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Control of neurogenesis - lessons from frogs, fish and flies

Ajay B Chitnis

Two types of genes activated by neural inducers have been
identified, those that lead to the activation of proneural genes
and those that limit the activity of these genes to specific
domains in the neural plate. The analysis of these genes has
begun to fill gaps in our understanding of events that lead from
neural induction to the generation of neurons within three
longitudinal columns in the Xenopus and zebrafish neural plate.
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Abbreviations

BMP bone morphogenetic protein
EGF epidermal growth factor
FGF fibroblast growth factor

oep one-eyed pinhead

sbn somitabun
snh snailhouse
swr swirl
Introduction

The analysis of ecarly neurogenesis in Xenopus and
zebrafish embryos has revealed the remarkable conserva-
tion between vertebrates and invertebrates of molecular
mechanisms by which cells in the ectoderm adopt a neur-
al fate (reviewed in [1]) and by which cells within the
neuroectoderm are selected to become neurons (reviewed
in [2]). Neural inducers such as chordin, follistatin and
noggin are functional antagonists of bone morphogenetic
proteins (BMPs), such as BMP2 and BMP4. BMP signaling
blocks the ectoderm’s ability to adopt a neural fate, and an
important role of neural inducers is to define an area of the
ectoderm in which the anti-neural activity of the BMPs is
antagonized. Neural inducers are expressed in the dorsal
organizer and influence fate in the ectoderm by planar sig-
naling or by vertical signaling when axial mesoderm
expressing these genes comes to lic under the ectoderm.
In Drosophila, short gastrulation (sog), a chordin orthologue,
blocks the activity of Decapentaplegic (Dpp), a BMP4 homo-
logue, and plays a similar role in defining the domain of the
ectoderm that will become the neuroectoderm.

Similarities are also seen in the mechanisms whereby neu-
roectodermal cells are selected to become neurons. Early
neurons in Xenopus and zebrafish embryos are distributed in
a simple pattern: a subset of cells in three bilateral longitu-
dinal domains are selected to become neurons in the neural
plate. As in Drosophila, expression of a basic helix-loop-helix

(bHLLH) transcription factor, neurogenin (Xngnrl) [3],
appears to define domains in the Xenopus neural plate where
cells have the potential to form early neurons. Within these
domains, lateral inhibition mediated by the neurogenic
genes Notch and Delra limits the activity of neurogenin to a
subset of cells that are permitted to become neurons [2,4].

This review will focus on papers describing recent insights
from the Xenopus and zebrafish model systems that empha-
size the potential role of a gradient of BMP activity in
determining dorsoventral fate in the ectoderm, and that have
recently identified molecules, downstream of neural induc-
ers, that influence neurogenesis by modulating the activity of
neural and proneural genes. The review concludes with the
discussion of recent work that shows how neuroblasts are
generated in three bilateral longitudinal domains in the
Drosophila neuroectoderm. These studies point to mecha-
nisms that may potentially be conserved and important for
understanding how neurons in the Xenopus and zcbrafish
neural plate are generated in three longitudinal columns.

Role of BMP activity in determining
dorsoventral fates in the ectoderm

"To assess the role of BMP activity in determining dorsoven-
tral fates in the ectoderm, the effect of different doses of
neural inducers, BMPs, or mediators of BMP signaling on
the fate of ectodermal cells has been examined
[5°,6°¢,7°,8*°,9* 10%11]. These studies show thart the ecto-
derm responds to BMP activation in a dose-dependent
manner, with neural fate being associated with the lowest
BMP activity and epidermal fate with the highest. Recent
analysis of zebrafish mutants provides further evidence for
the role of BMP activity in defining dorsoventral fate in the
ectoderm. Ventralized chordino mutants have a mutation in
the zebrafish homologue of chordin and are associated with
a smaller neural plate [12-16]. The ventralized phenotype
seen in chordino mutants is dependent on the activity of
swirl, a zebrafish BMP26 homologue, which is consistent
with chordine working by suppressing the activity of this
gene [16,17°]. A mutation in swir/, on the other hand, is
associated with a severely dorsalized phenotype in which
the neural plate is expanded at the cost of more lateral and
ventral derivatives, the neural crest and epidermis,

The effects on early neural crest in a series of progressively
more dorsalized zebrafish mutants, szailhouse (snk), somitabun
(sbm) and swir/ (swr), provide an important insight into the
potential role of a gradient of BMP activity in determining
dorsoventral fates in the ectoderm [18°*]. Neural crest is
thought to be determined as a consequence of local interac-
tions at the boundary of the neural plate and epidermal cells
[19,20]. If this is the case, the location of the crest should
shift ventrally in mutants in which the neural plate is
expanded, corresponding to the altered location of the
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Figure 1

A gradient of BMP activity determining
dorsoventral fates in the ectoderm accounts
for the expansion of the neural crest domain
seen in sbn mutants. If high (white),
intermediate (grey) and low (black) levels of
BMP activity determine epidermal (EP), neural
crest (NC) and neural plate (NP) fates,
respectively, along the dorsoventral axis of the
ectoderm, then a change in the shape of the
gradient due to lower BMP activation could
lead to a level of BMP activation in the ventral
ectoderm that corresponds to the threshold
for neural crest determination rather than
epidermis. The change in the shape of the
gradient would alter the size of the neural
plate and neural crest domains. Dashed
horizontal lines indicate the window of BMP
activity required for neural crest determination,
and dashed vertical lines indicate the location \

(a) Wild-type

BMP
activity

Ventral ———————————» Dorsal

A gradient of BMP activity helps define domains of epidermal,

neural crest and neural fate

(b) Somitabun mutant (low BMP activity)

Ventral —————— - Dorsal
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along the dorsoventral axis of corresponding
tevels of BMP activation.

boundary between neural and epidermal cells; however, no
change is expected in the size of the neural crest domain.
‘The dorsalized phenotype of séz mutants, however, is char-
acterized by an expanded neural plate, loss of epidermis and
an expanded neural crest domain [18°°]. 'The local interac-
tions model does not provide a simple explanation for the
expanded neural crest domain in sé7# mutants. If, on the other
hand, a gradient of BMP activity is responsible for generating
epidermis, neural crest and neural plate at high, intermediate
and low levels, respectively, it would be easier to account for
this phenotype, as suggested below [18°°]. Lowered BMP
activity in sz mutants changes the profile of BMP activity
along the dorsoventral axis of the ectoderm. As a conse-
quence of this change BMP activity in the ventral ectoderm
could correspond to the requirement for neural crest rather
than epidermal cells, accounting for the expansion of neural
crest at the cost of epidermis (Figure 1).

A role for a BMP activity gradient in determining neural
crest fate is also supported by studies in Xenopus, which
show that neural crest is induced with intermediate levels
of BMP activation in the ectoderm [6°*,7*]. Whether or not
BMP activation plays an early role in determining neural
crest fate in the ectoderm, however, remains controversial,
and recent studies in chick embryos specifically argue
against it [21*]. Differences in the time at which neural
crest fate 1s determined in different organisms may be one
factor that contributes to differences in the interpretation
of the role of BMPs in neural crest formation in chick ver-
sus Xenopus and zebrafish. An early role for a BMP gradient
in determining neural crest fate does not rule out a role for
local interactions later in development. In any event, BMP
signaling alone is not sufficient to produce neural crest in
the ectoderm, other signaling pathways such as the Wnts
and fibroblast growth factors (FGFs) are also necessary
122,23]. How the gradient of BMP activity is established
and maintained is not yet completely clear, and che roles of

diffusible antagonists, FGF and cell movement in this
process are being determined [5%,8°°,10°].

Molecules linking neural inducers to activation
of proneural genes

BMP signaling promotes epidermal fate in the ventral ecto-
derm by activating at least three classes of genes, including
ventral-specific homeobox genes (e.g. PV7 and Xventl),
GATAI and Msx] [24*]. Suppression of BMP signaling, on
the other hand, by neural inducers leads to the activation of
a number of recently discovered genes that promote neural
fate in the dorsal ectoderm (see Table 1). Differential
screens designed to identify genes upregulated by ckordin or
noggin in the Xenopus ectoderm have led to identification of
genes in the Sox and Zic families [24°,25,26°]. Sox genes
encode Sry-related transcription factors that contain a high
mobility group (HMG) domain that binds to DNA in a
sequence-specific manner; recently identified members
include SoxD and Sox2. Zic-related genes, on the other hand,
are homologues of Drosophila odd paired and recently identi-
fied members include Zic-ri [26°), Zic3 [27), Zicl (28], Zic?
[29**] and op/ [25,30]. Mediators of neural induction have
also been identified in expression screens aimed at isolating
mRNAs that lead to an expansion of neural tissue when
ectopically expressed. 'This has led to the identification of a
novel bifunctional gene, Geminin, that both controls cell
cycle and 1s an important mediator of neural fate [31°].

Amongst the recently identified neuralizing genes, SoxD
is one of the earliest to be expressed [32°*). It is initially
widely expressed in the prospective ectoderm at the late
blastula stage, and its expression is then restricted to the
dorsal ectoderm by midgastrulation. Ectopic expression
of SoxD in animal caps promotes the expression of genes
required for neural and neuronal differentiation. Initial
results suggest that SoxD’s carly expression may help
account for the ‘default’ [33] ability of ectoderm to adopt
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Figure 2
A series of inhibitory interactions restrict 7]
neurogenesis to a subset of cells within three Selection of neurons in three proneuronal domains
proneuronal domains in the neuroectoderm.
(a) Zic2 limits the expression of neurogenin to @) V) )
. . : . . Zic2
three domains, medial (m), intermediate (i) and / % e
lateral {I), in the neural plate. (b) Neurogenin Expression of Zic2 defines domains of
drives the expression of the inhibitory ligand the neural plate whtere ea;tl{ s
DeltaA, which activates Notch in neighboring /// /// /// /// neurogenesis is not permitte
cells and reduces the activity of neurogenin in '
those cells. As a consequence of these i neurogenin
interactions, a subset of cells are selected ) . :
intain high levels of neurogenin and Expression of neurogenin defines
that maintain h'g_ eve§ g e three bilateral proneuronal domains in
DeltaA, while neighboring cells are inhibited the neural plate
from doing the same. (c) Cells selected to m
maintain high levels of neurogenin begin to Midi
express another Delta homologue, DeltaB. 1diine
They also express MyT7 and Coe2, which (b) . ) ]
makes them resistant to lateral inhibition. ! high DeltaA and neurogenin
Eventually, these cells express NeuroD, which D low DeltaA and neurogenin
controls the expression of genes responsible ]
. . 1
for the differentiation of neurons. Lateral inhibition permits a subset of
cells to become neurons within
-m O Em B W W W = = W = s m Midiine
(c)
| . DeltaB, MyT1, Coe2, neuroD
MO O I Cells selected to become neurons
] A E N EFEEENENE become resistant to lateral inhibition,
SENNSESENIARNSENNANENEED and neuroD initiates expression of
neuron-specific genes
Rzt 0055 E R LR
- B W B W W B 3 E B W = W Mldllne
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a neural fate. Like SoxD, Zic-rl and Zic3 initiate neural
and neuronal differentiation when they are ectopically
expressed; however, unlike SoxD, which remains widely
expressed in the CNS, their expression is eventually
restricted to the dorsal nervous system. Sox2, another Sry-
related gene, also has a paneural expression but differs
from SoxD, Zic-r! and Zic3 in its ability to have a neural-
1izing effect on its own [26°]). SoxZ requires additional
factors to reveal this potential, and its role is thought to
be in changing the competence of ectoderm, allowing it
to respond to neuralizing factors such as FGF. Like Sox2,
op/ does not have a neuralizing effect on its own, but it
sensitizes the animal cap ectoderm to the neural inducer
nogein and alters the anteroposterior nature of neural tis-
sue induced by it [25]). Like noggin, SoxD, Zic3 and Zic-rl
generate neural tissue with an anterior character, whereas
geminin and Sox2 (with Fgf) generate neural tissue with
caudal characteristics [26%,27,28,31*]. Many of the Zic
genes activated by neural inducers also induce neural
crest markers when expressed ectopically, which is con-
sistent with their expression later in the dorsal neural
tube [25,26°,27,28,29°*,30].

Genes in the Iroquois complex control proneural gene
expression in Drosophtia [34]. The discovery of vertebrate
iroquois homologues has led to the discovery of another

class of genes that promote expression of proneural genes
in vertebrates [35,36*,37°]. The Xenopus homologue, Xiro3
does not lead, however, to the expression of the proneur-
al gene neurogemin, which is involved in neuronal
determination. Rather, it suppress the expression of this
gene and promotes the expression of another proneural
gene homologue, XASH-3. Like the Xiro homologs,
XASH-3 also suppresses differentiation of neurons and
causes an expansion of the neural plate. The ability of
XASH-3 to suppress primary neurogenesis is attributable,
at least in part, to the activation of neurogenic genes [38].
Xiro-3, however, continues to suppress differentiation of
neurons when neurogenic genes are suppressed by a dom-
inant-negative form of Delta, suggesting that the effects
on primary neurogenesis may be mediated by another
mechanism [37°]. While the physiological role of XASH-3
remains a little unclear, recent work has re-emphasized
the role this type of proneural gene may play in determin-
ing neural fate [7°,39]. Morgan and Sargent [7°] suggest
that XASH-3 helps define the part of the neuroectoderm
that will form neural plate rather than neural crest.

Zic2 limits neurogenesis to longitudinal
domains in the neural plate

Genes such as Zic3, Zic-r! and SoxD are widely expressed in
the prospective neural plate and are capable of promoting
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Figure 3

Dividing the neuroectoderm into three longitudinal
domains in Drosophila

msh

Midline
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A series of inhibitory interactions divide the neuroectoderm in
Drosophita into three longitudinal compartments in which three
homeobox genes, vnd, ind and msh are expressed. ind inhibits msh
from being expressed in the intermediate compartment, whereas
vnd inhibits ind from being expressed in the ventral compartment.
This limits their expression to three distinct domains of the neural
plate where they play an essential role in determining the fate of
neuroblasts in three longitudinal domains. Drosophila EGF receptor
(DER) activation plays an essential role in determining the fate of
neuroblasts in the intermediate domain. This could potentially be
attributable to DER activation driving ind expression.

the expression of the proneural gene weurogenin, so why is
neurogenin cxpression restricted to three bilaceral longitudi-
nal domains in the neural plate? One answer to this
question comes from the discovery of another member of
the Zic family, Zic2 [29°*). Zic2 inhibits formation of neurons
and is expressed in stripes that are complementary to lon-
gitudinal domains in which early neurons are generated.
This zinc-finger transcription factor contains mono-amino-
acid stretches characteristic of repressor domains, and it is
thought to repress the function of other more widely
expressed members of the Zic and G/ superfamilies, limit-
ing their function to specific domains of the neural plate
where neurogenin is expressed (Figure 2). Replacement of
the repressor domain in ZieZ with an activator domain
makes it promote formation of neurons, similar to other
members of this family. Like other Zic genes, however, Zic?
promotes differentiation of the neural crest [29°°].

The role of proneural and neurogenic genes
Functional analysis of zebrafish homologues of neurogenin
and Delta provides more evidence for the role of neurogenic
genes in limiting neurogenin function to a subset of cells
within ‘proneuronal’ domains [40-42,43°.44**]. Ectopic
expression of neurogenin in zebrafish embryos leads to for-
mation of ectopic neurons in a salt-and-pepper pattern,
primarily in the neuroectoderm, This suggests that lateral
inhibition limits the number of newrogenin-expressing cells
that are permitted to become neurons and that additional
patterning mechanisms limit neurogenin’s activity to the
dorsal ectoderm. Dynamic changes in the expression of
zebrafish DeltaA are consistent with the role of this inhibito-
1y ligand in selecting cells that become neurons by lateral
inhibition [43*,44%*]. DeltaA is initially expressed widely in
all cells in the proneuronal domains but is later expressed at
a particularly high level in a subset of these cells that begin
to express neuronal markers and another Delta homologue,
DeltaB. The sequentially restricted pattern of expression of
multiple Delta homologues in zebrafish suggests that neu-
rogenic genes may be involved in restricting neural fate in
a series of fate determination events that eventually lead to
the formation of neurons. The neurogenic phenotype of
the zebrafish mind bomb mutant supports the role of these
genes in selecting cells that become neurons within
proneuronal domains [45,46]. MyT1, whose expression
makes cells resistant to the effects of lateral inhibition,
facilitates stable adoption of a neuronal fate in cells select-
ed to become neurons [47]. Recently, it has been shown
that this is also facilitated by another class of transcription
factors in the Col/Olf-1/EBF family (Xcoe2 and Zcoe2)
[48,49]. Finally, cells selected to become neurons begin to
express neuroD, a bHLH transcription factor, which initi-
ates expression of genes important for differentiation of
neurons (Figure 2) [42,50].

Making three stripes - more hints from
Drosophila?

Ectopic expression of neurogenin-1 in zebrafish shows that
although neurogenin gives cells the potential to adopt a neu-
ronal fate, the type of neurons generated is determined
independently by dorsoventral patterning mechanisms [40).
Mechanisms that generate the three proneuronal domains are
still poorly understood in zebrafish and Xenopus. It is interest-
ing that ncuroblasts produced in the early waves of
neurogenesis in the Drosophile neuroectoderm are also pro-
duced in three longitudinal columns. Analysis of three
homeobox genes, vnd (ventral neural defective), ind (intermediate
neuroblast defective) and msh (muscle segment homeobox), shows
how a cascade of inhibitory interactions divides the neuroec-
toderm into three domains: v#d represses ##d in the ventral
column, and ##d represses msh in the intermediate column,
limiting their expression to three distinct, medial, intermedi-
ate and lateral domains in which early neuroblasts are
generated [51°°,52*%] (see Figure 3). The identification of ver-
tebrate homologues of these homeobox genes, NK2.2 (vnd)
[53], Gsal (ind) [54,55], and Msxi and Msx3 (ms#) [56), which
are expressed In corresponding domains of the vertebrate
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neural plate, points to potential similarities in the patterning
mechanisms that define the proneuronal domains in verte-
brates. In Drosophila, epidermal growth factor (EGF) signaling
has also been shown to play an important role in dorsoventral
patterning of the neuroectoderm longitudinal domains [57-59]
and potentially influences the expression of i# in the inter-
mediate domain. In vertebrates, midline hedgehog signals
rather than EGF play an important role in dorsoventral pat-
terning [60]. The recent cloning of one-eyed pinkead (0ep) in
zebrafish, which encodes an EGF-related molecule, however,
points to the potential importance of EGF-related signals in
vertebrates as well [61°°].

Conclusions

BMP signaling divides the ectoderm into three dorsoventral
domains in which the neural plate, neural crest and epider-
mis form. Neural inducers suppress BMP signaling and lead
to the expression a number of transcription factors, includ-
ing Sox and Zic genes, that promote expression of genes
required for neural and neuronal differentiation in the dor-
sal ectoderm. Zic2 helps limit primary neurogenesis to three
bilateral proneuronal domains in the neural plate where mew-
rogenin is expressed. Finally, neurogenic genes limit the
number of cells that become neurons within these domains.
A challenge that remains for the future is to understand the
interactions between genes activated by neural inducers and
to characterize the mechanisms that generate the three
bilateral proneuronal domains in the neural plate. Analysis
of early neurogenesis in the neural plate of zebrafish and
Xenopus embryos through the discovery of new genes and
mutants will continue to provide important insights into the
fundamental patterning mechanisms that operate in the
developing nervous system. Research in past decade has
emphasized the discovery of similarities in molecular mech-
anisms that operate in diverse animal systems. It is
important, however, to recognize and understand the differ-
ences in developmental processes in diverse developmental
model! systems so as to understand how differences in tim-
ing, size of tissue, and gene duplication have contributed to
diversity in neurogenesis.
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