EQUILIBRIUM AND KINETIC STUDIES OF ATRAZINE
ADSORPTION AND DESORPTION ON SOILS
AND SOIL CONSTITUENTS

by

Liya Tang

A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Plant and Soil Sciences

May 1996

© 1996 Liya Tang
All Rights Reserved
ABSTRACT

Adsorption-desorption of pesticides is critical in controlling the concentration of pesticides in the soil solution and thus the amount that will be leached. Equilibrium and kinetic aspects of atrazine adsorption-desorption were investigated on humic acid, montmorillonite, vermiculite, goethite, humic acid-coated montmorillonite and goethite, and two selected Delaware soils. The equilibrium and long-term kinetic studies were carried out using a batch technique. The short-term kinetic studies on vermiculite were conducted using a stirred-flow method. The equilibrium studies showed that adsorption of atrazine on humic acid \((K_d = 95.60 \text{ L Kg}^{-1}) \) was considerably higher than on montmorillonite \((K_d = 18.52 \text{ L Kg}^{-1}) \) and vermiculite \((K_d = 26.80 \text{ L Kg}^{-1}) \). Adsorption of atrazine on goethite was negligible. Humic acid coatings significantly increased atrazine adsorption on montmorillonite and goethite. Atrazine adsorption-desorption on montmorillonite was completely reversible, while nonsingularities were observed for vermiculite and humic acid. The short-term adsorption kinetic studies on vermiculite indicated that a concentration-dependent kinetic model is suitable to describe the reaction rates. The long-term kinetic studies indicated that atrazine adsorption-desorption on humic acid continued up to 90 days, while equilibrium on montmorillonite was reached in 2 h. The humic acid coating on montmorillonite decreased the reaction rate compared to that
observed on the uncoated montmorillonite. Adsorption-desorption on a Pocomoke surface soil, which has a high organic matter (OM) content was slower than on a Matapeake subsoil which was mainly a mineral soil with a low organic matter content. A two-site model and a radial pore diffusion model described the kinetics reasonably well, capturing the fast initial desorption and the relatively slow desorption that followed.