Physical Chemistry

Lecture 5

Theoretical chemical kinetics

Chemical kinetics

Understand the nature of reactions
 Predict reaction outcomes based on

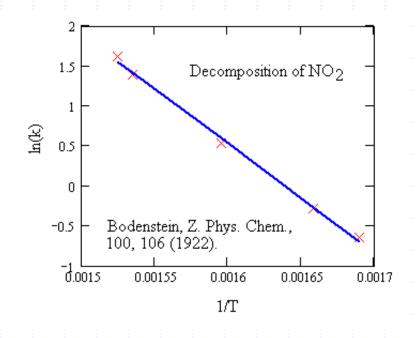
 Reactants
 Conditions

 Requires integration of theory and experimental results

Temperature dependence of rate constants

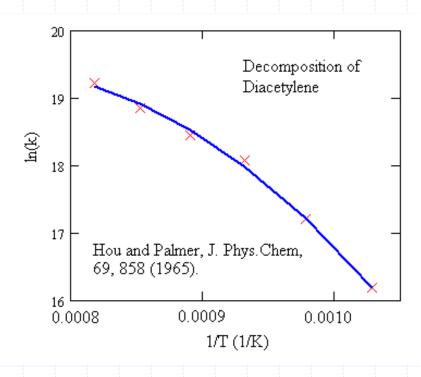
 $k(T) = A \exp(-E_a / RT)$

- Empirical theory of Arrhenius gives a useful way to parameterize rate constants
 - A = pre-exponential factor
 - $E_a \equiv$ activation energy
- Often seen in analysis of kinetic data



Non-Arrhenius behavior

- Arrhenius behavior is empirical
 For some reactions the temperature dependence of the rate constant is not exponential
- Theory does not easily predict Arrhenius form
- Amazing that Arrhenius behavior is so often seen



Elementary reactions

- Chemical reactions are often more complex than presented and do not occur as a single step
 Some reactions do occur in a single step -elementary reactions
 - Generally involve simple mono- or bimolecular interactions
 - Order in elementary reactions is the stoichiometry number, called molecularity

$$H_2 + 2O \rightarrow H_2O_2 \quad v = k[H_2]^1[O]^2$$

 $H + Br \rightarrow HBr$ $v = k[H]^{1}[Br]^{1}$

Simple collision theory of gasphase kinetics

- To participate in a bimolecular reaction, molecules must approach each other
- SCT: gas-phase reaction rate proportional to collision frequency
- SCT does not generally agree with experimental rates
- Points out how to think about theory of chemical reactions

$$v \propto \langle Z_{AB} \rangle$$

 $v_{\rm max}$

$$= \langle Z_{AB} \rangle = \sigma_{AB} \langle v_{AB} \rangle n_A^* n_B^*$$
$$= \sigma_{AB} N_0 \sqrt{\frac{8kT}{\pi\mu}} C_A C_B$$

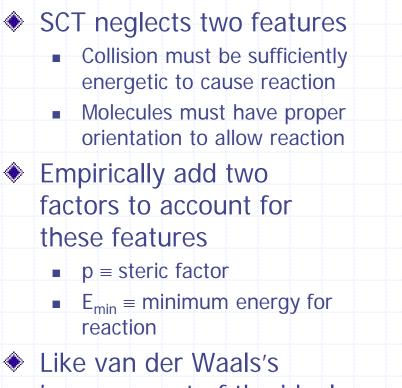
 $\sigma_{AB} = \pi d_{AB}^2 \equiv \text{collision cross} - \text{section}$ kТ

$$k_{\max} = \sigma_{AB} N_0 \sqrt{\frac{8kT}{\pi\mu}}$$

"Correcting" simple collision theory

v

k



$$= \langle Z_{AB} \rangle p \exp(-E_{\min}/RT)$$

$$= p \sigma_{AB} N_0 \sqrt{\frac{8kT}{\pi\mu}} \exp(-E_{\min}/RT) C_A C_B$$

$$= p \sigma_{AB} N_0 \sqrt{\frac{8kT}{\pi\mu}} \exp(-E_{\min}/RT)$$

improvement of the idealgas law

Relation of SCT parameters to Arrhenius parameters

A

- Many experimental data reported as Arrhenius behavior
- Comparison with SCT necessary to connect theory and experiment
- Predicts a temperaturedependent activation energy and preexponential factor (which may not be the observation)

Α	rrh	eni	us	b	eh	av	ior

$\partial \ln k$	 E_a
∂T	 RT^2

By comparison of differentials

$$E_a = E_{\min} + \frac{RT}{2}$$

$$= p e^{1/2} k_{\max}$$

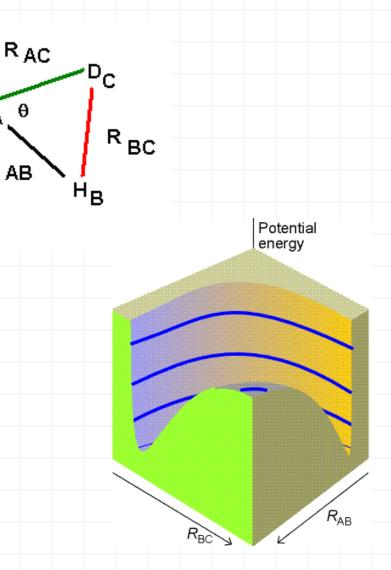
Experimental SCT and Arrhenius parameters

Reaction	Range	In A	E _a	р
$H + D_2 \rightarrow HD + D$	300 – 750	24.61	39.3	0.088
$H + HCI \rightarrow H_2 + CI$	200 – 500	23.85	14.6	0.039
$H + HBr \rightarrow H_2 + Br$	1000 - 1700	25.42	15.5	0.076
$0 + 0_3 \rightarrow 2 0_2$	273 –900	23.21	20.0	0.037
$N + NO \rightarrow N_2 + O$	300 - 6000	23.28	~ 0	0.040
$CH_3 + C_6H_6 \rightarrow CH_4 + C_6H_5$	456 – 600	17.04	38.5	2.7 × 10 ⁻⁵
$BH_3 + BH_3CO \rightarrow CO + B_2H_6$	273 – 333	19.34	29.3	2.9 × 10 ⁻⁴
$PH_3 + B_2H_6 \rightarrow PH_3BH_3 + BH_3$	249 – 273	14.97	47.7	7.4 × 10 ⁻⁶
$CO + O_2 \rightarrow O + CO_2$	2400 – 3000	21.97	213.4	4.3 × 10 ⁻³
$F_2 + CIO_2 \rightarrow F + FCIO_2$	227 – 247	16.37	33.5	5.2 × 10 ⁻⁵

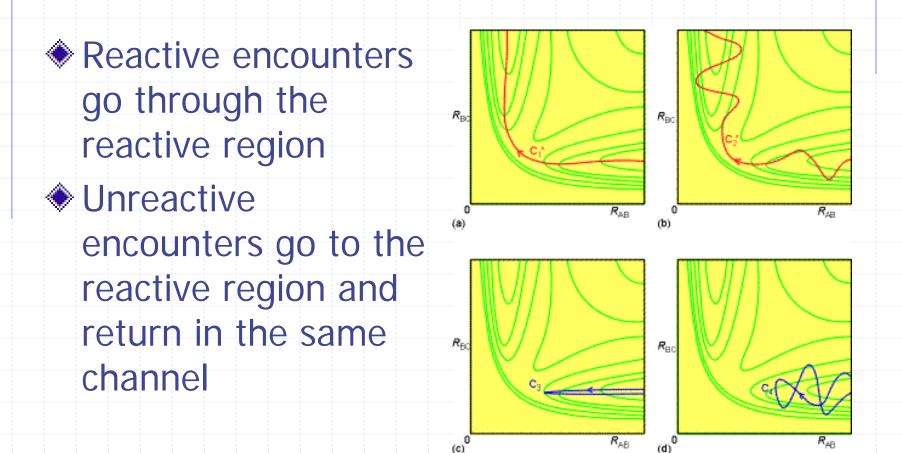
(c) E_a is in kJ mol⁻¹.

Computer modeling of potential-energy surfaces

- Potential energy of configuration of molecules controls interaction
- Model time-dependent approach of molecules with (classical or quantum) simulation
- Example:
 - $\bullet \quad \mathsf{D} + \mathsf{H}_2 \to \mathsf{H}\mathsf{D} + \mathsf{H}$
- Several parameters
 - Distances
 - Angles



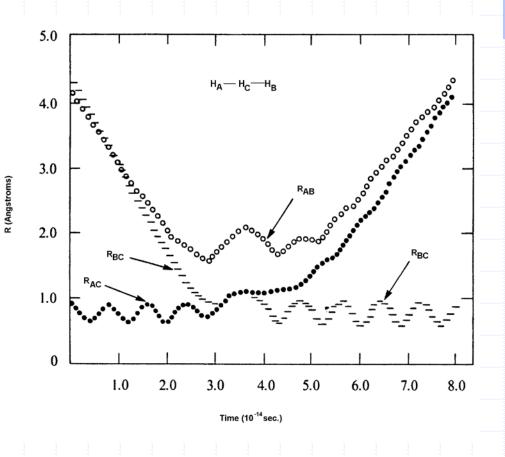
Computer simulation of reaction



M. Karplus, R. N. Porter, and R. D. Shamra, J. Chem. Phys., 43,3258 (1965).

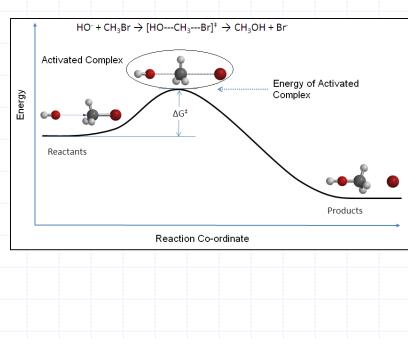
Simulation of a reactive event

- Follow the time course of the approach
 Atoms exchange
- partners
 Time scale is very short
- Repeat many times and measure fraction of times that reactive events happen



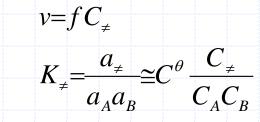
Activated-complex theory

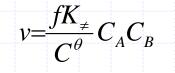
- Theory developed by H.
 Eyring, M. Evans, and
 M. Polanyi
- Proposed the existence of an activated complex, a precursor to products
- The activated complex forms product(s) by a first-order process

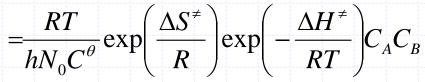


Activated-complex mathematics

- Reaction velocity proportional to activated-complex concentration
- Quasi-equilibrium
 between reactants and activated complex
- Statistical mechanics defines disappearance rate constant of activated complex, f







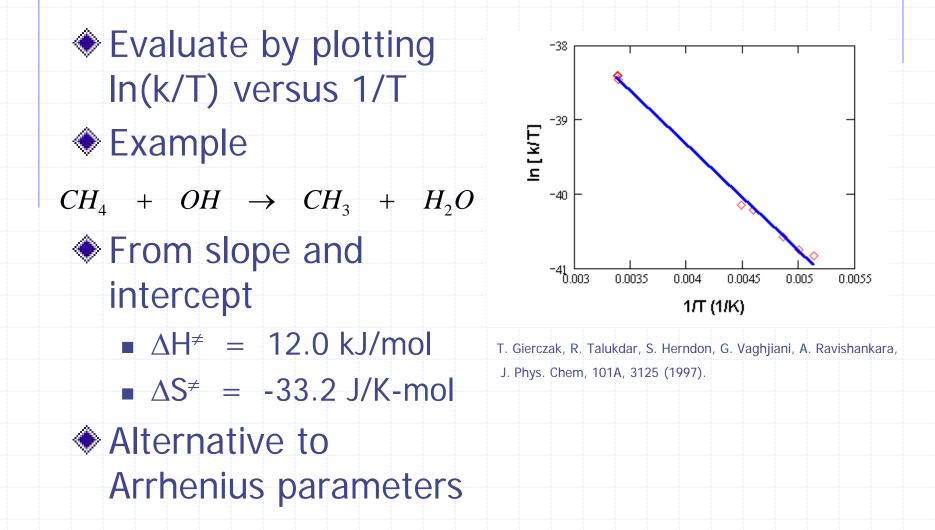
Eyring's equation

Activated-complex theory gives a form for the biomolecular rate constant, k₂, in terms of the parameters of the activated complex

$$k_2 = \frac{RT}{hN_0C^{\theta}} \exp\left(\frac{\Delta S^{\neq}}{R}\right) \exp\left(-\frac{\Delta H^{\neq}}{RT}\right)$$

 This is <u>not</u> Arrhenius-like behavior
 Difficult to distinguish from Arrhenius behavior under many circumstances
 Different way to parameterize the SCT rate constant

Evaluation of Eyring parameters



Relation of Eyring and **Arrhenius parameters**

Need to be able to convert between the two parameterizations of kinetic data Use differential of Eyring form to show relationships

Phase/Molecularity	Activation Energy, E	a Pre-exponential factor, A
Solution	$\Delta H^{\neq} + RT$	$\frac{eRT}{hN_0C^{\theta}}\exp(\frac{\Delta S^{\neq}}{R})$
Gas, unimolecular	$\Delta H^{\neq} + RT$	$\frac{eRT}{hN_0}\exp(\frac{\Delta S^{\neq}}{R})$
Gas, bimolecular	$\Delta H^{\neq} + 2RT$	$\frac{e^2 RT}{h N_0 C^{\theta}} \exp(\frac{\Delta S^{\neq}}{R})$
Gas, termolecular	$\Delta H^{\neq} + 3RT$	$\frac{e^{3}RT}{hN_{0}C^{\theta 2}}\exp(\frac{\Delta S^{\neq}}{R})$

Summary

- Theories of simple reactions
 - Simple collision theory
 - Modified collision theory
 - Computer simulation
 - Activated-complex theory

Parameterization of reaction dynamics

- Activation energy and pre-exponential factor
- Equilibrium thermodynamic properties of activated complex