pH-induced structural change in biogenic Mn(IV)-oxides

ENVR 136

Mengqiang Zhu, mzhu@UDel.Edu, Matthew Ginder-Vogel, mattgv@udel.edu, Sanjai J. Parikh, sjparikh@udel.edu, and Donald Sparks, dlsparks@udel.edu. Department of Plant and Soil Sciences and the Center for Critical Zone Research, University of Delaware, 152 Townsend Hall, 531 South College Avenue, Newark, DE 19716

Mn-oxides play important roles in controlling the behavior of heavy metal(loid)s and organic compounds in the environment. Microbially-mediated Mn oxidation is thought to be one of the major sources of manganese oxides in soils. Studies have shown that the pH at which biological Mn(II) oxidation by P. putida strain GB-1 takes place controls the abundance of Mn(III) and the density of vacancy sites in biologically precipitated Mn(IV) oxides (BioMnO_x). In this study we investigate the effect of pH on the structural properties of preformed BioMnO_x, since pH changes are prevalent in the natural environment. XAFS analyses revealed that the structure of BioMnO_x formed at pH 8 in a 16.67mM CaCl₂ solution was not modified by exposure to low pH solutions until the pH decreased to 5. However, the structure of BioMnO_x formed at pH 8 in a 50mM NaCl solution was altered even by a pH 7 solution. These data indicate that the geochemistry of biogenic manganese oxides can be affected by environmental changes such as pH.

General Papers

6:00 PM-8:00 PM, Wednesday, August 20, 2008 Pennsylvania Convention Center -- Hall C, Poster

Sci-Mix

8:00 PM-10:00 PM, Monday, August 18, 2008 Pennsylvania Convention Center -- Hall C, Sci-Mix

Division of Environmental Chemistry

The 236th ACS National Meeting, Philadelphia, PA, August 17-21, 2008