Ocular dominance development revisited
Justin C Crowley and Lawrence C Katz*

New approaches to the study of ocular dominance development, a model system for the development of neural architecture, indicate that eye-specific columns in primary visual cortex emerge substantially before the onset of the critical period, during which neural connections can be altered by visual experience. The timing, speed and specificity of column emergence implicate molecular patterning mechanisms, along with patterns of neural activity, in the generation of this columnar architecture.

Address
Howard Hughes Medical Institute and Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, North Carolina 27710, USA
*e-mail: lary@neuro.duke.edu

0959-4388/02/$ — see front matter © 2002 Elsevier Science Ltd. All rights reserved.

Abbreviations
LGN lateral geniculate nucleus
P postnatal day
V1 primary visual cortex

Introduction
Ocular dominance column formation and plasticity in primary visual cortex (V1) have long been thought to rely on activity-dependent competition between thalamic afferents representing the two eyes. This hypothesis was largely based on data from anatomical studies, employing transneuronally transported tracers [1–5]. However, improvements in anatomical and physiological techniques over the past decade suggest that the development of ocular dominance columns involves two phases: an initial establishment phase that may utilize innate signals and a later, plastic phase, corresponding to the critical period, that relies on patterned neural activity. Although most experimental approaches have focused on activity-related events during the critical period, new experiments will be required to determine the nature of the signals involved in the initial establishment of cortical structures. This review summarises the evidence that the establishment and plasticity of ocular dominance columns may be temporally and mechanistically distinct developmental events.

A brief history of ocular dominance column development
Hubel and Wiesel initially described ocular dominance columns — the organization of binocular responses familiar to most neurobiologists — in the early 1960s, on the basis of electrophysiological recordings in cat V1 [6]. They noted that neurons differed in the extent to which they were activated by each of the two eyes — the physiological property of ocular dominance — and that cells with similar eye preference were grouped together into columns. The ocularity of these columns was dictated by the pattern of eye-specific lateral geniculate nucleus (LGN) afferents innervating layer 4 of V1 [7,8]. Subsequently, it became possible to visualize ocular dominance columns, with the use of transneuronal transport of tritiated amino acids, such as proline (and later, sugars), injected into one of the eyes [1–5].

The organization of V1 into eye-specific columns was soon found to respond to alterations in visual experience. Monocular eye closure during the first months of life — the 'critical period' — led to a marked decline in the numbers of cells even partially activated by the closed eye, and dramatic increases in the number of neurons responding exclusively to stimulation through the open eye [9–11]. Transneuronal transport experiments revealed that these physiological changes were accompanied by corresponding anatomical changes, in which the size of the deprived eye columns was reduced and the size of the non-deprived eye columns expanded [4,5,12]. Thus, the termination patterns of axons arising from the eye-specific layers of the LGN correlated well with the physiological properties of cortical neurons following both normal and experimental rearing conditions. Recent data suggest that this relationship between anatomy and physiology in animals with experimentally manipulated visual experience may be initiated in layers 2 and 3 of V1 [13**,14]. But how do ocular dominance columns initially form? What mechanisms organize this cortical structure?

Separating establishment and plasticity: timing
There is now an emerging consensus that the initial establishment of ocular dominance columns takes place considerably before the critical period. In macaque monkeys, the basic anatomical structure of segregated LGN afferents in V1 is laid out well before birth [15,16]. Moreover, both anatomical ocular dominance segregation and physiological segregation are fully mature by birth [17,18]. Because the critical period for ocular dominance plasticity does not, by definition, begin until the onset of visual experience, critical period plasticity, strictly defined, cannot account for the initial instantiation of ocular dominance columns.

Recent data from the ferret indicate an even clearer distinction between the establishment of ocular dominance columns and the critical period. Following direct LGN injections of anterograde tracers — rather than transneuronal transport of label from eye injections — ocular dominance segregation is observed in the ferret within a week following the arrival of LGN axons in layer 4 (at postnatal day [P] 16; Figure 1) [19**]. This is at least three weeks before transneuronal tracing reveals columns (P36-37) [20,21], and well before the onset of the critical period in the ferret, which begins at about P33 [22].
recordings from the cortex of awake, behaving P22-28 ferrets have revealed patches of correlated activity that may correspond to ocular dominance columns or clustered horizontal connections [23**, suggesting that these early formed columns have a physiological correlate.

In developing cat cortex, it is also now evident that columns develop before the critical period. Using improved transneuronal tracing techniques and 2-deoxyglucose labeling, columns have been observed as early as P14 [24,25,26*], about a week before the onset of the critical period [27]. Because these findings relied on transneuronal transport, there is the possibility that in cats, as in ferrets, columns might emerge substantially earlier. Early studies of ocular dominance development recognized the difficulty associated with transneuronal transport labeling in the very young animals: the label tends to ‘spill over’ into inappropriate LGN layers. This problem may account for differences observed between transneuronal transport and direct LGN injection experiments.

In contrast to the original idea that column formation was a protracted process, it now appears that, in both cats and ferrets, columns emerge rapidly. In ferrets, LGN axons in V1 begin to enter the cortical plate at P10. At this age, these axons are sparse and simple (JC Crowley, LC Katz, unpublished data). In less than a week, clearly differentiated, eye-specific patches are apparent (Figure 2). This greatly attenuates the window for exuberant growth of axon arbors followed by retraction, and seems more consistent with selective elaboration of arbors into appropriate columns, similar to that observed in the development of eye-specific layers in the LGN [28]. Thus, development is relatively rapid and precise; it occurs before the retina (or the cortex) responds to visual stimulation, before layer 2/3 circuitry is in place and, as in the monkey, before the onset of the critical period [22].
patterns of activity are also present in the prenatal mammalian
In addition to visually driven retinal activity, endogenous pat-
ocortical system, in the establishment of columns.

the initial establishment of ocular dominance columns, along
the subsequent critical period. The speed and specificity of
imply, albeit indirectly, that the establishment of ocular
eye inputs to overcome their initial disadvantage. These data
nance columns [24], as some factor must permit ipsilateral
of the critical period [22], but after LGN axons have arrived
V1 layer 4 neurons receive axons with an oriented spatial bias
Spatial frequency
site

Cytochrome oxidase blobs

K cells: a neurochemically distinct population of LGN neurons that form
a physiologically discrete channel in the geniculocortical projection.

<table>
<thead>
<tr>
<th>Feature map</th>
<th>Relationship to LG N axons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinotopy</td>
<td>Spatial structure of environment is mirrored in retina, LG N and V1</td>
</tr>
<tr>
<td>Ocular dominance</td>
<td>Eye-specific LG N layers project to eye-specific patches in layer 4 of V1</td>
</tr>
<tr>
<td>Orientation</td>
<td>V1 layer 4 neurons receive axons with an oriented spatial bias</td>
</tr>
<tr>
<td>Spatial frequency</td>
<td>May result from variation in the population (magnocellular versus parvocellular) of LG N axons at a V1 site</td>
</tr>
<tr>
<td>Cytchrome oxidase blobs</td>
<td>Correlated with LG N K cell innervation in V1 layers 2 and 3</td>
</tr>
</tbody>
</table>

Table 1

V1 features related to the structure of the geniculocortical projection.

Separating establishment and plasticity: mechanisms

In the most straightforward models of activity-based
competition, afferents representing the two eyes compete
with one another, on the basis of their ability to activate layer
4 cells. The starting point for this competition is assumed to
be an equal representation of the two eyes and their roughly
equivalent ability to activate postsynaptic neurons [29].
However, recent findings suggest that, before the critical
period, the inputs from the two eyes may not be equivalent.
Optical imaging of intrinsic signals in kittens revealed a
strong bias towards the contralateral eye’s inputs in the visu-
al cortex, before the onset of the critical period. On the basis
of conventional hypotheses of ocular dominance segregation
resulting from Hebbian competition, this dominant con-
tralateral innervation should prevent subsequent insertion of
an ipsilateral columnar system, but this is not the case. In
addition, short term monoculcular enucleation prior to the onset
of the critical period [22], but after LGN axons have arrived
in V1 layer 4, does not cause a corresponding change in the
sizes of ocular dominance columns [19**]. This suggests that
eye-specific axons are refractory to imbalances in activity
that later, during the critical period, will produce profound
morphological changes. Thus, non-Hebbian mechanisms
may be involved in the initial generation of ocular domi-
nance columns [24], as some factor must permit ipsilateral
eye inputs to overcome their initial disadvantage. These data
imply, albeit indirectly, that the establishment of ocular
dominance segregation relies on different mechanisms than
the subsequent critical period. The speed and specificity of
the initial establishment of ocular dominance columns, along
with their resistance to manipulations of retinal input, may
implicate molecular cues, intrinsic to the developing thalam-
ocortical system, in the establishment of columns.

In addition to visually driven retinal activity, endogenous pat-
terns of activity are also present in the prenatal mammalian
retina. Retinal waves, the endogenous patterned activity
occurring in the normal developing retina before the onset of
vision [30–33], meet many of the theoretical requirements for
the establishment of circuitry in the visual system [34].

Visual stimulation clearly affects the structure of ocular
dominance columns during the critical period, and this
period of plasticity corresponds to the time that ocular
dominance columns first become visible using transneuronal
transport labeling [4]. Because activity driven by retinal
stimulation can pattern LGN axons and ocular dominance
columns, and the critical period coincided with the time
that transneuronally transported tracers demonstrated
segregation, it was reasonable to hypothesize that the
mechanisms underlying both developmental events were
the same [4,5,12]. Thus, a single parsimonious hypothesis
was able to explain both the well-described phenomenon
of ocular dominance plasticity and the initial organization
of eye-specific afferents into discrete columns.

However, ocular dominance columns do not develop in a
vacuum, but are constrained by several other features of
cortical organization. Ocular dominance columns are related
to a variety of columnar systems, as well as to the map of
visual space. Some of the most striking features of V1
organization, such as retinotopy, ocularity, orientation, direc-
tion, spatial frequency, and cytochrome oxidase rich blobs,
are spatially organized. Like ocular dominance columns,
many of these maps arise, in part, from the pattern of LGN
axons in V1 (Table 1), and are related to the pattern of
ocular dominance columns. For example, there are clear
relationships between the map of visual space (i.e. retino-
opy) and ocular dominance columns [38]. Retinotopy in
many visual system structures is likely to arise from chemi-
cal gradients in afferents and target structures [39,40]. Thus,
at some level, columnar patterns must also be constrained
by such cues. In contrast to retinotopy, ocular dominance
development has been viewed largely as an outcome of
activity-dependent competition [4,29,34,41,42]. Yet, if maps
generated by molecular mechanisms are aligned with ocular
dominance columns, some mechanism(s) must be in place
to bring these maps in register; LGN axons must obey a number of rules simultaneously. It has been suggested that the tangential pattern of ocular dominance columns optimizes cortical processing of binocular responses [43]; this would imply that a pattern present prior to birth [15,16,18] anticipates visual experience, rather than being patterned by it. Such anticipatory development seems more consistent with an innate set of map relationships.

Conclusions and future directions

Until recently, there has been little experimental foundation for the idea that the establishment and plasticity of ocular dominance columns may rely on different mechanisms [44]. Consequently, few experiments have been designed to directly search for evidence of other patterning signals. If molecular patterning is involved in forming ocular dominance columns, new types of investigations, in addition to manipulations of activity, will be required. For example, an examination of the structure of V1 maps in identical twin animals could yield important structural correlations between the maps of animals with identical genetic backgrounds (although the value of such experiments has been questioned [45]). Through the comparison of human monozygotic and dizygotic twins and unrelated subjects, a recent report has demonstrated strong genetic influences on the structure and formation of neocortical gray matter [46]. The similarities and/or differences between such maps could lead to a better understanding of the types of cues involved in generating cortical maps, such as ocular dominance columns. To date, no evidence has shown that V1 maps in the two hemispheres of individual animals are mirror images of each other, but similarities in map structure do exist between the hemispheres of individuals [47–50] and common genetically based patterning forces should yield commonalities in map structure. Such potential relationships in V1 map structure have been examined using ‘wavelet analysis’ to extract multiple spatial features of cyclic cortical maps for comparison and analysis [49,50,51•]. This represents a substantial improvement over previous studies that have relied on more rudimentary analyses of column size and spacing.

Another important area of future research concerns the relationships between different V1 maps. As mentioned above, the geniculo-cortical projection is closely associated with several V1 maps (Table 1). Many different structural relationships have been observed between a variety of map combinations, including ocular dominance and retinotopy (see above), ocular dominance and orientation [3,52–56], and cytochrome oxidase staining and ocular dominance [57–60]. It has been argued that such relationships are optimized for the coverage of stimulus features [3,61•,62]. Because feature maps constrain each other, a closer examination of the nature of map relationships and their development may yield insights into the mechanisms that generate ocular dominance columns and other maps.

In addition, an explicit search for patterning molecules in the visual system seems warranted. The Eph family of receptor protein tyrosine kinases has been directly implicated in topographic mapping in the mammalian central nervous system, and has been shown to affect the sizes of modular structures in the somatosensory system [63]. Additional signaling systems, as yet unknown, are also likely to be present. As microarray and differential display technologies improve, patterning molecules that could play a role in the generation of ocular dominance segregation may be identified. Left and right eye columns actually arise from different layers of the same LGN; these layers can be thought of as specific for either nasal or temporal retina, rather than for the left or right eye (Figure 2) [64]. Cues involved in constructing this dichotomy in the retina may be reflected in more central structures, such as the visual cortex.

The suggestion that molecular mechanisms may play a significant role in the establishment of ocular dominance columns does not exclude a pivotal developmental role for neural activity. Patterns of activity could participate in the instruction of V1 organization, or activity patterns could provide essential cues for normal patterns of gene expression [34,44,65•]. Finally, previous observations on the role of the subplate in the development of ocular dominance columns [66] have taken on renewed importance, as the establishment of ocular dominance columns has been found to occur just after the time that LGN axons reside in the subplate.

Acknowledgements

Our work is supported by the National Eye Institute (EY07690).

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Development

The authors employ intrinsic signal optical imaging to determine that reorganizations associated with ocular dominance plasticity occur first in the supragranular layers of V1. These data suggest that layers 2 and 3 of V1 are key players in plastic changes associated with sensory experience.

19. Crowley JC, Katz LC: Early development of ocular dominance columns. Science 2000, 290:1321-1324. Here, we use a novel anatomical approach to reveal developing ocular dominance columns, the direct injection of eye-specific LGN layers. This method demonstrates that segregation of ocular dominance columns occurs well before the critical period.

41. Stryker MP, Harris WA: Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci 1986, 6:2117-2133.

51. Kaschube M, Wolf F, Giese T, Löwel S: Quantifying the variability of orientation domains in the visual cortex of cats. Neurocomputing 2000, 32:415-423. The authors of this paper describe a modern analytical approach to examine similarities between cortical maps. ‘Wavelet analysis’ extracts several parameters that can characterize the structure of a mapped feature within a cortical area. This publication applies the technique to orientation domains,
but it has also been applied to the structure of ocular dominance columns in preliminary reports [49,50].

The authors of this paper use optical imaging of intrinsic signals to determine the structure of the maps of ocular dominance, orientation and spatial frequency in the visual cortices of individual cats. They find that the spatial relationships between these maps are optimized for uniform coverage of these features. On the basis of these data, the authors argue that the optimization of coverage is an important constraint in the development of maps in V1.

The authors use two-photon imaging to describe waves of calcium fluctuations in the developing rat cortex. They argue that such patterns of calcium-mediated activity may support a wide variety of developmental events including gene expression, process outgrowth and the synchronization of development over large cortical regions.