Physical Chemistry

Lecture 7
Special steps; chain reactions; surface and enzyme kinetics

Photochemical and sensitized steps

- Light is sometimes used to activate processes
 - $\phi = \text{quantum yield}$
- Some added materials produce reactive species by reaction

\[Na + Cl_2 \rightarrow NaCl + Cl \cdot \]

Unimolecular reactions: Lindemann’s mechanism

- “Simple” reactions are more complex than they seem
- Frederick Lindemann proposed intervention of a mediator to produce a highly reactive intermediate in unimolecular reactions

\[A + M \rightarrow A'M + A' \]

Variations and refinements of Lindemann’s mechanism

- Hinshelwood
 - Explicit energy dependence of the rate constant
- Rice and Ramsperger, and independently Kasel developed a theory (RRK theory)
 - Explicit account of molecular vibrational state
- Marcus
 - Refined RRK theory in a number of ways
- Modern version is called RRKM theory
 - Predicts functional dependence of unimolecular reaction rates well

Chain reactions

- Many reactions have multiple steps in the mechanism
- Chain reactions, once started, continue
 - Polymerization
 - Some photochemical reactions
- Classes of steps
 - Initiation - produce reactive species
 - Propagation - remove and produce reactive species
 - Termination - remove reactive species

Initiation steps

- Photochemical steps

\[Cl_2 \rightarrow \text{hv} \rightarrow 2 Cl \cdot \]

- Thermal steps

\[H_2 \rightarrow 2 H \cdot \]

- Sensitized steps

\[Na + Cl_2 \rightarrow NaCl + Cl \cdot \]
Propagation steps
- Steps that use and create reactive species
- Examples:

\[\text{Br} + H_2 \rightarrow HBr + H \cdot \]

\[H + Cl_2 \rightarrow HCl + Cl \cdot \]

Termination steps
- Steps that remove reactive species
- Stable-product formation
 \[2 \text{C}_2\text{H}_2 \rightarrow \text{C}_4\text{H}_6 \]
- Wall deactivation
 \[R \cdot + \text{wall} \rightarrow \text{stable wall complex} \]
- Stable-radical formation; scavenging
 \[R \cdot + NO \rightarrow RNO \]

Vinyl polymers
- "Simple" chain reaction
 \[n \text{(monomer)} \rightarrow \text{polymer} \]

- Sidechain, X
 - H, Poly(ethylene)
 - Cl, Poly(propylene)
 - Poly(vinyl chloride)
 - Poly(styrene)

Vinyl polymerization
- Chain reaction
- Generally initiated with some radical
 - Deliberately added
 - Photochemically induced

\[\begin{align*}
 \text{In} & \rightarrow R \\
 R \cdot + M & \rightarrow RM \\
 \vdots & \\
 RM_{n-1} \cdot + M & \rightarrow RM_n \\
 RM \cdot + RM \cdot & \rightarrow RM_{n+1} \\
 \end{align*} \]

Mathematics of vinyl polymerization
- Approximation at steady state
 - Rate of initiation is equal to rate of termination
- Radical-combination termination
 \[v_p = k \cdot \left[\frac{k_f}{k_r} \cdot [M][ln]\right]^{1/2} \]
- Other possible termination steps
 - Disproportionation
 - Chain transfer

Reactions at surfaces
- Very often reaction happens at "special" sites
 - Enzyme action
 - Heterogeneous catalysis
- Simple surface reaction scheme

\[\begin{align*}
 A \text{(gas)} & \rightarrow A \text{(adsorbed)} \\
 A \text{(adsorbed)} & \rightarrow A \text{(gas)} \\
 A \text{(adsorbed)} & \rightarrow P \text{(adsorbed)} \\
 P \text{(adsorbed)} & \rightarrow P \text{(gas)} \\
 \end{align*} \]
Langmuir isotherms
- Assume equilibrium between gas-phase A and adsorbed A
- Langmuir isotherm gives relation between gas and surface concentrations
 \[
 [A_{\text{ads}}] = [A_{\text{sat}}] \frac{b_P}{1 + b_P a}
 \]
- Generalize for multiple materials adsorbed, as in a chemical reaction
 \[
 [A_{\text{ads}}] = S_0 \frac{b_j P_j}{1 + \sum b_j P_j}
 \]

Langmuir-Hinshelwood kinetics
- Second-order surface-mediated reaction
 \[
 A_{\text{ads}} + B_{\text{ads}} \rightarrow \text{Product}
 \]
- Rate depends on the partial pressures of A and B
 - At low pressure, rate is second-order in the gas pressure
 - At high pressures of both reactants, the rate becomes zero-order in pressure
 \[
 v = \frac{k_{\text{react}} [A_{\text{ads}}] [B_{\text{ads}}]}{1 + \sum b_j P_j^2}
 \]

Eley-Rideal kinetics
- Second-order surface-mediated transformation
- One of the reactants comes in from the gas phase (without adsorption)
 - Always first order with respect to A
 - Usually requires a highly reactive gas-phase species such as H atom

 \[
 v = k_{\text{react}} [A_{\text{ads}}] [B_{\text{ads}}]
 \]

Langmuir-Hinshelwood versus Eley-Rideal kinetics
- Langmuir-Hinshelwood kinetics
 - Both partners of a second-order reaction at the surface
 - Partners diffuse on surface until meeting to react
- Eley-Rideal kinetics
 - One partner of a second-order reaction held at the surface
 - Second comes directly from the gas phase
 - One or both must be highly reactive

Michaelis-Menten enzyme catalysis
- Mechanism is similar to surface catalysis
 - Form complex
 - Complex may fall apart
 - React
 \[
 E + S \xrightarrow{k_+} E \sim S \xrightarrow{k_-} E + S \xrightarrow{k_+} P + E
 \]
 - Velocity is found assuming fast equilibrium of first two steps
 \[
 v = \frac{k_2}{K_M + [S]} [E]_0 [S]
 \]

Example of Michaelis-Menten kinetics
- Hydrolysis of N-glutamyl-L-phenylalanine with \(\alpha\)-chymotrypsin
- Lineweaver-Burk plot
 - Plot 1/v versus 1/[S]
 - Obtain Michaelis-Menten parameters from slope and intercept of plot
Summary

- Complex reactions usually described in terms of elementary steps
- Lindemann’s mechanism
 - Modern version is RRKM theory (Rice, Ramsperger, Kassel, and Marcus)
- Polymerization occurs by a chain reaction
 - Initiation
 - Propagation
 - Termination
- Surface chemistry
 - Adsorption and desorption steps included
 - Langmuir-Hinshelwood versus Eley-Rideal mechanisms
- Enzyme kinetics
 - Formation of complex
 - Michaelis-Menten kinetics