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I. The Hydrogen Atom

In this next section, we will tie together the elements of the last several
sections to arrive at a complete description of the hydrogen atom. This will
culminate in the definition of the hydrogen-atom orbitals and associated en-
ergies. From these functions, taken as a complete basis, we will be able to
construct approximations to more complex wave functions for more complex
molecules. Thus, the work of the last few lectures has fundamentally been
aimed at establishing a foundation for more complex problems in terms of
exact solutions for smaller, model problems.

II. The Radial Function

We will start by reiterating the Schrodinger equation in 3D spherical coordi-
nates as (refer to any standard text to get the transformation from Cartesian
to spherical coordinate reference systems). Here, we have not placed the con-
straint of a constant distance separting the masses of the rigid rotor (refer
to last lecture); furthermore, we will keep in the formulation the potential
V (r, θ, φ) for generality.

Thus, in spherical polar coordinates, Ĥ(r, θ, φ)ψ(r, θ, φ) = Eψ(r, θ, φ)
becomes:
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ψ(r, θ, φ) (1)

= Eψ(r, θ, φ)
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Now, for the hydrogen atom, with one electron found in ”orbits” (note the
quotes!) around the nucleus of charge +1, we can include an electrostatic
potential which is essentially the Coulomb potential between a positive and
negative charge:

1



V (|r|) = V (r) =
−Ze2

4πεor

where Z is the nuclear charge (i.e, +1 for the nucleus of a hydrogen atom).
It is important to note that the Coulomb potential as we have
written it here is simply a function of the magnitude of the posi-
tion vector between the 2 masses (i.e, between the electron and
nucleus). There is no angular dependence!.

Recall:
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is the total angular momentum squared operator (function of θ and φ only!).
Thus, we can rewrite the Schrodinger equation as:
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ψ(r, θ, φ) = Eψ(r, θ, φ)

Thus, the wavefunction can be written in a form that lends to separation
of variables. Recalling that the spherical harmonics are eigenfunctions of
the angular momentum operator:

ψ(r, θ, φ) = R(r)Y m
l (θ, φ) Separation of V ariables

L̂2Y m
l (θ, φ) = h̄2l(l + 1)Y m

l (θ, φ) l = 0, 1, 2, ...

Accounting for separation of variables and the angular momentum results,
the Schrodinger equation is transformed into the Radial equation for the
Hydrogen atom:
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The solutions of the radial equation are the Hydrogen atom radial wave-
functions, R(r).

II. Solutions and Energies
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The general solutions of the radial equation are products of an exponential
and a polynomial. The eigenvalues (energies) are:
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8πεoaon2
=
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n = 1, 2, 3, ..

The constant ao is known as the Bohr Radius:
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2
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The energy is quantized and dependent only on the pricipal quantum num-
ber, n. This quantization arises from the restriction that R(r) be well be-
haved at large separations, r (vis-a-vis, R(r) → 0 as r → ∞).
The Radial eigenfunctions are:
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n = 1; l = 0; L11 = 1
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How to normalize:

Spherical Harmonics:

∫
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0

dφ

∫ π

0

dθ sinθ Y m∗
l (θ, φ)Y m

l (θ, φ) = 1

Radial Wavefunctions:

∫ ∞

0

dr r2R∗
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The total hydrogen atom wavefunctions are:

ψ(r, θ, φ) = RnlY
m
l (θ, φ)

Table 1. Nomenclature and Ranges of H-Atom quantum numbers
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Name Symbol Allowed Values

principle quantum number n 1,2,3,....

angular momentum quantum number l 0,1,2,...,n-1

magnetic quantum number m 0,±1,±2,±3, ...,±l

energies: depend on ”n” E = −Z2e2

8πεoaon2 .

angular momentum: depends on ”l” |L| = h̄
√

l(l + 1)

Lz−component: depends on ”m” Lz = mh̄

Total H atom wavefunctions are normalized and orthogonal:
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Lowest total Hydrogen atom wavefunctions: n=1 and n=2 ( define σ ≡ Zr
ao

)

Table 2. Hydrogen Atom Wavefunctions
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n l m ψnlm Orbital Name
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Transforming to real functions via normalized linear combinations
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Thus, we have come to the point where we can connect what we already
know from previous analysis:

Table 3. Quantum numbers

n = 1, 2, 3, ... l = 0, 1, 2, ..., n − 1 m = 0,±1,±2, ...,±l Orbital

1 0 0 1s

2 0 0 2s

2 1 0 2pz

2 1 + 2px

2 1 - 2py

What are the degeneracies of the Hydrogen atom energy levels? Recall they
are dependent on the principle quantum number only.

III. Spectroscopy of the Hydrogen Atom
Transitions between the energy states (levels) of individual atoms give

rise to characteristic atomic spectra. These spectra can be used as analytical
tools to assess composition of matter. For instance, our knowledge of the
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atomic composition of the sun was in part aided by considering the spectra of
the radiation from the sun. For the Hydrogen atom, early scientists observed
that the emission spectra (generated by exciting hydrogen atoms from the
ground to excited states), gave rise to specific lines; the spectra were NOT
continuous. The understanding of the quantum mechanical nature of the
hydrogen atom helps us understand how these lines arise.
Series of lines in the hydrogen spectrum, named after the scientists who
observed and characterized them, can be related to the energies associated
with transsitions from the various energy levels of the hydrogen atom. The
relation, simple enough as it is, turns out to accurately predict the spectral
lines. The equation relating the wavelength (and thus energy via E = hν)
associated with a transition from a state n1 to another tate n is given by:
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n1 = 2; Balmer Series

n1 = 1; Lyman Series

n1 = 3; Paschen Series
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