
Paper 288-28.3

Proc Migrate: How to Migrate Your Data and Know You’ve Done It
Right!

Diane Olson, SAS Institute, Cary, NC
David Wiehle, SAS Institute, Cary, NC

ABSTRACT
Migrating your data to a new version of SAS
presents challenges; depending on the attributes
of your data libraries, your migration can be
relatively simple or complex. Some issues to
consider when adopting SAS 9 include the
version of SAS in which your data currently
resides, what member types exist in your libraries
and whether you must move members from 32-bit
libraries to 64-bit libraries. To address these
issues, SAS 9.1 includes a new utility procedure,
Proc Migrate. Proc Migrate streamlines the
process of moving libraries forward to a new
release. This paper introduces Proc Migrate and
discusses pitfalls of migrating with the traditional
methods - Proc Copy, Proc Cport/Proc Cimport
and Proc Catalog. Base SAS also provides tools
that can help you guarantee the content and
attributes of your data after migration. We
discuss how Proc Datasets, Proc Contents and
Proc Compare are used in validation tools to
validate the integrity of your migrated libraries.

GET THE LATEST INFO ON PROC
MIGRATE
See the Migration Community link on
www.support.sas.com to access the most up-to-
date information on Proc Migrate and the
validation tools.

WHY A NEW PROCEDURE?
SAS customers have had the need to upgrade
from an earlier version of SAS to the current
version virtually since the SAS System was
created. That upgrade has traditionally been
accomplished by using the COPY,
CPORT/CIMPORT and CATALOG procedures
(hereafter referred to as the conversion
procedures). Each procedure has its strengths
and weaknesses, but none of them were
designed specifically to migrate a SAS library to a
new release. The conversion procedures have
many options that can be used when converting
SAS members; when using them, you must
consider whether or not to keep indexes, integrity
constraints and attributes such as compression.
Should you preserve the original creation date?
Should you convert the entire catalog or just
convert the "wrapper" and let each entry be

converted as it is accessed? Should you copy
the entire library or sacrifice your referential
integrity constraints?

It is clear that these options are necessary for the
multitude of reasons that the conversion
procedures are used, but for the task of
migration, something easier and more intuitive is
needed. New for SAS 9.1, Proc Migrate provides
a simple interface for migrating a SAS library
from an earlier version to the current version. It
also allows new functionality needed for migration
that the other conversion procedures do not.

Not only does Proc Migrate simplify upgrading
your library, it also takes a burden off the
conversion procedures by allowing them to focus
on their primary purposes. In short, the new
procedure makes it simpler for you to get what
you need during a migration and removes
potential performance impact and unnecessary
code complexity in other procedures.

DO I HAVE TO MIGRATE?
Do you have to migrate your libraries? This is the
single most important question on the minds of
customers moving to SAS 9. Under the Migration
Community link on www.support.sas.com, you will
find a Compatibility Calculator at
http://support.sas.com/rnd/migration/planning/file
s/calculator/. Clicking answers to a few questions
using this calculator will help you determine
whether or not you need to migrate.

INTENDED USAGE OF PROC MIGRATE
Unlike other procedures, Proc Migrate is
designed to process a library once each release.
After the library is migrated to the current release,
Proc Migrate will likely not be needed again for
that library until the next release. The only
intended usage of Proc Migrate is to move a
Version 6.12 or later library forward to the current
release; it is not designed to have the flexibility of
one of the conversion procedures. For example,
note that you are not allowed to migrate individual
files from a library. This restriction is necessary
for several reasons, the most important being the
retention of referential integrity constraints and
maintaining data set generation groups.

http://www.support.sas.com/
http://www.support.sas.com/

Proc Migrate is not designed to migrate libraries
from one machine architecture to another. That
functionality is already fully integrated into the
aforementioned conversion procedures.
Migrating libraries across machine architectures
is strongly discouraged, as results are not
guaranteed. Use Proc Migrate for that task at
your own risk. The exception to this rule is when
you need to migrate a 32-bit library to a 64-bit
library for use with SAS 9; then Proc Migrate is
just what you are looking for. See Migrating 32-
bit libraries to 64-bit libraries later in this paper.

PROC MIGRATE SYNTAX
 PROC MIGRATE IN=source-libref
 OUT=target-libref
 <BUFSIZE=bufsize >
 <MOVE> <KEEPNODUPKEY>
 <SLIBREF=remote-libref-for-32-bit
 migration>;
 RUN;

For the normal case, the only required arguments
are the source and target librefs. The source-
libref references a Version 6.12 or later library.
The target-libref references a library using the
current release; it is recommended that the target
library be empty prior to migration.

BUFSIZE is used if you wish to use a particular
buffer page size for creation of all the members of
the target library. The default is the original buffer
page size used to create the source library
member.

The MOVE option is for customers who are short
on storage space and want the source library’s
member to be deleted once the migration of that
member to the target library is completed without
errors. This is for space-constrained customers
only; it is much more effective to validate the
migration of the member before it is deleted (as
discussed in the Validation of Your Library’s
Migration section below).

The KEEPNODUPKEY option specifies that data
sets in the source library with the NODUPKEY
sort assertion will migrate with the assertion.
Because a data set created pre-SAS 9 may have
the assertion set erroneously, the default is to
migrate without the NODUPKEY sort assertion.

The SLIBREF option is only necessary for
migrating 32-bit catalogs in your source library
forward to 64-bit catalogs in your target library.
Note that 32-bit catalogs are inaccessible to SAS
9; therefore they must be migrated in order to be
accessed. Also note that these catalogs are
migrated to hosts within the same operating
system family. See Migrating 32-bit Libraries to
64-bit Libraries below for more details.

With Proc Migrate, you migrate from a source
library to a target library; as with the conversion
procedures, you must migrate to a different
physical location from the source library. There is
no provision for migration in-place. The source
and target librefs must reference different
physical locations. Also, the target library must
be assigned to the current version's BASE or
TAPE engine. This is best accomplished in SAS
9 by:

 libname outlib BASE 'valid-path';
 or
 libname outlib TAPE ‘valid path';
 *when the valid-path location
 contains sequential members;

ADVANTAGES OF PROC MIGRATE
Proc Migrate provides functionality necessary for
migration that the conversion procedures do not.
It is the goal of Proc Migrate to produce members
in the target library that only differ from the
source library because they are in the new SAS
format; in all other ways, they are exactly the
same. In order to attain that goal, Proc Migrate’s
results are different than you are accustomed to
when using the conversion procedures.

For example, the conversion procedures clean up
data sets, such that deleted observations are
removed and disk space recovered. This
restructuring has its advantages, but results in a
data set that is not historically accurate if you are
tracking changes through an audit trail. Because
the conversion procedures remove deleted
observations, they cannot copy the audit trail; the
transactions noted in the audit trail would not
match the observations in the copied data set
due to removal of deleted observations. In
contrast, Proc Migrate does migrate audit trails,
as it will migrate all deleted observations. Of
course, Proc Migrate retains the deleted state of
any deleted observations. We refer to this as
"retaining deleted observations".

With Proc Migrate, target library members retain
the created and last modified date/time of the
source library members, just as Proc Copy does
when the DATECOPY option is used. Note these
date/time values are the internal date/times
reported in the Proc Contents attribute
information, and not the external date/times
controlled by the operating system and reported
by Proc Datasets. See the DATECOPY
documentation in The DATASETS Procedure:
COPY Statement in the SAS OnlineDoc for more
details. All integrity constraints and indexes are
automatically retained in a migration. Generation
data set groups are migrated. Compressed files
remain compressed, and encrypted files remain

encrypted. Passwords are also retained, though
you do not need to specify them at migration
time. More concisely, all attributes of the source
library’s members are maintained in the
migration.

In order to migrate an indexed data set, the data
set is first migrated, and then the index is applied.
Note that if errors occur while indexing a migrated
data set, the data set will be migrated without the
index; this will be noted by a warning in the SAS
log. Conversely, if errors occur when applying
integrity constraints or when migrating an audit
trail, the associated data set will be deleted from
the target library and an error will be written to the
SAS log. The reason for this discrepancy in error
behavior is best explained in terms of data
integrity. A data set that is migrated without its
index may lead to a performance issue, but its
data integrity remains intact. However, a data set
migrated without its integrity constraint or audit
file constitutes a data integrity exposure.

Another advantage to Proc Migrate is its
simplicity. When using Proc Migrate, there is no
need to think of all the possible permutations of
options available with the conversion procedures.
Data attributes and auxiliary files such as indexes
and audit trails are automatically migrated to the
target library. The target library becomes a clone
of the source library, in the format of the current
release.

SUGGESTED USAGE
It is recommended that the target library be
empty before your migration begins. This
guarantees that the target library will not be a
mixed library, i.e. one containing members
created by different engines. Also, if a member
of the same name currently exists in the target
library, that member will not be migrated from the
source library; an error will be printed to the log.

If errors are encountered when migrating a
member of the source library, and the cause of
the errors is eradicated, a second Proc Migrate
invocation will result in migrating only those
members not already in the target library. In
other words, Proc Migrate does not overwrite
existing members in the target library.

DETAILS ABOUT SPECIFIC MEMBER
TYPES
Data Files
For data files, the MIGRATE procedure retains
encryption, compression, deleted observations,
all integrity constraints, created and modified
date/times and migrates the audit trail. Indexes
and integrity constraints are rebuilt on the
member in the target library. Migrated data files
take on the data representation and encoding

attributes of the library when not using remote
library services; when not using remote library
services, data sets take on the attributes of the
host on which the target library is located. Other
attributes retain the values of the source library’s
member. See Table 1.1 below.

When migrating data files that have NODUPKEY
asserted in the metadata, you will see a
WARNING in the SAS log stating that the
NODUPKEY assertion was removed on the
target library’s data set. Re-sort the migrated
data file using the FORCE option in Proc Sort so
that observations with duplicate keys are
eliminated and the correct metadata is recorded.
If you are certain that the data is currently correct,
you may specify the KEEPNODUPKEY option to
retain the NODUPKEY sort assertion on the
migrated data.

Conversion
Procedures

Proc Migrate

No deleted
observations retained

Deleted observations
retained

No audit trails copied Audit trails migrated
General integrity
constraints copied only
when option specified,
referential integrity
constraints copied as
well if entire library
copied

All integrity constraints
migrated

Created and last
modified date/times
retained with an option
on some conversion
procedures

Created and last
modified date/times
retained automatically

Table 1.1

Data Files with Audit Trails
When an audit trail is migrated, you will see an
additional entry in the audit trail indicating that the
data set was migrated. The audit trail is migrated
in its present state. If the audit trail was
suspended, the resultant audit trail is also
suspended after the “MIGRATE" record is written.
See Example 1.1.

 Obs reason_code _ATMESSAGE_
 1 Added record
 2 SUSPEND
 3 MIGRATE
 4 SUSPEND
Example 1.1 Proc Print of Suspended and
Migrated Audit Trail
(keep=reason_code _ATMESSAGE_)

Views
There are three categories of views to be
considered: DATA step views, SQL views and

ACCESS engine views. Each uses an entirely
different format and has different migration
considerations.
SQL Views
SQL views retain data in a transport format;
therefore there are no problems to be concerned
about when migrating an SQL view.

DATA Step Views
In SAS 8.0, DATA step views gained the ability to
store the source used to create the view. Using
that source, DATA step views are migrated to
current versions of SAS by automatically
recompiling the source the first time the newly
migrated DATA step views are accessed. In this
way, the execution of the DATA step view will
take advantage of fixes and upgrades available in
the current release. DATA step views previous to
SAS 8.0 or DATA step views not containing their
source cannot be migrated. They must be
recreated from the source.

ACCESS Engine Views
ACCESS views written with the Oracle, Sybase
or DB2 engines will be migrated by making use of
a new procedure specifically for converting these
views. Proc Migrate will call this new procedure,
Proc Cv2view, on your behalf. Views from
Version 6.12 and on will be migrated. Please see
the documentation for Proc Cv2view under
SAS/ACCESS for Relational Databases:
Reference in the SAS OnlineDoc for more
information.

Catalogs
Proc Migrate makes use of Proc Cport and Proc
Cimport to migrate catalogs. Those procedures
are called on your behalf, which is why you may
notice CPORT or CIMPORT notes written to the
log by Proc Migrate. CPORT and CIMPORT
restrictions apply; for example, catalogs in
sequential libraries are not migrated. The result of
using the CPORT/CIMPORT combination is that
catalogs are fully converted to the current
version. Proc Copy, for example, does not
provide this functionality. Instead, it changes the
outer "container" catalog to the new version, but
leaves the entries as they were, to be converted
as they are updated. Proc Migrate converts the
entries, by way of CPORT/CIMPORT. You can
use CPORT/CIMPORT to convert your catalogs
outside the Proc Migrate environment, but Proc
Migrate provides one-step migration for your
entire library. Note that there are special
concerns with catalogs when migrating from a 32-
bit library. See Migrating 32-bit libraries to 64-bit
libraries later in this paper.

MDDBs
Proc Migrate will migrate MDDBs to a SAS 9
library. Note that although Version 7 MDDBs will
migrate to SAS 9 with no error messages, like all

Version 7 MDDBs, it cannot be accessed with
any version other than SAS 7.

Program Files
Stored compiled DATA step programs cannot be
migrated; they must be recreated from the
source. You will see an error in the log when
attempting to migrate them.

Item Stores
There are no special concerns for the migration
of item stores, unless you are migrating from a
32-bit library to a 64-bit library. Item stores
cannot be migrated in that case because they
cannot be migrated across machine architecture
boundaries. For any migration with MOVE, note
that item stores cannot be stored in a sequential
library. This is important only if you wish to save
a copy of your library to tape previous to using
the MOVE option in Proc Migrate.

MIGRATING 32-BIT LIBRARIES TO 64-BIT
LIBRARIES
If you were using Version 8 or previous versions
of SAS on AIX, Solaris or HP/UX platforms, then
you probably have 32-bit members in your
libraries. If you were using Version 8 or previous
versions of SAS on OpenVMS Alpha or
OpenVMS VAX and have catalogs in your
libraries, you have catalogs that need to be
migrated; skip to Special Considerations for
Catalogs. Other platforms do not have 32-bit to
64-bit migration considerations.

For AIX, Solaris or HP/UX, Version 8.2 SAS was
available in either 32-bit or 64-bit. Previous to that
release, all versions of SAS were 32-bit. If you
have 32-bit data in your libraries, you may need
to migrate. You can determine if your Version 8
data sets are 32-bit by using Proc Contents in
SAS 9; look at the Data Representation field. If
the data representation ends with “_32”, the data
set is in 32-bit format. If the data representation
ends with “_64”, then your data set is already 64-
bit and may not require migration.

Migration is important to customers with 32-bit
libraries because access to your 32-bit library is
limited. With SAS 9, you can read and write 32-
bit data sets. You can read SQL views, ACCESS
views and MDDBs. If you need additional access
to these members, you should migrate your
library. Other members must be migrated for any
access.

Proc Migrate will automatically migrate the
members of the source library to 64-bit versions
in the target library, removing the access
limitations mentioned above. If you are using
Remote Library Services (SAS/CONNECT or

SAS/SHARE), you must assign the source and/or
target libnames through a SAS 9.1 server.

Special Considerations for Catalogs
For the affected platforms mentioned above, with
the exception of AIX Version 6 catalogs, in order
to migrate a 32-bit catalog to a 64-bit catalog you
must have access to a Version 8 32-bit server
and Remote Library Services (RLS) from
SAS/SHARE or SAS/CONNECT. Your catalogs
are read through the server and written in 64-bit
data representation in the target library.

Assign a libref through a 32-bit Version 8 server
which references the source library. Use this
libref with the SLIBREF option to migrate your
catalogs. See example 1.1.2 below.

/* share1 is a 32-bit version 8 server
 where mycats is assigned to the
 location of the source library */
libname mycats server=share1;
proc migrate in=source out=target
 slibref=mycats; run;
Example 1.1 Migrating Catalogs through a 32-
bit Server

If you do not have either SAS/SHARE or
SAS/CONNECT, you will need to migrate your
catalogs by hand using CPORT on a 32-bit SAS
invocation, and CIMPORT in the current version
of SAS to place a migrated copy in target library.

For AIX Version 6 catalogs, you must migrate
your catalogs by hand, using CPORT in Version
6 to create a transport file and using CIMPORT in
SAS 9 to write the 64-bit catalogs to the target
library. Other AIX library members can be
migrated with Proc Migrate.

For more information, please see
http://support.sas.com/rnd/migration
/planning/files/foreign.html

VALIDATION OF YOUR LIBRARY'S
MIGRATION
Since Proc Migrate is a new procedure, we
needed to develop methods and tools to validate
its behavior. The software validation motto,
"Know your requirements, and know your data" is
certainly familiar to most readers. This concept
played a central role in defining the methodology
we developed to perform this task. Keeping this
concept in mind may help explain why we chose
certain data checking methods over others. The
validation macros discussed grew out of our
validation choices and became the tool we used
to validate our results. We realized that
customers could also use it to ensure the
correctness of their own data migration. This tool
alone is not enough to provide that certainty,

however. It must be used in conjunction with
your knowledge of the contents of your data
libraries.

PROC MIGRATE VALIDATION
STRATEGY
The migration validation strategy can be
conceptualized in two basic parts. First, you
must determine the expected behavior of the
migration of a particular library. Then, after the
migration, you must prove that the migration
produced those expected results. In other words,
what members and member attributes were in the
source library prior to the migration? What
members and member attributes appear in the
target library after the migration?

SOURCE LIBRARY MEMBERS
Unfortunately, knowing your data is not as simple
as knowing what member types exist in the
source library. Consider the hidden complexities
of SAS data sets. Do your data sets have
indexes? Integrity constraints? Password
protection? Permanent formats? What are the
lengths of your variables? Are your data sets
labeled? Do your data sets have data
representation and encoding values different from
the default data representation and encoding of
the operating system? In order to validate the
migration, you must document all these details
before the migration to determine whether or not
the migrated data sets contain expected
attributes.

Proc Contents can be used to produce all this
information. However, besides documenting this
information, it is also necessary to understand
what attributes are expected to change when a
member is migrated from the source to the target
library. For example, since the data sets in the
source library were created with a different
engine than that of the target library, it’s expected
that the Proc Contents Engine value will differ
between the source and target library. Certain
differences from the source library are desired.
Another example of this is the Encoding value in
the Proc Contents output; this is a new field
added in SAS 9; pre-SAS 9 data sets will display
Default for that value. In the migrated member,
you will see a different, more specific value.

PROVE PROC MIGRATE PRODUCED
EXPECTED RESULTS
Customers who are familiar with Proc Compare
will recognize the value of having Proc Compare
perform the "heavy lifting" when comparing two
data sets. However, early in our planning
process, we determined that the output
generated for validation must be reasonable.
Whatever method we chose had to strike a
balance between providing too little output to

http://support.sas.com/rnd/migration/planning/files/foreign.html
http://support.sas.com/rnd/migration/planning/files/foreign.html

adequately validate the results, and providing too
much output to review in a reasonable amount of
time. With the use of the proper options, Proc
Compare produces very little output when there
are no differences between two data sets, but it
can produce an incredible amount of output if
there are any differences. We decided that Proc
Compare is best suited for situations in which
data sets are expected to compare exactly.
Unexpected differences will be immediately
recognizable.

USING ODS TO VALIDATE PROC
MIGRATE RESULTS
Consider this example of default Proc Contents
output which displays the attributes of two data
sets in the source and target libraries:

 Data set in source library

 Data Set Name SOURCE.IC_TWO
 Member Type DATA
 Engine V8
 Created May 1, 1999
 Last Modified May 1, 1999
 Protection
 Data Set Type
 Label
 Data Representation WINDOWS
 Encoding Default

 Data set in target library

 Data Set Name TARGET.IC_TWO
 Member Type DATA
 Engine BASE
 Created May 1, 1999
 Last Modified December 1, 2002
 Protection
 Data Set Type
 Label
 Data Representation WINDOWS
 Encoding wlatin1

A review of these two listings will quickly reveal
differences in Data Set Name, Last Modified and
Encoding. The Encoding difference in the
example above is expected. (Note that the Last
Modified time changes because of an integrity
constraint being recreated after the data set was
migrated.) Besides this attribute data, Proc
Contents also reports variable information,
engine/host data and index information.

If you used Proc Contents output to validate the
results of Proc Migrate, the output generated
from each data set in the source library would
have to be manually compared to those in the
target library. This would be a tedious but

manageable task if you were comparing ten data
sets in a library. But what if your library contained
a hundred data sets? Or a thousand?

Fortunately, SAS offers an alternative to this
tedious chore. The Output Delivery System
(ODS) allows customers flexibility in choosing
what output is produced by a SAS procedure and
flexibility in choosing what that output contains.
For example, by combining ODS output
statements and a simple DATA step, you can
direct Proc Contents output to a data set (similar
to the OUT= option) and produce a listing of only
those data set attributes that are different in the
source and target libraries.

 Attribute source library
 Data Set Name SOURCE.IC_TWO
 Encoding Default
 Last Modified May 1, 1999

 Attribute target library
 Data Set Name TARGET.IC_TWO
 Encoding wlatin1
 Last Modified December 1, 2002

This output is considerably easier to review than
the default Proc Contents output, but it can be
refined even further. Because the libname is
included in the data set name, Data Set Name
will generate an insignificant difference. This
data set attribute can be excluded from the
comparison. Once the Proc Contents output is
directed to a data set, you can use data set
options to keep only those variables (i.e., data set
attributes) that are deemed significant for the
comparison.

 Attribute source library
 Encoding Default
 Last Modified May 1, 1999

 Attribute target library
 Encoding wlatin1
 Last Modified December 1, 2002

The SAS program that produced this output can
be seen in Appendix 1.

INTRODUCTION TO THE MIGRATE
VALIDATION TOOLS
We determined that customers are likely to have
a large number of members in a source library,
as well as having different member types. It
seemed logical to automate the validation
process using SAS Macro as much as possible.
We felt it was important to limit the amount of
required input for the Validation Tools.

There are two tools. Both are SAS programs.
Neither of them is shipped with SAS, but they are
both available for download via the Migration
Community web page. The first tool,
migrate_macros.sas, contains thirteen SAS
macros designed to output the validation
information previously described to the SAS
output window. The second tool,
migrate_template.sas, uses the SAS macros
defined in migrate_macros.sas to streamline the
migration and validation process. In its simplest
form, migrate_template.sas is just seven lines of
SAS code. Here’s an example:

 libname lib1 <engine> 'path 1';
 libname lib2 base 'path 2’;
 libname ods 'path 3';

 %before;
 proc migrate in=lib1 out=lib2;run;
 %after;

 %checkem;

Before we discuss how to use the tools, we
should explain the reason we separated the Proc
Migrate step from the Validation Tools. We
wanted to allow maximum flexibility in the Proc
Migrate step. For example, customers who are
migrating catalogs from a 32-bit library to a 64-bit
library must add an SLIBREF option to their
MIGRATE step that is not required for all
customers. If we wrapped the Proc Migrate step
into the same program that performed the
validation, we would increase the amount of input
required by the validation macros. By performing
the Proc Migrate step separately from the
validation macros, we can make the validation
macros straightforward.

We also determined that since Proc Migrate was
new, a certain amount of trial and error could
occur as a normal part of the migration process.
We wanted to design a solution that would
prevent the need to restart the validation process
from scratch should there be a need to rerun a
portion of the migration. For example, if Proc
Migrate encounters a SAS member in the target
library with the same name and memtype as a
SAS member in the source library, then Proc
Migrate outputs an ERROR to the log and does
not migrate the member. If the member in the
target library is renamed or deleted, the Proc
Migrate step could be repeated, and the member
would be successfully migrated. Separating the
Proc Migrate step from the Validation Tools
allows customers in this situation to simply pick
up the validation process where they left off.

How to Use the Validation Tools
Summary:

1. Copy the text of migrate_macros.sas into the

SAS Program Editor.
2. Submit the code to make the macros

available for the current SAS session.
3. Copy the text of migrate_template.sas into

the SAS Program Editor.
4. Revise the three libname statements at the

top of the program to match your migration
situation.

5. Submit the code.

It’s recommended that you begin a fresh SAS
session before you run the Validation Tools.
Copy the text of migrate_macros.sas from the
Validation link on the Migration Community
Webpage
http://support.sas.com/rnd/migration/resourc
es/procmigrate/validtools.html and paste it
into the SAS Program Editor. If internet access is
impossible for you, please contact your technical
support representative for an alternative method
to obtain the Validation Tools. Submit the code
in the SAS Program Editor to compile the
validation macros and make them available for
the current SAS session. After the validation
macros have been compiled, it is recommended
that you clear the text in the SAS Log Window.
This will make it easier to review any NOTES,
WARNINGS or ERRORS produced by Proc
Migrate.

Copy the text of migrate_template.sas from the
Migration Community Webpage and paste it into
your SAS Program Editor. Once you compile the
macros either by copying the macro code into an
interactive session and submitting the code, or by
saving a copy of the validation macro program
and using “%include”, all that is required is to
define three librefs: a source library, a target
library, and a library to contain the ODS output
data sets created by the validation macros.

 libname LIB1 <engine> 'valid path
 referencing location of
 members to be migrated’;

 libname LIB2 BASE 'some other valid
 path referencing location
 to which members are to be
 migrated';

 libname ODS BASE 'still another valid
 path referencing destination
 of ods output data sets';

The libnames LIB1, LIB2 and ODS are required
by the validation tools. Note that the first libname

http://support.sas.com/rnd/migration/resources/procmigrate/validtools.html
http://support.sas.com/rnd/migration/resources/procmigrate/validtools.html

statement includes an optional engine
assignment. It is necessary only if you have a
mixed library, i.e. one containing members
created using different versions of SAS, such as
Version 6 and Version 8. In that case, the engine
assignment in the libname statement specifies
which version’s members you wish to migrate.
Also, please note the ODS library must be distinct
from the LIB1 and LIB2 libraries.

SUGGESTED GLOBAL SAS OPTIONS
Migrate_template.sas includes two global options.

 options nocenter formdlim=’-‘;

These options were added to help simplify your
review of the results of the Validation Tools in the
SAS Output Window. The default output is left-
justified. If you prefer your output to be centered,
remove the NOCENTER option or submit
“OPTIONS CENTER” before submitting the
%before macro. The FORMDLIM option replaces
page breaks with a dashed line in the SAS
Output Window. We found this helpful in
navigating through the output. If you wish to print
a hard copy of this output, you may wish to run
the Validation Tools once to review the results in
the SAS Output Window, then remove the
FORMDLIM option before running the tools
again to produce the desired output.

Also, migrate_template.sas surrounds the
validation macros with “OPTIONS NONOTES” to
suppress NOTES to the SAS Log generated by
%before, %after and %checkem. Suppressing
these NOTES can make it easier to review any
NOTES, WARNINGS and ERRORs produced by
Proc Migrate.

%BEFORE: DOCUMENTING THE
CONTENTS OF THE SOURCE LIBRARY
BEFORE THE PROC MIGRATE
Once the libname statements in
migrate_template.sas have been revised and
submitted, the next step is to capture information
about the source library before the migration.
What members are in the source library, and
what are their attributes?

The %before macro catalogs the contents of the
source library before migration and creates global
“memtype flag” macro variables which are used
to drive validation output produced later in the
template. No output is produced the SAS Output
Window, but messages are output to the SAS
Log Window indicating what %before did behind
the scenes. This information appears in the log
even if “options nonotes” has been specified.

Now that we’ve documented the contents of the
source library, we can submit a Proc Migrate

step. After that, we can begin validating the
library migration.

%AFTER: DOCUMENTING THE
RESULTS OF PROC MIGRATE, PART 1:
WHAT MEMBERS WERE MIGRATED
After the members are migrated, %after performs
a similar cataloguing function on the members in
the target library as %before did for the members
in the source library. It produces the first report
in the SAS Output Window: A side-by-side
comparison of the contents of the source library
before migration with the contents of the target
library after migration:

 members of target library after
 MIGRATE (relative to source lib)

 name MemType result
 FORMATS CATALOG OK
 TESTCAT CATALOG OK
 C_INDEX DATA not MIGRATED
 DATA_SET DATA OK
 MYSTORE ITEMSTOR OK
 DS_VIEW VIEW OK
 SQL_VIEW VIEW not in source
 library

In this example, five of the seven members
present in the source library were migrated
successfully to the target library (result=”OK”).
The last file on the list was “not in source library”,
presumably because it was in the target library
before the migration and not in the source library.
One file (“C_INDEX”) was not migrated, perhaps
because there was some problem during the
migration. You should check the SAS log for
errors to determine the reason that this file was
not migrated.

%after produces a comparison of the members of
the source library before the migration with the
members of the source library after the migration.
Note that although C_INDEX was not migrated
for some reason, it remains the source library
after migration. By default, Proc Migrate has no
effect on the members in the source library. The
following report is your proof of that fact.

 members of source library before and
 after MIGRATE (OK indicates member
 was present in source lib before
 and after MIGRATE)

 name MemType result
 FORMATS CATALOG OK
 TESTCAT CATALOG OK
 C_INDEX DATA OK
 DATA_SET DATA OK
 MYSTORE ITEMSTOR OK
 DS_VIEW VIEW OK
 SQL_VIEW VIEW OK

For those customers who wish to use the MOVE
option with Proc Migrate, the Validation Tools can
produce validation output only about what
members were migrated; validation of the data is
not possible. Customers who choose to use the
MOVE option when migrating source libraries
should do so with great care. It is not possible to
use %checkem or any of the memtype
comparison macros discussed below unless the
source files remain in the source library after the
migration. In other words, using the MOVE
option significantly limits the validation tools at
your disposal.

DOCUMENTING THE RESULTS OF PROC
MIGRATE, PART 2: ARE THE MEMBERS
CORRECT?
The %checkem macro uses information captured
by %before and %after to output validation
information about the following:

 Audit trails
 Catalogs (metadata only)
 Data sets
 Indexes
 SQL views

%checkem can handle data sets with indexes,
integrity constraints, generations, and, most
importantly, audit trails. SQL views are
processed with a data step and the resulting data
sets are validated with Proc Compare. It should
be noted that so long as the %before and %after
macros are run prior to running %checkem,
customers do not have to input member names,
or even have to know how many members are
expected to be in the source or target libraries.

An example of data set validation output appears
below. %checkem outputs three reports for data
sets:
1. a side-by-side comparison of data set

attributes
2. a side-by-side comparison of data set

engine/host information
3. a Proc Compare of the data.

%CHECKEM DEFAULT DATA SET
OUTPUT 1: DIFFERENCES IN DATA SET
ATTRIBUTES
The first title line of each data set validation
output contains the name of the data set being
compared. A counter indicating the current data
set number (of the total number of data sets in
the source library) appears in the second title
line. The third title line indicates what the report
contains, and the fourth title line tells us that all
other data attributes not displayed in the body of
the report were the same. The last title line
indicates which of the three reports is printed,
and the name of the validation macro run by
%checkem to produce the report.
%checkem sample data set output 1:
differences in PROC CONTENTS header data
 SAMPLE_DATA_SET
 Number 2 of 12 data sets in source
 library
 Differences in PROC CONTENTS header
 data
 Note: all other header data was the
 same
 Number 1 of 3 reports for this data
 set (from checkdata macro)

 attribute source target
 Encoding Default wlatin1

The Encoding difference in the example above is
expected.

%CHECKEM DEFAULT DATA SET
OUTPUT 2: DIFFERENCES IN
ENGINE/HOST INFORMATION
As in first example above, the differences in
engine/host information in the second example
are limited to expected differences, Host Created
and Release Created. The Host Created differs
between the source and target libraries because
the MS Windows operating system with which the
source library was created is different than the
current operating system, although it is in the
same operating system family. Please note that
File Name was excluded from this comparison
because we expect differences; the libname is a
part of the File Name and is expected to change
from the source library to the target library, so the
attribute is purposefully excluded.

%checkem sample data set output 2:
differences in PROC CONTENTS engine/host
data
 SAMPLE_DATA_SET
 Number 2 of 12 data sets in source
 library
 Differences in PROC CONTENTS
 engine/host information
 Note: all other engine/host
 information was the same
 Number 2 of 3 reports for this data
 set (from checkdata macro)

 attribute source target
 Host Created WIN_PRO XP_PRO
 Release Created 8.0202M0 9.0100A0

%CHECKEM DATA SET OUTPUT 3:
PROC COMPARE OF DATA SET
CONTENTS
The Proc Compare used by the Validation Tools
makes use of two COMPARE options:
BRIEFSUMMARY prints only a short comparison
summary to the SAS Output Window, and
LISTALL lists all variables and observations
found in only one data set.

%checkem sample data set output 3: PROC
COMPARE of data
 SAMPLE_DATA_SET
 Number 2 of 12 data sets in source
 library
 PROC COMPARE of data
 Number 3 of 3 reports for this data
 set (from checkdata macro)

 The COMPARE Procedure
 (Method=EXACT)
 NOTE: No unequal values were found.

The basic goal of Proc Migrate is to move an
existing library forward to the current release so
that the data within each member is exactly the
same. Certain attributes of each member change
so that the member can take full advantage of the
features of the new release. The example above
shows how we prove we have achieved that goal.

The default behavior of %checkem is to output
only the metadata (and data, if any) that is
different in the source library and the target
library. To output a comparison of all metadata
and data for all memtypes, submit the following:

 %checkem (showall=yes);

This produces output for data sets similar to the
following:

%checkem(showall=yes) sample data set
output 1: comparison of header data
 SAMPLE_DATA_SET
 Number 2 of 12 data sets in source
 library
 PROC CONTENTS header data
 Number 1 of 3 reports for this data
 set (from checkdata macro)

 attribute source target
 Compressed NO NO
 Data Representation WINDOWS WINDOWS
 Data Set Type
 Deleted Observations 0 0
 Encoding Default wlatin1
 Engine V8 V9
 Indexes 1 1

%checkem(showall=yes) sample data set
output 2: comparison of engine/host data
 SAMPLE_DATA_SET
 Number 2 of 12 data sets in source
 library
 PROC CONTENTS engine/host data
 Number 2 of 3 reports for this data
 set (from checkdata macro)

 attribute source target
 Data Set Page Size 4096 4096
 First Data Page 1 1
 Host Created WIN_PRO XP_PRO
 Index File Page Size 4096 4096
 Max Obs per Page 126 126

%checkem(showall=yes) sample data set
output 3: PROC COMPARE of data
 SAMPLE_DATA_SET
 Number 2 of 12 data sets in source
 library
 PROC COMPARE of data
 Number 3 of 3 reports for this data
 set (from checkdata macro)

 The COMPARE Procedure
 (Method=EXACT)
 NOTE: No unequal values were found.

Submitting “%checkem(showall=yes)” produces
all output for all members. You may wish to
output “(showall=yes)” information for only one
memtype. If this is the case, submit %before and
%after in migrate_template.sas, and then submit
whatever individual validation macros you wish.

 libname lib1 <engine> 'path to source
 library';

 libname lib2 base 'path to target
 library';
 libname ods base 'path to ODS
 library';

 %before;
 proc migrate in=lib1 out=lib2;run;
 %after;

 %checkdata(showall=yes);
 %checkcatalog;
 %checkindex;
 %checkaudit(showall=yes)

Refer to Table 2 below for a list of validation
macro names. %checkdata is one of a number of
macros used by %checkem to assist in the
validation of the migration of individual SAS files.
Please refer to Table 2 below to determine which
macro can be used to validate SAS files of a
particular memtype. Full documentation of each
of these macros can be found in
http://support.sas.com/rnd/migration/resourc
es/procmigrate/validtools.html

Memtype or file Validation tool
Catalog %checkcatalog
Data set %checkdata
Data set with an index %checkdata and

%checkindex
Data set with integrity
constraint

%checkdata and
%checkindex

Data set with an audit
trail

%checkdata and
%checkaudit

Generations data set %checkdata
Itemstore NONE
DATA step view NONE
SQL view %checkview
SAS/ACCESS view
descriptor

NONE

MDDB NONE
Program file NONE
Table 2: Suggested Memtype Validation Tools

CONCLUSION
Proc Migrate is a new tool in the SAS utility
procedure tool belt, enabling you to easily
upgrade your SAS libraries to the latest version of
SAS. Using the procedure in conjunction with the
validation macros discussed will allow you to
have confidence in your migrated library’s data
integrity.

CONTACT INFORMATION
If you have questions, feel free to contact the
authors of this paper. For Proc Migrate

questions, send email to Diane.Olson@sas.com.
For validation macro questions, send email to
David.Wiehle@sas.com.

Appendix 1 Example of ODS “Smart
Compare” Program

 ***libname source is source library;
 ***libname target is target library;

 ods output attributes=atr1(keep=label1
 cvalue1
 where=(label1 not in (" ",
 "Data Set Name")));
 ods listing close;
 proc contents data=source.ic_two;run;
 ods listing;

 data atr1(rename=(label1=attribute
 cvalue1=source));
 set atr1;
 run;

 proc sort data=atr1;by attribute;run;

 ods output attributes=atr2(keep=label1
 cvalue1
 where=(label1 not in (" ",
 "Data Set Name")));
 ods listing close;
 proc contents data=destin.ic_two;run;
 ods listing;

 data atr2(rename=(label1=attribute
 cvalue1=target));
 set atr2;
 run;

 proc sort data=atr2;by attribute;run;

 data atr;
 merge atr1(in=in1) atr2(in=in2);
 by attribute;
 if in1 or in2;
 if source ne target then output;
 run;

 proc print data=atr;run;

http://support.sas.com/rnd/migration/resources/procmigrate/validtools.html
http://support.sas.com/rnd/migration/resources/procmigrate/validtools.html
mailto:Diane.Olson@sas.com
mailto:David.Wiehle@sas.com

	Paper 288-28.3
	Proc Migrate: How to Migrate Your Data and Know
	ABSTRACT
	INTENDED USAGE OF PROC MIGRATE
	PROC MIGRATE SYNTAX
	ADVANTAGES OF PROC MIGRATE
	SUGGESTED USAGE
	DETAILS ABOUT SPECIFIC MEMBER TYPES
	Data Files
	Conversion Procedures
	Proc Migrate
	Data Files with Audit Trails
	Views
	SQL Views
	In SAS 8.0, DATA step views gained the ability to store the source used to create the view. Using that source, DATA step views are migrated to current versions of SAS by automatically recompiling the source the first time the newly migrated DATA step vi
	ACCESS Engine Views
	Catalogs
	MDDBs
	Program Files
	Item Stores
	MIGRATING 32-BIT LIBRARIES TO 64-BIT LIBRARIES
	Special Considerations for Catalogs

