Physical Chemistry

Lecture 27

Spectroscopic Transitions

Nature of spectroscopic transition

- Change in the state of a system due to transfer of energy
- Wave function reflects this change
- Time-dependent process

\[\psi_i \rightarrow \psi_f \]

\[\Delta E = E_f - E_i \]

Time-dependent process

- Must use Schroedinger's time-dependent equation
- Hamiltonian consists of two parts
 - Stationary part that determines the energy levels
 - Time-dependent part that determines coupling that induces transition
- Gives the time-dependent coefficients, \(c_i \) and \(c_f \)

\[\frac{\partial \psi}{\partial t} = -\frac{i}{\hbar} \hat{H} \psi \]

\[\hat{H} = \hat{H}_0 + \hat{H}_1(t) \]

Resonance

- For a coupling, such as a coupling of the dipole moment to a time-dependent electric field, to have a strong effect on the coefficients, it must have the "proper" time dependence (given by its frequency, \(\omega \))
- Resonant absorption occurs if matching occurs

\[\omega = \frac{\Delta E}{\hbar} = \frac{E_f - E_i}{\hbar} \]

Transfer rate

- Under resonant conditions, the rate of transfer is proportional to an integral over the states
- Fermi's Golden Rule

\[\text{Rate proportional to } | \langle \psi_i | \hat{H}_1 | \psi_f \rangle |^2 \]

- Basis for selection rules in spectroscopy

Light and radiation

- Light radiation is a time- and space-dependent energy field
- A system may couple to either the electric or magnetic field
 - Mostly consider coupling to the electric field of light

\[\text{Wavelength} \]

\[\text{Electric field} \]

\[\text{Magnetic field} \]

\[\text{Radiation direction} \]
Electric-dipole coupling

- An electric dipole couples to an electric field
- The energy of the dipole in the field depends on orientation
- A mechanism for coupling between the spectroscopic system and the light
- Rate \(\propto |\langle \psi_f | \hat{d} \cdot \mathbf{E}(t) | \psi_i \rangle|^2 \)
- \(\hat{H}_i(t) = \hat{d} \cdot \mathbf{E}(t) \)

Selection rules

- Is the integral of the Golden Rule zero?
- Must know dipole form
 - A vector (the dipole moment) which can be shown to have components proportional to the cartesian co-ordinates
- Evaluation of integral becomes an evaluation of integral of \(x, y \) and \(z \)
- Can often evaluate integrals by knowing only certain properties of the wave functions

Summary

- Transitions are time-dependent processes
- Must use Schrödinger’s time-dependent equation
- Rate of transition determined by an integral over the states
 - Fermi’s Golden Rule
 - Electric dipole and magnetic dipole transitions
- Evaluation of whether integrals are zero can sometimes be without knowledgeable of the total mathematical form of the wave functions
- Selection rules