

The free par	ticle in	1D
A model for a totally isolated particle	$\hat{H} = -$	$\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$
 The particle senses no forces V = 0 everywhere The Hamiltonian operator contains only the kinetic- 	$-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2}$	$F = E\Psi$

The free pa	rticle in	1D
Schroedinger's		
equation	$d^2 \Psi$	2mF
The wave	$\frac{u}{du^2} =$	$-\frac{2mL}{\hbar^2}\Psi$
function is found	ax	n
by simple solution of the differential	$\Psi_{trial}(x)$	$= A e^{sx}$
equation	c	2mE
	° _ ⊥\	\hbar^2

-	
	Summary
۲	Operator eigenvalue equations give the wave functions from which one obtains all system information
۲	Schroedinger's equation results in differential equations because of the presence of the momentum operators
۲	Solution requires finding Hamiltonian operator
۲	Boundary conditions determine quantum conditions
۲	Example: particle in a one-dimensional box