i

i

i

B

i i

i

i i

i i

=

+ − +
−

+
+

L

N

M
M
M
M

O

Q

P
P
P
P

=

− + −
+

+ +
+ −

L

N

M
M
M
M

O

Q

P
P
P
P

3 4 0 0 1 2

0 0 5 0

1 2 0 0 0

0 3 0 0 0

0 2 0 1 2

3 0 0 0 0

0 0 5 2 1 4

4 0 3 2 0 0

 and

#include <imsl.h>

void main ()
{
 Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
 0, 3, -1, 2,
 1, 2, 5, -1,
 2, 0, 1, 2,
 3, 1, 3, 0};
 Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
 0, 3, 1, -2,
 1, 0, 3, 0,
 2, 2, 5, 2,
 2, 3, 1, 4,
 3, 0, 4, 0,
 3, 1, 3, -2};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 f_complex alpha = {2.0, 3.0}, beta = {2.0, -1.0};
 Imsl_c_sparse_elem *c;

 c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c,
 IMSL_A_TRANSPOSE,
 IMSL_B_TRANSPOSE, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f %8.2f\n",
 c[i].row, c[i].col, c[i].val.re, c[i].val.im);

Chapter 12: Utilities matrix_norm • 653

 free(c);
}

Output

 row column value
 0 0 -6.00 17.00
 0 1 6.00 -3.00
 0 2 -4.00 7.00
 0 3 8.00 -4.00
 1 0 -3.00 4.00
 1 3 10.00 2.00
 2 1 13.00 13.00
 2 2 12.00 -1.00
 3 0 -8.00 -4.00
 3 2 6.00 7.00

matrix_norm
Computes various norms of a rectangular matrix.

Synopsis

#include <imsl.h>

float imsl_f_matrix_norm (int m, int n, float a[], ..., 0)

The type double function is imsl_d_matrix_norm.

Required Arguments

int m (Input)
The number of rows in matrix A.

int n (Input)
The number of columns in matrix A.

float a[] (Input)
Matrix for which the norm will be computed.

Return Value

The requested norm of the input matrix. If the norm cannot be computed, NaN is
returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_matrix_norm (int m, int n, float a[],
IMSL_ONE_NORM,
IMSL_INF_NORM,
0)

654 • matrix_norm IMSL C/Math/Library

Description

By default, imsl_f_matrix_norm computes the Frobenius norm

A A ij

j

n

i

m

2
2

0

1

0

1
1

2

=
L

N
M
M

O

Q
P
P=

−

=

−

∑∑
If the option IMSL_ONE_NORM is selected, the 1-norm

A A
j n

ij
i

m

1 0 1
0

1

=
≤ ≤ −

=

−

∑max

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

A A
i m

ij
j

n

∞ ≤ ≤ −
=

−

= ∑max
0 1

0

1

is returned.

Example

Compute the Frobenius norm, infinity norm, and one norm of matrix A.

#include <imsl.h>

void main()
{
 float a[] = {1.0, 2.0, -2.0, 3.0,
 -2.0, 1.0, 3.0, 0.0,
 0.0, 3.0, 1.0, -7.0,
 5.0, -2.0, 7.0, 6.0,
 4.0, 3.0, 4.0, 0.0};
 int m = 5, n = 4;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm(m, n, a, 0);

 inf_norm = imsl_f_matrix_norm(m, n, a, IMSL_INF_NORM, 0);

 one_norm = imsl_f_matrix_norm(m, n, a, IMSL_ONE_NORM, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 15.684387
Infinity norm = 20.000000
One norm = 17.000000

Chapter 12: Utilities matrix_norm_band • 655

matrix_norm_band
Computes various norms of a matrix stored in band storage mode.

Synopsis

#include <imsl.h>

float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc, ..., 0)

The type double function is imsl_d_matrix_norm_band.

Required Arguments

int n (Input)
The order of matrix A.

float a[] (Input)
Matrix for which the norm will be computed.

int nlc (Input)
Number of lower codiagonals of A.

int nuc (Input)
Number of upper codiagonals of A.

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm
cannot be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc,
IMSL_ONE_NORM,
IMSL_INF_NORM,
IMSL_SYMMETRIC,
0)

Optional Arguments

IMSL_ONE_NORM,
Compute the 1-norm of matrix A,

IMSL_INF_NORM,
Compute the infinity norm of matrix A,

IMSL_SYMMETRIC,
Matrix A is stored in band symmetric storage mode.

656 • matrix_norm_band IMSL C/Math/Library

Description

By default, imsl_f_matrix_norm_band computes the Frobenius norm

A A ij

j

n

i

m

2
2

0

1

0

1
1

2

=
L

N
M
M

O

Q
P
P=

−

=

−

∑∑
If the option IMSL_ONE_NORM is selected, the 1-norm

A A
j n

ij
i

m

1 0 1
0

1

=
≤ ≤ −

=

−

∑max

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

A A
i m

ij
j

n

∞ ≤ ≤ −
=

−

= ∑max
0 1

0

1

is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is
stored in band storage mode.

#include <imsl.h>

void main()
{
 float a[] = {0.0, 2.0, 3.0, -1.0,
 1.0, 1.0, 1.0, 1.0,
 0.0, 3.0, 4.0, 0.0};
 int nlc = 1, nuc = 1;
 int n = 4;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc, 0);

 inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM, 0);

 one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 6.557438

Chapter 12: Utilities matrix_norm_coordinate • 657

Infinity norm = 5.000000
One norm = 8.000000

Example 2

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is
stored in symmetric band storage mode.

#include <imsl.h>

void main()
{
 float a[] = {0.0, 0.0, 7.0, 3.0, 1.0, 4.0,
 0.0, 5.0, 1.0, 2.0, 1.0, 2.0,
 1.0, 2.0, 4.0, 6.0, 3.0, 1.0};
 int nlc = 2, nuc = 2;
 int n = 6;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_SYMMETRIC, 0);

 inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);

 one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 16.941074
Infinity norm = 16.000000
One norm = 16.000000

matrix_norm_coordinate
Computes various norms of a matrix stored in coordinate format.

Synopsis

#include <imsl.h>

float imsl_f_matrix_norm_coordinate (int m, int n, int nz,
Imsl_f_sparse_elem a[], ..., 0)

The type double function is imsl_d_matrix_norm_coordinate.

658 • matrix_norm_coordinate IMSL C/Math/Library

Required Arguments

int m (Input)
The number of rows in matrix A.

int n (Input)
The number of columns in matrix A.

int nz (Input)
The number of nonzeros in the matrix A.

Imsl_f_sparse_elem a[] (Input)
Matrix for which the norm will be computed.

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm
cannot be computed, NaN is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_matrix_norm_coordinate (int m, int n, int nz,
Imsl_f_sparse_elem a[],
IMSL_ONE_NORM,
IMSL_INF_NORM,
IMSL_SYMMETRIC,
0)

Optional Arguments

IMSL_ONE_NORM,
Compute the 1-norm of matrix A.

IMSL_INF_NORM,
Compute the infinity norm of matrix A.

IMSL_SYMMETRIC,
Matrix A is stored in symmetric coordinate format.

Description

By default, imsl_f_matrix_norm_coordinate computes the Frobenius norm

A A ij

j

n

i

m

2
2

0

1

0

1
1

2

=
L

N
M
M

O

Q
P
P=

−

=

−

∑∑
If the option IMSL_ONE_NORM is selected, the 1-norm

A A
j n

ij
i

m

1 0 1
0

1

=
≤ ≤ −

=

−

∑max

Chapter 12: Utilities matrix_norm_coordinate • 659

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

A A
i m

ij
j

n

∞ ≤ ≤ −
=

−

= ∑max
0 1

0

1

is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is
stored in coordinate format.

#include <imsl.h>

void main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int m = 6, n = 6;
 int nz = 15;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a, 0);

 inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_INF_NORM, 0);

 one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_ONE_NORM, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 24.839485
Infinity norm = 15.000000
One norm = 18.000000

660 • generate_test_band IMSL C/Math/Library

Example 2

Compute the Frobenius norm, infinity norm and one norm of matrix A. Matrix A is
stored in symmetric coordinate format.

#include <imsl.h>

void main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 0, 2, -1.0,
 0, 5, 5.0,
 1, 3, 2.0,
 1, 4, 3.0,
 2, 2, 3.0,
 2, 5, 4.0,
 4, 4, -1.0,
 4, 5, 4.0};
 int m = 6, n = 6;
 int nz = 9;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a,
 IMSL_SYMMETRIC, 0);

 inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);

 one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output

Frobenius norm = 15.874508
Infinity norm = 16.000000
One norm = 16.000000

generate_test_band
Generates test matrices of class and E(n, c). Returns in band or band symmetric format.

Synopsis

#include <imsl.h>

float *imsl_f_generate_test_band (int n, int c, ..., 0)

The function imsl_d_generate_test_band is the double precision analogue.

Chapter 12: Utilities generate_test_band • 661

Required Arguments

int n (Input)
Number of rows in the matrix.

int c (Input)
Parameter used to alter structure, also the number of upper/lower codiagonals.

Return Value

A pointer to a vector of type float. To release this space, use free. If no test was
generated, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_f_generate_sparse_test (int n, int c,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments

IMSL_SYMMETRIC_STORAGE,
Return matrix stored in band symmetric format.

Description

The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class
E(n, c), to which we will generally refer to as E-matrices, are symmetric, positive
definite matrices of order n with 4 in the diagonal and −1 in the superdiagonal and
subdiagonal. In addition there are two bands with −1 at a distance c from the diagonal.
More precisely:

aL�L = 4 0 ≤ i < n

aL�L�� = −1 0 ≤ i < n − 1

aL���� = −1 0 ≤ i < n − 1

aL�L�F = −1 0 ≤ i < n − c

aL�F�L = −1 0 ≤ i < n − c

for any n ≥ 3 and 2 ≤ c ≤ n − 1.

E-matrices are similar to those obtained from the five-point formula in the
discretization of elliptic partial differential equations.

By default, imsl_f_generate_test_band returns an E-matrix in band storage
mode. Option IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric storage
mode.

Example

This example generates the matrix

662 • generate_test_band (complex) IMSL C/Math/Library

E 5 3

4 1 0 1 0

1 4 1 0 1

0 1 4 1 0

1 0 1 4 1

0 1 0 1 4

,b g =

− −
− − −

− −
− − −

− −

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

and prints the result.

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 float *a;

 a = imsl_f_generate_test_band (n, c, 0);

 imsl_f_write_matrix ("E(5,3) in band storage", 2*c + 1, n,
 a, 0);
}

Output
 E(5,3) in band storage
 1 2 3 4 5
1 0 0 0 -1 -1
2 0 0 0 0 0
3 0 -1 -1 -1 -1
4 4 4 4 4 4
5 -1 -1 -1 -1 0
6 0 0 0 0 0
7 -1 -1 0 0 0

generate_test_band (complex)
Generates test matrices of class EF(n, c). Returns in band or band symmetric format.

Synopsis

#include <imsl.h>

f_complex *imsl_c_generate_test_band (int n, int c, ..., 0)

The function imsl_z_generate_test_band is the double precision analogue.

Required Arguments

int n (Input)
Number of rows in the matrix.

int c (Input)
Parameter used to alter structure, also the number of upper/lower codiagonals

Chapter 12: Utilities generate_test_band (complex) • 663

Return Value

A pointer to a vector of type f_complex. To release this space, use free. If no test was
generated, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_c_generate_sparse_test (int n, int c,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments

IMSL_SYMMETRIC_STORAGE,
Return matrix stored in band symmetric format.

Description

We use the same nomenclature as Østerby and Zlatev (1982). Test matrices of class
E(n, c), to which we will generally refer to as E-matrices, are symmetric, positive
definite matrices of order n with (6.0, 0.0) in the diagonal, (−1.0, 1.0) in the
superdiagonal and (−1.0, −1.0) subdiagonal. In addition there are two bands at a
distance c from the diagonal with (−1.0, 1.0) in the upper codiagonal and (−1.0, −1.0)
in the lower codiagonal. More precisely:

aL�L = 6 0 ≤ i < n

aL�L�� = −1 − i 0 ≤ i < n − 1

aL���� = −1 − i 0 ≤ i < n − 1

aL�L�F = −1 + i 0 ≤ i < n − c

aL�F�L = −1 + i 0 ≤ i < n − c

for any n ≥ 3 and 2 ≤ c ≤ n − 1.

E-matrices are similar to those obtained from the five-point formula in the
discretization of elliptic partial differential equations.

By default, imsl_c_generate_test_band returns an E-matrix in band storage
mode. Option IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric storage
mode.

Example
This example generates the following matrix and prints the result:

664 • generate_test_coordinate IMSL C/Math/Library

E

i i

i i i

i i

i i i

i i

c 5 3

6 1 0 1 0

1 6 1 0 1

0 1 6 1 0

1 0 1 6 1

0 1 0 1 6

,b g =

− − − +
− − − + − +

− − − +
− − − − − +

− − − −

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 f_complex *a;

 a = imsl_c_generate_test_band (n, c, 0);

 imsl_c_write_matrix ("E(5,3) in band storage", 2*c + 1, n,
 a, 0);
}

Output
 E(5,3) in band storage
 1 2 3
1 (0, 0) (0, 0) (0, 0)
2 (0, 0) (0, 0) (0, 0)
3 (0, 0) (-1, 1) (-1, 1)
4 (6, 0) (6, 0) (6, 0)
5 (-1, -1) (-1, -1) (-1, -1)
6 (0, 0) (0, 0) (0, 0)
7 (-1, -1) (-1, -1) (0, 0)

 4 5
1 (-1, 1) (-1, 1)
2 (0, 0) (0, 0)
3 (-1, 1) (-1, 1)
4 (6, 0) (6, 0)
5 (-1, -1) (0, 0)
6 (0, 0) (0, 0)
7 (0, 0) (0, 0)

generate_test_coordinate
Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate format.

Synopsis

#include <imsl.h>

Imsl_f_sparse_elem *imsl_f_generate_test_coordinate (int n, int c, int
*nz, ..., 0)

The function imsl_d_generate_test_coordinate is the double precision
analogue.

Chapter 12: Utilities generate_test_coordinate • 665

Required Arguments

int n (Input)
Number of rows in the matrix.

int c (Input)
Parameter used to alter structure.

int *nz (Output)
Length of the return vector.

Return Value

A pointer to a vector of length nz of type Imsl_f_sparse_elem. To release this space,
use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_f_generate_test_coordinate (int n, int c, int *nz,
IMSL_D_MATRIX,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments

IMSL_D_MATRIX

Return a matrix of class D(n, c).
Default: Return a matrix of class E(n, c).

IMSL_SYMMETRIC_STORAGE,
For coordinate representation, return only values for the diagonal and lower
triangle. This option is not allowed if IMSL_D_MATRIX is specified.

Description

We use the same nomenclature as Østerby and Zlatev (1982).Test matrices of class
E(n, c), to which we will generally refer to as E-matrices, are symmetric, positive
definite matrices of order n with 4 in the diagonal and −1 in the superdiagonal and
subdiagonal. In addition there are two bands with −1 at a distance c from the diagonal.
More precisely

aL�L = 4 0 ≤ i < n

aL�L�� = −1 0 ≤ i < n − 1

aL���� = −1 0 ≤ i < n − 1

aL�L�F = −1 0 ≤ i < n − c

aL�F�L = −1 0 ≤ i < n − c

for any n ≥ 3 and 2 ≤ c ≤ n − 1.

666 • generate_test_coordinate IMSL C/Math/Library

E-matrices are similar to those obtained from the five-point formula in the
discretization of elliptic partial differential equations.

Test matrices of class D(n, c) are square matrices of order n with a full diagonal, three
bands at a distance c above the diagonal and reappearing cyclically under the diagonal,
and a 10 × 10 triangle of elements in the upper right corner. More precisely:

aL�L = 1 0 ≤ i < n
aL�L�F = i + 2 0 ≤ i < n − c
aL�L�Q�F = i + 2 n − c ≤ i < n
aL�L�F�� = −(i + 1) 0 ≤ i < n − c − 1
aL�L�Q�F�� = −(i + 1) n − c − 1 ≤ i < n
aL�L�F�� = 16 0 ≤ i < n − c − 2
aL�L�Q�F�� = 16 n − c − 2 ≤ i < n
aL�Q����L�M = 100j 1 ≤ i< 11 − j, 0 ≤ j < 10

for any n ≥ 14 and 1 ≤ c ≤ n − 13.

We now show the sparsity pattern of D(20, 5)

x x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x

x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

By default imsl_f_generate_test_coordinate returns an E-matrix in coordinate
representation. By specifying the IMSL_SYMMETRIC_STORAGE option, only the
diagonal and lower triangle are returned. The scalar nz will contain the number of
nonzeros in this representation.

Chapter 12: Utilities generate_test_coordinate • 667

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since D-matrices are
not symmetric, the IMSL_SYMMETRIC_STORAGE option is not allowed.

Examples

Example 1

This example generates the matrix

E 5 3

4 1 0 1 0

1 4 1 0 1

0 1 4 1 0

1 0 1 4 1

0 1 0 1 4

,b g =

− −
− − −

− −
− − −

− −

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

and prints the result.

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d %5.1f\n",
 a[i].row, a[i].col, a[i].val);
}

Output

row col val
 0 0 4.0
 1 1 4.0
 2 2 4.0
 3 3 4.0
 4 4 4.0
 1 0 -1.0
 2 1 -1.0
 3 2 -1.0
 4 3 -1.0
 0 1 -1.0
 1 2 -1.0
 2 3 -1.0
 3 4 -1.0
 3 0 -1.0
 4 1 -1.0
 0 3 -1.0
 1 4 -1.0

668 • generate_test_coordinate (complex) IMSL C/Math/Library

Example 2

In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;

 a = imsl_f_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d %5.1f\n",
 a[i].row, a[i].col, a[i].val);

}

Output

row col val
 0 0 4.0
 1 1 4.0
 2 2 4.0
 3 3 4.0
 4 4 4.0
 1 0 -1.0
 2 1 -1.0
 3 2 -1.0
 4 3 -1.0
 3 0 -1.0
 4 1 -1.0

generate_test_coordinate (complex)
Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate or
band storage format, where possible.

Synopsis

#include <imsl.h>

void *imsl_c_generate_test_coordinate (int n, int c, int *nz, ..., 0)

The function is imsl_z_generate_test_coordinate is the double precision
analogue.

Chapter 12: Utilities generate_test_coordinate (complex) • 669

Required Arguments

int n (Input)
Number of rows in the matrix.

int c (Input)
Parameter used to alter structure.

int *nz (Output)
Length of the return vector.

Return Value

A pointer to a vector of length nz of type imsl_c_sparse_elem. To release this space,
use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

void *imsl_c_generate_test_coordinate (int n, int c, int *nz,
IMSL_D_MATRIX,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments

IMSL_D_MATRIX

Return a matrix of class D(n, c).
Default: Return a matrix of class E(n, c).

IMSL_SYMMETRIC_STORAGE,
For coordinate representation, return only values for the diagonal and lower
triangle. This option is not allowed if IMSL_D_MATRIX is specified.

Description

The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of class
E(n, c), to which we will generally refer to as E-matrices, are symmetric, positive
definite matrices of order n with (6.0, 0.0) in the diagonal, (−1.0, 1.0) in the
superdiagonal and (−1.0, −1.0) subdiagonal. In addition there are two bands at a
distance c from the diagonal with (−1.0, 1.0) in the upper codiagonal and (−1.0, −1.0)
in the lower codiagonal. More precisely:

aL�L = 6 0 ≤ i < n

aL�L�� = −1 − i 0 ≤ i < n − 1

aL���� = −1 − i 0 ≤ i < n − 1

aL�L�F = −1 + i 0 ≤ i < n − c

aL�F�L = −1 + i 0 ≤ i < n − c

for any n ≥ 3 and 2 ≤ c ≤ n − 1.

670 • generate_test_coordinate (complex) IMSL C/Math/Library

Test matrices of class D(n, c) are square matrices of order n with a full diagonal, three
bands at a distance c above the diagonal and reappearing cyclically under the diagonal,
and a 10 × 10 triangle of elements in the upper-right corner. More precisely:

aL�L = 1 0 ≤ i < n
aL�L�F = i + 2 0 ≤ i < n − c
aL�L�Q�F = i + 2 n − c ≤ i < n
aL�L�F�� = −(i + 1) 0 ≤ i < n − c − 1
aL�L�F�� = −(i + 1) n − c − 1≤ i < n
aL�L�F�� = 16 0 ≤ i < n − c − 2
aL�L�Q�F�� = 16 n − c − 2≤ i < n
aL�Q����L�M = 100j 1 ≤ i< 11 − j, 0 ≤ j < 10

for any n ≥ 14 and 1 ≤ c ≤ n − 13.

The sparsity pattern of D(20, 5) is as follows:

x x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x

x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

By default imsl_c_generate_test_coordinate returns an E-matrix in coordinate
representation. By specifying the IMSL_SYMMETRIC_STORAGE option, only the
diagonal and lower triangle are returned. The scalar nz will contain the number of non-
zeros in this representation.

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since D-matrices are
not symmetric, the IMSL_SYMMETRIC_STORAGE option is not allowed.

Chapter 12: Utilities generate_test_coordinate (complex) • 671

Examples

Example 1

This example generates the matrix

E

i i

i i i

i i

i i i

i i

c 5 3

6 1 0 1 0

1 6 1 0 1

0 1 6 1 0

1 0 1 6 1

0 1 0 1 6

,b g =

− − − +
− − − − − +

− − − −
− − − − − +

− − − −

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

and prints the result.

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_c_sparse_elem *a;

 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n",
 a[i].row, a[i].col, a[i].val.re, a[i].val.im);

}

Output

row col val
 0 0 (6.0, 0.0)
 1 1 (6.0, 0.0)
 2 2 (6.0, 0.0)
 3 3 (6.0, 0.0)
 4 4 (6.0, 0.0)
 1 0 (-1.0, -1.0)
 2 1 (-1.0, -1.0)
 3 2 (-1.0, -1.0)
 4 3 (-1.0, -1.0)
 0 1 (-1.0, 1.0)
 1 2 (-1.0, 1.0)
 2 3 (-1.0, 1.0)
 3 4 (-1.0, 1.0)
 3 0 (-1.0, -1.0)
 4 1 (-1.0, -1.0)
 0 3 (-1.0, 1.0)
 1 4 (-1.0, 1.0)

Example 2

In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

672 • generate_test_coordinate (complex) IMSL C/Math/Library

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_c_sparse_elem *a;

 a = imsl_c_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n",
 a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}

Output

row col val
 0 0 (6.0, 0.0)
 1 1 (6.0, 0.0)
 2 2 (6.0, 0.0)
 3 3 (6.0, 0.0)
 4 4 (6.0, 0.0)
 1 0 (-1.0, -1.0)
 2 1 (-1.0, -1.0)
 3 2 (-1.0, -1.0)
 4 3 (-1.0, -1.0)
 3 0 (-1.0, -1.0)
 4 1 (-1.0, -1.0)

Reference Material User Errors • 673

Reference Material

User Errors
IMSL functions attempt to detect user errors and handle them in a way that provides as
much information to the user as possible. To do this, we recognize various levels of
severity of errors, and we also consider the extent of the error in the context of the
purpose of the function; a trivial error in one situation may be serious in another.
Functions attempt to report as many errors as they can reasonably detect. Multiple
errors present a difficult problem in error detection because input is interpreted in an
uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible to
compute an answer accurately. In this case, the assessed degree of accuracy determines
the severity of the error. In cases where the function computes several output quantities,
if some are not computable but most are, an error condition exists; and its severity
depends on an assessment of the overall impact of the error.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the IMSL C/Math/Library. Each level has
an associated PRINT attribute and a STOP attribute. These attributes have default
settings (YES or NO), but they may also be set by the user. The purpose of having
multiple error types is to provide independent control of actions to be taken for errors
of different levels of severity. Upon return from a Visual Numerics function, exactly
one error state exists. (A code 0 “error” is no error.) Even if more than one
informational error occurs, only one message is printed (if the PRINT attribute is YES).
Multiple errors for which no corrective action within the calling program is reasonable
or necessary result in the printing of multiple messages (if the PRINT attribute for their
severity level is YES). Errors of any of the severity levels except IMSL_TERMINAL may
be informational errors. The include file, imsl.h, defines IMSL_NOTE, IMSL_ALERT,
IMSL_WARNING, IMSL_FATAL, IMSL_TERMINAL, IMSL_WARNING_IMMEDIATE, and
IMSL_FATAL_IMMEDIATE as an enumerated data type Imsl_error.

674 • User Errors IMSL C/Math/Library

IMSL_NOTE. A note is issued to indicate the possibility of a trivial error or simply to
provide information about the computations.

Default attributes: PRINT=NO, STOP=NO.

IMSL_ALERT. An alert indicates that a function value has been set to 0 due to
underflow.

Default attributes: PRINT=NO, STOP=NO.

IMSL_WARNING. A warning indicates the existence of a condition that may require
corrective action by the user or calling routine. A warning error may be issued
because the results are accurate to only a few decimal places, because some of
the output may be erroneous, but most of the output is correct, or because
some assumptions underlying the analysis technique are violated. Usually no
corrective action is necessary, and the condition can be ignored.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL. A fatal error indicates the existence of a condition that may be serious.
In most cases, the user or calling routine must take corrective action to
recover.

Default attributes: PRINT=YES, STOP=YES.

IMSL_TERMINAL. A terminal error is serious. It usually is the result of an incorrect
specification, such as specifying a negative number as the number of
equations. These errors may also be caused by various programming errors
impossible to diagnose correctly in C. The resulting error message may be
perplexing to the user. In such cases, the user is advised to compare carefully
the actual arguments passed to the function with the dummy argument
descriptions given in the documentation. Special attention should be given to
checking argument order and data types.

A terminal error is not an informational error, because corrective action within
the program is generally not reasonable. In normal usage, execution is
terminated immediately when a terminal error occurs. Messages relating to
more than one terminal error are printed if they occur.

Default attributes: PRINT=YES, STOP=YES.

IMSL_WARNING_IMMEDIATE. An immediate warning error is identical to a warning
error, except it is printed immediately.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, except
it is printed immediately.

Default attributes: PRINT=YES, STOP=YES.

The user can set PRINT and STOP attributes by calling imsl_error_options as
described in Chapter 12, "Utilities."

Reference Material Complex Data Types and Functions • 675

Errors in Lower-Level Functions

It is possible that a user’s program may call an IMSL C/Math/Library function that in
turn calls a nested sequence of lower-level functions. If an error occurs at a lower level
in such a nest of functions, and if the lower-level function cannot pass the information
up to the original user-called function, then a traceback of the functions is produced.
The only common situation in which this can occur is when an IMSL C/Math/Library
function calls a user-supplied routine that in turn calls another IMSL C/Math/Library
function.

Functions for Error Handling

There are two ways in which the user may interact with the error handling system: (1)
to change the default actions and (2) to determine the code of an informational error so
as to take corrective action. The functions to use are imsl_error_options and
imsl_error_code. Function imsl_error_options sets the actions to be taken
when errors occur. Function imsl_error_code retrieves the integer code for an
informational error. See functions imsl_error_options and imsl_error_code.

Use of Informational Error to Determine Program Action

In the program segment below, the Cholesky factorization of a matrix is to be
performed. If it is determined that the matrix is not nonnegative definite (and often this
is not immediately obvious), the program is to take a different branch.

 x = imsl_f_lin_sol_nonnegdef (n, a, b, 0);
 if (imsl_error_code() == IMSL_NOT_NONNEG_DEFINITE) {
 /* Handle matrix that is not nonnegative
 definite */
 }

Additional Examples

See functions imsl_error_options and imsl_error_code in Chapter 12, “Utilities”
for additional examples.

Complex Data Types and Functions
Users can perform computations with complex arithmetic by using predefined data
types. These types are available in two floating-point precisions:

• f_complex z for single-precision complex values

• d_complex w for double-precision complex values

Each complex value is a C language structure that consists of a pair of real values, the
real and imaginary part of the complex number. To access the real part of a single-
precision complex number z, use the subexpression z.re. For the imaginary part, use
the subexpression z.im. Use subexpressions w.re and w.im for the real and imaginary

676 • Complex Data Types and Functions IMSL C/Math/Library

parts of a double-precision complex number w. The structure is declared within
imsl.h as follows:

 typedef struct{
 float re;
 float im;
 } f_complex;

Several standard operations and functions are available for users to perform
calculations with complex numbers within their programs. The operations are provided
for both single and double precision data types. Notice that even the ordinary arithmetic
operations of “+”, “-”, “*”, and “/” must be performed using the appropriate functions.

A uniform prefix name is used as part of the names for the operations and functions.
The prefix imsl_c_ is used for f_complex data. The prefix imsl_z_ is used with
d_complex data.

Single-Precision Complex Operations and Functions

Operation Function Name Function Result Function Argument(s)

z = –x z = imsl_c_neg(x) f_complex f_complex

z = x + y z = imsl_c_add(x,y) f_complex f_complex (both)

z = x – y z = imsl_c_sub(x,y) f_complex f_complex (both)

z = x * y z = imsl_c_mul(x,y) f_complex f_complex (both)

z = x / y z = imsl_c_div(x,y) f_complex f_complex (both)

x= =yD z = imsl_c_eq(x,y) int f_complex (both)

z = x

Drop
Precision

z = imsl_cz_convert(x) f_complex d_complex

D Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

Reference Material Complex Data Types and Functions • 677

Operation Function Name Function Result Function Argument(s)

z = a + ib

Ascend Data

z = imsl_cf_convert(a,b) f_complex float (both)

z = x z = imsl_c_conjg(x) f_complex f_complex

a = |z| a = imsl_c_abs(z) float f_complex

a = arg (z)

–π < a ≤ π

a = imsl_c_arg(z) float f_complex

z = x z = imsl_c_sqrt(z) f_complex f_complex

z = cos (x) z = imsl_c_cos(z) f_complex f_complex

z = sin (x) z = imsl_c_sin(z) f_complex f_complex

z = exp (x) z = imsl_c_exp(z) f_complex f_complex

z = log (x) z = imsl_c_log(z) f_complex f_complex

z = xD
z = imsl_cf_power(x,a) f_complex f_complex, float

z = x\
z = imsl_cc_power(x,y) f_complex f_complex (both)

c = aN
c = imsl_fi_power(a,k) float float, int

c = aE
c = imsl_ff_power(a,b) float float (both)

m = jN
m = imsl_ii_power(j,k) int int (both)

Double-Precision Complex Operations and Functions

Operation Function Name Function Result Function Argument(s)

z = –x z = imsl_z_neg(x) d_complex d_complex

z = x + y z = imsl_z_add(x,y) d_complex d_complex (both)

z = x – y z = imsl_z_sub(x,y) d_complex d_complex (both)

z = x * y z = imsl_z_mul(x,y) d_complex d_complex (both)

z = x / y z = imsl_z_div(x,y) d_complex d_complex (both)

x==yE z = imsl_z_eq(x,y) int d_complex (both)

z = x

Drop Precision

z = imsl_zc_convert(x) d_complex f_complex

z = a + ib

Ascend Data

z = imsl_zd_convert(a,b) d_complex double (both)

E Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

678 • Complex Data Types and Functions IMSL C/Math/Library

Operation Function Name Function Result Function Argument(s)

z = x z = imsl_z_conjg(x) d_complex d_complex

a = |z| a = imsl_z_abs(z) double d_complex

a = arg (z)

–π < a ≤ π

a = imsl_z_arg(z) double d_complex

z = x z = imsl_z_sqrt(z) d_complex d_complex

z = cos (x) z = imsl_z_cos(z) d_complex d_complex

z = sin (x) z = imsl_z_sin(z) d_complex d_complex

z = exp (x) z = imsl_z_exp(z) d_complex d_complex

z = log (x) z = imsl_z_log(z) d_complex d_complex

z = xD z = imsl_zd_power(x,a) d_complex d_complex, double

z = x\ z = imsl_zz_power(x,y) d_complex d_complex (both)

c = aN c = imsl_di_power(a,k) double double, int

c = aE c = imsl_dd_power(a,b) double double (both)

m = jN m = imsl_ii_power(j,k) int int (both)

The following sample code computes and prints several quantities associated with
complex numbers. Note that the quantity

w i= +3 4

has a rounding error associated with it. Also the quotient z = (1 + 2i) / (3 + 4i) has a
rounding error. The result is acceptable in both cases because the relative errors |w –
 (2 + 2i)|/ |w| and |z * (3 + 4i) – (1 + 2i)|/ |(1 + 2i)| are approximately the size of
machine precision.

#include <imsl.h>

main()
{
 f_complex x = {1,2};
 f_complex y = {3,4};
 f_complex z;
 f_complex w;
 int isame;
 float eps = imsl_f_machine(4);
 /* Echo inputs x and y */
 printf("Data: x = (%g, %g)\n y = (%g, %g)\n\n",
 x.re, x.im, y.re, y.im);
 /* Add inputs */
 z = imsl_c_add(x,y);
 printf("Sum: z = x + y = (%g, %g)\n\n", z.re, z.im);
 /* Compute square root of y */

Reference Material Complex Data Types and Functions • 679

 w = imsl_c_sqrt(y);
 printf("Square Root: w = sqrt(y) = (%g, %g)\n", w.re, w.im);
 /* Check results */
 z = imsl_c_mul(w,w);
 printf("Check: w*w = (%g, %g)\n", z.re, z.im);
 isame = imsl_c_eq(y,z);
 printf(" y == w*w = %d\n", isame);
 z = imsl_c_sub(z,y);
 printf("Difference: w*w - y = (%g, %g) = (%g, %g) * eps\n\n",
 z.re, z.im, z.re/eps, z.im/eps);
 /* Divide inputs */
 z = imsl_c_div(x,y);
 printf("Quotient: z = x/y = (%g, %g)\n", z.re, z.im);
 /* Check results */
 w = imsl_c_sub(x, imsl_c_mul(z, y));
 printf("Check: w = x - z*y = (%g, %g) = (%g, %g) * eps\n",
 w.re, w.im, w.re/eps, w.im/eps);
}

Output
Data: x = (1, 2)
 y = (3, 4)

Sum: z = x + y = (4, 6)

Square Root: w = sqrt(y) = (2, 1)
Check: w*w = (3, 4)
 y == w*w = 0
Difference: w*w - y = (-2.38419e-07, 4.76837e-07) = (-2, 4) * eps

Quotient: z = x/y = (0.44, 0.08)
Check: w = x - z*y = (5.96046e-08, 0) = (0.5, 0) * eps

IMSL C/Math/Library Appendix A: References • 1

Appendix A: References

Abramowitz and Stegun
Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, National Bureau of Standards, Washington.

Ahrens and Dieter
Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from
gamma, beta, Poisson, and binomial distributions, Computing, 12, 223–246.

Akima
Akima, H. (1970), A new method of interpolation and smooth curve
fitting based on local procedures, Journal of the ACM, 17, 589–602.

Akima, H. (1978), A method of bivariate interpolation and smooth
surface fitting for irregularly distributed data points, ACM Transactions
on Mathematical Software, 4, 148–159.

Ashcraft
Ashcraft, C. (1987), A vector implementation of the multifrontal method
for large sparse symmetric positive definite systems, Technical Report
ETA-TR-51, Engineering Technology Applications Division, Boeing
Computer Services, Seattle, Washington.

Ashcraft et al.
Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987),
Progress in sparse matrix methods for large linear systems on vector
supercomputers. Intern. J. Supercomputer Applic., 1(4), 10–29.

Atkinson (1979)
Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141–145.

2 • Appendix A: References IMSL C/Math/Library

Atkinson (1978)
Atkinson, Ken (1978), An Introduction to Numerical Analysis , John
Wiley & Sons, New York.

Barnett
Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb
and Bessel functions of real order to machine accuracy, Computer
Physics Communication, 21, 297–314.

Barrett and Healy
Barrett, J.C., and M. J.R. Healy (1978), A remark on Algorithm AS 6:
Triangular decomposition of a symmetric matrix, Applied Statistics, 27,
379–380.

Bays and Durham
Bays, Carter, and S.D. Durham (1976), Improving a poor random number
generator, ACM Transactions on Mathematical Software, 2, 59–64.

Blom
Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-
Variables, John Wiley & Sons, New York.

Boisvert
Boisvert, Ronald (1984), A fourth order accurate fast direct method fo
the Helmholtz equation, Elliptic Problem solvers II, (edited by G.
Birkhoff and A. Schoenstadt), Academic Press, Orlando, Florida, 35–44.

Bosten and Battiste
Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio,
Communications of the ACM, 17, 156–157.

Brent
Brent, Richard P. (1973), Algorithms for Minimization without
Derivatives, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Brigham
Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall,
Englewood Cliffs, New Jersey.

Burgoyne
Burgoyne, F.D. (1963), Approximations to Kelvin functions,
Mathematics of Computation, 83, 295-298.

IMSL C/Math/Library Appendix A: References • 3

Carlson
Carlson, B.C. (1979), Computing elliptic integrals by duplication,
Numerische Mathematik, 33, 1–16.

Carlson and Notis
Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic
integrals, ACM Transactions on Mathematical Software, 7, 398–403.

Carlson and Foley
Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric
interpolation, Computer Mathematical Applications, 21, 29–42.

Cheng
Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape
parameters, Communications of the ACM, 21, 317–322.

Cohen and Taylor
Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of
the Fundamental Physical Constants, Codata Bulletin, Pergamon Press,
New York.

Cooley and Tukey
Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine
computation of complex Fourier series, Mathematics of Computation, 19,
297–301.

Cooper
Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for
distribution integrals, Applied Statistics, 17, 190–192.

Courant and Hilbert
Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics,
Volume II, John Wiley & Sons, New York, NY.

Craven and Wahba
Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with
spline functions, Numerische Mathematik, 31, 377–403.

Crowe et al.
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith
(1990), A direct sparse linear equation solver using linked list storage ,
IMSL Technical Report 9006, IMSL, Houston.

4 • Appendix A: References IMSL C/Math/Library

Davis and Rabinowitz
Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical
Integration, Academic Press, Orlando, Florida.

de Boor
de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag,
New York.

Dennis and Schnabel
Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations , Prentice-Hall,
Englewood Cliffs, New Jersey.

Dongarra et al.
Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979),
LINPACK User’s Guide, SIAM, Philadelphia.

Draper and Smith
Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2nd.
ed., John Wiley & Sons, New York.

DuCroz et al.
Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of
band matrices using Level-3 BLAS, Proceedings of CONPAR 90-VAPP
IV, Lecture Notes in Computer Science, Springer, Berlin, 222.

Duff et al.
Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for
Sparse Matrices, Clarendon Press, Oxford.

Duff and Reid
Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite
sparse symmetric linear equations. ACM Transactions on Mathematical
Software, 9, 302–325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of
unsymmetric sets of linear equations. SIAM Journal on Scientific and
Statistical Computing, 5, 633–641.

Enright and Pryce
Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for
assessing initial value methods, ACM Transactions on Mathematical
Software, 13, 1–22.

IMSL C/Math/Library Appendix A: References • 5

Farebrother and Berry
Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6:
Triangular decomposition of a symmetric matrix, Applied Statistics, 23,
477.

Fisher
Fisher, R.A. (1936), The use of multiple measurements in taxonomic
problems, Annals of Eugenics, 7, 179– 188.

Fishman and Moore
Fishman, George S. and Louis R. Moore (1982), A statistical evaluation
of multiplicative congruential random number generators with modulus
231 – 1, Journal of the American Statistical Association , 77, 129–136.

Forsythe
Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for
fitting data with a digital computer, SIAM Journal on Applied
Mathematics, 5, 74–88.

Franke
Franke, R. (1982), Scattered data interpolation: Tests of some methods,
Mathematics of Computation, 38, 181–200.

Garbow et al.
Garbow, B.S., J.M. Boyle, K.J. Dongarra, and C.B. Moler (1977), Matrix
Eigensystem Routines - EISPACK Guide Extension , Springer–Verlag,
New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for
an implementation of Weeks’ method for the inverse Laplace transform
problem, ACM Transactions on Mathematical Software, 14, 163–170.

Gautschi
Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature
formulas, Mathematics of Computation, 22, 251–270.

Gear
Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gentleman
Gentleman, W. Morven (1974), Basic procedures for large, sparse or
weighted linear least squares problems, Applied Statistics, 23, 448–454.

6 • Appendix A: References IMSL C/Math/Library

George and Liu
George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill and Murray
Gill, Philip E., and Walter Murray (1976), Minimization subject to
bounds on the variables, NPL Report NAC 92, National Physical
Laboratory, England.

Gill et al.
Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model
building and practical aspects of nonlinear programming, in
Computational Mathematical Programming , (edited by K. Schittkowski),
NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani
Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for
solving strictly convex quadratic programs, Mathematical Programming,
27, 1–33.

Golub
Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM
Review, 15, 318–334.

Golub and Van Loan
Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, Second
Edition, The Johns Hopkins University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations,
Johns Hopkins University Press, Baltimore, Maryland.

Golub and Welsch
Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature
rules, Mathematics of Computation, 23, 221–230.

Gregory and Karney
Gregory, Robert, and David Karney (1969), A Collection of Matrices for
Testing Computational Algorithms, Wiley-Interscience, John Wiley &
Sons, New York.

IMSL C/Math/Library Appendix A: References • 7

Griffin and Redfish
Griffin, R., and K A. Redish (1970), Remark on Algorithm 347: An
efficient algorithm for sorting with minimal storage, Communications of
the ACM, 13, 54.

Grosse
Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its
Applications, 34, 29–41.

Guerra and Tapia
Guerra, V., and R. A. Tapia (1974), A local procedure for error detection
and data smoothing, MRC Technical Summary Report 1452,
Mathematics Research Center, University of Wisconsin, Madison.

Hageman and Young
Hageman, Louis A., and David M. Young (1981), Applied Iterative
Methods, Academic Press, New York.

Hanson
Hanson, Richard J. (1986), Least squares with bounds and linear
constraints, SIAM Journal Sci. Stat. Computing, 7, #3.

Hardy
Hardy, R.L. (1971), Multiquadric equations of topography and other
irregular surfaces, Journal of Geophysical Research, 76, 1905–1915.

Hart et al.
Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J.Maehly, Charles
K. Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph
Witzgall (1968), Computer Approximations, John Wiley & Sons, New
York.

Healy
Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a
symmetric matrix, Applied Statistics, 17, 195–197.

Herraman
Herraman, C. (1968), Sums of squares and products matrix, Applied
Statistics, 17, 289–292.

8 • Appendix A: References IMSL C/Math/Library

Higham
Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-
norm of a real or complex matrix, with applications to condition
estimation, ACM Transactions on Mathematical Software, 14, 381-396.

Hill
Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM,
13, 617–619.

Hindmarsh
Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System
Solver, Lawrence Livermore National Laboratory Report UCID-30001,
Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif.

Hinkley
Hinkley, David (1977), On quick choice of power transformation,
Applied Statistics, 26, 67–69.

Huber
Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hull et al.
Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for
DVERK — A subroutine for solving non-stiff ODEs, Department of
Computer Science Technical Report 100, University of Toronto.

Irvine et al.
Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986),
Constrained interpolation and smoothing, Constructive Approximation, 2,
129–151.

Jackson et al.
Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical
criterion for comparing Runge-Kutta formulas, SIAM Journal of
Numerical Analysis, 15, 618–641.

Jenkins
Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM
Transactions on Mathematical Software, 1, 178–189.

IMSL C/Math/Library Appendix A: References • 9

Jenkins and Traub
Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real
polynomials using quadratic iteration, SIAM Journal on Numerical
Analysis, 7, 545–566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift
iteration for polynomial zeros and its relation to generalized Rayleigh
iteration, Numerishe Mathematik, 14, 252–263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial,
Communications of the ACM, 15, 97– 99.

Jöhnk
Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufalls-zahlen, Metrika, 8, 5–15.

Kendall and Stuart
Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of
Statistics, Volume 2: Inference and Relationship, third edition, Charles
Griffin & Company, London, Chapter 30.

Kennedy and Gentle
Kennedy, William J., Jr., and James E. Gentle (1980), Statistical
Computing, Marcel Dekker, New York.

Kinnucan and Kuki
Kinnucan, P., and H. Kuki (1968), A single precision inverse error
function subroutine, Computation Center, University of Chicago.

Knuth
Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 2nd. ed., Addison-Wesley, Reading, Mass.

Learmonth and Lewis
Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School
Random Number Generator Package LLRANDOM, NPS55LW73061A ,
Naval Postgraduate School, Monterey, California.

Lehmann
Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on
Ranks, Holden-Day, San Francisco.

10 • Appendix A: References IMSL C/Math/Library

Levenberg
Levenberg, K. (1944), A method for the solution of certain problems in
least squares, Quarterly of Applied Mathematics, 2, 164–168.

Leavenworth
Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary
function, Communications of the ACM, 3, 602.

Lewis et al.
Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom
number generator for the System/ 360, IBM Systems Journal, 8, 136–146.

Liepman
Liepman, David S. (1964), Mathematical constants, in Handbook of
Mathematical Functions, Dover Publications, New York.

Liu
Liu, J.W.H. (1987), A collection of routines for an implementation of the
multifrontal method, Technical Report CS-87-10, Department of
Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse
Cholesky factorization. ACM Transactions on Mathematical Software,
15, 310-325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution:
theory and practice, Technical Report CS-90-04, Department of
Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1986), On the storage requirement in the out-of-core
multifrontal method for sparse factorization. ACM Transactions on
Mathematical Software, 12, 249-264.

Lyness and Giunta
Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method
for numerical inversion of the Laplace transform, Mathematics of
Computation, 47, 313–322.

Madsen and Sincovec
Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL,
General collocation software for partial differential equations, ACM
Transactions on Mathematical Software, 5, #3, 326–351.

IMSL C/Math/Library Appendix A: References • 11

Maindonald
Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons,
New York.

Marquardt
Marquardt, D. (1963), An algorithm for least-squares estimation of
nonlinear parameters, SIAM Journal on Applied Mathematics , 11, 431–
441.

Martin and Wilkinson
Martin, R.S., and J.H. Wilkinson (1971), Reduction of the Symmetric
Eigenproblem Ax = λBx and Related Problems to Standard Form,
Volume II, Linear Algebra Handbook, Springer, New York.

Martin, R.S., and J.H. Wilkinson (1971), The Modified LR Algorithm for
Complex Hessenberg Matrices, Handbook, Volume II, Linear Algebra ,
Springer, New York.

Michelli
Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices
and conditionally positive definite functions, Constructive
Approximation, 2, 11–22.

Michelli et al.
Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal
recovery of smooth functions, Numerische Mathematik, 26, 279–285.

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward
(1985), Constrained Lp approximation, Constructive Approximation, 1,
93–102.

Moler and Stewart
Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix
eigenvalue problems, SIAM Journal on Numerical Analysis, 10, 241-256.

Moré et al.
Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide
for MINPACK-1, Argonne National Laboratory Report ANL-80-74,
Argonne, Illinois.

Müller
Müller, D.E. (1956), A method for solving algebraic equations using an
automatic computer, Mathematical Tables and Aids to Computation , 10,
208–215.

12 • Appendix A: References IMSL C/Math/Library

Murtagh
Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation
and Practice, McGraw-Hill, New York.

Murty
Murty, Katta G. (1983), Linear Programming, John Wiley and Sons,
New York.

Neter and Wasserman
Neter, John, and William Wasserman (1974), Applied Linear Statistical
Models, Richard D. Irwin, Homewood, Illinois.

Neter et al.
Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied
Linear Regression Models, Richard D. Irwin, Homewood, Illinois.

Østerby and Zlatev
Østerby, Ole, and Zahari Zlatev (1982), Direct Methods for Sparse
Matrices, Lecture Notes in Computer Science, 157, Springer-Verlag, New
York.

Owen
Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley
Publishing Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t
distribution, Biometrika, 52, 437–446.

Parlett
Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey.

Petro
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for
sorting with minimal storage, Communications of the ACM, 13, 624.

Piessens et al.
Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K.
Kahaner (1983), QUADPACK, Springer-Verlag, New York.

IMSL C/Math/Library Appendix A: References • 13

Powell
Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained
optimization calculations, Numerical Analysis Proceedings, Dundee
1977, Lecture Notes in Mathematics, (edited by G. A. Watson), 630,
Springer-Verlag, Berlin, Germany, 144–157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of
Goldfarb and Idnani, Mathematical Programming Study, 25, 46–61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained
optimizations calculations, DAMTP Report NA17, University of
Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly
constrained optimizations calculations, DAMTP Report NA2, University
of Cambridge, England.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex
quadratic programming, DAMTP Report 1983/NA17, University of
Cambridge, Cambridge, England.

Reinsch
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische
Mathematik, 10, 177–183.

Rice
Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-
Hill, New York.

Saad and Schultz
Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum
residual algorithm for solving nonsymmetric linear systems, SIAM
Journal of Scientific and Statistical Computing , 7, 856-869.

Sallas and Lionti
Sallas, William M., and Abby M. Lionti (1988), Some useful computing
formulas for the nonfull rank linear model with linear equality
restrictions, IMSL Technical Report 8805, IMSL, Houston.

Savage
Savage, I. Richard (1956), Contributions to the theory of rank order
statistics—the two-sample case, Annals of Mathematical Statistics, 27,
590–615.

14 • Appendix A: References IMSL C/Math/Library

Schittkowski
Schittkowski, K. (1987), More test examples for nonlinear programming
codes, Springer-Verlag, Berlin, 74.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving
constrained nonlinear programming problems, (edited by Clyde L.
Monma), Annals of Operations Research, 5, 485–500.

Schittkowski, K. (1980), Nonlinear programming codes, Lecture Notes in
Economics and Mathematical Systems, 183, Springer-Verlag, Berlin,
Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic
programming method with an augmented Lagrangian line search function,
Mathematik Operationsforschung und Statistik, Serie Optimization, 14,
197–216.

Schmeiser
Schmeiser, Bruce (1983), Recent advances in generating observations
from discrete random variates, in Computer Science and Statistics:
Proceedings of the Fifteenth Symposium on the Interface , (edited by
James E. Gentle), North-Holland Publishing Company, Amsterdam, 154–
160.

Schmeiser and Babu
Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation
via exponential majorizing functions, Operations Research, 28, 917–926.

Schmeiser and Kachitvichyanukul
Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson
Random Variate Generation, Research Memorandum 81–4, School of
Industrial Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser and Lal
Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for
generating gamma variates, Journal of the American Statistical
Association, 75, 679–682.

Shampine
Shampine, L.F. (1975), Discrete least squares polynomial fits,
Communications of the ACM, 18, 179–180.

Shampine and Gear
Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff
ordinary differential equations, SIAM Review, 21, 1–17.

IMSL C/Math/Library Appendix A: References • 15

Sincovec and Madsen
Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial
differential equations, ACM Transactions on Mathematical Software, 1,
#3, 232–260.

Singleton
Singleton, T.C. (1969), Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 12, 185–187.

Smith et al.
Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C.
Klema, and C.B. Moler (1976), Matrix Eigensystem Routines —
EISPACK Guide, Springer-Verlag, New York.

Smith
Smith, P.W. (1990), On knots and nodes for spline interpolation,
Algorithms for Approximation II, J.C. Mason and M.G. Cox, Eds.,
Chapman and Hall, New York.

Stewart
Stewart, G.W. (1973), Introduction to Matrix Computations, Academic
Press, New York.

Stoer
Stoer, J. (1985), Principles of sequential quadratic programming methods
for solving nonlinear programs, in Computational Mathematical
Programming, (edited by K. Schittkowski), NATO ASI Series, 15,
Springer-Verlag, Berlin, Germany.

Strecok
Strecok, Anthony J. (1968), On the calculation of the inverse of the error
function, Mathematics of Computation, 22, 144–158.

Stroud and Secrest
Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae,
Prentice-Hall, Englewood Cliffs, New Jersey.

Temme
Temme, N.M (1975), On the numerical evaluation of the modified Bessel
Function of the third kind, Journal of Computational Physics, 19, 324–
337.

16 • Appendix A: References IMSL C/Math/Library

Thompson and Barnett
Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions Iν(z)
and Kν(z) of real order and complex argument, Computer Physics
Communication, 47, 245–257.

Tukey
Tukey, John W. (1962), The future of data analysis, Annals of
Mathematical Statistics, 33, 1–67.

Velleman and Hoaglin
Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics,
and Computing of Exploratory Data Analysis , Duxbury Press, Boston.

Walker
Walker, H.F. (1988), Implementation of the GMRES method using
Householder transformations, SIAM Journal of Scientific and Statistical
Computing, 9, 152-163.

Watkins
Watkins, David S., L. Elsner (1991), Convergence of algorithm of
decomposition type for the eigenvalue problem, Linear Algebra
Applications, 143, pp. 29–47.

Weeks
Weeks, W.T. (1966), Numerical inversion of Laplace transforms using
Laguerre functions, J. ACM, 13, 419–429.

IMSL C/Math/Library Appendix B: Alphabetical Summary of Routines • B-1

Appendix B: Alphabetical Summary
of Routines

airy_Ai Evaluates the Airy function. 480

airy_Ai_derivative Evaluates the derivative of the Airy function 482

airy_Bi Evaluates the Airy function of the second kind 481

airy_Bi_derivative Evaluates the derivative of the Airy function of the
second kind

483

bessel_exp_I0 Evaluates the exponentially scale modified Bessel
function of the first kind of order zero

459

bessel_exp_I1 Evaluates the exponentially scaled modified Bessel
function of the first kind of order one

460

bessel_exp_K0 Evaluates the exponentially scaled modified Bessel
function of the third kind of order zero

466

bessel_exp_K1 Evaluates the exponentially scaled modified Bessel
function of the third kind of order one

468

bessel_I0 Evaluates the real modified Bessel function of the
first kind of order zero I0(x)

458

bessel_I1 Evaluates the real modified Bessel function of the
first kind of order one I1(x)

460

bessel_Ix Evaluates a sequence of modified Bessel functions
of the first kind with real order and complex
arguments

462

bessel_J0 Evaluates the real Bessel function of the first kind
of order zero J0(x)

448

bessel_J1 Evaluates the real Bessel function of the first kind
of order one J1(x)

450

bessel_Jx Evaluates a sequence of Bessel functions of the first
kind with real order and complex arguments

451

bessel_K0 Evaluates the real modified Bessel function of the
third kind of order zero K0(x)

464

bessel_K1 Evaluates the real modified Bessel function of the
third kind of order one K1(x)

467

B-2 • Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

bessel_Kx Evaluates a sequence of modified Bessel functions
of the third kind with real order and complex
arguments

470

bessel_Y0 Evaluates the real Bessel function of the second
kind of order zero Y0(x)

453

bessel_Y1 Evaluates the real Bessel function of the second
kind of order one Y1(x)

455

bessel_Yx Evaluates a sequence of Bessel functions of the
second kind with real order and complex arguments

456

beta Evaluates the real beta function β(x, y) 439

beta_cdf Evaluates the beta probability distribution function 512

beta_incomplete Evaluates the real incomplete beta function
Ix = βx(a, b)/β(a, b)

442

beta_inverse_cdf Evaluates the inverse of the beta distribution
function

513

binomial_cdf Evaluates the binomial distribution function 507

bivariate_normal_cdf Evaluates the bivariate normal distribution function 514

bounded_least_squares Solves a nonlinear least-squares problem subject to
bounds on the variables using a modified
Levenberg-Marquardt algorithm

416

chi_squared_cdf Evaluates the chi-squared distribution function 495

chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution
function

497

chi_squared_test Performs a chi-squared goodness-of-fit test 528

constant Returns the value of various mathematical and
physical constants

599

convolution Computes the convolution, and optionally, the
correlation of two real vectors

342

convolution (complex) Computes the convolution, and optionally, the
correlation of two complex vectors

348

covariances Computes the sample variance-covariance or
correlation matrix

536

ctime Returns the number of CPU seconds used 592

cub_spline_integral Computes the integral of a cubic spline 158

cub_spline_interp_e_cnd Computes a cubic spline interpolant, specifying
various endpoint conditions

143

cub_spline_interp_shape Computes a shape-preserving cubic spline 150

cub_spline_smooth Computes a smooth cubic spline approximation to
noisy data by using cross-validation to estimate the
smoothing parameter or by directly choosing the
smoothing parameter

203

cub_spline_value Computes the value of a cubic spline or the value of
one of its derivatives

155

date_to_days Computes the number of days from January 1,
1900, to the given date

593

IMSL C/Math/Library Appendix B: Alphabetical Summary of Routines • B-3

days_to_date Gives the date corresponding to the number of days
since January 1, 1900

594

eig_gen Computes the eigenexpansion of a real matrix A 116

eig_gen (complex) Computes the eigenexpansion of a complex matrix
A

118

eig_herm (complex) Computes the eigenexpansion of a complex
Hermitian matrix A

124

eig_sym Computes the eigenexpansion of a real symmetric
matrix A

121

eig_symgen Computes the generalized eigenexpansion of a
system Ax = λBx. A and B are real and symmetric.
B is positive definite

127

elliptic_integral_E Evaluates the complete elliptic integral of the
second kind E(x)

472

elliptic_integral_K Evaluates the complete elliptic integral of the kind
K(x)

471

elliptic_integral_RC Evaluates an elementary integral from which
inverse circular functions, logarithms, and inverse
hyperbolic functions can be computed

477

elliptic_integral_RD Evaluates Carlson’s elliptic integral of the second
kind RD(x, y, z)

474

elliptic_integral_RF Evaluates Carlson’s elliptic integral of the first kind
RF(x, y, z)

473

elliptic_integral_RJ Evaluates Carlson’s elliptic integral of the third
kind RJ(x, y, z, ρ)

476

erf Evaluates the real error function erf(x) 433

erf_inverse Evaluates the real inverse error function
erf-1(x)

436

erfc Evaluates the real complementary error function
erfc(x)

434

erfc_inverse Evaluates the real inverse complementary error
function erfc-1(x)

437

error_code Gets the code corresponding to the error message
from the last function called

598

error_options Sets various error handling options 595

F_cdf Evaluates the F distribution function 498

F_inverse_cdf Evaluates the inverse of the F distribution function 501

fast_poisson_2d Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver
based on the HODIE finite-difference scheme on a
uniform mesh

311

fcn_derivative Computes the first, second or third derivative of a
user-supplied function

277

B-4 • Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

fft_2d_complex Computes the complex discrete two-dimensional
Fourier transform of a complex two-dimensional
array

338

fft_complex Computes the complex discrete Fourier transform
of a complex sequence

325

fft_complex_init Computes the parameters for imsl_c_fft_complex 328

fft_cosine Computes the discrete Fourier cosine
transformation of an even sequence

329

fft_cosine_init Computes the parameters needed for
imsl_f_fft_cosine

332

fft_real Computes the real discrete Fourier transform of a
real sequence

319

fft_real_init Computes the parameters for imsl_f_fft_real 323

fft_sine Computes the discrete Fourier sine transformation
of an odd sequence

334

fft_sine_init Computes the parameters needed for
imsl_f_fft_sine

336

fresnel_integral_C Evaluates the cosine Fresnel integral 478

fresnel_integral_S Evaluates the sine Fresnel integral 479

gamma Evaluates the real gamma function Γ(x) 443

gamma_cdf Evaluates the gamma distribution function 505

gamma_incomplete Evaluates the incomplete gamma function
γ (a, x)

446

gauss_quad_rule Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight
functions

273

geneig Computes the generalized eigenexpansion of a
system Ax = λBx, with A and B real

130

geneig (complex) Computes the generalized eigenexpansion of a
system Ax = λBx, with A and B complex

133

generate_test_band Generates test matrices of class E(n, c) 660

generate_test_band
(complex)

Generates test matrices of class Ec(n, c) 662

generate_test_coordinate Generates test matrices of class D(n, c) and E(n, c) 664

generate_test_coordinate
(complex)

Generates test matrices of class D(n, c) and E(n, c) 668

hypergeometric_cdf Evaluates the hypergeometric distribution function 509

int_fcn Integrates a function using a globally adaptive
scheme based on Gauss-Kronrod rules

237

int_fcn_2d Computes a two-dimensional iterated integral 266

int_fcn_alg_log Integrates a function with algebraic-logarithmic
singularities

245

IMSL C/Math/Library Appendix B: Alphabetical Summary of Routines • B-5

int_fcn_cauchy Computes integrals of the form

f x

x c
dx

a

b b g
−z

in the Cauchy principal value sense

260

int_fcn_fourier Computes a Fourier sine or cosine transform 256

int_fcn_hyper_rect Integrates a function on a hyper-rectangle 270

int_fcn_inf Integrates a function over an infinite or semi-
infinite interval

248

int_fcn_sing Integrates a function, which may have endpoint
singularities, using a globally adaptive scheme
based on Gauss-Kronrod rules

233

int_fcn_sing_pts Integrates a function with singularity points given 241

int_fcn_smooth Integrates a smooth function using a nonadaptive
rule

263

int_fcn_trig Integrates a function containing a sine or a cosine
factor

252

inverse_laplace Computes the inverse Laplace transform of a
complex function

354

kelvin_bei0 Evaluates the Kelvin function of the first kind, bei,
of order zero

485

kelvin_bei0_derivative Evaluates the derivative of the Kelvin function of
the first kind, bei, of order zero

499

kelvin_ber0 Evaluates the Kelvin function of the first kind, ber,
of order zero

484

kelvin_ber0_derivative Evaluates the derivative of the Kelvin function of
the first kind, ber, of order zero

488

kelvin_kei0 Evaluates the Kelvin function of the second kind,
kei, of order zero

486

kelvin_kei0_derivative Evaluates the derivative of the Kelvin function of
the second kind, kei, of order zero

491

kelvin_ker0 Evaluates the Kelvin function of the second kind,
der, of order zero

486

kelvin_ker0_derivative Evaluates the derivative of the Kelvin function of
the second kind, ker, of order zero

490

lin_least_squares_gen Solves a linear least-squares problem Ax = b 84

lin_lsq_lin_constraints Solves a linear least squares problem with linear
constraints

91

lin_prog Solves a linear programming problem using the
revised simplex algorithm

402

lin_sol_def_cg Solves a real symmetric definite linear system using
a conjugate gradient method

78

lin_sol_gen Solves a real general system of linear equations
Ax = b

4

B-6 • Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

lin_sol_gen (complex) Solves a complex general system of linear
equations Ax = b

11

lin_sol_gen_band Solves a real geeral band system of linear equations
Ax=b

26

lin_sol_gen_band
(complex)

Solves a complex general system of linear
equations Ax = b

31

lin_sol_gen_coordinate Solves a sparse system of linear equations Ax = b 44

lin_sol_gen_coordinate
(complex)

Solves a system of linear equations Ax = b, with
sparse complex coefficient matrix A

54

lin_sol_gen_min_residual Solves a linear system Ax = b using the restarted
generalized minimum residual (GMRES) method

73

lin_sol_nonnegdef Solves a real symmetric nonnegative definite
system of linear equations Ax = b

106

lin_sol_posdef Solves a real symmetric positive definite system of
linear equations Ax = b

17

lin_sol_posdef (complex) Solves a complex Hermitian positive definite
system of linear equations Ax = b

22

lin_sol_posdef_band Solves a real symmetric positive definite system of
linear equations Ax = b in band symmetric storage
mode

35

lin_sol_posdef_band
(complex)

Solves a complex Hermitian positive definite
system of linear equations Ax = b in band
symmetric storage mode

39

lin_sol_posdef_coordinate Solves a sparse real symmetric positive definite
system of linear equations Ax = b

62

lin_sol_posdef_coordinate
(complex)

Solves a sparse Hermitian positive definite system
of linear equations Ax = b

68

lin_svd_gen Computes the SVD, A = USVT, of a real
rectangular matrix A

96

lin_svd_gen (complex) Computes the SVD, A = USVH, of a complex
rectangular matrix A

101

log_beta Evaluates the logarithm of the real beta function ln
β (x, y)

441

log_gamma Evaluates the logarithm of the absolute value of the
gamma function log |Γ(x)|

445

machine (float) Returns information describing the computer’s
floating-point arithmetic

605

machine (integer) Returns integer information describing the
computer’s arithmetic

603

mat_add_band Adds two band matrices, both in band storage
mode, C ← αA + βB

639

mat_add_band (complex) Adds two band matrices, both in band storage
mode, C ← αA + βB

642

mat_add_coordinate Performs element-wise addition of two real
matrices stored in coordinate format, C ← αA + βB

646

mat_add_coordinate
(complex)

Performs element-wise addition on two complex
matrices stored in coordinate format, C ← αA + βB

649

IMSL C/Math/Library Appendix B: Alphabetical Summary of Routines • B-7

mat_mul_rect Computes the transpose of a matrix, a matrix-vector
product, a matrix-matrix product, the bilinear form,
or any triple product

614

mat_mul_rect (complex) Computes the transpose of a matrix, the conjugate-
transpose of a matrix, a matrix-vector product, a
matrix-matrix product, the bilinear form, or any
triple product

618

mat_mul_rect_band Computes the transpose of a matrix, a matrix-vector
product, or a matrix-matrix product, all matrices
stored in band form

621

mat_mul_rect_band
(complex)

Computes the transpose of a matrix, a matrix-vector
product, or a matrix-matrix product, all matrices of
complex type and stored in band form

625

mat_mul_rect_coordinate Computes the transpose of a matrix, a matrix-vector
product, or a matrix-matrix product, all matrices
stored in sparse coordinate form

630

mat_mul_rect_coordinate
(complex)

Computes the transpose of a matrix, a matrix-vector
product or a matrix-matrix product, all matrices
stored in sparse coordinate form

634

matrix_norm Computes various norms of a rectangular matrix 653

matrix_norm_band Computes various norms of a matrix stored in band
storage mode

654

matrix_norm_coordinate Computes various norms of a matrix stored in
coordinate format

657

min_con_gen_lin Minimizes a general objective function subject to
linear equality/inequality constraints

410

min_con_nonlin Solves a general nonlinear programming problem
using the successive quadratic programming
algorithm

423

min_uncon Finds the minimum point of a smooth function f(x)
of a single variable using only function evaluations

379

min_uncon_deriv Finds the minimum point of a smooth function f(x)
of a single variable using both function and first
derivative evaluations

383

min_uncon_multivar Minimizes a function f(x) of n variables using a
quasi-Newton method

387

nonlin_least_squares Solves a nonlinear least-squares problem using a
modified Levenberg-Marquardt algorithm

394

normal_cdf Evaluates the standard normal (Gaussian)
distribution function

492

normal_inverse_cdf Evaluates the inverse of the standard normal
(Gaussian) distribution function

494

ode_adams_gear Solves a stiff initial-value problem for ordinary
differential equations using the Adams-Gear
methods

288

B-8 • Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

ode_runge_kutta Solves an initial-value problem for ordinary
differential equations using the Runge-Kutta-Verner
fifth-order and sixth-order method

283

output_file Sets the output file or the error message output file 590

page Sets or retrieve the page width or length 583

pde_method_of_lines Solves a system of partial differential equations of
the form ut + f(x, t, u, ux, uxx) using the method of
lines

295

poisson_cdf Evaluates the Poisson distribution function 510

poly_regression Performs a polynomial least-squares regression 549

quadratic_prog Solves a quadratic programming problem subject to
linear equality or inequality constraints

406

radial_evaluate Evaluates a radial basis fit 229

radial_scattered_fit Computes an approximation to scattered data in Rn
for n ≥ 2 using radial basis functions

223

random_beta Generates pseudorandom numbers from a beta
distribution

573

random_exponential Generates pseudorandom numbers from a standard
exponential distribution

575

random_gamma Generates pseudorandom numbers from a standard
gamma distribution

571

random_normal Generates pseudorandom numbers from a standard
normal distribution using an inverse CDF method

568

random_option Selects the uniform (0, 1) multiplicative
congruential pseudorandom number generator

565

random_poisson Generates pseudorandom numbers from a Poisson
distribution

570

random_seed_get Retrieves the current value of the seed used in the
IMSL random number generators

563

random_seed_set Initializes a random seed for use in the ISML
random number generators

564

random_uniform Generates pseudorandom numbers from a uniform
(0, 1) distribution

566

ranks Computes the ranks, normal scores, or exponential
scores for a vector of observations

557

regression Fits a multiple linear regression model using least
squares

541

scattered_2d_interp Computes a smooth bivariate interpolant to
scattered data that is locally a quintic polynomial in
two variables

218

simple_statistics Computes basic univariate statistics 519

sort Sorts a vector by algebraic value. Optionally, a
vector can be sorted by absolute value, and a sort
permutation can be returned

607

sort (integer) Sorts an integer vector by algebraic value.
Optionally, a vector can be sorted by absolute
value, and a sort permutation can be returned

610

IMSL C/Math/Library Appendix B: Alphabetical Summary of Routines • B-9

spline_2d_integral Evaluates the integral of a tensor-product spline on
a rectangular domain

184

spline_2d_interp Computes a two-dimensional, tensor-product spline
interpolant from two-dimensional, tensor-product
data

169

spline_2d_least_squares Computes a two-dimensional, tensor-product spline
approximant using least squares

197

spline_2d_value Computes the value of a tensor-product spline or
the value of one of its partial derivatives

180

spline_integral Computes the integral of a spline 178

spline_interp Computes a spline interpolant 159

spline_knots Computes the knots for a spline interpolant 165

spline_least_squares Computes a least-squares spline approximation 191

spline_lsq_constrained Computes a least-squares constrained spline
approximation

207

spline_value Computes the value of a spline or the value of one
of its derivatives

175

t_cdf Evaluates the Student’s t distribution function 506

t_inverse_cdf Evaluates the inverse of the Student’s t distribution
function

504

table_oneway Tallies observations into a one-way frequency table 524

user_fcn_least_squares Computes a least-squares fit using user-supplied
functions

187

vector_norm Computes various norms of a vector or the
difference of two vectors

612

version Returns integer information describing the version
of the library, license number, operating system,
and compiler

591

write_matrix Prints a rectangular matrix (or vector) stored in
contiguous memory locations

577

write_options Sets or retrieve an option for printing a matrix 584

zeros_fcn Finds the real zeros of a real function using
Müller’s method

368

zeros_poly Finds the zeros of a polynomial with real
coefficients using the Jenkins-Traub three-stage
algorithm

364

zeros_poly (complex) Finds the zeros of a polynomial with complex
coefficients using the Jenkins-Traub three-stage
algorithm

366

zeros_sys_eqn Solves a system of n nonlinear equations f (x) = 0
using a modified Powell hybrid algorithm

373

IMSL C/Math/Library Index • i

Index

A
Adams-Gear method • 290
Airy functions • 482, 483, 484, 485
algebraic-logarithmic singularities • 247
ANSI C • iii
approximation • 222
arithmetic • 677

B
backward differentiation formulas • 294
band matrices • 641, 644
band storage mode • 641, 644, 657
Bauer and Fike theorem • 118
Bessel functions • 450, 452, 453, 455, 457,

458, 460, 461, 462, 463, 464, 466, 468,
469, 470, 472

beta distributions • 575
beta functions • 441, 443, 444, 513, 515
binomial functions • 509
bivariate functions • 516
Blom scores • 559

C
Cauchy principal • 262
chi-squared functions • 497, 499
chi-squared goodness-of-fit test • 530
Cholesky factorization • 17, 22, 35, 40, 109,

132
column pivoting • 90
complex arithmetic • xv, 677
complex general band system • 31
complex Hermitian positive definite system •

40
computer’s arithmetic • 605
computer’s floating-point arithmetic • 607
condition numbers • 118
conjugate gradient method • 81

convolution • 344, 350
coordinate format • 648, 651, 659
correlation • 344, 350
correlation matrix • 538
cosine factor • 254
cosine Fresnel integrals • 480
CPU time • 594
cubic Hermite polynomials • 297
cubic splines • 147, 154, 159, 162, 207
current value of the seed • 565

D
data types • 677
dates and days • 595, 596
decay rates • 284
derivatives • 279
discrete Fourier cosine transformation • 332,

334
discrete Fourier sine transformation • 336,

338
distribution functions • 494, 496, 497, 499,

501, 503, 504, 506, 507, 509, 510, 512,
513, 515, 516

E
eigenvalues • 117, 118, 119, 120, 122, 125,

128, 131, 134, 137
eigenvectors • 117, 118, 119, 120, 122, 125,

128, 131, 134, 137
elementary functions • 677
elementary integrals • 479
element-wise addition • 648, 651
elliptic integrals • 473, 474, 475, 476, 478
equality/inequality constraints • 413
equilibrium • 284
error functions • 435, 436, 438, 439
error handling • xv, 597, 600
error messages • 592
errors • 675
Euler’s constant • 604
evaluation • 159
even sequence • 332
expected normal scores • 559

F
factorization • 2
fast Fourier transforms • 319, 320, 321, 325,

327, 330, 340
Fourier transform • 258

ii • Index IMSL C/Math/Library

G
gamma distributions • 573
gamma functions • 445, 447, 448, 507
Gauss quadrature • 275
Gaussian elimination • 7, 14
Gaussian functions • 494, 496
Gauss-Kronrod rules • 235, 239
generalized inverses • 3, 102
GMRES method • 76

H
Harding, L.J. • 7
Healy’s algorithm • 112
Helmholtz’s equation • 313
Hermitian matrices • 128
HODIE finite-difference scheme • 313
Householder’ s method • 88, 90, 101, 106
hypergeometric functions • 510
hyper-rectangle • 272

I
ill-conditioning • 4
imsl.h include file • iv
infinite interval • 250
initialize random seed • 566
initial-value problems • 283, 290
integration • 182, 188, 235, 239, 243, 247,

250, 254, 258, 262, 265, 268, 272, 275
interpolation • 144, 147, 154, 163, 169, 173,

218
inverse matrix • 11, 17, 22
inversions • 3, 4

J
Jenkins-Traub algorithm • 366, 368

K
Kelvin functions • 486, 487, 488, 489, 490,

491, 492, 493

L
lack-of-fit test • 551
least squares • 144
least-squares approximation • 211
least-squares fit • 87, 191, 195, 201, 396, 551
least-squares solutions • 3

Levenberg-Marquardt algorithm • 396
linear constraints • 94
linear equations • 26, 31, 35, 45, 56, 63, 70
linear least squares • 3
linear least-squares problem • 94
linear system solution • 2, 4, 109
loop unrolling and jamming • 7
LU factorization • 4, 11, 26, 31, 45, 56

M
mathematical constants • 601
matrices • v, 2, 3, 4, 7, 11, 14, 17, 22, 109,

579
general • v
Hermitian • v
multiplying • 616
rectangular • v
symmetric • v
matrix multiply • 620
matrix transpose • 623, 627, 632, 636
matrix-matrix product • 623, 627, 632, 636
matrix-vector produce • 636
matrix-vector product • 623, 627, 632
matrix-vector products • 616, 620
memory allocation • xii
method of lines • 297
minimization • 379, 380, 381, 385, 389, 396,

404, 409, 413, 425
Müller’s method • 370
multiple right-hand sides • 3

N
non-ANSI C • iii
nonlinear least squares • 396
norms of a vector • 614
numerical ranking • 559

O
odd sequence • 336
one-way frequency table • 526
order statistics • 559
ordinary differential equations • 283, 285, 290
output files • 592
overflow • xv

P
page size • 585
partial differential equations • 284, 297

IMSL C/Math/Library Index • iii

partial pivoting • 11, 13
Poisson distributions • 572
Poisson functions • 512
Poisson solver • 313
polynomial functions • 365
polynomials • 142, 145
Powell hybrid algorithm • 375
predator-prey model • 287
printing • 579, 585, 586
pseudorandom numbers • 577

Q
QR factorizations • 3, 87
quadratic programming • 409
quadrature • 233, 234, 235
quasi-Newton method • 389

R
radial-basis fit • 229
radial-basis functions • 222
random number generation • 520
random numbers • 565, 566, 567, 568, 570,

572, 573, 575
rank deficiency • 3
real general band system • 26
real symmetric definite linear system • 81
real symmetric positive definite system • 35
rectangular matrix • 655
regression • 543, 551
restarted generalized minimum residual

method • 76
right-hand side data • 4
Runge-Kutta-Verner method • 285

S
Savage scores • 559
scattered data • 218, 222
select random number generator • 567
semi-infinite interval • 250
simplex algorithm • 404
sine factor • 254
sine Fresnel integrals • 481
singular value decomposition • 3

singularity • 4
smooth data • 214

cubic spline interpolant •215
error detection • 214

smoothing • 207
sort • 609, 612
sparse Hermitian positive definite system • 70
sparse real symmetric positive definite system

• 63
sparse system • 45
spline interpolant • 163, 169, 173
splines • 142, 143, 145, 162, 179, 182, 184,

188, 195, 201, 211
standard exponential distributions • 577
statistics • 521, 538, 543, 559
stiff systems • 284
storage modes • v
successive quadratic programming algorithm •

425
SVD factorization • 99, 104
symbolic factorizations • 63, 70

T
test matrices • 662, 664, 666, 670
time constants • 284
Tukey scores • 559

U
uncertainty • 4
underflow • xv
uniform mesh • 313
univariate • 247
univariate statistics • 521

V
vectors • 579
Verner, J.H. • 287
version • 593

Z
zero of a system • 375
zeros of a function • 370

IMSL C/Stat/Library Product Support • v

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of
the IMSL C Numerical Libraries. Visual Numerics can consult on the following
topics:

• Clarity of documentation

• Possible Visual Numerics-related programming problems

• Choice of IMSL Libraries functions or procedures for a particular problem

• Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

• for PC support, pcsupport@houston.vni.com.

• for non-PC support, support@houston.vni.com

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics:

 1. Include your serial (or license) number

vi • Product Support IMSL C/Stat/Library

2. Include the product name and version number: IMSL C/Math/Library
Version 3.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a
description of the problem

	C/|Math/Library
	Quick Tips on How to Use this Online Manual
	Copyright
	Contents
	Introduction
	Chapter 1: Linear Systems
	Chapter 2: Eigensystem Analysis
	Chapter 3: Interpolation and Approximation
	Chapter 4: Quadrature
	Chapter 5: Differential Equations
	Chapter 6: Transforms
	Chapter 7: Nonlinear Equations
	Chapter 8: Optimization
	Chapter 9: Special Functions
	Chapter 10: Statistics and Random Number Generation
	Chapter 11: Printing Functions
	Chapter 12: Utilities
	Reference Material
	Appendix A: References
	Appendix B: Alphabetical Summary of Routines
	Index
	Product Support

