Angular momentum

- Vector property that describes circular motion of a particle or a system of particles
- Rigid rotor model: A particle of mass m fixed to a massless rod
- Examples
 - Swinging a bucket of water
 - Movement of the Earth around the Sun
 - \(L = 2.5 \times 10^{40} \) kg m² s⁻¹

Classical constant-angular-momentum problem

- Solve for trajectories for constant angular momentum
- Frequency, \(\omega \), must be constant
- \(r \) must be constant
- Constant \(L \) is provided by the fact that \(r \) and \(\omega \) are constant

\[
L = \text{constant} = mr^2 \omega \hat{k}
\]

\[
r(t) = r(\cos \omega t + j \sin \omega t)
\]

\[
p(t) = m\omega r(-i \sin \omega t + j \cos \omega t)
\]

Quantum angular momentum

- Commutators of operators
 \[
 [\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y \quad \text{and cyclic permutations}
 \]
 \[
 [\hat{F}, \hat{L}_z] = 0
 \]

- Can have common set of eigenstates of \(\hat{L}^2 \) and any one component

\[
\hat{L}_z^2 \Psi_{km} = k \hbar^2 \Psi_{km}
\]

\[
\hat{L}_z \Psi_{km} = m \hbar \Psi_{km}
\]

Quantum angular-momentum operators

- Vector definitions

\[
\hat{L} = \hat{L}_x + \hat{L}_y + \hat{L}_z
\]

\[
\hat{L}^2 = \hat{L}_x \hat{L}_y + \hat{L}_y \hat{L}_z + \hat{L}_z \hat{L}_x
\]

- Expression by correspondence

\[
\hat{L}_z = -i \hbar (\frac{\partial}{\partial \phi} - \frac{\cot \theta}{\sin \theta} \frac{\partial}{\partial \theta})
\]

\[
\hat{L}_x = -i \hbar \frac{\partial}{\partial \theta}
\]

- Form of operators with a fixed \(r \)

\[
\hat{L} = -i \hbar \hat{r} \times \nabla
\]

\[
\hat{L}^2 = -\hbar^2 (\hat{r} \times \nabla) \cdot (\hat{r} \times \nabla)
\]

Operators in spherical coordinates

- Natural system for describing angular motion is spherical coordinates
- \(\hat{L}_z \) depends only on \(\phi \)
- Suggests that the wave functions may be written as a product

\[
\Psi_{km}(\theta, \phi) = \Theta_{km}(\theta) \Phi_{m}(\phi)
\]
Differential equations for angular-momentum eigenstates

- The z component yields a simple differential equation for Φ_m:
 \[-i\hbar \frac{\partial \Phi_m}{\partial \phi} = m\hbar \Phi_m \]

- The square of the angular momentum yields an equation for $\Theta_{km} (= P(k\cos \theta))$:
 \[\frac{\partial^2 \Theta_{km}}{\partial \phi^2} + \frac{\partial^2 \Theta_{km}}{\partial \theta^2} + \frac{\sin \theta}{\theta} \frac{\partial \Theta_{km}}{\partial \theta} \left(\frac{1}{\sin \theta \cos \theta} - \frac{1}{\theta} \right) \Theta_{km} - k^2 \Theta_{km} = 0 \]

- Legendre's associated differential equation depends on a quantum number, λ.
- Solutions are a complete set called the spherical harmonic functions.

Angular-momentum wave functions

- Functions of ϕ are exponentials:
 \[\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} \exp(im\phi) \]

- Legendre polynomials

<table>
<thead>
<tr>
<th>k</th>
<th>λ</th>
<th>$P_k^\lambda(\cos \phi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1 (constant)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$\cos \phi$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$3\cos^2 \phi - 1$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$3\cos^2 \phi + 1$</td>
</tr>
</tbody>
</table>

- Should look familiar, as these are the angular parts of the hydrogenic wave functions.

Quantum rigid rotor

- Hamiltonian:
 \[\hat{H} = \frac{1}{2m^2} \hat{L}^2 \]

- The Hamiltonian commutes with L^2 and L_z.
- The three operators have a complete set of eigenstates in common:
 \[\hat{H}_{km}(\theta, \phi) = E_{km}(\theta, \phi) \]
 \[\frac{1}{2m^2} \hat{E} Y_{km}(\theta, \phi) = \frac{1}{2m^2} \ell(\ell+1) Y_{km}(\theta, \phi) \]
 \[E_{km} = \frac{\hbar^2}{2m^2} \ell(\ell+1) \]

Grotrian diagram for the rigid rotor

- Rigid rotor's energies determined by the quantum number, ℓ.
- Each energy level is degenerate:
 - States with different values of m have the same energy:
 \[g_\ell = 2\ell + 1 \]

Spin

- Goudscheim and Uehlenbeck proposed electronic “intrinsic angular momentum” to explain spectroscopic anomalies.
- Fundamental property of particle called spin:
 - Often labeled I or S.
 - Acts like other quantum angular momenta.
 - Integer or half-integer values.
- Dirac theory of an electron:
 - Consequence of relativistic motion of electron.

Summary

- Angular momentum is quantized:
 - Combination of:
 - Rotation equation
 - Legendre’s differential equation
 - Restricted values of ℓ and m:
 - $|m|$ must be less than or equal to ℓ
 - m must be an integer
 - Rigid rotor:
 - Hamiltonian is directly proportional to L^2.
 - Same set of eigenstates.
 - Degenerate levels:
 - $g_\ell = 2\ell + 1$