Physical Chemistry

Lecture 25
Heteroatomic Diatomic Molecules

Heteroatomic molecular orbitals
- Mix atomic orbitals
- For discussion, treated simplistically as one orbital from each center
 - Often close to correct because a single orbital predominates
 - Must mix orbitals of:
 - Similar energy
 - Same symmetry
- Molecular orbital energies
 - Rough estimation by diagram
 - Calculated with computer simulations

Example: carbon monoxide
- Atomic orbitals:
 - $2p_c$ similar to $2p_o$
 - $2s_c$ similar to $2s_o$
 - Allows an energy diagram similar to homonuclear diatomics
 - Mixing occurs to create bonding and antibonding states:
 - Some mixing of $2s$ states into the σ states from $2p$
 - Some mixing of $2p$ states into the σ states from $2s$
 - Produces a filling order for producing configurations

Determining configuration and term of carbon monoxide
- Fill MOs in order:
 - Ground configuration:
 - $(1\sigma)^2(2\sigma)^2(3\sigma)^2(4\sigma)^2(5\sigma)^2$
 - Total angular momentum = 0
 - Total spin = 0
- Use term symbols as with homonuclear diatomics
 - Note lack of indication of inversion symmetry

Example 2: hydrogen fluoride
- When atoms are of different energies, one must be concerned with the relative energies and symmetries of orbitals:
 - Orbitals of same symmetry and approximately similar energy combine most effectively
- Can estimate approximate HF molecular orbitals
- Energies calculated with Gaussian
 - Gives filling order of orbitals:
 - 1σ = $1s_x$ -26.11 hartree
 - 2σ = $2s$ -11.32 hartree
 - 3σ = $C^-(2p_{xy} + 1s_y)$ -1.55 hartree
 - 4π = $2p_{xy}$ -0.79 hartree
 - 5σ = $1s_y$ -0.64 hartree
Example 2: hydrogen fluoride

- Finding ground configuration
 - 10 electrons
- Fill molecular orbitals in order
 \[(1\sigma)^2(2\sigma)^2(3\sigma)^2(1\pi)^4\]
- Eigenvalues with respect to operations
 - \(\Lambda = 0\) (all shells filled)
 - \(S = 0\) (all shells filled)
 - Even under reflection in vertical plane
- Term symbol
 \[1\Sigma^+\]

Bond-order
- \(1\pi\) is a nonbonding orbital
- \(2\sigma\) is a nonbonding orbital
- \(1\pi\) is a nonbonding orbital
- \(3\sigma\) is a bonding orbital
- Consider only bonding and antibonding electrons
 \[BO_{BO} = \frac{1}{2}(2 - 0) = 1\]

Example 3: hydrogen fluoride

- Excited configuration found by promoting a single electron
 \[(1\sigma)^2(2\sigma)^2(3\sigma)^2(1\pi)^4(4\pi)^3\]
- Eigenvalues of operators
 - Treat 3 \(\pi\) electrons like 1 \(\pi\) electron
 - "The state of a hole is the state of an electron."
 - \(\Lambda = 1\) (either paired or unpaired)
 - Terms that arise from this configuration
 \[1\Pi \quad 3\Pi\]

Summary

- Heteroatomic molecules are analyzed in a manner similar to homonuclear molecules
 - Must know MOs
 - Must know filling order
- MOs are more complex
 - Must involve atomic orbitals of similar energy and symmetry
- Energies calculated by computer
 - Hartree-Fock calculation relatively straightforward

Example 4: Nitric oxide, NO

- Fifteen (15) electrons
- Use heteroatomic filling order
 \[(1\sigma)^2(2\sigma)^2(3\sigma)^2(4\sigma)^2(1\pi)^4(5\pi)^2(2\pi)^1\]
- Leads to \(\Pi\) term
- \(S = \frac{1}{2}\)
- Results ground-state term
 \[2\Pi\]