Mechanisms of Reductive Dissolution of Mn Oxides by Catechol

C. J. Matocha

Manganese (Mn) oxides exhibit the ability to degrade organic pollutants by dechlorination, oxidation, and ring cleavage processes, however, the mechanisms of these reactions remain ill-defined. The major objective of this study was to evaluate the mechanisms of reductive dissolution of three different Mn oxide minerals by catechol as a function of time and pH. The reductive dissolution rate at early times (<5 min) decreased in the order birnessite > cryptomelane > manganite in the presence of excess Mn oxide at pH 4. At greater catechol:total Mn molar ratios (10:1), the reaction was rapid and complete within minutes for birnessite. The reductive dissolution rate of manganite was greater at pH 4 than pH 6 after 4 hours of reaction time. Comparison of Mn-release normalized to initial external surface area for the Mn oxides suggests that crystal properties have a significant effect on reactivity.