Glacial-interglacial oceanographic variations over the past 340,000 years at the mid-latitude of southwest Pacific based on a multi-proxy approach

S.L. HO¹*, M. NUITA¹, M. YAMAMOTO¹, M. MINAGAWA¹, T. SAGAWA², K. HORIKAWA², M. MURAYAMA² AND Y. KATO³

¹Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan (*correspondence: ling2503@ees.hokudai.ac.jp)

²Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8602, Japan

³School of Marine Science and Technology, Tokai University, Shizuoka 424-8610, Japan

Our piston core KH04-5 SX16 (43° 11'S, 171° 10'W) is located north of the contemporary subtropical front (STF), east off New Zealand. Subtropical front is where the warm and saline subtropical water meets cold and relatively fresh subantarctic water. The front has been reported to be bathmetrically locked at the Chatham Rise over the glacialinterglacial (G-I) cycles [1].

In this study, 2 organic proxies, namely the latest paleothermometer TEX₈₆ and the more established unsaturation index of alkenone $(U_{37}^{K'})$ were used to reconstruct the sea surface temperature (SST) over the past 340,000 years. In addition to that, we also analyzed the δ^{18} O of foraminiferas, δ^{13} C and δ^{15} N of organic matter.

The trend of both TEX86 and alkenone SST records over the G-I cycles are quite similar. However, TEX₈₆ record seems to be more synchronous with temperature variations at Antarctica, exhibiting a cold phase around 12ka which may correspond to the Antarctic cold reversal. In contrast, alkenone SST record shows a similar trend with δ^{18} O record of planktonic foram which indicates local forcing as the main controlling factor.

Based on the comparison of our SST record with that from a site underlying subantarctic water south of STF, in addition to TOC and δ^{15} N record of organic matter at the core site, it is suggested that STF might have migrated south during warm periods in MIS1 and MIS5e. This finding is in agreement with previous studies [2, 3]

Heath (1981) Deep Sea Res. Part A 28, 547-560.
Schaefer et al. (2005) Mar. Micropaleontol. 54, 191-212.
Fenner & Di Stefano (2004) Mar. Geol. 205, 59-86.

Nanominerals, mineral nanoparticles, and Earth systems

M.F. Hochella, Jr.¹*, S.K. Lower², P.A. Maurice³, R.L. Penn⁴, N. Sahai⁵, D.L. Sparks⁶ and B.S. Twining⁷

¹Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061-0420, USA (*correspondence: hochella@vt.edu)

²School of Earth Sciences and School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA (lower.9@osu.edu)

³Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA (pmaurice@nd.edu)

⁴Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA (penn@chem.umn.edu)

⁵Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, WI 53706-1692, USA (sahai@geology.wisc.edu)

- ⁶Center for Critical Zone Research, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717-1303, USA (dlsparks@udel.edu)
- ⁷Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA (twining@mail.chem.sc.edu)

Minerals are more complex than previously thought because of the discovery that their chemical properties vary as a function of particle size when smaller than a few to perhaps as much as several tens of nanometers in at least one dimension. These variations are most likely due, at least in part, to differences in surface and near-surface atomic structure, as well as crystal shape and surface topography as a function of size in this smallest of size regimes. It has now been established that these variations may make a difference in important geochemical and biogeochemical reactions and kinetics. This recognition is broadening and enriching our view of how minerals influence the hydrosphere, pedosphere, biosphere, and atmosphere on local, regional, and global scales.