

Helpdesk.Drew.Edu: Home Growing a Helpdesk
Solution Using Open-Source Technology

 John Saul
Drew University
36 Madison Ave.

Madison, NJ 079401
-973-408-3146

jsaul@drew.edu

Betsy Black
Drew University
36 Madison Ave.

Madison, NJ 079401
-973-408-3860

eblack@drew.edu

Erik Larsson
Drew University
36 Madison Ave.

Madison, NJ 079401
-973-408-5094

elarsson@drew.edu

ABSTRACT
 In July of 1999, the department of Academic Technology at

Drew University began the search for a trouble-ticket tracking
package. After researching several commercially available products,
we determined that none offered us the flexibility we needed at a
price we could afford. Despite our lack of success in finding a
commercially available product, our need for an effective
trouble-ticket package was becoming more pronounced.

In August of 1999 the Helpdesk project was created to write

our own web-based trouble-ticket tracking package. The project
originated from a pair of students, Erik Larsson (CLA !02) and
Jessica Sockel (CLA '00), who suggested we use open-source
technology to produce our own web-based tracking system.

We obtained space on a web server and named our project
helpdesk.drew.edu. At this point the Helpdesk project became
modified to include asset tracking and management, as well as a
discussion forum.

We chose PHP as the primary coding language. Our choice of
MySQL as a database engine was based on our need to have a fast,
reliable database with which PHP could easily interface. For the
discussion forum we used and modified an open-source product
called Phorum which uses PHP and MySQL as well.

At present, helpdesk.drew.edu has been in use successfully for
two semesters. We plan to refine and improve how problems are
tracked through this system. Our processes and solutions can be
modified and adapted by the helpdesk of any school that doesn't
have a large budget to spend for a trouble-ticket tracking package or
is unhappy with the adaptability of their current trouble-ticket

software. Our paper is intended to further explain the process that we
went through in choosing the specific open-source solutions, as well
as the problems and benefits we encountered during the
development process.

Keywords
Helpdesk, open-source technology, trouble tracking, tickets, PHP,
MySQL

1. INTRODUCTION
Drew University began providing its students with computers in

1984 as part of its Computer Initiative (CI) Program. These
computers are distributed as standard packages and are supported for
the student"s full term at Drew. The Aide Station desk, staffed
entirely by students, is the University's primary helpdesk operation
and supports only the software and hardware that are given as part of
each computer's configuration.

The Computer Aide Station has been supporting the
computer-related needs of the University since the inception of the
CI. The Aide Station supports about 2,000 students and about 500
faculty and staff members.

To facilitate communication and provide a central location for a
knowledge base, the support staff began using an OpenVMS DEC
NOTES system in 1992. Aide Station operators (ATOPS) would
post information to this internal system about various issues dealing
with the Computer Center, as well as solutions to problems
encountered on a day-to-day basis. Other operators could then use
single word or phrase searching to pull up that information for future
reference, or reply to questions posted by others.

This system worked admirably well for years until the increased
complexity of operating systems, software packages, and the
technical ability of end users combined with the staged
implementation of a Novell Netware local area network began
causing delays in the resolution of technical problems. The NOTES
system was beginning to show its age; problems began to go
unresolved for far too long; and computers that were left with us for
repair--or what we termed "intaken"--would sometimes get
misplaced or parts would get lost.

In 1998, with the completion of the Residential Network and
the addition of a network interface card in each CI package, the
number of problems and intaken computers began to rise to levels
never before seen. At the beginning of the fall semester of 1998,
more than 30 computers were intaken in one day by a desk manned
by two ATOPS. After the initial rush of computers, things began to
slow down, but there was still a noticeable increase in the amount of
computers being intaken. The need for an automated system became

LEAVE THIS TEXT BOX IN PLACE
AND BLANK

apparent as early as 1997; a search for software began, but the
project was postponed due to lack of funds and personnel to learn
and maintain the system.

2. THE SEARCH PROCESS
2.1 Commercially Available Packages

The search was revived in June of 1999 when Academic
Technology created the PC Support Services division, promoted
Betsy Black to manager, and hired John Saul as Software Support
Specialist. Saul was charged with reviewing the various
commercially available packages and contacting vendors to
determine what features each offered. Saul was also asked to help
identify features that would be required for the new system,
including inventory tracking, trouble ticket tracking, and a
discussion area for full-time staff and ATOPS.

Saul reduced the list to three commercially available products:
HEAT# by the Goldmine Corporation, Remedy# by the Remedy
Corporation, and HelpSTAR# by HelpSTAR.com. Each product
offered at least three-quarters of the feature set we required,
including incident tracking, asset management, and affordablility.

Demo models of each package were acquired and tested by
members of both the full-time and student staff of the Computer
Aide Station. Recommendations were compiled and a finalist was
selected. The process to obtain specific pricing and resource
requirements for the package was then begun.

Unfortunately, the final cost to the department was found to be
beyond our means. Efforts were made to manage the cost, since the
need for an incident tracking package was quickly becoming more
pronounced, but the licensing, hardware requirements, and
maintenance/upgrade costs were ballooning far outside of our
budget.
2.2 Developing Our Own

Since we had already identified the components necessary for
the ideal program, Aide Station student managers Erik Larsson
(CLA '02) and Jessica Sockel (CLA '00) proposed writing our own
web-based tracking system after discovering Phorum, a web-based
discussion software written in PHP$. Unlike most popular web
boards, Phorum utilizes a database to manage its messages. This
allows easy administration, functionality and customization. The
most attractive feature was its price: Phorum is an open-source
program necessitating only agreement to their licensing
requirements.

Phorum uses either MySQL or PostGRESQL to store the
message information. A copy of MySQL was already installed and
working on one of the systems in the department, so MySQL was the
easiest database engine to use for development.

3. DESIGNING THE SYSTEM
3.1 Required Feature Set

For the helpdesk software to be useful, the desired features
should be clearly defined before any designing begins. We defined
three major features necessary for our software: the ability to track

intaken computers via tickets along with their components (network
card and dongle, external floppy drive, etc.); record any actions
taken to solve problems; and keep track of where in the repair
process the computer is. All tickets needed to be tracked by the user
that initiated them so that recurring problems -- either software- or
user-related -- could be easily tracked.

Additionally, we decided that it would be useful for us to track
all problems attached to a specific computer model, regardless of
which user intiated the ticket. Since the method of upgrading
computers for faculty and staff works in a %roll-down& fashion,
one computer often has multiple owners over its lifetime at the
University. By %roll-down& we mean that the user getting a brand
new computer gives up their current machine, which gets reassigned
to a user with an older computer and so on down the line.

To track the assets effectively, we needed to store the customer
and departmental information for each asset. Any piece of
equipment could then be tracked based on the department to which it
belonged, and then anyone within that department could initiate a
ticket on any of those assets.
3.2 The Initial Stages and Unique Issues with
Development

Near the end of July, a new virtual host, helpdesk.drew.edu,
was christened on one of the department's Linux-based web servers.
 Work on the project progressed swiftly and was completed by the
end of August in time for ATOPS training. The software was
uniquely customized to the Drew environment in several respects.
3.2.1 Authentication and user administration.

Drew"s campus network is filled with disparate systems,
running various operating systems and supporting assorted campus
services. At the time of Helpdesk"s inception, campus network
users had to remember at least two passwords: A Novell NetWare
password, and a separate password for our UNIX-based e-mail
server. Some users, including ATOPS and Academic Technology
staff, also had separate passwords for other OpenVMS and UNIX
systems used for various purposes within the department. Rather
than require users to remember %Yet Another Password,& it was
imperative that the Helpdesk system authenticate with a user"s
Novell Directory Services (NDS) password. This goal was
accomplished using Novell"s Lightweight Directory Access
Protocol (LDAP) server for NDS with PHP"s integrated LDAP
support.

Authentication requests are made directly against Drew"s
NDS database, with no need for separate passwords or any password
synchronization. A further requirement was that passwords never be
transmitted over the network in plain text. Conversely, the web
server on which we were developing the software would have
sustained too much of a performance hit if all transactions with
Helpdesk were conducted over an encrypted Secure Socket Layer
(SSL) connection. Our solution was to process logins through a web
form rather than using HTTP Basic Authentication and to then use
SSL only for that form.

Once a user"s password is verified with NDS, a randomly
generated session key is created and returned to the browser as a
cookie while also being stored in a session control table in the
MySQL database. Further requests to the Helpdesk system involve
only checking the session key, thereby avoiding additional NDS
queries. Session keys are destroyed either by the user explicitly
clicking a logout button, or after one hour of inactivity. Subsequent
visits to Helpdesk will prompt for re-authentication, and a new
session key will be assigned.

A further requirement of the system was that it support varying
levels of privilege for different users, such as administrators,
ATOPS, and customers. This requirement was accomplished using a
very simple model of explicitly assigned user privileges. The
Helpdesk database includes a user table, which simply lists the
privileges that are assigned to the user. Privileges are checked by
the modules that require them, and a web-based administrative
interface is provided for creating and deleting users and assigning
privileges. The assignable privileges are:

'(login - is used for all full-time and student staff who log into
the Helpdesk

'(tickets - allows a user to create, modify, and close a ticket
'(edit_closed_tickets - allows a user to re-open or otherwise

change the status on a closed ticket
'(inventory - allows a user to modify the equipment tables
'(admin - is used for administrators of the Helpdesk
3.2.2 Multiple user access to records.

Any number of users may be logged in and actively using the
Helpdesk system during the day. Occasionally, although
infrequently, it is possible that two or more users may open the same
record for editing simultaneously. In order to avoid having users
overwrite each other"s changes, some form of a record locking
system was required. Using a traditional record-locking approach
would not work adequately in a web-based environment. Due to the
stateless nature of the web, there is no way for the web server to
%know& when a connection has been terminated. Users may
freely browse to other web sites, their computer may crash, or they
may simply close their browser without saving changes to an open
record. If we had used traditional record locking technique with an
arbitrary time limit, users could lose their lock if taking too long to
edit a record, whereas others would be locked out of a record after a
computer crash while a customer waited on the phone. Traditional
record locking is also impractical in our situation because users will
often want to leave a record open during the entire time they are
working on a computer, yet will require near immediate release of a
lock in the event of a crash.

Our solution, which we termed %record overwrite
protection,& was to store the state of a record when a user enters a
form and compare that state of information with the current state of
the record in the database before allowing changes to be committed.
 That is, if another user commits changes to a record while you are
working on it, your changes will be disallowed. In this situation,
users are presented with an error explaining what happened and are
given the opportunity to manually merge their modifications with the
current record.
3.3 Secondary Development Issues
3.3.1 Pre-populating fields in tickets

When editing a record, there are numerous status/checkbox
fields that need to reflect the current state of the record. Normal
static web forms would not have allowed us to maintain and display
the dynamic nature our component data, since they only allow one
state at any one time. The default state would have to be blank in all
checkboxes to avoid the appearance that we lost a component.

Another suggestion was to disallow any changes to the
components field of the initial form. This method was unfeasible ,
because there are times when additional components need to be

brought to the Aide Station for testing. The ticket should reflect
these additional components.

Fortunately, PHP has a way of allowing users to dynamically
change the HTML code of a web page dependent upon the
information that the script receives from the previous page. Using
this option, we managed to have a form that automatically makes
sure all checkboxes for components belonging to a ticket are
checked. The status flag would be set to the correct value when an
existing ticket was opened for editing.

This same feature allowed us to have the %steps taken& and
%internal comments& fields available for editing by anyone
working on the ticket. Since we were planning on allowing
customer access to view the %steps taken& portion of the ticket, we
needed to make sure that all comments made were professional in
nature.
3.3.2 Customer access and notification

To minimize phone inquiries to the Aide Station desk, we
decided to automate a system to keep our customers informed of
every stage of their computer"s repair. Using PHP scripts, the
Helpdesk will email the customer each time the status of their ticket
changes. The email includes all the comments in the %Steps
Taken& field of the ticket as well as the current status; i.e., sent to
manufacturer, waiting for parts, pending, etc.

Using their NDS username and password, customers can log
into a Helpdesk customer access page and view all tickets, active and
closed, that were opened under their username. The query returns a
screen listing all departmental computers as well as a summary of
every ticket that has been opened under that username.
3.3.3 Ticket receipts

In order to protect ourselves from erroneous claims of lost
equipment, customers must sign a form indicating which
components of their computer are dropped off when their computer
is intaken by the Aide Station. When they pick up the machine, they
sign another form acknowledging that repairs are completed and all
components are being returned. These forms contain all of the
relevant information from the ticket.

The Helpdesk needed a way to print these receipts. Since the
software is a web application, one possibility was simply to spawn
another browser window displaying a %printer friendly& version of
a ticket (without a header, navigation bars, etc.). The Helpdesk
operator would then print the ticket on the Aide Station"s
networked laser printer by using the browser"s print function.
Unfortunately, this would not have been adequate for several
reasons: it takes time to open another browser window and print the
document on a networked laser printer; the laser printer may be busy
with other print jobs at the time, slowing the intake process; and we
wanted to give the customer a receipt for the work performed.

The solution we chose was a combination of time-tested
traditional technologies. Two 24-pin impact dot-matrix printers (one
for the Aide Station, another for Computer Repair) were retrieved
from storage and outfitted with carbonless forms. To interface these
with the Helpdesk system, we used Lantronix Multiprotocol Print
Servers. We acquired two Lantronix boxes and configured them to
only support UNIX LPR services. When ATOPS open or close a
ticket in Helpdesk, there is an option at the bottom of the form to
select a printer for the receipt. The web server then invokes a Perl
script which formats the data and passes it to the UNIX LPR system
for printing.

3.3.4 Automating customer backups
Another function that was becoming unwieldy with the

increased number of tickets at the Aide Station was the management
of customer file backups. If reinstalls or hardware repairs were
performed on computers, the Aide Station had traditionally backed
up customer documents in limited quantities to the Aide Station"s
departmental space on one of our NetWare file servers. With the
increase in tickets, this system was becoming a managerial
nightmare. People would forget to delete backups, causing the
volume to fill up. Occasionally, current customer backups would be
mistakenly deleted. The solution was to have the Helpdesk software
manage the creation and deletion of directories automatically.

Drew has been doing Linux/NetWare integration for years, so
the solution came naturally. A special account was created in NDS
that was allowed to login only from the Helpdesk server and given
full file rights to the customer backup directory. We used freeware
ncpfs utilities to mount the NetWare volume to the helpdesk server,
and then scripts within Helpdesk automatically create customer
backup directories by ticket number whenever a computer is intaken.
 When an Aide Station operator attempts to close a ticket, the
software first checks for the presence of backup files. If backup files
exist, the operator is required to click through a warning dialog
indicating that the files will be expunged. A nightly chron job on
the helpdesk server then expunges customer backup directories for
tickets that have been closed for more than five days.

4. EXAMPLE OF COMPUTER TRACKING
FLOW
4.1 Creating a New Ticket

When a ticket is first opened, the operator is asked to enter
either the ID number, username, or extension of the customer
reporting the problem. This generates a form that includes all the
information on that user and any assets owned by them or by their
department. A drop-down list allows the operator to choose an
asset associated with the user. At this point, all components being
intaken with the computer should be selected.

If the asset being intaken is not one of the assets listed in the
drop-down menu, there is an option of %Other, Please Describe in
Problem Area&. If this option is selected, the operator must list the
type of computer and the serial number first in the problem
description window, and then proceed to list the reported problem.

The last step is for the ATOPS to determine what type of
problem is being reported. If it is an obvious hardware problem it
can be intaken as such, but if the cause of the malfunction is in
doubt, it should be intaken as a software problem and have
diagnostics run on the system
4.2 Editing Existing Tickets

After being opened, a ticket may be worked on by any number
of operators or full-time staff. Each time the ticket is accessed, it
automatically date stamps the %Steps Taken& and %Internal
Comments& fields and adds the username of whomever is logged
in to that session. These changes are not saved unless the ATOPS
clicks the %Update this ticket& button.

There are seven status flags that can be associated with a ticket.
 They are:

'(Open - Still in diagnostics, also used for known software
problems.

'(Hardware - It has been diagnosed with a hardware problem; the
Hardware Support Specialist will further test the hardware
before deciding it needs to go to the manufacturer for warranty
repair.

'(Sent Out - The machine has been sent back to the manufacturer
for repair.

'(Parts - Parts are on order for this machine.
'(Pending - Waiting for contact from the customer. A comment

should be added indicating what we need from the customer.
'(Waiting - The computer is fixed and is waiting for the customer

to pick it up.
'(Closed - The machine has been picked up by the customer, who

signed the receipt acknowledging that all components were
returned.

5. IMPLEMENTATION ISSUES
5.1 Populating the Database

Once the system was tested and proven to be working according
to the necessary specifications, we still needed to populate the
database with the asset information for students, faculty, and staff.
The incoming freshman data posed a problem as their machines
would not be assigned to them until they were physically on campus.
 We were unable to access live data from our Administrative
Computing department, which maintains a strict firewall and secure
access to university data. Since our database structure does not
match theirs anyway, they sent us raw data and we used Perl scripts
to reformat the initial data feed that was supplied to us.
5.2 Interface Design and Testing

No matter how well-written a program is, it will not be used if
the interface is not clean and easy to use. After loading the
appropriate data into the system, there was an obvious need to clean
and organize the user interface. We assigned one of our student
managers to this task. She worked with the PHP and Perl scripts
using her advanced skill in writing clean, readable HTML code and
logical form design. The work she provided allowed the Helpdesk
functions to be intuitive and easy to use. One of the more popular
features in the Helpdesk interface is the ability to customize each
user"s browser colors, name, and signature line in the Phorum
conferencing area.
5.3 Training

In addition to basic training on how to use the new Helpdesk
software, this represented the first time we offered customer access
to our diagnostic and repair process. We had to ensure all comments
in %steps taken& were of an appropriate nature. It had become
common-place for ATOPS to vent frustration about
customers/problems when we were using the internal DEC/NOTES
system. The new system required a shift in behavior to a more
professional support model. We realized that there are times when
comments on a customer"s disposition or tolerance level are
appropriate and decided to make use of the %internal comments&
section of each ticket for this purpose. The students appreciated the
ability to post comments internally that wouldn"t be available to
customers.

6. CONCLUSION

 We have been using the Helpdesk software successfully for
almost a year, intaking more than 800 computers, monitors, printers,
network interface cards, and various other peripherals. We have
identified specific problem trends with certain models, reduced the
amount of misplaced equipment, and improved turnaround time. We
plan to update the software over the summer of 2000 to include a
loaner pool module where we can assign loaner computers to
customers whose computers are at the manufacturer for an
abnormally long time. We also plan to create printing and scanning
services tickets to track other services performed by the Aide Station
and more closely track individual assets and inventory as part of a
package.
 The new version will also phase out our reliance on
Administrative Computing for data by moving the asset information
into our own inventory control database, ensuring up-to-date and
accurate data .

7. REFERENCES

[1] Yarger, Randy Jay, Reese, George, and King, Tim, MySQL &
mSQL, O’Reilly & Associates, Sebastopol, CA (July 1999).

[2] Atkinson, Leon, Core PHP Programming, Prentice Hall. (May
1999).

[3] http://www.phorum.org

[4] http://www.php.net

[5] MySQL Reference Manual for version 3.23.21-beta, (1999)
http://www.mysql.org/Manual/manual_toc.html

