


stry	
resentations	
	(
	stry resentations

Direct	I2	Im	nc				
DIICCI	. 31	лц	13				
♦ A reducible							
representation is	Dith	E	2 C3	3 C2	a h	2.53	3.0
expressible as a direct	A, 1	1.	1			1	11
sum of irreducible	A2"	1		-1	- 1	1	-1
representations	-E'	2	-1	0	2	-1	- 0
• A direct sum is given by	A, *	1	1	1	-1	-1	
the representation with	A2"	1	1	-1	-1	-1	1
characters that are sum	E	2	-1	0	-2	1	0
of characters							
E2C,		3 C,	σ		2.5,	3 00	
A,'@A,' 2 2		0	2		2]
		-1-1	3				++
A ₁ '@E' 3 0		1	3		0	1	

Direct	produ	ct		
Direct products are	C _{3v}	E	2 C3	3 σ.
expressible as direct	A	1	1	1
sums of irreducible	A2	1	1	-1
representations	E	2	-1	0
\clubsuit Examples in $C_{3\nu}$				
 Important in determining the representation of a 	$E \otimes .$	E =	$A_1 \oplus A$	$A_2 \oplus E$
multi-electron wave	C _b	E	2 C,	3 σ .,
function	EØE	4	1	0
 Gives a means to decompose a multi- electron wave function into terms 	A ₁ @ A ₂ @ E	4		0 -

Reducing a re with projecti		
• Inner product of the projection operator with the reducible representation gives the number of representations present in the reducible representation • Example in C_3v $E \otimes E = A_1 \oplus A_2 \oplus E$	$P_{A_{1}} \bullet (E \otimes E) =$ $P_{E} \bullet (E \otimes E) =$	$= \frac{1}{6}(1, 2, 3) \bullet (4, 1, 0)$ $= \frac{1}{6}(1 \bullet 4 + 2 \bullet 1 + 3 \bullet 0)$ $= \frac{1}{6}(1 \bullet 4 + 2 \bullet 1 + 3 \bullet 0)$ $= \frac{1}{6}(1, 2, -3) \bullet (4, 1, 0)$ $= \frac{1}{6}(1 \bullet 4 + 2 \bullet 1 - 3 \bullet 0)$ $= \frac{1}{6}(2 - 2, 0) \bullet (4, 1, 0)$ $= \frac{1}{6}(2 - 2 \bullet 1 + 0 \bullet 0)$

	to H ₂ O wave tions
 Configuration results in a direct product of one- electron wave functions Want multi-electron wave functions that conform to known symmetry Perform a direct product to find the term 	Filling order 1a ₁ 2a ₁ 1b ₂ 3a ₁ 1b ₁ 4a ₁ 2b ₂
 Reduce the direct product to a direct sum Gives all terms arising from that configutation Example: ground term of H₂O 10 electrons 	$(1a_1)^2 (2a_1)^2 (1b_2)^2 (3a_1)^2 (1b_1)^2$ $\otimes A_1 \otimes A_1 \otimes B_2 \otimes B_2 \otimes A_1 \otimes A_1 \otimes B_1 \otimes B_1$

Excited state	H_2U
 Find first excited state by promoting a single electron Consider only partially filled shells Filled shells give totally symmetric representation as a product Spins of the two electrons may be paired or unpaired Singlet Triplet 	$\cdots (1b_1)^l (4a_1)^l$ $\Gamma = B_1 \otimes A_1$ $= B_1$ $^1B_1 \qquad ^3B_1$

	Summary
۲	Multi-electron wave functions found as direct products of one-electron wave functions Can be classified as reducible or irreducible representations
	Reducible representations can be expressed as a
ľ	direct sum of irreducible representations
	Use projection operators to determine the direct sum
۲	The direct sum gives the terms that arise from a configuration
۲	Use Pauli's principle to determine possible spin of wave functions
۲	Terms symbols use irreducible representations of the group