1 Welcome to PLT Scheme
2 Scheme Essentials
3 Built-In Datatypes
4 Expressions and Definitions
5 Programmer-Defined Datatypes
6 Modules
7 Contracts
8 Input and Output
9 Regular Expressions
10 Exceptions and Control
11 Iterations and Comprehensions
12 Pattern Matching
13 Classes and Objects
14 Units (Components)
15 Reflection and Dynamic Evaluation
16 Macros
17 Performance
18 Running and Creating Executables
19 Compilation and Configuration
20 More Libraries
Bibliography
Index
Version: 4.0.2

 

3.2 Numbers

A Scheme number is either exact or inexact:

Inexact numbers print with a decimal point or exponent specifier, and exact numbers print as integers and fractions. The same conventions apply for reading number constants, but #e or #i can prefix a number to force its parsing as an exact or inexact number. The prefixes #b, #o, and #x specify binary, octal, and hexadecimal interpretation of digits.

Reading Numbers in Reference: PLT Scheme documents the fine points of the syntax of numbers.

Examples:

  > 0.5

  0.5

  > #e0.5

  1/2

  > #x03BB

  955

Computations that involve an inexact number produce inexact results, so that inexactness acts as a kind of taint on numbers. Beware, however, that Scheme offers no “inexact booleans”, so computations that branch on the comparison of inexact numbers can nevertheless produce exact results. The procedures exact->inexact and inexact->exact convert between the two types of numbers.

Examples:

  > (/ 1 2)

  1/2

  > (/ 1 2.0)

  0.5

  > (if (= 3.0 2.999) 1 2)

  2

  > (inexact->exact 0.1)

  3602879701896397/36028797018963968

Inexact results are also produced by procedures such as sqrt, log, and sin when an exact result would require representing real numbers that are not rational. Scheme can represent only rational numbers and complex numbers with rational parts.

Examples:

  > (sin 0)   ; rational...

  0

  > (sin 1/2) ; not rational...

  0.479425538604203

In terms of performance, computations with small integers are typically the fastest, where “small” means that the number fits into one bit less than the machine’s word-sized representation for signed numbers. Computation with very large exact integers or with non-integer exact numbers can be much more expensive than computation with inexact numbers.

  (define (sigma f a b)

    (if (= a b)

        0

        (+ (f a) (sigma f (+ a 1) b))))

  > (time (round (sigma (lambda (x) (/ 1 x)) 1 2000)))

  cpu time: 126 real time: 126 gc time: 0

  8

  > (time (round (sigma (lambda (x) (/ 1.0 x)) 1 2000)))

  cpu time: 673 real time: 673 gc time: 673

  8.0

The number categories integer, rational, real (always rational), and complex are defined in the usual way, and are recognized by the procedures integer?, rational?, real?, and complex?, in addition to the generic number?. A few mathematical procedures accept only real numbers, but most implement standard extensions to complex numbers.

Examples:

  > (integer? 5)

  #t

  > (complex? 5)

  #t

  > (integer? 5.0)

  #t

  > (integer? 1+2i)

  #f

  > (complex? 1+2i)

  #t

  > (complex? 1.0+2.0i)

  #t

  > (abs -5)

  5

  > (abs -5+2i)

  abs: expects argument of type <real number>; given -5+2i

  > (sin -5+2i)

  3.6076607742131563+1.0288031496599335i

The = procedure compares numbers for numerical equality. If it is given both inexact and exact numbers to compare, it essentially converts the inexact numbers to exact before comparing. The eqv? (and therefore equal?) procedure, in contrast, compares numbers considering both exactness and numerical equality.

Examples:

  > (= 1 1.0)

  #t

  > (eqv? 1 1.0)

  #f

Beware of comparisons involving inexact numbers, which by their nature can have surprising behavior. Even apparently simple inexact numbers may not mean what you think they mean; for example, while a base-2 IEEE floating-point number can represent 1/2 exactly, it can only approximate 1/10:

Examples:

  > (= 1/2 0.5)

  #t

  > (= 1/10 0.1)

  #f

  > (inexact->exact 0.1)

  3602879701896397/36028797018963968

Numbers in Reference: PLT Scheme provides more on numbers and number procedures.