OXIDATION AND SORPTION KINETICS OF ARSENIC ON A POORLY CRYSTALLINE MANGANESE OXIDE

by

Brandon J. Lafferty

A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant and Soil Sciences

Summer 2010

© 2010 Brandon J. Lafferty
All Rights Reserved
ABSTRACT

Manganese oxides (Mn-oxides) are some of the most reactive minerals in the environment, and are known to readily oxidize toxic arsenite (AsIII) to less toxic arsenate (AsV). However, AsIII oxidation by Mn-oxides can be quite complex, involving many simultaneous reactions. Also, when AsIII is oxidized by Mn-oxides, a reduction in the oxidation rate is often observed, which has been attributed to Mn-oxide surface passivation. Although AsIII oxidation by Mn-oxides has been studied, fundamental understanding of the mechanisms of AsIII oxidation, and subsequent Mn-oxide passivation by poorly crystalline, layered Mn-oxides (i.e. phyllomanganates), is lacking. In stirred-flow experiments, AsIII oxidation by δ-MnO\textsubscript{2} (a poorly crystalline phyllomanganate) is initially rapid but slows appreciably as the mineral surface became passivated. MnII is the only reduced product of AsIII oxidation by δ-MnO\textsubscript{2} during the initial period of the reaction, indicating that AsIII oxidation does not proceed through a MnIII intermediate. Also, X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) show that MnII sorption is the primary cause of δ-MnO\textsubscript{2} passivation during the early periods of AsIII oxidation. There is also evidence that formation of MnIII observed in previous studies is a result of conproportionation of MnII sorbed onto MnIV reaction sites of δ-MnO\textsubscript{2}. It is possible that MnIII formed through MnII / MnIV conproportionation also plays a role in δ-MnO\textsubscript{2} passivation. Only AsV is observed bound to δ-MnO\textsubscript{2} during AsIII oxidation, and it is present in several adsorption complexes that change as the MnIII content in δ-MnO\textsubscript{2} increases. Although AsV is directly bound to the δ-MnO\textsubscript{2} surface, a significant fraction is quite mobile. These findings show that AsIII oxidation by poorly crystalline δ-MnO\textsubscript{2} involves
several simultaneous reactions and emphasizes the importance of Mn oxidation state in the reactivity of Mn-oxides. Also demonstrated is the value of studying reaction mechanisms over a range of time scales.