A SPATIAL DISSECTION OF THE ARABIDOPSIS FLORAL TRANSCRIPTOME BY MPSS

*

A THESIS PRESENTED TO THE FACULTY OF THE UNIVERSITY OF DELAWARE

*

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF HONORS BACHELOR OF SCIENCE: PLANT SCIENCE WITH DISTINCTION

*

BY JASON A. PEIFFER

SPRING 2007

Copyright 2007 Jason Peiffer All Rights Reserved

A SPATIAL DISSECTION OF THE ARABIDOPSIS FLORAL TRANSCRIPTOME BY MPSS

*

By Jason A. Peiffer

*

Approved:_

Blake C. Meyers, Ph.D. Professor Directing Thesis on Behalf of Advisory Committee

Approved:

Harsh P. Bais, Ph.D. Committee Member from the Department of Plant and Soil Sciences

Approved:

Judith Hough-Goldstein, Ph.D. Committee Member from the Department of Entomology and Wildlife Ecology

Approved:

John A. Courtright, Ph.D. Director, University Honors Program "From our acquaintance with this abnormal metamorphosis, we are enabled to unveil the secrets that normal metamorphosis conceals from us, and to see distinctly what, from the regular course of development, we can only infer. And it is by this procedure that we hope to achieve most surely the end which we have in view."

> ~ Johann Wolfgang Goethe Die Metamorphose Der Pflanzen (1789)

Acknowledgements

I would like to express gratitude for the guidance and encouragement of Dr. Blake Meyers throughout the experiment as well as the support and biological validation provided by Dr. Shail Kaushik at the Delaware Biotechnology Institute and the plant materials and invaluable support provided by Dr. Hajime Sakai of Dupont Crop Genetics. The assistance of Dr. Jean-Phillipe Vielle-Calzada and his lab at the CINVESTAV campus of Guanajuato, Irrapuato, Mexico was also a precious asset to the validation of the analysis. The bioinformatics assistance and advice of Dr. Kan Nobuta as well as support and advice from additional members of the labs of Dr. Blake Meyers and Dr. Pam Green labs at the Delaware Biotechnology Institute were greatly appreciated. Funding for the research has been provided by the National Science Foundation as well as the United States Department of Agriculture.

Dedication

This thesis is dedicated to Bill Serfass, whom helped further my interests in plant science through my employment at "PrydenJoy" Orchard and ultimately led me to focus on the discipline as a career. In addition, I would like to dedicate this thesis to Dr. Blake Meyers, a professor who has continued to bolster my interests and selfconfidence in plant biotechnology by providing me with the opportunities and guidance necessary to prepare for doctoral study.

TABLE OF CONTENTS

LIST OF FIGURES LIST OF TABLES ABSTRACT	.6 .7 .8
Chapter 1. BACKGROUND	. 11 . 13 . 16 . 16 . 19 . 15 . 16
 MATERIALS AND METHODS 2.1 Plant Materials, Tissue Collection, Nucleic Acid Isolation 2.2 Signature Sequencing and Genomic Correspondence 2.3 MPSS Library Filtration, Cross-Analysis, and Sorting 2.4 <i>In situ</i> Hybridization 2.5 Promoter: GUS Fusion and Histochemical Assay 2.6 RT-PCR 	.18 .19 .20 .21 .22 .22
 RESULTS	.23 .23 .28 .34 .34 .38 .41 .45
 4. DISCUSSION	.47 .48 .51 .53 .53 .55 .55 .57 .59
5. CONCLUSION	.61

REFERENCES	63
APPENDIX Accessions with Organ-Specific Expression	67

LIST OF FIGURES

1.1 Arabidopsis Floral Anatomy	10
1.2.1 ABC Model and Homeotic Mutants	12
1.2.1 Revised ABC Model	13
1.2.2 Putative Protein Interactions of the Quaternary Model	14
3.1 Organ Occurrence Profiles	16
3.1 Transcriptome Diversity Across Homeotic Mutants	28
3.2Putative Organ-Specific Transcripts	33
3.3.2 In situ hybridization	39
3.3.3 GUS Histochemical Assay	43
3.3.3 Ovule-Localized Gus Assay	44
3.3.4 RT-PCR Analysis of ovule specificity	45

LIST OF TABLES

3.1 MPSS Detected Gene Expression Across Floral Mutants	27
3.1 Correlation Across Homeotic Mutants	28
3.2Putative Stamen-Specific Transcripts	35
AP Sepal-Perianth Localized Accessions	67
AP Non-Ovule Gynoecia-specific Expression Accessions	68
AP Ovule inclusive Gynoecia specificity Accessions	69
AP Stamen Specific Expression Accessions	70
AP Stamen-Petal Localized Expression Accessions	73
AP Stamen-Gynoecia Localized Expression Accessions	74

Abstract

We have further elucidated the transcriptional complexities of floral organogenesis and organ-localized expression in the inflorescence of *Arabidopsis thaliana* by comparative analysis of massively parallel signature sequencing (MPSS) data. Six libraries of sequence tags corresponding to mRNA extracted from immature inflorescence tissues were constructed and matched to their respective loci in the annotated *Arabidopsis* genome. These signature libraries survey the floral transcriptome of wild type tissue as well as that of the floral homeotic mutants *apetala-1-10, apetala-3-6, agamous, superman/apetala 1-10* and ovules dissected from the gynoecia of wild type inflorescences. With the aid of a binary system, comparative *in silico* analysis of these expression libraries permitted a genome-wide dissection of organ-specific expression as measured by MPSS. Transcripts expressed specifically in the petals, stamen, stigma/style, gynoecium, and those putatively specific to the sepal/perianth, petal/stamen, or gynoecium/stamen were identified and quantified.

Implementing a binary system of determinants across the MPSS floral expression libraries, a total of 2,537 genes were categorized within spatial subgroups of the inflorescence. The quantitative nature of MPSS technology permitted these genes to be sorted by their expression level relative to a baseline of expression undetected by the technology. This sorting based on expression level enabled a relative ranking of confidence in the computational assessment. The bulk of characterized organ-specific transcript diversity was

noted in the gynoecium and stamen, whereas fewer genes possessed perianth localized expression. This exemplifies the molecular intricacies and organ specificity associated with reproductive organ development as opposed to vegetative floral tissue. Validation of the computational analysis across MPSS floral libraries was performed by comparison of previous expression data, *in situ* hybridization, promoter-reporter fusions, and RT-PCR.

This extensive analysis has illustrated the accuracy of MPSS at assigning spatial floral gene expression. A number of well-characterized genes with known expression patterns were accurately demarcated within our system of transcript filtration. Moreover, biological validations of these *in silico* predictions are in accordance with MPSS predictions for numerous genes with previously uncharacterized expression patterns. This bolsters support for the application of MPSS expression library analysis, LIBAN, toward preliminary genome-wide functional analysis; and will be advantageous in the elucidation of more comprehensive genetic regulatory networks which govern floral development.

Chapter 1

BACKGROUND

1.1 Floral Anatomy and Homeotic Morphology

The central role held by flowers in plant reproduction, as well as their economic significance in agriculture and horticulture has led to intensive study of floral development. Like many other angiosperms, the floral architecture of *Arabidopsis* consists of four organs. Each of these organs is confined to one of the four concentric whorls which compose the flower. In *Arabidopsis*, the outermost whorl consists of four sepals which define the calyx. In conjunction with these sepals, the four petals of the corolla constitute the vegetative perianth. Housed inward of the perianth, are the reproductive whorls of the stamen-bearing androecium and central gynoecium. The gynoecium of the fourth whorl is a compound pistil composed of two fused carpel which may be further dissected into the stigma, style and ovary. Despite much previous characterization, further investigation into the molecular causality for such anatomical complexity remains a fundamental goal of plant biology.

Presently, the majority of genes implicated in floral development have been identified through characterization of mutants displaying severe phenotypic deviations from wild type development. An interesting subset of these mutants is the homeotic floral phenotypes. In these mutants, the

organs of a single whorl of the inflorescence are duplicated within another distinct whorl at the expense of the organs typically present. Many of these

phenotypes were first reported by Johann Wolfgang von Goethe in "The Metamorphosis of Plants" in 1789 [3]. However, the molecular basis of Goethe's prescience was not elucidated until 1991 with the formulation of the "ABC model" of floral development for *Arabidopsis* and *Antirrhinium* [4, 5].

1.2 Molecular Causality of Morphological Prescience

1.2.1 ABC Model of Genetic Association

Based on the cloning of homeotic mutants, the ABC model identifies three genetic interactions among MADS-box transcription factors which govern organ patterning within the inflorescence. In *Arabidopsis*, the A function responsible for sepal and petal development was found to necessitate the presence of *APETALA 1* within the first and second whorls. A loss of *apetala 1* function, results in a loss of whorl identity, and induces the formation of apetalous secondary inflorescences (Figure 2B) [6]. Epistatic to the A function genes, the C function gene *AGAMOUS* directs the establishment of the carpel within the central whorl. Absence of C function genes results in a complete loss of reproductive organs. The stamens are homeotically replaced by petals, and carpels by sepals (Figure 2D). As in the case of *apetala1, agamous* results in a loss of whorl determinacy, resulting in an

alternating pattern of sepals and petals [7]. The B function gene, *APETALA 3*, regulates proper development of the petal and androecium in the second and third whorls respectively. The absence of *APETALA 3* results in the replacement of petal and stamen with sepal and carpelloid organs (Figure 2C).

Nonetheless, for proper development, B function genes cannot determine petal formation without the A function genes [4]. Similarly, proper development of the androecium cannot occur without the C function *AGAMOUS* [7].

Figure 2. ABC Model and Homeotic Floral Mutants

Idealized illustration of ABC models for each homeotic floral mutant employed within the study. **ap1* and *ap1/superman* do not follow the parameters of the model precisely, secondary apetalous inflorescence develop in the first two whorls. *superman* is not a homeotic mutation; however the third whorl expands at the expense of the fourth. Photographs obtained from *Plant Cell Vol. 16, 1314-1326, May 2004.*

More recently, the ABC model has been expanded to include the D function genes *SHATTERPROOF 1, 2,* and *SEEDSTICK*. These genes are expressed within the ovules, and induce proper formation of ovule tissue in the presence of *AG*. This reveals the ovule as a homeotically replaceable organ despite its presence within the gynoecia. Mutations within *Shatterproof 1,2* and *SEEDSTICK* result in the homeotic conversion of ovules to carpelloid

tissue [8]. SEPALATA 1,2,3,4 genes have been referred to as E function genes and were found to act in conjunction with A-D function genes to further govern the development of petals, stamen, and gynoecia [9].

1.2.2 Transcription Factors and Quartet Complexes

Analysis of the genetic associations within the classical ABC model has led to the "quartet model" of protein interaction [2]. In this model, MADS-box proteins interact to form five distinct whorl-specific tetrameric complexes capable of binding DNA and activating downstream genes responsible for organ development through *cis*-regulation at dual C-ArG boxes [2]. *In vitro* analysis has revealed heterodimeric interactions among B and C functions gene products, as well as A and E function proteins [10]. *In vivo* interactions of homologous petunia MADS-box proteins FBP2, FBP11, and FBP24 involved in a putative ovule-defining quaternary complex were also observed [11].

Figure 4. Putative Protein Interactions of the Quaternary Model

Despite structural support for the quartet model of protein interaction and its role in floral organ specification, many regulatory aspects of this model have yet to be identified. A number of genes activated by hormonal and abiotic factors have been determined to regulate meristem-identity genes earlier in the developmental pathway. However, few meristem-identity genes have been linked to the regulation of the organ identity genes encoding these quaternary complexes. Similarly, few downstream organ-specific genes directly activated by these complexes have been identified [12]. Moreover, genes characterized as downstream targets of the homeotic mutant gene products such as *FRUITFUL, SPOROCYTELESS/NOZZLE* and *NO APICAL MERISTEM* do not obey the single whorl premise of the quartet model. [13] [14] [15]. Characterization of organ-specific genes downstream of the putative quaternary complexes is necessary to validate the functionality of the complex and characterize the nature of its targets.

1.3 Gene Expression Profiling Technologies and Previous Analyses

Genomic approaches have become an invaluable tool in elucidating the genetic networks of floral development at a global level. Genome-wide spatial analyses of transcript enrichment among Arabidopsis organs has been performed with the aid of hybridization based approaches such as cDNA and oligonucleotide microarrays [16-26] and represent a strong first step in spatial characterization of the floral transcriptome. However, microarray analyses and other hybridization-based approaches are subject to a number of innate limitations, including sensitivity to RNA quantity, non-specific probe hybridization, and substantial background levels capable of masking transcripts with low expression rates [27]. Furthermore, quantitative analysis across multiple microarrays requires standardization and calibration of chips to ensure equivalent hybridization patterns. Previous microarray analysis of organ-specific genes have revealed an enrichment of MADS box family and NAC-like proteins. This warranted further analysis of MADS box and putative AGAMOUS binding motifs. However, no significant enrichment of binding sites for these factors was noted within the putative promoter regions of the previous organ-specific datasets. In addition, it was noted that some overexpressed binding motifs existed; however, these were insignificant [16]. This suggests floral organogenesis is not regulated by a select few *cis*-factors, and instead relies on a number of transcription factors and molecular interactions to orchestrate development and govern the expression of structural genes responsible for organ maturity and maintenance after organ initiation as determined by the quaternary complexes. Additional levels of

regulation have been identified through the characterization of microRNA such as the repression of *Apetala2* by miR172 [28]. MPSS analysis has predicted the expression of over 90 distinct miRNA regulating gene translation within the inflorescence of *Arabidopsis* [29].

1.4 Execution and Validation of Floral Organ-Specific Spatial Expression

In this study, we have implemented the sequence-based approach of massively parallel signature sequencing (MPSS) as an alternative means of spatially dissecting the entire floral transcriptome into those genes expressed specifically within the petal, stamen, gynoecium, stigma/style, and those localized in the sepal/perianth, petal/stamen, or stamen/gynoecium. Using the web-based MPSS expression library analysis interface LIBAN (http://mpss.udel.edu/at/) [30], wildtype inflorescences, homeotic mutants (*apetala 1-10, apetala 3-6, agamous*), as well as the double mutant *superman*/

Figure 5. Organ Occurrence Profiles (OOPs) of MPSS Expression Libraries

	M ib	PS rar	S ies	5	Putative Organ(s) of		
wt	ap1	ap3	ag	sup/ap1	Expression		
1	0	0	1	0	Petal		
1	1	0	0	1	Stamen		
1	1	1	0	0	Carpel		
1	1	1	0	1	Stamen/Carpel		
1	1	0	1	1	Petal/Stamen		
1	0	1	1	0	Sepal/Petal, Sepal		
1	1	1	1	0	Sepal/Carpel, Sepal/Petal/Carpel, Petal/Carpel		
1	1	1	1	1	Sepal/Stamen, Petal/Stamen/Carpel, Sepal/Stamen/Carpel, Sepal/Petal/Stamen, All floral organs		

apetala1-10 and dissected ovules were cross-analyzed for the respective presence/enrichment, or absence/ diminishment of specific floral organs within their inflorescence to develop an organ occurrence profile (OOP) for each organ or group of organs under observation (Figure 5).

Gene expression profiles of these inflorescences were then obtained through MPSS and matched to their respective OOP to demarcate genes with putative organ-specific expression. Root and leaf MPSS expression libraries were also compared to reveal plant-wide specificity. Unlike hybridizationbased expression analysis, MPSS relies on the synchronous sequencing of 17bp cDNA fragments and is less constrained by initial RNA quantity thus enabling a lower background level when compared to hybridization based technologies. This permits detection of transcripts with lower expression levels, such as transcription factors [31]. Analysis has revealed a greater number of transcripts are present within the reproductive organs than the vegetative perianth. More specifically, a greater diversity of organ-specific expression was noted in the gynoecium than the androecium. In addition, MPSS determined transcript diversity within the gynoecium was irrespective of the transcripts presence within the ovule.

In situ hybridization, promoter: GUS fusions and RT-PCR have been implemented and further indicate the accuracy of MPSS at assessing spatial expression within the inflorescence. The results of this study and previous microarray analyses represent a significant step toward further detailing the pathways of floral development. In addition, they provide a resource for floral organ-specific reporters, which may be integrated into techniques such as fluorescence-activated cell sorting [32] to enable more detailed profiling of gene expression in future floral studies .

Chapter 2

MATERIALS AND METHODS

2.1 Plant Materials, Tissue Collection, and Nucleic Acid Isolation

All plant materials procured for MPSS analysis as well as that obtained for RT-PCR were from *Arabidopsis thaliana* ecotype *Columbia-0.* Floral inflorescences were harvested from plants grown in pro-mix soil in a growth chamber with 16h of light for 5 weeks at 22°C with 60% humidity. These floral tissues included inflorescence meristems as well as floral buds corresponding to the first 13 stages of development [33]. Leaf and root tissues were obtained from the same plants grown in 16h of light for 21d under sterile conditions in vermiculite and perlite. Ovules were dissected using microaspiration as previously described (CITATION). Stigma and petal tissue utilized in RT-PCR analysis were hand-dissected from *agamous* inflorescences. All tissue samples were harvested less than 2h after dark and frozen at -80°C prior to nucleic acid extractions. *A. thaliana* ecotype *Columbia-0* plants utilized for transformation of promoter: GUS fusion plasmids were grown in 16h of light for 5 weeks under the same conditions prior to floral inoculation with *Agrobacterium tumefacierens*.

Floral tissues utilized within the *in situ* hybridization validation were derived from *Arabidopsis thaliana* of the *Landsberg Erecta* ecotype. This was primarily due to the increased size of floral inflorescences as compared to the *Columbia-0* relative. Plants were grown in a growth chamber with light, temperature and humidity conditions similar to those implemented to grow the plants for the creation of the aforementioned MPSS expression libraries.

RNA used to create the cDNA implemented in massively parallel signature sequencing, *in situ* hybridization, and RT-PCR validation was isolated using TRIzol (Invitrogen) reagent as per instructed within the manufacturer's protocol. Genomic DNA isolated for the amplification of promoter sequences within the promoter: GUS biological validation was obtained using the DNeasy Minispin Column Extraction Kit (Qiagen) as per the manufacturer's protocol.

2.2 Signature Sequencing and Genomic Correspondence

MPSS was performed as previously described [31, 34]. Signatures for each floral library were produced in multiple sequencing runs and in two distinct types of sequencing reactions[31, 35]; these sequencing runs and reactions were joined to compute a single normalized abundance for each signature observed in each of the floral, root, and leaf MPSS libraries[35]. All raw and normalized signature data have been made available at http://mpss.udel.edu/at. These signatures were matched to their respective loci within the *A. thaliana* genomic sequence. Briefly, potential MPSS signatures were computationally derived from all possible *DpnII* restriction site (GATC) and 13 adjacent bases within the genome. Potential MPSS signatures located on the sense-strand corresponding to an exon, intron, exon-intron splice boundary, or present within 500bp of the 3' end of an annotated ORF were fitted with the empirically derived MPSS sequences

within each of the floral, leaf, and root sequencing reactions to delineate the expression level of the respective gene or pseudogene.

2.3 MPSS Library Filtration, Cross-Analysis, and Sorting

All MPSS libraries implemented within this study were filtered with a "reliability" filter in order to remove potentially erroneous signatures and distinguish a subset of valid expression levels. This filter eliminates all signatures identified within only a single sequencing run across all current expression libraries. Each tissue utilized within MPSS library corresponds to a minimum of four distinct sequencing runs. Therefore, signatures not identified within any other runs are likely resultant from random MPSS sequencing errors, which have been estimated to occur at a rate of ~ 0.25% per base [35].

Once reliable MPSS expression data was accrued, libraries corresponding to floral tissue were evaluated on the premise of organ presence "1" or absence "0" to demarcate an organ occurrence profile (OOP) among the homeotic floral mutants (refer to fig. 4). By maintaining the order of the four homeotic mutants under study the OOP acts as a bar code to identify organ-specific expression. In order to isolate the subset of genes expressed specifically within a given organ, the normalized signature data corresponding to each gene's expression was matched to each OOP through the use of our publicly available library analysis (LIBAN) interface. The expression of floral organ specific genes within a mutant lacking that specific floral organ(s) logically possesses a normalized transcription level of 0 transcripts per million assayed (TPM). In contrast, those homeotic mutants

that possess the specific floral organ consequently express the transcript at a normalized rate of 1 or greater TPM.

Once a subset of genes bearing organ(s) specific expression was identified they were further sorted by their level of expression within the mutants which most overexpresses the specific organ. Although biasing data for genes of higher expression, this permitted the establishment of a relative degree of confidence in the MPSS prediction of organ-specific expression. For example, putative stamen-specific transcripts were sorted first based on their level of expression within the *superman/ap1* mutant, then by their level of expression within *ap1* (which also overexpresses stamen) and finally by wild type expression level. In addition a "significance" filter may be applied on our online user interface LIBAN to negate those transcripts expressed at less than 4 TPM.

In order to identify the genome-wide correlation of expression across the floral tissues assayed within this study, the Pearson product-moment correlation coefficients were determined. MPSS expression data accrued for each mutant and wild type tissue were plotted in a multivariate correlation plot. In order to demarcate differences in the expression of organ-specific genes in mutant and wildtype MPSS libraries a best linear was identified for each organ-specific subset in a bivariate comparison. The slope of this line was indicative of the relative ratio of expression within the organ-specific genes of both floral tissues.

2.5 GUS: Promoter Fusion and Histochemical Assay

A ~1.5kb promoter fragment upstream of each respective start codon was amplified from genomic DNA of A. thaliana- Col-0. Gateway Cloning Technology (Invitrogen) was implemented to insert the amplicon into pDONR221, and ultimately into the binary expression vector pK2GWFS7 wherein the promoter was used to drive the expression of the reporter gene Beta-Glucuronidase. Binary vectors were transformed into Agrobacterium tumefacieriens strain gc101. A previously described spray method [36] was utilized to develop transgenic Arabidopsis thaliana. First generation transformed plants were subjected to histochemical analysis for GUS activity. Transgenic and wild type floral tissues were infiltrated using two vacuum pulses at 7 min each in GUS assay buffer (H₂0, 0.1M NaH₂PO₄, 10mM Na₂EDTA, 0.5M K₃Fe(CN)₆, 0.1% Triton X-100 and 0.3% 5-bromo-4chloro-3indoly₁ b-D-glucuronide (X-Gluc) and incubated at 37°C for 12 h. Chlorophyll de-staining was performed with consecutive ethanol washes at 22°C. GUS staining regions were identified and fixed. Photographs were captured using an AxioVision digital camera (Zeiss) and compiled with the GNU Image

Chapter 3

RESULTS

3.1 Elucidation of Expression Data in the Floral Transcriptome

Massively parallel signature sequencing has proven to be a capable technology in the realm of transcriptomics and presents an alternative to overcome a number of innate limitations associated with microarrays and other conventional methods of wide scale gene expression analysis [27, 35]. Briefly, MPSS entails the parallel selective coupling of cDNA restriction fragment amplicons to over a million beads. These beads are then arrayed in a flow cell. With the aid of digestion-hybridization based sequencing, it is possible to identify "signature" tags of 17 to 20 nucleotides in length from each bead. It is then possible to align these tags to their respective loci within the genome, which in most instances results in a single match [37] and in others allows identification of previously uncharacterized transcribed regions of the genome (in progress). The length of MPSS signatures permit highly specific quantification of transcription, with a background level set to remove only those transcripts found in a single sequencing run across all libraries. Having likely developed from sequencing errors, these signatures are unreliable; however, this minute background level is superior to the level of transcript detection permitted by other technologies [27]. Also, the linear normalized

nature of MPSS data acquisition eliminates the necessity of signal standardization between those cDNA libraries under study.

We have excised inflorescence meristems representative of the first 13 stages of development [33]. RNA was extracted from the wild type as well as four floral homeotic mutants agamous, apetala 1-10, apetala 3-6, the double mutant superman/apetala 1-10, and vacuum-aspirator dissected ovules of Arabidopsis thaliana all in a Col-0 ecotype. Individual MPSS libraries were constructed for all samples and sequenced at Lynx Therapeutics, Inc. (Hayward, CA). We matched resulting signatures to their corresponding sequence in the genome as annotated by TAIR Version 6 and have developed the data into a publicly available web interface (http://mpss.udel.edu/at/) [38]. Analysis of signature locality and the annotated genome enabled the quantification of floral gene expression from individual signatures. In our analysis, MPSS analysis of wild type inflorescence samples identified signature tags representing the expression of a total of 15,769 genes at the instant of RNA extraction. Subtractive analysis of previously determined Arabidopsis root, and leaf derived MPSS expression libraries permitted the dissection of 1,763 distinct genes putatively expressed exclusively within wild type inflorescences during the first 13 stages of floral development [33] (see table 1). In accordance with the view of floral organs as modified leaves [39], the correlational coefficient of the wildtype inflorescence gene expression profiles was significantly higher for leaf (r =.73) than root tissue (r = .27).

Despite the diversity of organs present within the wild type flowers as compared to the floral homeotic mutants, the number of distinct transcripts detected within wild type tissue was not as great as that possessed by the A and B function mutants both of which are enriched for reproductive organs relative to the wild type. MPSS analysis of the A function mutant *apetala1-10* revealed a total of 16,463 actively expressed genes. Of these genes, 1,943 were determined to be specifically expressed within the inflorescence at the developmental stages under investigation. This represents the most diverse floral transcriptome surveyed by MPSS. Analysis of the *ap1* gene expression pattern with that of leaf and root expression patterns revealed an even greater similarity with leaf than wildtype inflorescences (r = .79) despite the increase in reproductive organs and loss of vegetative tissue. In addition greater similarity was noted between the root and *ap1* inflorescence than wildtype (r = .31).

The B function mutant *apetala* 3-6 was found to express a detectable total of 15,840 distinct genes with a total of 1,454 genes putatively expressed exclusively within the inflorescence. However, despite less diversity in expression when compared to the A function mutant; *ap3*, which overexpresses carpels and sepals, was found to have the greatest correlation with leaf tissue gene expression of any homeotic mutant under study (r = .88). The similarity between gene expression patterns within the root were found to be comparable to *ap1* (r = .30)

In contrast to the A and B function mutants, the C function mutant *agamous* lacks reproductive organs and was found to possess the least diverse whole-

inflorescence transcriptome. Furthermore, dissected ovule tissue revealed more transcriptional diversity than that noted within *agamous*. The expression of 13,644 genes was detected in *agamous*. After subtractive analysis of root and leaf MPSS expression libraries, only 966 genes were found expressed exclusively within the inflorescence of this mutant. Despite an increase in the amount of vegetative tissue at the expense of reproductive organs, *agamous* inflorescence were found to contain the least correlation in gene expression with leaf tissue (r = .66). Root tissue gene expression correlation with *ap2* was equivalent to the other homeotic mutants (r = .31).

Analysis of MPSS signatures corresponding to the double mutant *superman/apetala1* which possesses only stamen and highly reduced gynoecia, has revealed the expression of 14,078 genes. 1,425 genes were determined to be expressed specifically within the inflorescence during the analyzed developmental stages. Despite the lack of the vegetative sepals and petals, a higher correlation of gene expression with leaf tissue (r = .72) than that noted within the leaf and *agamous* correlation, root tissue was similar to other inflorescence transcriptomes under analysis (r = .26).

In addition to the whole-inflorescence MPSS libraries, the expression of 11,651 distinct genes was detected in dissected ovules. Of these transcripts, a total of 983 genes were not detected in leaf or root tissue. The correlational coefficient of gene expression in dissected ovule and leaf tissue (r = .23) was found to be lower than that of root tissue (r = .45). The transcripts detected within the dissected ovules were compared to the *ap1* and *ap3* inflorescences which are enriched for gynoecia. 92% (10,745 genes) and 91% (10,608

genes) of the ovule transcriptome diversity was captured within the *ap1* and *ap3* mutants, respectively. This is greater than the 90% (10,459 genes) captured within the wildtype inflorescence which contain only a single whorl of gynoecia.

	Number of	Genes with		Correlation	Correlation
Floral	Gene with	inflorescence	Average	of Gene	of Gene
Strain or	MPSS	specific	Expression	Expression	Expression
Tissue	Tissue detected Expression Level (TP		Level (TPM)	Profile with	Profile with
	Expression			Leaves	Roots
ap1	16,463	1,943	48.8	.79	.31
ар3	15,840	1,454	51.5	.88	.30
Wildtype	15,769	1,763	53.0	.73	.27
ap1/sup	14,078	1,425	53.4	.72	.26
ag	13,644	966	53.7	.66	.31
ovule	11,651	983	56.2	.23	.45

Table1. MPSS detected genes across homeotic mutants

TPM- Transcripts per million; Correlations are determined r - values in the Pearson Product-Momentum Correlation

Correspondence of floral phenotype and MPSS gene expression profile was distinguished by intersecting distinct transcripts detected among the floral homeotic mutants and wild type tissue (table 2). The *superman/ap1* mutant possesses the same mutation as *apetala1*, with the additional non-homeotic *superman* mutation. To determine the effect of the *superman* mutation on *apetala1* the transcriptomes of both *superman/ap1* and *apetala1* were compared and found to contain the second highest coefficient of correlation (r=.88). The mutant with gene expression patterns most closely resembling *apetala1* was found to be *apetala3* (r = .91). This correlation was the highest of any two floral inflorescences under analysis. The greatest number of conserved distinct transcripts between any two mutants was also found in these mutants (14,431 distinct transcripts). Both *ap1* and *ap3* express reproductive organs (albeit different reproductive organs) in multiple whorls and are devoid of petals. Homeotic mutants showing the least number of conserved distinct transcripts were among the stamen-enriched *sup/ap1* and vegetative *agamous* (11,778 distinct genes). However, the least correlation of gene expression was noted between *ap1* which is enriched for both gynoecia and stamen at the expense of the perianth, and *agamous* which possesses no reproductive organs (r = .75).

Figure 6 represent those transcripts shared across surveyed floral mutants revealing similarities in phenotype and gene expression profile. Table 2 reveals the r-value determined by the Pearson Product Momentum Correlation by comparing the expression levels across the homeotic mutants and wildtype tissue.

3.2 Mutant Profile Based Predictions of Organ Localized Expression

In an attempt to characterize the localization of those transcripts exclusively expressed within specific floral organs within the inflorescence a binary system was implemented. First, all possible patterns of organ expression within the four floral whorls were identified among the gynoecia, stamen, petal, and sepals. For example, the occurrence of exclusively gynoecia provides a potential expression pattern, as does the development of only stamen; however, categorizing the presence of both gynoecias and stamen or gynoecia-stamen-petal allows the formation of 16 patterns of possible organ expression. Next, the occurrence of a specific organ or group of organs within a single floral strain was characterized as a "1" if present and a "0" if absent. By maintaining the order of the floral mutants under observation, a four digit binary code was developed to represent the organ occurrence profile (OOP) among the four homeotic libraries under study (Figure 5). For instance, surveying the occurrence of stamen across all floral MPSS libraries would follow an OOP of "11001", wherein stamen are expressed in wildtype as well as the mutant ap1 (1), absent in both ap3 (0), and ag (0), and expressed in the whorls of sup/ap1(1). However, the ability to demarcate all 16 possible patterns of organ expression is limited by the types of homeotic mutant libraries employed within the study. Therefore, the presence of a specific organ or multiple organs can only be recognized if their respective OOPs are unique. For example, sepal specific transcripts cannot be isolated from sepal and petal specific transcripts; because they both brandish the same OOP, "10110". Consequently, with the MPSS libraries

currently available, the presence of organ(s) specific transcripts within the inflorescence may only be fully dissected on seven occasions: sepal-perianth, petal, stamen, petal-stamen, stamen-gynoecium and gynoecium both inclusive and exclusive of the ovule.

Although unable to detect sepal specific transcripts due to the nature of the ABC model and those homeotic mutant employed within this study, genes whose expression was localized in the perianth or strictly within the sepal were determined to have an OOP of "10110." Cross analysis of the mutant libraries revealed a total of 177 genes expressed within these criteria. A total of 79% (139 genes) were also found present in leaf and root libraries. Corresponding to the enrichment of floral organs within the homeotic mutants, an average expression fold increase in sepal and perianth localized genes was noted in ap3 (x1.3 fold) and agamous (x1.1 fold) when compared to wildtype inflorescence. Unlike previous microarray analysis, the nature of MPSS data acquisition is non-relative and linear in nature based on a threshold of MPSS detectable transcription. Using the promoter motif analysis program developed by the University of Leeds, a significant overexpression (p = .021) of the SV40 core promoter motif was noted among sepal and perianth expressed genes. Three distinct SV40 promoter elements containing the SV40 core motif have been previously ascribed to cell-specific expression within mammalian cell lines [40].

Housed inward of the sepal, petal specific expression was demarcated with an OOP of "10010". Expressed in only the C function mutant *ag* and absent from all other MPSS homeotic libraries, a total of 93 genes were identified as

petal specific within the inflorescence. In agreement with the increase in petals in *agamous* relative to wildtype, an average 2 fold level of enrichment was found in predicted petal specific transcripts in *agamous* relative to wildtype. 51% (47 genes) of petal specific genes were found expressed in root and leaf tissue. Concurring with previous studies, no significant enrichment of any binding motifs was noted within the petal specific dataset.

Those transcripts found in both the stamen and petals wield an OOP of "11011". Signatures were only absent from one mutant, *ap3*, and are therefore less statistically reliable. The number of genes identified pertaining to reproductive organ localized expression was found to be 271 genes, of which 79% (213 genes) are also predicted to be expressed in the leaf and root tissue. A 1.6 and 1.4 fold increase in average gene expression level among stamen/petal specific transcripts in *sup/ap1* and *ap1* was noted when compared to wild type. However, a four fold decrease in average expression in stamen and petal localized transcripts was noted in stamen-less *agamous* despite the increase in petalloid organs. Analysis of the promoter regions of those genes putatively expressed within the stamen and petals revealed an over-expression of the MYB3 binding site motif (p= .0043). MYB3 has been implicated in various disease responses, formation of secondary metabolites, cell shape and its expression has been correlated with auxin, ethylene and many other growth regulators [41].

Putative stamen-specific transcripts were determined to follow an OOP of "11001". Whereby, MPSS signatures were absent from B and C function mutants *ap3* and *ag*, and present within the A function *ap1* and *sup/ap1*.

Signatures which met these criteria were found to illustrate the expression of 475 genes within the inflorescence libraries. Putative stamen specific transcripts were expressed an average of 1.8 fold higher in *superman*/in relation to wildtype inflorescence. The average expression level of stamen specific transcripts within *ap1* was found to be 1.5 fold that identified in wildtype inflorescences. With the added filtering of leaf and root detected transcripts 46% (219 genes) were revealed to be expressed within other regions of the plant. A significant overexpression of MYB2 binding site motif (p=.0036) was noted among the stamen specific transcripts. Expression of the MYB2 transcription factor has been largely implicated in abscisic acid signalling [42].

Those transcripts found throughout both reproductive organs but absent from the perianth wield an OOP of "11101". Due the absence of signatures from only one mutant, *ag*, the results are less statistically reliable. The number of genes identified pertaining to reproductive organ localized expression was found to be 1,009 genes, of which 88% (886 genes) are also predicted to be expressed in the leaf and root tissue. Although, *ap1* is enriched for both reproductive floral organs, the largest increase in average reproductive organ specific gene expression within the mutants under study was found within *ap3* (1.9 fold higher than wildtype). The homeotic mutant *ap1* revealed an expression fold increase of only 1.3 fold higher than wildtype. No significant overexpression of transcripts was denoted within *superman/apetala1* despite an overall increase in the number of stamen within this mutant.

In order to dissect those genes expressed exclusively within the gynoecia an OOP of "11100" was identified (Figure 5). Therefore, identification of gynoecia specific transcripts was based on absence in the sterile C function homeotic floral mutant ag as well as the sup/ap1 double mutant which only weakly expresses gynoecious tissue in a diminished central whorl. By intersecting the signatures present within all the inflorescence MPSS libraries based on the OOP criteria of expected expression a total of 506 genes were identified with patterns suggestive of gynoecium specificity within the inflorescence. In order to further distinguish the data set, an additional MPSS library corresponding to dissected ovules was analyzed. The average expression level of ovule specific expression was increased two fold in dissected ovules when compared whole wildtype inflorescences, whereas expression was only 1.5 fold higher in dissected ovules than ap3 which possesses multiple whorls of gynoecia-like tissue. Those gynoecium-specific transcripts expressed within the ovule represented 45% (230 genes) with the remaining genes expressed solely within the stigma and style. Ovule-specific expression could not be fully dissected with the available MPSS libraries. 80% (220 genes) of the genes thought to be expressed exclusively within the gynoecium of the inflorescence are putatively expressed within the roots and leaves of the plant as well and only organ-specific within the inflorescence. The relative level of MPSS predicted gynoecium specific gene expression within dissected ovules was found to be two fold higher than that noted within the wildtype inflorescences.

Figure 7. Putative Organ-Specific Gene Expression The number of distinct genes putatively expressed within specific floral organs as determined by MPSS filtration of homeotic mutants. Figure does not display genes of the sepal/perianth number present within the sepal and the number present throughout the perianth could not be fully dissected. Similarly Ovule specific expression could not be dissected from gynoecia expression; however, those transcripts expressed in the stigma/style but not within the ovule could be demarcated.

To further elucidate floral organ specific expression, the spatial data accrued

from this study was superimposed with temporal data identified in

GENEVESTIGATORS online microarray database [26]. The majority of

genes with MPSS determined floral organ-specific expression were detected

in later stages of floral development after 10% of the flower buds have opened

(>36 days after planting). Further analysis of previous microarray temporal

assays [24] were overlaid on MPSS spatial analysis; however, little

commonality was notable among the data sets.

3.3 Validation of Organs expressed transcripts

3.3.1 MPSS Acquiescence with Previous Expression Analyses

MPSS data sets have revealed significant overlap with genes

acknowledged in previous genome-wide analyses as well as expression with

known genes, especially in the identification of stamen-specific transcripts.

A total of 215 genes were identified as stamen specific within this study as well as a previous study which utilized a whole genome microarray to crossanalyze floral homeotic mutants in a similar manner [23]. Furthermore, a later study implemented additional whole genome microarray analysis on RNA extracted from isolated floral organs [21]. Merging both previously published microarray datasets with MPSS data has revealed a total of 74 putative stamen specific genes with expression profiles concurring in all three data sets. Of the 74 putative stamen specific genes, 19 have unknown functions. Further cross comparison of a previous microarray analysis from pollen [43] reveals a total of 17 genes expressed specifically within the pollen which are also in accordance with MPSS and aforementioned microarray studies.

Table 3. Pulative Stamen-Specific Transcrip	 Putative Stamen-Specific Tr 	anscrip	ots
---	---	---------	-----

Accession Number	Description	agamous	ap 1	ap3	wild type	ap 1/sup
At4g35010	glycosyl hydrolase family 35 protein	0	147	0	122	93
At1g55570	multi-copper oxidase type I family protein	0	146	0	273	59
At4g02250	invertase/pectin methylesterase inhibitor family	0	36	0	33	52
At1g55560	multi-copper oxidase type I family protein	0	34	0	71	41
At2g45800	LIM domain-containing protein	0	8	0	1	26
At2g46860	Pyrophosphatase (soluble) / PPase, putative	0	1	0	11	24
At4g25780	pathogenesis-related protein, putative	0	2	0	8	18
At2g19770	profilin 4 (PRO4) (PFN4)	0	41	0	39	17
At2g07040	leucine-rich repeat transmembrane kinase,	0	7	0	10	14
At4g33970	leucine-rich repeat family protein / extensin	0	6	0	8	10
At2g18470	protein kinase family protein	0	2	0	4	8
At2g13570	CCAAT-box binding transcription factor,	0	2	0	8	7
At4g13240	hypothetical protein	0	1	0	3	3
At2g02140	plant defensin-fusion protein, putative (PDF2.6)	0	7	0	3	2
At4g07960	glycosyl transferase family 2 protein	0	19	0	23	2
At1g15350	expressed protein	0	5	0	10	1
At4g39670	expressed protein	0	1	0	7	1

Transcripts were identified as stamen-specific within MPSS analyses, and microarray analyses[16, 22], as well as pollen-specific in an additional microarray analysis[43]. Numbers indicative of Transcripts Per Million.
The union of these distinct approaches to identifying organ specific genes overcomes technical biases associated with both microarray analysis and MPSS, and permits the removal of non-specific transcripts. In addition to those genes previously characterized through microarray analysis, we have also confirmed the expression of several known stamen expressed genes including *CALLOSE SYNTHASE5*, *PROFILIN5*, *ABORTED MICROSPORE*, *MALE STERILITY 2*, *ARABIDOPSIS TAPETUM 1*, *27* and numerous members of the glycine-rich protein family which is known to possess high expression within the androecium [43].

SPOROCYTELESS/NOZZLE transcripts were identified as stamenspecific although their expression has been characterized in both the stamen and ovules. Previous analyses reveal a much greater level of expression in the anthers than ovule. Initial *in situ* hybridizations performed in previous analyses did not enable visualization of expression within the ovule. Ovule expression was only identified through an *SPL* promoter: GUS fusion and was not found in the integuments of funiculus [44]. Similarly, the homeodomain transcription factor WUSCHEL was identified as stamen specific despite well characterized expression within the ovule. This concurs with previous microarray expression data and *in situ* hybridization [23] which revealed a large expression domain within the locules of the anthers that was ascribed to the masking of the ovule localized transcripts in previous microarray analyses [23].

Analysis of MPSS determined gynoecium specific expression also corroborated with previous studies. 19 of the non-ovule contained gynoecium

specific genes were suggested to have gynoecia or pistil specific expression in two previous whole genome microarray screens [21, 23]. The expression of three EMBRYO DEFFECTIVE genes, a gene encoding, *RIE1*; a ring H2 zinc finger protein essential for seed development [45], and the kinase partner protein-like ATROPGEF6 responsible for pollen tube development [46] have been identified within our predicted non-ovule gynoecium specific dataset. The kinase *TOUSLED* has been shown in previous studies to be required in leaf and floral development and is localized to the style by stage 13 of development [33]. As expected, expression of the respective gene was identified within the gynoecia exclusive of the ovule. Additional gynoecium analyses inclusive of the ovule tissue are confirmed for 15 distinct transcripts in aforementioned microarray studies. Moreover, the well-characterized transcription factor SHATTERPROOF 2, which is carpel specific after floral buds have opened [47], as well as several additional EMBRYO DEFECTIVE genes, were identified in the gynoecium specific data set inclusive of the ovule.

Among the set of sepal/perianth localized transcripts, 8 sepal specific specific genes were noted previously in a microarray analysis of RNA isolated from specific organs [22]. Furthermore, expression of Arabidopsis Receptor Kinase, *ARK*2, has been noted within vegetative above-ground tissues, specifically cotyledons, leaves, and sepals and correlated with maturation of these structures [48]. This gene was correctly assigned in the sepal/sepal-perianth specific MPSS dataset. Furthermore, expression of the gene was identified in the MPSS leaf but not root libraries as expected. The alternative

oxidase isoform AOX1A, although expressed in multiple organs of the inflorescence is most strongly expressed in the sepals [49]. For this reason, our analysis has placed this gene in the sepal/sepal-perianth dataset; thus suggesting MPSS analysis is still subject to a threshold of transcription quantity and libraries may possess genes enriched rather than localized within a floral organ.

Analysis of the petal-specific MPSS derived dataset reveals concurrence of 7 genes within the microarray analysis of RNA isolated from petals in a previous study [22]. Expression of genes encoding the circadian rhythm dependant protein kinase WNK4 [50] was identified in this study and previous microarray analysis [22] to possess petal specific expression. Genevestigators [26], and AtGenExpress [18] revealed strong expression of WNK4 within the perianth as opposed to reproductive tissue as well.

Genes containing MPSS derived petal and stamen expression were also noted within previous microarray analyses. However, MPSS analysis suggests a number of genes with previously determined petal or stamen specific expression are expressed within both petals and stamen. Interestingly, genes such as At4g37800, a putative xyloglucosyl transferase, have dissenting predictions regarding microarray expression. Previous studies have suggested their presence within the petals whereas others have suggested presence within the stamen [16, 22]. Similarly, those genes predicted by MPSS to be located within both the stamen and the gynoecia have been placed into organ-specific groups within previous studies as well [16, 22].

3.3.2 In situ Hybridization

In addition to validating MPSS methodology with previously assessed genes and microarray analyses, the previously uncharacterized expression of putative organ-specific genes was biologically validated through in situ hybridization. We have selected genes whose MPSS expression profiles matched the expected profile for gynoecia/stamen and petal/stamen localization as well as stamen specificity, and gynoecia specificity (Figure 8). Expression of the galactosyltransferase family protein, At1g33430, was correctly assigned by MPSS with expression in the stamen and carpel primordia and strong expression specifically within the tapetum and microspores [Figure 8A-C (anti-sense) D, E (sense)]. Our filtering system of MPSS data predicted At1g72290, a gene encoding a trypsin and protease inhibitor family protein, to be expressed in both the gynoecia and stamen. However, *in situ* hybridization has only revealed expression within the carpel [Figure 8M (anti-sense)] and no expression was noted within the stamen. Nonetheless, it must be noted that despite conformation of expression profile to our binary filtering procedure, the double mutant *sup/ap1* which is highly enriched for stamen tissue has less than half the number of At1g72290 transcripts as wild type tissue. In contrast, the number of transcript within ap3 which is enriched for carpel tissue is over nine fold higher than wild type tissue. Similarly, a gene predicted by MPSS to be localized within the petalstamen is At2g19070 and encodes an anthranilate N-hydroxycinnamoyl/ benzoyltransferase protein. In situ hybridization patterns revealed presence within only the tapetum.

Figure 8. Biological Validation via in situ hybridization

A-C At1g33430 (anti-sense probe), D-E (sense control probe) noted signal on stamen and carpel primordial with strong expression detected in the tapetum and microspore as predicted by MPSS.

F-G At2g19070 (anti-sense probe), H (sense control probe) signal identified on the tapetum. Stamen and petal localized expression predicted by MPSS

I-J At1g54860 (anti-sense probe) signal on stigmatic papillae as well as septum and developing microspore. Predicted to be stamen specific by MPSS analysis.

K-L At5g59810 (anti-sense probe) transient signal noted on a specific microspore of the tetrad. Carpel specificity predicted by MPSS.

M At1g72290 (anti-sense probe) signal identified on the septum. Predicted to be localized within the stamen and the carpel by MPSS

N At2g42940 (anti-sense probe) O (sense control probe) weak signal on stamen and carpel primordial. Identified as a putative stamen specific transcript by MPSS.

P AP3 (anti-sense control probe)

However, additional analysis revealed the expression of only 1 transcript within the *agamous* mutant. This sole transcript led our filtering procedure to predict petal and stamen localized expression. This suggests that expression in the petal may be below the level required for an observable signal in *in situ* hybridization [Figure 8F-G (anti-sense) H (sense)]. The expression of an unknown expressed protein, At1g54860 was characterized as stamen specific. In situ hybridization revealed expression within the microspore as well as the stigmatic papillae and septum [Figure 8I-J]. Another putative stamen specific gene, At2g42940, encoding a DNA binding family protein was found expressed in both carpel and stamen primordial [Figure 8N (anti-sense) O (sense)]. An additional discrepancy between MPSS and *in situ* data was noted in the putative carpel specific At5g59810. This gene encodes a subtilase family protein and was identified strictly within the stamen in a single microspore of the tetrad by *in situ* hybridization [Figure 8K-L]. Nonetheless, previous publications have revealed stigma-specific expression of At5q59810 via microarray, RNA -gel blot, and *in situ* analysis [51].

3.3.3 GUS histochemical assay

Another means of assessing the accuracy of MPSS predicted floral organ localization was the analysis of transgenic GUS reporter lines. A 1.5 kilo base pair region flanking the 5' end of organ-specific genes was used to drive the expression of the GUS reporter gene. Constructs were then stained with a phosphate buffer to determine spatial expression of the MPSS predicted gene. The majority of organ-specific expression predicted by MPSS was mirrored within the GUS staining activity of the 14 genes under observation. Putative stamen-specific expression was evaluated by promoter fusion in three genes. At1g20130, a putative family II extracellular lipase [52], At2g42940 encoding a DNA binding protein, and At3g27025, encoding a protein of unknown function were all found to be expressed within the stamen as predicted. However, in the case of At2g42940, *in situ* analysis revealed additional expression in the carpel primordia. Two genes with putative gynoecia specific expression were assayed as well. After staining, the promoter: GUS fusions for At1g07370, a proliferating cellular nuclear antigen, and At1g27900, a putative RNA helicase were both found to stain within the gynoecia as predicted. In addition to whole gynoecium promoter:GUS fusions, ovule expression was identified in five genes with MPSS predicted ovule localization. INSERT JEAN PHILLIPE DATA WHEN ACCESSIONS IDENTIFIED At1g33430, a gene encoding a galactosyltransferase family protein was predicted to be expressed throughout the reproductive organs. This result was further substantiated through the histochemical assay, with staining occurring in both the stamen and gynoecia. Two additional gene with MPSS predicted stamen and petal localized expression were also assessed. Confirming previous results of *in situ* hybridization, At2g19070, was found to be expressed only in the stamen. In contrast, expression of At5g07550, a gene encoding a glycine-rich oleosin protein (GRP19) found to regulate the size and character of lipid droplets within the pollen coat [53] was demonstrated within both the stamen and the petals as predicted. Existence within the petal has not previously been documented in the literature and may indicate activity within the petal. At1g26270, a gene encoding a

phosphatidylinositol 3- and 4-kinase family protein which was present in all floral MPSS libraries was implemented as an additional validation of MPSS data. In these promoter:GUS fusions staining was prevalent throughout all organs of the inflorescence. Similarly, the putative RNA helicase, At2g35340, was assayed and confirmed MPSS prediction of no expression within the inflorescence tissues as expected by MPSS analysis despite previous microarray characterizations within floral tissues [26].

Figure 9. Biological Validation by Promoter: GUS fusions

(A) Wild type Control
(B) to (E) MPSS-Predicted Stamen-Specific Promoter: *GUS*.
At1g20130 [B], At3g27025 [C], At2g42940 ([D] and [E])
(F) to (G) MPSS-Predicted Carpel-Specific Promoter: *GUS*.
At1g07370 [F], At1g27900 [G]
(H) MPSS-Predicted Stamen/Carpel-Specific Promoter: *GUS*.
At1g33430 [H]
(I) to (J) MPSS-Predicted Stamen/Petal-Specific Promoter: *GUS*.

3.3.4 RT-PCR

Validation of MPSS organ specific filters was performed in five putative gynoecia expressed genes by real time PCR (figure 11). Expression patterns were found to correlate highly with those predicted by MPSS. At1g04620, a gene encoding ATG8b, a microtubule associated protein involved in autophagy was found to wield expression within the ovule as predicted by MPSS, without any expression present within sepal or petal organs. This isoform of ATG8 has been previously characterized by microarray studies [54]

which reveal the highest level of floral expression within petal tissue, followed by stamen, with lesser amounts in petal and style tissue; however, MPSS analysis reveals gynoecia specific expression inclusive of the ovule. MPSS predictions of gynoecia specificity

have been confirmed by RT-PCR. No expression was deduced in petal or sepal tissues. Ovule expression

Figure 11. RT-PCR Validation of Gynoecium Specific Expression inclusive of the ovule. RNA extracted from (1) Mature Ovule; (2) Petal; (3) Sepal

was also noted in At4g27860, a gene encoding an integral membrane family protein of unknown function and At1g19240, a gene of unknown function. At4g14420, a gene with homology to a hypersensitive response lesion inducer in *Nicotiana tabacum* was also found to possess ovule expression by RT- PCR. No sepal or petal expressed transcripts were noted within these RT-PCR analyses. In contrast to MPSS predictions, RT-PCR revealed the expression of At2g42710, a putative structural constituent of the large ribosomal subunit in both ovule and petal tissues. This suggests the presence of some false positives within the dataset. However, comparison with additional technologies will enable further filtration of these transcripts and provide even more robust data.

Chapter 4

DISCUSSION

4.1 Organ-Specificity Across Multiple Profiling Platforms

Previous genome-wide studies have predicted the enrichment of transcripts within a specific floral organ based upon their expression level in microarray analyses. We have implemented another method to complement prior investigations. Numerous genes with known expression patterns have been accurately assigned through our transcript filtering procedure. In addition, genes characterized in previous microarray analyses have been further validated through MPSS. The magnitude of data assessed within these analyses prohibits confirmation via independent means. Nonetheless, integration of multiple whole-genome techniques such as MPSS, oligonucleotide microarrays and cDNA microarrays alleviates the technical biases associated with each platform of transcriptome analysis and permits the removal of non-organ specific transcripts which were erroneously predicted by any single filtering process. The results of this study provide a list of candidate genes which may be incorporated into future studies in functional genomics such as overexpression and knockout studies as well as identification of candidate genes responsible for quantitative trait loci. Expression information accrued through this and previous studies will continue to increase the ease and effectiveness of reverse genetics and

further the viability of selecting candidate genes from forward genetic approaches, ultimately enabling the elucidation of more complex networks of floral development and maintenance. Furthermore, the validation of GUS: promoter fusions have revealed promoter regions 1.5 kb upstream of most surveyed genes were capable of governing floral organ-specific expression.

Microarray analysis and other hybridization-based techniques of surveying genome-wide expression are subject to a number of inherent limitations, including non-specific probe hybridization, sensitivity to initial RNA quantity, and substantial background levels [27]. In addition, quantitative analysis across multiple microarrays requires standardization and calibration of chips to ensure equivalent hybridization patterns. Nonetheless, the widespread use of this technology as well as its replicability further justifies its application in gene expression profiling.

MPSS contains its own innate limitations. Previously described "bad words" in sequencing reactions, [26] as well as the absence of the necessary restriction sites within cDNA, and cost prohibitive replicability partially limit this technology. MPSS is not as limited by initial RNA quantity and is able to detect expression with a much smaller background level than microarrays; however, analysis across the homeotic mutants has suggested MPSS is still only a sampling of the RNA present within a specific tissue.

4.2 Assessment of Floral Organ-Specific Expression Subsets

The greatest number of distinct floral organ specific transcripts were identified as expressed throughout the reproductive organs (1,009 genes). This was nearly twice as many as that noted as specific to the gynoecia alone

(511 genes). The myriad of genes expressed within the reproductive organs may be less statistically significant due to their absence in only a single floral mutant *agamous*. This initially implies the magnitude of reproductive specific expression is artifactual due to a decrease in filtering stringency. However, a similar situation arose in the identification of petal-stamen expressed transcripts which are putatively absent from only *apetala3*. A total of only 271 transcripts were identified within these screening criteria of petal-stamen localized expression. In contrast a greater number of distinct stamen specific expression, despite the increased filtering criteria provided by stamen absent in both *agamous* and *apetala3*. This paradigm repudiates views of excessive bias by transcript filtering stringency, and further substantiates the scale of genes expressed throughout the reproductive organs and not within the

Aside from those transcripts denoted throughout both reproductive structures, the greatest single organ-specific expression was observed within the gynoecia (511 genes). This contrasts previous microarray analyses which report over four fold less organ-specific diversity within the gynoecia as compared to the stamen[16]. The number of stamen specific transcripts within this study represents the second most diverse single organ (475 genes). However, the relative increase in distinct gynoecia specific transcripts within this study relative to microarray may be ascribed to the difference in filtering. Previous microarray analyses were initially based on significant downregulation of transcripts within a single mutant *agamous*. This led to an

exceedingly large number of transcripts which were further filtered on the assumption of large expression ratios between *agamous* and gynoecium deficient mutants [16]. Implementation of these secondary filtering criteria was unnecessary within our analyses due to the incorporation of another gynoecia deficient mutant *superman/apetala1* as well as further validation through dissected ovule tissue. Moreover, this analysis enabled the dissection of those transcripts found expressed within the ovule (230 genes) and gynoecium and those within the stigma and style but absent from the ovule (281 genes). Interestingly, a greater number of transcripts were found within the stigma and style than included within the ovule. Nonetheless, the relative lack of developmental stages assessed within the dissected ovule transcriptome may lend to bias data towards increasing stigma/ style specific expression.

Over two fold less stamen specific transcripts were identified within this study when compared to previous microarray homeotic mutant derived subsets [16]. This may also be ascribed to an increase in specificity due to the analysis of additional mutants for comparison. The number perianth expressed transcripts increased in this study relative to homeotic microarray analyses; nonetheless, this number is still greatly reduced in comparison to those identified within the reproductive organs of either study, thus emphasizing the relative molecular complexity of reproductive tissue. More transcripts were identified as expressed within the sepal and/or throughout the perianth (177 genes) than those detected as petal specific (94 genes).

Interestingly, distinct genes expressed within the perianth in this and previous homeotic mutant microarray analyses are much less than those identified in microarray analysis integrating micro-dissected floral tissues [22]. In these analyses the greatest number of distinct transcripts within assayed floral organs was identified within the petals with a total of 827 genes with petal specific expression. This number exceeds those identified within the study as stamen enriched (805 genes). Those genes identified within the sepal are nearer to our analyses equalling a total of 141 genes with sepalenriched expression. The primary difference in these analyses may be attributed to the stringency with which significant expression differences are noted during microarray data acquisition.

A cross analysis of the organ expression of genes within previous oligonucleotide, cDNA microarrays and gene trap lines revealed varying levels of overlap with the greatest consistency present in stamen-specific transcripts. Despite some low levels of overlap, it must be noted not all analyses were on a genome-wide basis, not all demarcated specific expression and instead revealed expression within the organ. For example, numerous microarrays of previous cDNA analyses suggested ~200 genes were dependant upon the activation of *AP3/PI* and therefore would be expressed specifically within the petals, stamen, or both based on the number of genes on a cDNA and a fold increase to account for the entire genome. Oligonucleotide analyses have suggested this level is much higher identifying nearly 6 fold more genes expressed specifically within the stamen or petal[16]. Our analysis confirms

previous oligonucleotide microarray analysis to a lesser degree with the identification of 840 genes with expression in the petals, stamen, or both.

4.3 Gynoecia Enriches Detectable Transcript Diversity

In addition to possessing the greatest number of distinct organ-specific transcripts within the gynoecia, a positive correlation was noted between the level of reproductive biomass, especially gynoecia tissue, and the level of MPSS detectable transcript diversity. The homeotic mutants *ap1* and *ap3* both actively expressed a more diverse set of genes than wildtype despite a lack of organ diversity. The increase in gynoecia in both these mutants may be ascribed to the increase in detectable transcript diversity. Furthermore, the most diverse transcriptome, *ap1*, overexpresses both gynoecia and stamen reproductive organs relative to wildtype and further increases floral organs relative to vegetative peduncle tissue due to the development of secondary inflorescences. In contrast, *superman/ap1* transcribes from a less diverse transcriptome than wildtype or *ap1*. This insinuates the degradation of gynoecia within this mutant greatly lessens the transcript diversity of the mutant despite increases in stamen tissue; further suggesting the gynoecia are responsible for the most transcript diversity.

Despite the correlation between detectable diversity and gynoecia tissue, the MPSS expression library acquired from micro-aspirator dissected ovules was the least diverse noted within this study. Similarly, cross-analysis of MPSS libraries reveals a greater number of distinct transcripts specifically expressed within the stigma and style than those ubiquitously expressed exclusively within the gynoecia. Nonetheless, this relative lack of transcript

diversity may be attributed to a limitation in assayed developmental stages. Homeotic and wildtype inflorescences represent floral buds throughout the first 13 stages of development, whereas ovules were dissected from only those flower buds which possessed emergent petals.

In order to further investigate the correlation among gynoecia biomass and MPSS detectable transcriptome diversity, as well as the putative dilution of gynoecia transcript diversity by high gene expression from the less diverse vegetative tissues, the average gene expression level within the floral tissues was determined. The average wildtype expression was found to be less than the homeotic mutants which overexpress gynoecia. Therefore, wildtype inflorescences were found to possess less transcript diversity with a higher quantity of those transcripts identified. This is in accordance with notions of dilution of MPSS expression predictions by high expression from a less diverse transcript set.

4.4 Gynoecia Correlations with Gene Expression Profiles of the Leaf

Analysis across all the homeotic mutants has revealed increases in gynoecia within the inflorescence were found to increase correlation with the leaf transcriptome. If one accepts the view of floral organs as modified leaves it is possible this correlation insinuates a greater loss or disruption of gene expression profiles within sepal and petals occurs when compared to gynoecia and suggests a greater degree of leaf modification in the perianth than the reproductive organs. The diversity of genes expressed within leaf tissue was found to be less than wildtype and all homeotic mutants possessing an enrichment of carpel tissue; however, leaf expression libraries

reveal a significantly greater number of distinct genes than those expressed in libraries possessing diminished or absent gynoecia. Countering the transcriptional diversity of petals previously identified in micro-dissection analyses [22], this suggests leaf tissue transcribes from a larger subset of genes than the petal or sepals, and significant downregulation of genes was necessary during leaf modification into the perianth.

4.5 Phenotypic Resemblances Concur with Gene Expression Profiles

Correlations among homeotic mutants revealed a correspondence of gene expression patterns with phenotypic similarity further supporting the ability of utilitizing floral homeotic mutants to demarcate organ specific expression. Those homeotic mutants overexpressing similar floral organs were found to correlate more closely with other inflorescences containing the same organ. The homeotic mutants *ap1* and *ap3* which overexpress gynoecia and are lacking petals were found to contain the most similar expression profile. In addition, ap1 and superman/ap1 were found to possess the second most similar expression profile. These mutants express the same floral organs; however, the double mutant *superman/ap1* increases expression of stamen at the expense of gynoecia tissue. In contrast to these levels of correlation, the A function mutant apetala1 which is enriched for reproductive organs at the expense of vegetative tissue possessed the least similar expression pattern when compared to the C function mutant agamous which is enriched for the vegetative tissue and posses no reproductive organs.

4.6 Differential Expression in Wildtype and Homeotic Flowers

MPSS predicted gene expression within all four homeotic floral mutants was compared to the genes expressed in the wild type. It was found that a total of 331 genes ubiquitously expressed in homeotic mutant inflorescences are unaccounted for in the set of genes detected within the wild type inflorescence. Conversely, a total of 417 genes were identified within the wild type inflorescence and were not detected by MPSS in any of the floral mutants under observation. These transcripts illustrate a threshold of detection in MPSS. The average level of expression of the genes expressed within all homeotics and absent from the wildtype as well as those expressed within wildtype but absent from all homeotic mutants was equivalent to less than 5% the average level of gene expression within the floral libraries. This suggests transcripts with less than 5% the average level of transcription or a normalized transcription rate of 4 times per million may not be significant within our analyses. For this reason, we have sorted the organ-specific transcripts identified within our filtering system by their level of expression within the homeotic mutant which most overexpresses the respective organ (see methods). Therefore those transcripts which are at the top of each organ specific subgroup are the most dependable genes to possess organ-specific expression. In addition, we have placed a "significance" filter in our online user interface LIBAN to remove transcripts expressed at less than 4 times per million.

4.7 Limitation to Spatial Dissection

4.7.1 Cross-Analysis of Floral Homeotics Limits Analysis

This study was limited to floral organs and has not dissected the expression patterns of individual cell types. In addition, comparison of the expression profiles of transcripts across the homeotic floral mutants does not permit the identification of expression exclusivity of transcripts within all floral organs, due to the inadvertent inclusion of non-specific transcripts. For instance, although a transcripts may be present or upregulated in the homeotic mutants containing multiple whorls of sepals; ag, ap3, and absent from the A function mutants; ap1, ap2, and sup/ap1. This does not suggest specificity of the transcript to the sepals because a transcript found both in the sepals as well as the petals may follow the same expression pattern. A sepal or sepal-petal expressed transcript would be present and upregulated in ag because the number of both vegetative organs is increased to more than 70 organs per inflorescence [55]. Similarly, both expression patterns would be absent or greatly downregulated in the A function mutants ap1 and the double mutant *sup/ap1*. However, the expression become less well defined in cases such as ap3 wherein the number of sepals is increased but petals are absent. In these instances, the expression level of sepal-petal expressed transcripts would be increased to an unknown degree due to the enrichment of sepals. However, the quantity of these transcripts would also be abated owing to an absence of petals. Therefore, it is impossible to dissect those transcripts expressed only within the sepals from sepal/petal expressed transcripts using homeotic floral mutants. It is likely for this reason, the A function gene

apetala1 which is epistatic to *ag* and confined to the sepal and petals was identified as one of the sepal specific transcripts detected with the microarray screening criteria [16]. A similar issue arises in dissection of gynoecia expressed transcripts from those expressed within both the gynoecium and the androecium.

The fundamental issue underlying these incapacities can be attributed to the second and third whorl specificity exhibited by the B function of the classical ABC model in floral development (Figure 2). By only utilizing mutants lacking one of the three "classical" functions in the ABC model, the first and fourth whorl organs are left relatively unaffected by a B function mutant. Consequently, it is improbable to develop an A, B, or C function mutant which expresses petals without the presence of sepals. Petal specific transcripts may be dissected from the sepal/petal expressed transcripts by noting the presence of a C function mutant's transcripts to its absence in A and B mutants which when combined allow the removal of transcripts that abide by all other possible organ specific expression patterns. However, sepal specific transcripts cannot be isolated from those expressed in the sepal and petal; because sepals are still present in B function mutants therefore eliminating the ability to negate transcripts embodying non-organ specific expression. Similarly, classical ABC function mutant do not permit the occurrence of stamen without the presence of the gynoecia. Stamen specific transcripts may be dissected from the Stamen-Gynoecia expressed transcripts by comparing the occurrence of transcripts within the A function mutant's transcripts to its absence in the B and C function mutants which represent all

other possible expression profiles. Nonetheless, gynoecia specific transcripts cannot be isolated from those expressed in the sepal and petal; because gynoecia are still present in B function mutants and absence from the C function mutant alone do not permit removal of all other possible expression profiles. Even in the case of double function homeotic mutants A/B (ubiquitous carpel inflorescence), B/C (ubiquitous sepal inflorescence) or A/C (sepals/petals/leaf-like organs), or the triple mutant (leaf-like inflorescence), petals are expressed in tandem with sepals and gynoecia are expressed in the presence of stamen (Figure 2).

4.7.2 Justification of Floral Mutants Employed within this Study

In an attempt to overcome the inherent restrictions associated with the second and third whorl specificity of the B function and the sole usage of homeotic mutants. We have performed MPSS analysis on the double mutant *superman/apetala1* in addition to the *A*, *B*, and *C* function mutants to try to express stamen in the near absence of gynoecia. *SUPERMAN* encodes a C2H2-type zinc finger protein which regulates the third and fourth whorl boundary and is not a homeotic mutant [56]. The *sup* mutant exhibits development of additional stamen at the expense of carpel tissue in the central whorl by increasing proliferation of third whorl cells and greatly reducing cellular divisions within the fourth whorl. Furthermore, the double mutant sup/*ap1* acts in an additive manner whereby the first and second whorls contain axial apetalous inflorescences and the fourth whorl is greatly diminished accommodating an increase of stamen. The combined effect of the *sup* and *ap1* increased the number of stamen to as many as 14 in

observed inflorescences, and greatly reduced the first and fourth whorl containing carpelloid structures. Furthermore, the double mutant inflorescences chosen for MPSS analysis were preferentially selected for the greatest degree of stamen enrichment and carpel deficiency. This permitted the isolation of the stamen from gynoecia; thereby availing the dissection of gynoecia specific transcripts. Previous microarray analyses predicting organ specificity across the homeotic mutants relied only upon significant downregulation of putative gynoecia specific transcripts within a single homeotic mutant *agamous*. Integration of the carpel deficient *superman/ap1* mutant as well as micro-aspirator dissected ovules has permitted a more reliable dissection of gynoecia specific transcripts within our analyses.

The expansion of the third whorl by *SUPERMAN* stretched the domain of the B function and permitted dissection of the gynoecia and stamen. Although, a similar situation would be advantageous in the case of isolating the petal from the sepal, no developmental mutants have been identified which act on the boundary between the first and second whorls of *Arabidopsis* in an analogous manner to the phenotype exhibited in the inner whorls by *superman*. Furthermore, ectopic expression of the B function *AP3*, bearing other necessary known factors such as presence of *PISTILLATA* would theoretically expand the B function to all whorls of the inflorescence. However, 35S:AP3 mutants exhibit a phenotype similar to *superman*, with no accumulation of AP3 within the first whorl; thus suggesting an as of yet undetermined form of post transcriptional regulation [57] possibly a miRNA acting in a manner analogous to the relationship noted between AP2 and

miR172 [58]. Therefore, the degradation of the first whorl as well as ubiquitous expression of the B function, AP3 are not currently viable alternatives to isolation of petals from sepals to enable the *in silico* dissection of sepal specific transcripts from those expressed throughout the perianth.

4.8 Characterization of Floral Organ Specific cis-regulation

A number of genes involved in the regulation of flowering time and meristem identity have been identified and associated with the homeotic genes which compose the quaternary complex responsible for organogenesis. Nonetheless, little characterization of those downstream elements responsible for the maintenance and development of the distinct floral organs have been identified. This study confirms previous assessments regarding a lack of enrichment of those CArG boxes targeted by the quaternary complex. However, an enrichment of MYB2 binding domains was noted within the subset of genes possessing stamen specific expression. Genes containing these binding domains have been largely involved in abscisic acid (ABA) signalling [42]. Low temperature regulation of male sterility has been shown to be regulated by a reduction in the level of ABA within the inflorescence of tomato (Lycopersicon esculentum) [59]. Furthermore, this interaction occurs after initiation of stamen development has ensued. An addition MYB binding motif MYB3 was overexpressed within the petal and stamen localized dataset. MYB3 has also been implicated in various hormone signalling pathways and is likely responsible for developmental regulation as a result of fluctuations within these signalling hormones [41]. The SV40 binding motif of Arabidopsis is a nuclear localization signal. However, in *Arabidopsis* little information has

been published regarding its activation or downstream effects of SV40 antigen expression. SV40 promoter elements have been identified as bearing cellspecific expression in mammalian cell lines [40] which suggests cell specificity of those genes regulated by the transcription factor.

Chapter 5

CONCLUSION

Analysis of MPSS floral expression data has produced a robust floralorgan specific dataset to further corroborate and supplement previous expression data accrued through microarray technologies. Numerous wellcharacterized genes with known expression patterns were accurately dissected as organ-specific within our system of transcript filtration. Furthermore, biological validation of MPSS expression library analysis predictions acquiesce with expected expression patterns for several previously uncharacterized genes. In concurrence with previous analyses, reproductive structures possess the most diverse transcriptome when compared to vegetative tissue. Analysis of putative promoter regions within the putative organ-specific datasets concurs with previous microarray analysis. No significant enrichment of c-arg boxes was noted upstream of putative organ-specific genes, this suggests floral organogenesis and maintenance requires a multitude of signalling cascades as opposed to extensive direct cis-regulation by the ternary complex. A slight enrichment of MYB2, MYB3, and SV40 motifs were noted within the stamen, stamen/petal and sepal/perianth specific genes, respectively; warranting further analyses of these collectively regulated genes.

The culmination of both microarray hybridization and MPSS-sequence survey based approaches overcomes the inherent shortcoming which may bias the data when utilizing the technologies independently. Limitations in initial RNA quantity as well as issues with probe hybridization, and high background in microarray analyses are mitigated with sequence survey based analyses of MPSS. However, our floral analysis has revealed the sequencing depth of MPSS is still limited by a threshold of transcript detection as evident by increases detectable transcript diversity with increases in reproductive organ biomass in several homeotic mutants. Nonetheless, demarcating petal, stamen, stigma/style, gynoecia, sepal/perianth, petal/stamen, and stamen/gynoecia localized gene expression within A. thaliana via MPSS has further elucidated patterns of spatial regulation of transcription and will provide a valuable reference for preliminary reverse genetic characterizations as well as a source for floral organ-specific promoters to drive transgene expression. In addition, these promoters may be integrated into fluorescence-activated cell sorting, [32] subsequent RNA extraction and employment of Sequencing By Synthesis (Illumina) [60]; a sequence survey platform with ten fold higher sensitivity than MPSS. This will enable even more detailed spatial profiling of gene expression in future floral studies.

References

- 1. Yang Y, Fanning L, Jack T: **The K domain mediates heterodimerization** of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. *Plant J* 2003, **33**(1):47-59.
- 2. Egea-Cortines M, Saedler H, Sommer H: **Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus**. *The EMBO journal* 1999, **18**(19):5370-5379.
- 3. Portmann A: Goethe and the Concept of Metamorphosis, vol. 97. Boston: Reidel Publishing Comp.; 1987.
- 4. Bowman JL, Smyth DR, Meyerowitz EM: Genetic interactions among floral homeotic genes of Arabidopsis. *Development (Cambridge, England)* 1991, 112(1):1-20.
- 5. Coen ES, Meyerowitz EM: **The war of the whorls: genetic interactions controlling flower development**. *Nature* 1991, **353**(6339):31-37.
- 6. Irish VF, Sussex IM: Function of the apetala-1 gene during Arabidopsis floral development. *The Plant cell* 1990, **2**(8):741-753.
- 7. Bowman JL, Smyth DR, Meyerowitz EM: Genes directing flower development in Arabidopsis. *The Plant cell* 1989, **1**(1):37-52.
- 8. Battaglia R, Brambilla V, Colombo L, Stuitje AR, Kater MM: Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mechanisms of development 2006, 123(4):267-276.
- 9. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF: **B and C floral** organ identity functions require SEPALLATA MADS-box genes. *Nature* 2000, 405(6783):200-203.
- 10. Honma T, Goto K: **Complexes of MADS-box proteins are sufficient to convert leaves into floral organs**. *Nature* 2001, **409**(6819):525-529.
- 11. Tonaco IA, Borst JW, de Vries SC, Angenent GC, Immink RG: In vivo imaging of MADS-box transcription factor interactions. *Journal of experimental botany* 2006, **57**(1):33-42.
- 12. Soltis DE, Soltis PS, Albert VA, Oppenheimer DG, dePamphilis CW, Ma H, Frohlich MW, Theissen G: Missing links: the genetic architecture of flowers [correction of flower] and floral diversification. *Trends in plant science* 2002, 7(1):22-31; dicussion 31-24.
- Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R: The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development (Cambridge, England) 1998, 125(8):1509-1517.
- Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM: The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. *Nature* 2004, 430(6997):356-360.
- 15. Sablowski RW, Meyerowitz EM: A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. *Cell* 1998, **92**(1):93-103.

- 16. Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM: Genomewide analysis of spatial gene expression in Arabidopsis flowers. *The Plant cell* 2004, **16**(5):1314-1326.
- Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M *et al*: Empirical analysis of transcriptional activity in the Arabidopsis genome. *Science (New York, NY* 2003, 302(5646):842-846.
- Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. *Nature genetics* 2005, 37(5):501-506.
- 19. Rubinelli P, Hu Y, Ma H: Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana. *Plant* molecular biology 1998, **37**(4):607-619.
- 20. Masayuki A, Tohru A, Makoto E, Katsunori H, Chikara K, Daisuke S, Kinya T, Masao W: Identification of anther-specific genes in a cruciferous model plant, Arabidopsis thaliana, by using a combination of Arabidopsis macroarray and mRNA derived from Brassica oleracea. *Sexual Plant Reproduction* 2003, **15**(5):213-220.
- 21. Zik M, Irish VF: Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. *The Plant cell* 2003, **15**(1):207-222.
- Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng XW: Organ-specific expression of Arabidopsis genome during development. *Plant physiology* 2005, 138(1):80-91.
- 23. Cohen BA, Mitra RD, Hughes JD, Church GM: A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. *Nature genetics* 2000, **26**(2):183-186.
- 24. Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM: Genome-wide analysis of gene expression during early Arabidopsis flower development. *PLoS genetics* 2006, **2**(7):e117.
- 25. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN: **A gene expression map of the Arabidopsis root**. *Science (New York, NY* 2003, **302**(5652):1956-1960.
- 26. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. *Plant physiology* 2004, **136**(1):2621-2632.
- 27. Sean J. Coughlan VA, and Blake Meyers: A Comparison of Global Gene Expression Measurement Technologies in Arabidopsis thaliana. *Comparative Functional Genomics* 2004, **5**:245-252.
- 28. Chen X: A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science (New York, NY 2004, 303(5666):2022-2025.
- 29. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation of the Small RNA Component of the Transcriptome. In., vol. 309; 2005: 1567-1569.

- 30. Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD: Arabidopsis MPSS. An online resource for quantitative expression analysis. *Plant physiology* 2004, **135**(2):801-813.
- 31. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M *et al*: **Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays**. *Nature biotechnology* 2000, **18**(6):630-634.
- 32. Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN: **Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines**. *Nature methods* 2005, **2**(8):615-619.
- 33. Smyth DR, Bowman JL, Meyerowitz EM: Early flower development in Arabidopsis. *Plant Cell* 1990, **2**(8):755-767.
- 34. Brenner S, Williams SR, Vermaas EH, Storck T, Moon K, McCollum C, Mao JI, Luo S, Kirchner JJ, Eletr S et al: In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proceedings of the National Academy of Sciences of the United States of America 2000, 97(4):1665-1670.
- 35. Meyers BC, Tej SS, Vu TH, Haudenschild CD, Agrawal V, Edberg SB, Ghazal H, Decola S: **The use of MPSS for whole-genome transcriptional analysis in Arabidopsis**. *Genome research* 2004, **14**(8):1641-1653.
- Ming-Hsan C, Ming-Kung C, Shu-Mei P: Floral Spray Transformation Can Efficiently Generate Arabidopsis. *Transgenic Research* 2000, 9(6):471-486.
- 37. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE: Using the transcriptome to annotate the genome. *Nat Biotechnol* 2002, **20**(5):508-512.
- 38. Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD: Arabidopsis MPSS. An online resource for quantitative expression analysis. *Plant Physiol* 2004, **135**(2):801-813.
- 39. Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, Yanofsky MF: Conversion of leaves into petals in Arabidopsis. *Current Biology* 2001, **11**(3):182-184.
- 40. B Ondek AS, W Herr: Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities. *EMBO J* 1987, 6(4):1017-1025.
- 41. Meissner RC, Jin H, Cominelli E, Denekamp M, Fuertes A, Greco R, Kranz HD, Penfield S, Petroni K, Urzainqui A *et al*: Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in R2R3 MYB Genes. In., vol. 11; 1999: 1827-1840.
- 42. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling. In., vol. 15; 2003: 63-78.
- 43. Honys D, Twell D: **Comparative analysis of the Arabidopsis pollen transcriptome**. *Plant physiology* 2003, **132**(2):640-652.

- 44. Yang W-C, Ye D, Xu J, Sundaresan V: **The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein.** In., vol. 13; 1999: 2108-2117.
- 45. Xu R, Li QQ: A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. *Plant molecular biology* 2003, **53**(1-2):37-50.
- 46. Kaothien P, Ok SH, Shuai B, Wengier D, Cotter R, Kelley D, Kiriakopolos S, Muschietti J, McCormick S: **Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth**. *Plant J* 2005, **42**(4):492-503.
- 47. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF: SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. *Nature* 2000, **404**(6779):766-770.
- Dwyer KG, Kandasamy MK, Mahosky DI, Acciai J, Kudish BI, Miller JE, Nasrallah ME, Nasrallah JB: A Superfamily of S Locus-Related Sequences in Arabidopsis: Diverse Structures and Expression Patterns. In., vol. 6; 1994: 1829-1843.
- 49. Clifton R, Millar AH, Whelan J: Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. *Biochimica et Biophysica Acta (BBA) Bioenergetics* 2006, **1757**(7):730-741.
- 50. Norihito NAKAMICHI MM-K, Eriko SATO, Yasuko KISHI, Takafumi YAMASHINO and Takeshi MIZUNO: **Compilation and Characterization** of a Novel WNK Family of Protein Kinases in Arabiodpsis thaliana with Reference to Circadian Rhythms. *Biosci Biotechnol Biochem* 2002, 66:2429-2436.
- 51. Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB: **Genome-wide** identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. *Plant physiology* 2005, **138**(2):977-989.
- 52. Roberts MR, Foster GD, Blundell RP, Robinson SW, Kumar A, Draper J, Scott R: Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. *Plant J* 1993, **3**(1):111-120.
- 53. Mayfield JA, Fiebig A, Johnstone SE, Preuss D: Gene families from the Arabidopsis thaliana pollen coat proteome. *Science (New York, NY* 2001, 292(5526):2482-2485.
- 54. Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD: Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. *Plant physiology* 2005, **138**(4):2097-2110.
- 55. Bowman JL, Smyth DR, Meyerowitz EM: Genes Directing Flower Development in Arabidopsis. In., vol. 1; 1989: 37-52.
- Sakai H, Medrano LJ, Meyerowitz EM: Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. *Nature* 1995, 378(6553):199-203.
- 57. Jack T, Fox GL, Meyerowitz EM: Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. *Cell* 1994, **76**(4):703-716.

- 58. Mlotshwa S, Yang Z, Kim Y, Chen X: Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. *Plant molecular biology* 2006, **61**(4-5):781-793.
- 59. Singh S, Sawhney V: Abscisic acid in a male sterile tomato mutant and its regulation by low temperature. In., vol. 49; 1998: 199-203.
- 60. Seo TS, Bai X, Kim DH, Meng Q, Shi S, Ruparel H, Li Z, Turro NJ, Ju J: Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. In., vol. 102; 2005: 5926-5931.

Appendix

ACCESSIONS WITH MPSS DETERMINED SEPAL/ PERIANTH LOCALIZED EXPRESSION								
At1g20770	At3g55560	At3g09760	At2g24750	At3g19180	At2g22890	At1g51090	At3g12890	
At1g26560	At1g65800	At3g08670	At3g19460	At1g11260	At1g69950	At2g41190	At5g39890	
At4g24490	At5g44870	At4g29750	At3g60965	At4g10420	At1g24265	At3g05390	At5g65420	
At3g59680	At4g08160	At1g77320	At5g46330	At1g22180	At3g10150	At4g27040	At1g21890	
At5g04895	At4g35270	At4g37560	At5g48040	At1g47330	At5g09980	At1g53030	At5g08340	
At3g25130	At1g22400	At1g26290	At1g03510	At4g29610	At2g35710	At1g06020	At5g10790	
At3g52900	At1g51520	At3g06550	At2g22100	At2g38730	At2g18990	At3g21640	At5g18840	
At2g46780	At3g23450	At5g45730	At2g36080	At5g57785	At4g18980	At1g21370	At1g30260	
At5g62730	At1g62950	At1g74090	At1g05760	At3g06420	At1g54160	At4g11480	At2g26100	
At1g20490	At4g32450	At1g77690	At1g59620	At1g56460	At4g09900	At4g15240	At2g26550	
At4g10060	At2g33250	At4g20770	At3g52820	At1g06475	At4g27652	At4g31370	At2g29720	
At1g68660	At2g46870	At4g21320	At4g32200	At3g49110	At3g12030	At5g37690	At3g29670	
At4g35350	At5g49215	At5g03720	At4g32870	At2g22390	At3g53810	At1g16445	At4g19150	
At2g39910	At4g36270	At5g58940	At5g53500	At1g77870	At3g56410	At2g01275	At1g20880	
At4g23330	At2g41370	At1g05310	At5g56840	At4g14490	At3g23430	At3g59080	At1g50510	
At4g33690	At5g58340	At1g76560	At5g61250	At5g37740	At5g65860	At4g08180	At1g21240	
At1g65480	At4g21420	At3g53100	At5g66020	At1g12260	At2g33560	At4g21323	At2g22530	
At4g36550	At2g47820	At1g10730	At1g47270	At4g31010	At2g32800	At4g08960	At1g18810	
At4g28630	At3g03520	At1g32800	At1g70500	At3g17070	At5g66290	At3g22370	At3g50625	
At2g40260	At4g39750	At1g55970	At3g02500	At1g69260	At1g32860	At4g09180	At3g07040	
At2g20710	At5g37630	At4g17170	At3g03350	At5g44930	At4g26180	At4g15120	At1g79430	
At4g31040	At1g01840	At5g57830	At3g22450	At1g09800	At5g67370	At5g11540	At3g58940	

ACCESSION	NS WITH MP	SS DETERMI	NED NON-O	VULE GYNO	ECIA LOCALI	ZED EXPRES	SION
At1g13970	At1g74480	At3g56330	At4g19990	At1g47890	At2g01735	At3g09310	At3g19220
At3g57170	At4g29380	At5g17660	At4g24700	At1g64570	At2g14370	At3g17609	At3g23740
At1g07370	At5g11410	At1g04250	At4g25160	At1g67210	At2g22850	At3g20475	At3g28570
At3g56290	At1g38230	At3g01890	At4g25940	At1g67470	At2g35420	At3g50900	At3g44940
At1g74710	At1g38300	At4g26770	At4g31450	At1g79540	At3g03480	At3g55090	At3g49860
At3g58850	At1g55040	At4g39380	At5g05460	At2g10180	At3g10680	At3g58720	At3g54120
At5g59810	At2g28510	At1g09190	At5g40470	At2g30160	At3g62690	At4g01720	At3g57910
At5g62470	At2g31600	At1g09930	At5g63880	At2g30505	At4g04245	At4g06648	At3g63180
At3g03670	At3g02860	At1g11050	At1g07330	At2g44510	At4g10400	At4g18590	At4g18340
At4g23990	At3g52390	At1g33790	At1g28350	At2g44745	At4g26580	At4g26560	At4g21270
At2g36810	At3g59000	At1g62310	At1g35830	At2g45320	At5g01580	At5g04760	At4g23370
At5g25000	At4g33495	At2g03505	At1g50560	At3g06145	At5g04310	At5g06390	At4g26260
At3g55660	At5g42860	At2g25260	At1g64180	At3g11090	At5g11600	At5g08230	At5g01680
At5g18510	At1g09415	At2g47680	At1g65190	At3g26640	At5g16840	At5g17590	At5g10420
At5g17070	At1g69330	At3g07670	At1g75130	At4g13900	At5g18780	At5g20930	At5g16230
At2g19930	At2g37360	At3g13662	At1g78440	At4g17340	At5g22750	At5g57320	At5g18030
At3g49750	At3g05790	At3g27580	At2g03060	At4g24265	At5g38895	At5g65040	At5g27140
At2g19720	At5g51880	At3g63370	At2g15630	At4g26790	At5g48920	At1g10050	At5g28650
At3g17420	At1g04660	At4g00260	At2g25600	At5g01170	At5g54740	At1g23150	At5g39080
At1g35290	At1g36590	At4g01020	At2g34700	At5g07130	At5g55380	At1g24400	At5g46590
At2g31190	At2g31530	At4g32790	At3g10415	At5g11460	At5g59305	At1g32630	At5g49890
At4g31620	At2g42890	At4g37390	At3g45160	At5g18740	At5g67210	At1g34060	At5g51210
At5g02430	At2g43920	At4g38180	At3g47570	At5g22370	At1g08050	At1g54215	At5g52580
At1g28130	At3g05780	At4g39230	At3g54790	At5g63970	At1g11420	At1g62710	At5g53730
At1g53200	At3g09720	At5g13830	At3g59330	At1g05410	At1g15870	At1g62720	At5g58460
At5g57780	At3g11970	At1g62030	At3g61360	At1g14580	At1g21500	At1g64580	At5g60660
At1g64500	At3g50410	At1g80240	At4g22920	At1g21710	At1g31190	At1g68725	At5g60950
At1g76110	At5g28415	At2g03350	At5g04980	At1g22000	At1g59850	At1g76390	At5g65687
At2g02120	At5g49580	At2g20650	At5g21960	At1g25360	At1g67180	At1g79890	At5g67060
At2g22570	At1g18270	At3g02160	At5g23060	At1g26920	At2g01340	At2g23660	
At3g16750	At1g55900	At3g11990	At5g27550	At1g27900	At2g02000	At2g24610	
At4g34400	At1g64960	At3g19920	At5g38130	At1g47370	At2g02010	At2g28830	
At5g02670	At1g67070	At3g33178	At1g04920	At1g47840	At2g41330	At2g30140	
At5g09490	At2g07787	At3g47580	At1g05060	At1g49940	At3g05360	At2g30420	
At5g13800	At2g38465	At3g47600	At1g31490	At1g70140	At3g06630	At3g15870	
At1g15825	At3g48090	At3g49790	At1g44414	At1g79400	At3g06640	At3g19190	

ACCESSIONS WITH MPSS DETERMINED OVULE AND GYNOECIA LOCALIZED EXPRESSION							
At3g20520	At5g47860	At1g58230	At4g16610	At5g60150	At3g57390	At3g53490	At3g14610
At1g18640	At1g07130	At5g61740	At1g22985	At3g06240	At1g61500	At4g11160	At2g06645
At4g27860	At5g56610	At4g08510	At3g11640	At3g06020	At3g56360	At1g02370	At3g20570
At1g19170	At5g09370	At1g74180	At4g06658	At5g04270	At2g18500	At5g11350	At1g63020
At3g29160	At1g46264	At2g47780	At1g60180	At1g16170	At4g00231	At3g11240	At4g34138
At4g14420	At5g13360	At5g28360	At2g42830	At3g46430	At5g66960	At5g28830	At3g26920
At3g24230	At5g13370	At4g10265	At5g51795	At2g30250	At1g63270	At1g09420	At5g04530
At4g04620	At1g76405	At5g55330	At3g01710	At3g12530	At1g73370	At3g10180	At5g52950
At4g14130	At4g14713	At4g26965	At1g16330	At3g50910	At1g03410	At3g05240	At1g08960
At3g13224	At2g23300	At5g11310	At1g16260	At1g65900	At3g13740	At1g59980	At1g14190
At5g28290	At3g58800	At1g05750	At5g53900	At3g49350	At3g18010	At1g48390	At1g63860
At2g46830	At4g18530	At3g19440	At5g40150	At4g17270	At1g11760	At1g73480	At3g15340
At3g48240	At5g42700	At1g70250	At3g51030	At1g11900	At2g42450	At1g06800	At5g19080
At1g19240	At1g77500	At5g65140	At3g20920	At5g38860	At1g13195	At5g08200	At1g16490
At3g10390	At5g03050	At2g19780	At5g61980	At5g08720	At3g16330	At5g44440	At1g67970
At5g09710	At3g27470	At3g06390	At4g32970	At3g21500	At1g70530	At1g49910	At2g23100
At3g12690	At5g67580	At4g24175	At5g66500	At3g30720	At3g19510	At3g60660	At5g22110
At2g42710	At1g23550	miR166b	At5g40380	At5g61460	At1g07170	At2g25210	At5g46470
At3g63010	At5g58920	At3g52760	At1g48570	At1g02670	At2g14520	At1g16640	At5g49320
At5g03530	At3g49660	At1g23860	At3g21270	At3g25670	At2g27340	At3g63510	At5g54090
At5g25470	At1g26210	At2g25740	At4g02360	At5g63100	At2g37070	At5g08390	At2g31130
At2g24350	At1g51740	At2g38620	At5g07890	At1g05030	At3g01610	At5g23210	At3g24225
At1g64520	At3g07525	At2g45280	At1g13450	At5g55620	At5g18950	At1g53785	At2g37290
At1g20350	At4g28560	At5g47370	At2g22610	At2g38290	At4g17760	At3g17340	At3g56080
At5g67150	At3g55300	At1g31140	At3g63270	At5g56720	At1g08020	At5g20070	At3g58770
At2g40410	At5g28622	At5g66380	At5g15150	At5g56730	At1g49870	At3g07090	At4g19650
At4g32690	At2g24450	At4g00760	At4g00030	At5g06410	At3g11430	At5g47510	At5g22200
At2g25010	At5g27970	At1g17590	At5g54890	At1g53490	At4g39640	At1g16570	
At2g35310	At1g07370	At3g47420	At4g25120	At1g78940	At1g34300	At2g25690	

ACCESSION	NS WITH MP	SS DETERMI	NED STAME	N LOCALIZED	EXPRESSIO	N	
At1g75940	At2g16910	At5g06839	At2g20210	At5g03090	At5g44300	At1g23660	At4g30060
At3g25050	At2g23170	At1g03620	At3g44820	At5g13150	At5g59370	At1g27860	At5g03000
At5g62080	At4g10850	At1g27690	At3g46120	AtCg00070	At2g13570	At1g30800	At5g03480
At4g28395	At5g48210	At2g22950	At5g23520	At1g07350	At2g39380	At1g32250	At5g04600
At1g75930	At1g73220	At2g33460	At1g08150	At1g48590	At3g27325	At1g54870	At5g10900
At1g20130	At4g35010	At2g46770	At1g26320	At2g37730	At4g23270	At1g74020	At5g20470
At3g13400	At4g28090	At1g30020	At2g32460	At3g17060	At4g39130	At2g14100	At5g20680
At4g14080	At3g63100	At1g31720	At4g18920	At4g27580	At5g01370	At2g18260	At5g23190
At1g27710	At3g02920	At2g40116	At5g24240	At4g32510	At5g38760	At2g23510	At5g38450
At1g06260	At5g08030	At4g01430	At1g30780	At4g37410	At5g52360	At2g26490	At5g41620
At3g28830	At1g48470	At3g03430	At1g44190	At1g11340	At5g60250	At3g07530	At5g44400
At2g03740	At1g50310	At1g23650	At2g03450	At1g14700	At1g11770	At3g10590	At5g45300
At2g03850	At3g28820	At2g46570	At2g13680	At1g20150	At1g11930	At3g49300	At5g53080
At3g51590	At5g43340	At3g21930	At3g01230	At1g23760	At1g17950	At4g13240	At5g53550
At1g47980	At1g29140	At3g56440	At3g03110	At1g51405	At1g29590	At4g32030	At5g54570
At1g61070	At2g03860	At4g34135	At3g03540	At1g54450	At1g29980	At4g34740	At5g56110
At1g74550	At1g28430	At3g62640	At3g26125	At1g66460	At2g01022	At4g35030	At5g60760
At5g60500	At2g03200	At1g27850	At3g57620	At1g73020	At3g27025	At4g35900	At5g66070
At4g14815	At3g15830	At4g29880	At4g25780	At2g18340	At3g04380	At5g01630	At5g66690
At1g28375	At4g31330	At5g07410	At5g07430	At2g28120	At3g17220	At5g01760	At1g02310
At5g07540	At5g07475	At3g28790	At5g60040	At2g30650	At4g27330	At5g23700	At1g08400
At1g23570	AtCg00370	At4g08670	At5g61930	At3g50800	At5g26060	At5g44280	At1g08860
At1g20120	At5g63550	At4g35540	At1g17470	At3g51490	At5g51350	At5g53010	At1g10160
At5g16920	At5g18290	At1g02040	At1g52570	At4g12410	At1g07850	At1g07476	At1g11740
At3g28780	At1g55570	At5g46940	At2g19770	At4g20460	At1g19180	At1g18180	At1g15350
At5g61720	At5g59845	At1g09320	At5g62750	At4g33970	At1g70690	At1g29550	At1g22110
At2g23800	At3g08900	At2g33775	At1g43800	At4g35380	At1g72960	At1g32450	At1g60260
At4g13560	At1g04670	At5g19610	At2g34655	At4g38650	At2g23810	At1g50120	At1g68340
At1g76470	At1g06990	At5g24460	At3g10130	At5g13130	At3g11050	At1g50810	At1g80190
At1g01280	At1g15460	At5g66610	At3g21970	At5g17620	At3g16760	At1g63930	At2g02380
At1g75920	At5g54010	At1g01150	AtMg00160	At5g24820	At3g18295	At1g76020	At2g17695
At5g26730	At4g13345	At1g28695	At1g60740	At5g65690	At3g27170	At1g76710	At2g19550
At3g52160	At4g02250	At3g29070	At1g78010	At1g11080	At3g57510	At1g78160	At2g30780
At5g07600	At1g25230	At3g50570	At2g29940	At1g23200	At3g63003	At2g02140	At3g08860
At1g69500	At3g05960	At1g69380	At2g32890	At1g23690	At4g01895	At2g23985	At3g10320
At1g30350	At3g52810	At2g45800	At3g09410	At1g74130	At4g10140	At2g27120	At3g15780

At4g34850	At1g23800	At5g07420	At3g18880	At1g80160	At4g12920	At2g28940	At3g20460
At1g61110	At1g75790	At1g23580	At3g50580	At2g16130	At4g18520	At2g31830	At3g48700
At2g16750	At1g26720	At1g78955	At3g52780	At2g26650	At4g32170	At2g36020	At3g52460
ACCESSION	NS WITH MP	SS DETERMI	NED STAME	N LOCALIZED	EXPRESSIO	N CONT'D	
At1g13150	At3g01240	At5g62320	At4g18550	At3g03760	At4g38390	At2g42870	At3g60780
At3g11980	At5g14980	At1g23670	At5g47000	At3g23460	At5g16500	At2g47550	At3g61450
At4g20670	At3g22740	At2g46860	At5g61340	At3g25060	At5g19930	At3g03080	At3g62710
At1g54860	AtCg00680	At3g19390	At5g61605	At3g61230	At5g36260	At3g04690	At4g04830
At3g59510	At3g21960	At3g43120	At1g15415	At4g01230	At1g02900	At3g05610	At4g19090
At4g18190	At4g33355	At4g19620	At1g18120	At5g10080	At1g47510	At3g16410	At4g21740
At5g14380	At2g46880	At5g09500	At1g79910	At5g14670	At2g18420	At3g23210	At4g24640
At3g42960	At4g25040	At1g02520	At2g07040	At5g51060	At3g10890	At3g23770	At4g37690
At5g13380	At1g11920	At1g27720	At2g15340	At5g58320	At3g13780	At3g24450	At4g38050
At3g13390	At1g22760	At1g66810	At3g21990	At1g02470	At3g17980	At3g25225	At4g39670
At4g11760	At1g26480	At2g42940	At3g26110	At1g14760	At3g57950	At3g28770	At5g07870
At1g28700	At1g27660	At3g07830	At1g08320	At1g25330	At4g00390	At3g28960	At5g12970
At3g13220	At1g55560	At5g15110	At2g27180	At1g78895	At4g26830	At3g29040	At5g17500
At1g62940	At4g30040	At1g23630	At4g16460	At2g18470	At4g33770	At3g60100	At5g40670
At1g06280	At5g39880	At3g02555	AtCg01110	At3g18220	At5g03970	At4g00350	At5g41800
At1g71680	At1g52080	At2g29790	AtCg01280	At3g19090	At5g56300	At4g04930	
At5g40260	At4g34380	At2g37750	At1g76250	At3g25260	At1g07180	At4g07960	
At1g23240	At4g28580	At4g33000	At2g37090	At3g27050	At1g07795	At4g15380	
At5g58390	At5g50030	At5g44490	At4g04450	At3g43860	At1g17500	At4g19540	
At1g29720	At2g17950	At5g46720	At4g39070	At5g41130	At1g23620	At4g27300	
At5g66820	At5g63130	At5g57000	At5g56970	At5g54140	At5g54130	At5g50830	

ACCESSIONS WITH MPSS DETERMINED PETAL LOCALIZED EXPRESSION								
At3g14410	At3g04810	At4g01975	At1g25054	At2g12740	At5g50260	At3g05830	At3g44280	
At2g40150	At1g70680	At1g31750	At5g17780	At5g06850	At4g32560	At3g56870	At3g62890	
At1g53830	At3g06730	At4g29560	At5g05110	At1g14480	At2g39360	At1g09812	At5g14180	
At5g35935	At4g17430	At1g70270	At4g00950	At5g39680	At2g44170	At1g72100	At5g25810	
At2g07677	At3g62090	At2g24030	At2g38350	At5g60830	At4g18460	At2g22710	At1g50150	
At5g58350	At2g42360	At5g57190	At3g29642	At5g43530	At3g29380	At2g36220	At5g58050	
At1g12400	At3g24150	At1g77020	At4g38880	At2g41980	At1g26900	At4g13190	At3g20480	
At1g25530	At1g30060	At2g04850	At5g08185	At5g18160	At3g60220	At5g02930	At5g08600	
At3g43310	At2g36510	At1g12450	At5g38800	At5g57480	At1g58420	At5g43250	At5g50820	
At5g63350	At5g31927	At4g01200	At1g20210	At5g58630	At4g26420	At4g24630		
At4g27570	At5g48770	At1g56120	At3g28100	At1g26530	At2g32340	At4g30510		
At2g27220	At1g15210	At1g63740	At5g57390	At1g31470	At4g26680	At1g59885		

ACCESSION	IS WITH MP	SS DETERMI	NED PETAL-	STAMEN LOC	ALIZED EXP	RESSION	
At4g19120	At2g35030	At1g03770	At5g16630	At3g17310	At3g14760	AtMg00070	At3g01270
At3g13340	At1g11390	At1g06390	At4g10120	At3g16350	At4g36160	At3g57190	At3g28840
At1g05100	At3g28340	At1g21920	At1g19630	At4g37800	At3g56820	At5g57565	At3g57690
At1g55550	At4g39210	At2g28110	At1g65240	At5g12010	At3g19450	At1g21660	At3g62170
At1g72010	At5g38220	At5g13170	At3g10070	At2g31710	At4g39940	At3g55640	At3g28750
At3g11930	At5g48910	At5g20935	At3g50530	At1g13140	At1g10280	At1g24440	At1g61563
At2g18550	At3g28580	At1g19910	At4g12310	At2g18380	At5g49130	At1g34020	At1g71160
At1g75020	At3g44620	At1g22800	At4g20350	At4g31150	At1g19980	At2g21490	At2g31305
At2g45230	At5g18770	At2g26400	At5g10610	AtCg00580	At3g09560	At1g75030	At3g06940
At1g16705	At1g02380	At3g14590	At5g36220	At2g07560	At5g63090	At4g39390	At5g49840
At4g17680	At1g32340	At3g19040	At1g67310	At2g27490	At2g36460	At4g39870	At2g40850
At4g21720	At2g02910	At5g15440	At2g32840	At1g01590	At2g22190	At1g68540	At3g05165
At3g01720	At2g26580	At1g04310	At4g07400	At1g66850	At5g50390	At1g74790	At1g19640
At1g16750	At4g17750	At1g54560	AtCg00340	At3g05930	At3g59640	At5g14760	At1g18960
At5g55900	At3g55070	At4g23540	At1g80130	At3g51460	At2g19880	At5g52780	At5g47530
At5g17220	At4g25670	At2g35210	At5g15960	At3g23030	At4g13710	At2g25530	At4g13040
At2g16510	At4g32130	At5g57380	At1g47610	At5g38540	At3g04300	At1g80120	At1g62700
At3g14750	At2g21230	At1g31790	At4g17650	At4g36480	At1g52155	At1g01880	At5g35320
At5g52990	At3g12990	At3g19930	At3g24927	At1g70000	At5g43980	At3g51470	At1g56260
At1g11670	At3g19280	At3g28917	At3g04360	At1g75910	At4g32440	At1g77810	At3g27220
At3g26960	At3g07820	At4g15200	At1g49980	At3g07850	At2g15230	At1g73010	At5g11110
At3g18170	At3g42850	At5g21950	At5g03210	At3g28980	At2g34355	At4g25450	At5g61240
At2g47030	At1g11440	At5g43730	At2g46160	At1g53040	At3g17715	At5g05760	At1g22190
At5g11530	At5g23130	At1g03120	At5g66800	At5g10930	At1g69940	At3g21720	At3g09530
At3g27810	At1g20823	At1g26730	At3g09570	At3g15400	At1g02790	At3g12010	At5g59900
At1g05065	At1g09970	At2g35670	At1g64110	At1g68875	At1g02813	At1g16600	At1g02030
At1g78820	At3g27025	At3g14040	At1g72900	At5g31032	At1g52680	At5g42760	At3g53720
At4g03340	At5g20220	At2g47040	At2g19110	At1g20300	At2g02230	At4g37730	At1g15880
At1g73950	At1g08250	At3g21180	At2g23940	At1g70560	At2g35290	At1g22040	At5g61910
At1g07380	At2g04235	At4g30850	At2g42900	At5g38460	At3g06770	At3g20220	At1g06140
At1g22440	At3g55970	At2g22800	At1g02850	At3g12600	At1g56010	At4g12690	At1g17750
AtCg00350	At4g24580	At4g13230	At2g19340	At4g18640	At4g18630	At5g50100	At3g25180
At5g15950	At4g16670	At1g30290	At5g07530	At4g00905	At4g32770	At1g67990	
At1q79840	At5g36150	At1q03495	At5q07550	At2q43290	At4q17920	At2q19070	

ACCESSION	NS WITH MP	SS DETERMI	NED STAMEN	N-GYNOECIA	LOCALIZED	EXPRESSION	l l
At3g52130	At5g63160	At2g44850	At2g42005	At1g58807	At5g46620	At2g31240	At4g13840
At4g37900	At1g05440	At3g05690	At3g11660	At1g60700	At5g47310	At2g31955	At4g14455
At5g44540	At1g34355	At3g08505	At3g12100	At1g63680	At5g47740	At2g39630	At4g14730
At3g28345	At1g49750	At3g09480	At3g22410	At1g64740	At5g49960	At2g42040	At4g16695
At5g24420	At1g60790	At3g11480	At3g27770	At1g68030	At5g50740	At2g43430	At4g18250
At4g20050	At3g04820	At3g12143	At3g43210	At1g68900	At5g54780	At3g01530	At4g21170
At1g33430	At3g09890	At3g16150	At3g52200	At1g71210	At5g56450	At3g05650	At4g23430
At5g21150	At4g01700	At3g19020	At3g53370	At1g71330	At5g61060	At3g06620	At4g27630
At2g27600	At5g09240	At3g19980	At3g55080	At1g77310	At5g64880	At3g07960	At4g36260
At5g44380	At1g04000	At3g50110	At3g58490	At2g01540	At1g02340	At3g12000	At4g36930
At4g12960	At1g06450	At3g57920	At4g09140	At2g04340	At1g04190	At3g12930	At4g36970
At3g04230	At1g49410	At4g09960	At4g10470	At2g04550	At1g07010	At3g14740	At4g37020
At2g07690	At2g26240	At4g20780	At4g17010	At2g24170	At1g07490	At3g16175	At4g37190
At2g29570	At2g43610	At4g29140	At4g28200	At2g29910	At1g11350	At3g16220	At4g38000
At5g19580	At2g46290	At4g30990	At4g35910	At2g47310	At1g11780	At3g24320	At5g02440
At1g56110	At3g08880	At4g38980	At4g37760	At3g05160	At1g17940	At3g24860	At5g02502
At1g22015	At3g13190	At5g14310	At5g03800	At3g10530	At1g23100	At3g26300	At5g04860
At1g63180	At4g27740	At5g17760	At5g26040	At3g10670	At1g30200	At3g47990	At5g07660
At1g71770	At5g15850	At5g24330	At5g36210	At3g14130	At1g30420	At3g49270	At5g08270
At2g46260	At5g15880	At5g24790	At5g50350	At3g15354	At1g31010	At3g54130	At5g13820
At2g21140	At5g60050	At5g49070	At5g54650	At3g15850	At1g31460	At3g58040	At5g14000
At1g56360	At1g12730	At5g50230	At5g56270	At3g22880	At1g32260	At3g62880	At5g16340
At1g55140	At1g58110	At1g62010	At5g56580	At3g25805	At1g61360	At4g05110	At5g16450
At1g10470	At1g59740	At1g63130	At5g58110	At3g46460	At1g61580	At4g14190	At5g18490
At1g55960	At2g31810	At1g65840	At5g59400	At3g63250	At1g62420	At4g17260	At5g20330
At1g03630	At2g43090	At1g69550	At5g61070	At3g63290	At1g70505	At4g19960	At5g24360
At4g08460	At3g06100	At1g71697	At1g18420	At4g02110	At1g73500	At4g22780	At5g25500
At1g22730	At3g48040	At2g01930	At1g20550	At4g02195	At1g74780	At4g22970	At5g37070
At4g27420	At4g11860	At2g15400	At1g21730	At4g10380	At1g77010	At4g34060	At5g37310
At5g19250	At4g28706	At2g21560	At1g22940	At4g15890	At2g01440	At4g35640	At5g38820
At1g21980	At5g16390	At2g25300	At1g29800	At4g16770	At2g01755	At4g39010	At5g45540
At1g24310	At5g44660	At2g30820	At1g55830	At4g24570	At2g06830	At5g01450	At5g45580
At1g17730	At5g65205	At3g07440	At1g56720	At4g30700	At2g20410	At5g01800	At5g46510
At5g13550	At1g65070	At3g13380	At1g69520	At5g08660	At2g28570	At5g05710	At5g48610
At2g29400	At2g38270	At3g13445	At1g74390	At5g10370	At2g31725	At5g10650	At5g50315
At4g38370	At3g09730	At3g20280	At1g76260	At5g19170	At2g31870	At5g12310	At5g52450

At1g55805	At3g10405	At3g23560	At2g07180	At5g42360	At2g37560	At5g12920	At5g52960
At1g79780	At3g13225	At3g50750	At2g14910	At5g47490	At2g38950	At5g14150	At5g54390
At1g10970	At3g18215	At3g52090	At2g24190	At5g49680	At2g41560	At5g17530	At5g54470
ACCESSION	NS WITH MP	SS DETERMI	NED STAMEN	N-GYNOECIA	LOCALIZED	EXPRESSION	I CONT"D
At1g34340	At4g11360	At4g21550	At2g27800	At5g53190	At2g43250	At5g19480	At5g54930
At1g06520	At4g14770	At5g04770	At2g42490	At5g53540	At2g43520	At5g41860	At5g57590
At1g75050	At4g24670	At5g47780	At2g46140	At5g55830	At2g43840	At5g44020	At5g57970
At4g24390	At4g25240	At5g50370	At3g01810	At5g55950	At2g44460	At5g44320	At5g60370
At2g47485	At4g26500	At5g57345	At3g03060	At5g56130	At2g45480	At5g44630	At5g61300
At1g04550	At4g36680	At5g58480	At3g03680	At5g57240	At2g47560	At5g46260	At5g61580
At3g03910	At4g37490	At5g61040	At3g06790	At5g58580	At2g47800	At5g47590	At5g62140
At5g03430	At4g39950	At5g62900	At3g15300	At5g63950	At3g08720	At5g49180	At5g63580
At4g02570	At5g02530	At5g63180	At3g45590	At5g65300	At3g09032	At5g50200	At5g63960
At5g56190	At5g37300	AtCg00180	At3g45610	AtCg00460	At3g10330	At5g51630	At5g64510
miR420	At5g40570	AtCg00490	At3g46020	At1g01050	At3g11440	At5g59830	At5g67570
At1g77540	At5g44500	At1g07810	At3g46520	At1g18250	At3g20870	At5g60140	AtCg00360
At1g80660	At5g54690	At1g08630	At3g46950	At1g22830	At3g24000	At5g61570	At1g04240
At4g00300	At5g66590	At1g23900	At3g53000	At1g23780	At3g25430	At5g63610	At1g06490
At4g35070	At1g07240	At1g67800	At3g56930	At1g29680	At3g26840	At5g64980	At1g06560
At1g11870	At1g08260	At1g77760	At3g58620	At1g51640	At3g45020	At1g01290	At1g08800
At1g79260	At1g08930	At2g25590	At4g00050	At1g56590	At3g50870	At1g03300	At1g13290
At2g47500	At1g15080	At2g26980	At4g00150	At1g63170	At3g53180	At1g03850	At1g22790
At1g16560	At1g22750	At2g32590	At4g15490	At1g64530	At3g53390	At1g04230	At1g23830
At2g41680	At1g35140	At2g33150	At4g24880	At1g69290	At3g53860	At1g06650	At1g29530
At3g02420	At1g66520	At2g40400	At4g27510	At1g71750	At3g58120	At1g10270	At1g30475
At3g16270	At1g71360	At2g41990	At4g31770	At1g72980	At3g58530	At1g10490	At1g30890
At4g13630	At1g78810	At2g45690	At5g07000	At1g73850	At3g61620	At1g12580	At1g31770
At1g32780	At1g80150	At3g05040	At5g13960	At1g74210	At4g00310	At1g17145	At1g34460
At2g39210	At2g17033	At3g22990	At5g15120	At1g76400	At4g02520	At1g18265	At1g48040
At3g45640	At2g31350	At3g50270	At5g23430	At2g05160	At4g04760	At1g18440	At1g48880
At5g65020	At2g40330	At3g53270	At5g26670	At2g07723	At4g12390	At1g19485	At1g54340
At5g65520	At3g02270	At4g08700	At5g37875	At2g14900	At4g17050	At1g19970	At1g60690
At1g45145	At4g11190	At4g27370	At5g42765	At2g20320	At4g18040	At1g20370	At1g61970
At2g32260	At4g34540	At4g28680	At5g44785	At2g22470	At4g20740	At1g21270	At1g64060
At3g16290	At5g09310	At4g30870	At5g45470	At2g26060	At4g21410	At1g23420	At1g67170
At3g59480	At5g09740	At5g09730	At5g47070	At2g26180	At4g29100	At1g30080	At1g70510
At5g59120	At5g47540	At5g37440	At5g66550	At2g28605	At4g33360	At1g30500	At1g72560
At1g05010	At1g02970	At5g41400	AtCg00530	At2g30720	At4g36140	At1g33480	At1g73630
At1g18090	At1g03970	At5g42230	At1g03190	At2g31730	At5g04520	At1g33800	At2g14050
At1g73240	At1g08370	At5g55030	At1g04050	At2g36840	At5g09220	At1g43260	At2g15240
At5g05620	At1g32310	At5g58990	At1g07520	At2g37590	At5g09540	At1g43700	At2g17730
At5g28770	At1g53480	At5g63640	At1g07880	At2g38240	At5g11510	At1g50370	At2g20240
At5g59390	At1g55320	At1g07910	At1g09730	At2g40380	At5g18640	At1g51720	At2g20980
At5g46630	At1g55880	At1g14200	At1g19790	At2g40600	At5g23870	At1g53165	At2g23740
At1g19240	At1g66130	At1g23600	At1g23750	At2g42170	At5g24590	At1g54020	At2g25180
At2g15320	At1g72690	At1g24575	At1g63780	At2g43150	At5g26230	At1g65490	At2g25640
At2g25920	At2g30990	At1g71530	At1g66760	At2g45640	At5g27360	At1g69680	At2g27760
At1g22030	At2g36480	At1g72880	At1g72040	At2g46535	At5g37400	At1g71230	At2g32400
At1g22520	At2g37585	At1g73990	At1g76980	At2g47920	At5g38510	At1g71480	At2g32490

At1g44970	At3g50810	At1g76900	At2g03980	At3g03810	At5g38830	At1g73690	At2g35635
At1g61665	At3g52420	At2g22270	At2g22425	At3g06070	At5g39900	At2g04160	At2g37380
At2g37690	At3g58100	At2g29970	At2g24550	At3g08020	At5g48740	At2g07733	At2g39050
At1g28380	At4g00730	At2g44020	At2g35350	At3g14070	At5g49920	At2g21630	At2g41720
At1g72500	At4g23250	At3g07060	At2g47220	At3g15860	At5g52230	At2g28240	At2g42990
At3g06050	At4g31920	At3g12750	At3g07250	At3g18770	At5g53750	At2g33000	At2g47890
ACCESSION	NS WITH MP	SS DETERMI	NED STAMEN	N-GYNOECIA	LOCALIZED	EXPRESSION	I CONT'D
At3g26140	At5g08780	At3g20170	At3g08560	At3g18773	At5g55560	At2g33320	At2g48010
At1g13570	At5g10170	At3g48210	At3g19080	At3g21240	At5g59410	At2g34930	At3g02070
At1g60800	At5g47420	At3g57350	At3g19130	At3g26670	At5g64160	At2g37890	At3g03320
At2g23060	At5g54110	At4g14560	At3g20150	At3g27030	At5g65110	At2g39300	At3g04680
At3g17360	At5g54310	At4g29530	At3g26080	At3g45940	At1g03110	At2g39660	At3g13672
At3g61690	At1g05600	At4g35180	At3g52660	At3g52430	At1g05480	At2g41945	At3g13890
At5g56090	At1g11220	At5g04090	At3g56680	At3g54180	At1g05900	At2g44740	At3g18970
At2g31220	At1g27150	At5g19350	At3g57070	At3g57530	At1g08340	At2g46440	At3g19480
At2g45490	At1g53760	At5g25510	At3g60110	At3g58470	At1g08465	At3g03580	At3g25030
At3g60260	At1g60930	At5g35700	At3g62220	At4g01490	At1g09300	At3g05190	At3g27550
At4g29330	At1g72290	At5g45250	At4g00525	At4g11630	At1g14687	At3g14620	At3g48350
At5g26770	At1g75140	At5g48440	At4g16960	At4g16900	At1g16550	At3g16010	At3g49180
At5g57410	At1g76120	At5g53650	At4g17880	At4g18950	At1g17640	At3g16510	At3g62270
At1g16890	At1g78700	At5g56380	At4g32400	At4g20140	At1g19300	At3g18800	At3g62810
At4g09750	At2g04660	At1g19050	At4g35290	At4g26370	At1g22960	At3g21740	At3g63480
At5g65650	At2g24830	At1g20610	At5g01015	At4g28700	At1g24350	At3g21770	At4g08900
At1g70570	At2g31380	At1g28280	At5g04590	At4g31310	At1g25500	At3g25620	At4g10810
At3g08850	At2g46210	At1g49350	At5g16890	At4g31780	At1g28960	At3g26360	At4g13650
At4g37650	At3g03650	At1g53020	At5g28350	At4g39110	At1g29750	At3g27230	At4g15160
At5g18525	At3g04890	At1g55150	At5g45750	At4g39270	At1g34540	At3g44360	At4g19140
At5g64760	At3g07580	At1g66510	At5g47940	At4g39620	At1g49400	At3g44480	At4g19220
At1g06170	At3g13910	At1g70550	At5g62600	At5g04250	At1g49660	At3g46110	At4g23170
At1g65970	At3g14870	At1g73210	At5g62960	At5g05970	At1g58520	At3g48120	At4g23900
At2g43240	At3g50280	At1g74530	At5g66130	At5g07810	At1g63390	At3g53240	At4g25000
At2g44410	At4g12340	At1g75230	At5g67540	At5g07910	At1g68580	At3g53510	At4g26390
At3g63440	At4g19870	At1g76740	At1g02010	At5g15070	At1g69545	At3g54140	At4g32360
At4g06634	At5g13700	At1g80270	At1g08490	At5g15600	At1g74055	At3g55060	At4g38480
At5g01700	At5g16820	At2g01620	At1g09870	At5g18240	At2g01650	At3g59470	At5g13920
At1g30835	At5g21090	At2g11140	At1g13030	At5g18310	At2g02790	At4g00170	At5g20580
At1g71270	At5g24530	At2g23610	At1g16540	At5g22830	At2g06000	At4g01670	At5g43750
At1g72320	At5g43790	At2g26710	At1g19220	At5g23550	At2g06845	At4g03110	At5g46390
At4g16444	At5g51970	At2g27030	At1g26260	At5g27380	At2g12490	At4g04180	At5g51810
At4g19180	At5g54670	At2g30920	At1g33560	At5g27830	At2g16400	At4g09920	At5g57735
At5g02540	AtCg00450	At2g33850	At1g44740	At5g41740	At2g16570	At4g10110	At5g61540
At5g05350	At1g08710	At2g36145	At1g50910	At5g42400	At2g27330	At4g12710	At5g62020
At5g20710	At1g26310	At2g40690	At1g56180	At5g45350	At2g30330	At4g12760	At5g67240