Physical Chemistry

Lecture 12
Wave Equations and States

Postulates of quantum
mechanics

@ Any state of a dynamical system of N particles is
described as fully as is possible by a function, ¥,
such that the quantity W*\Wd®r is proportional to the
probability of finding r between r and r + dq3r.

@ For every observable property of a system, there
exists a corresponding linear hermitian operator

= The physical properties of the observable can be inferred
from the mathematical properties of its associated operator.

# The measurement of a physical observable gives only
one of the eigenvalues corresponding to that
observable.

Origins of quantum mechanics

@ Hamilton’s equation for the energy of a
classical system
H = E

@ Schroedinger’s equation for the wave function
of a system with a definite energy

HY = EY
Where ¥ is the wave function corresponding to
the energy

Expectation value of a
property

# |If asystem is in a state

with wave function, ¥,
the measured property is _ J’ *A
given by an integral <0> = P ovdv
# Must know both the state
and the operator to find
the value
@ Expectation values of
measurables are real
= Requirement on the J’ ‘l’*((f)‘l—’)ﬁv - .[(OA‘"I’)*‘VdV
wave function and i o
operator space space
= The operator must be a
hermitian operator

all
space

Choosing operators

# Operators for various
observables are found by
correspondence to
classical equivalents

# For position, the
operation is X = Xe
multiplication by the
appropriate coordinate a

@ For momentum, the 1
operation is related to pX = Ih a
differentiation with X
respect to the conjugate
coordinate

@ Other operators are v
found by correspondence PN TR (A Y (A R W
through the momentum [ "f)[ 2"*]“[ ”YJ[ ‘\’] (0z)»a)
and position - 7n2{§+%+0f‘71[ - v
dependencies

= pERER =

Orthogonality and
completeness

@ Eigenfunctions of a

hermitian operator
corresponding to I\P;‘Pbdv = 0 if a=#b
different eigenvalues

are orthogonal. space

@ The set of all
eigenfunctions of a
hermitian operator is
complete. Any function
of the coordinates on f(x,y,2) = ch‘{fk(x, Yy, z)
which it depends can k
be expressed as a
linear combination of
the members of the set.




Heisenberg’s uncertainty
principle
" @ Simultaneous measurement of two quantities,
<a>and <p>

@ Define uncertainty in one as
Ag—=-A<at>—<a>
@ With some operator algebra, one can show

that 1
Aadp 2 <o B]H

# Unless two operators commute, measurement
of each with absolute precision is not possible
when the system is in an arbitrary state.

Finding basis sets

@ The complete set of eigenfunctions of an operator is
special.
= Expresses all possible conditions of the system
= Can be used to express other arbitrary functions
@ Operational plan
= Find the Hamiltonian operator for a system
= Set up Schroedinger’s equation
= Solve for all solutions of Schroedinger’s equation consistent
with boundary conditions
# Usually study model systems, the mathematics of
which are tractable

= Use model solutions to specify more complex systems
approximately with various techniques.

The free particle in 1D

@ A model for a 1 PERNE:
totally isolated H = e
particle m dx

@ The particle
senses no forces
= V = 0 everywhere _dez_\{j - EVY
= The Hamiltonian 2m dx?
operator contains
only the kinetic-
energy operator

The free particle in 1D

# Schroedinger’s

equation d2y 2mE
# The wave o - r k4
function is found
by simple solution Y(X) = Ae¥
of the differential
equation 2mE
s = £.]- Y

The free particle in 1D

@ Wave function is
a sum of ¥(x) = A® + Be™
particular
solutions
@ Wavevector, k, ME
defines the state = 7

= May take on any
value

s = =ik

Another look at the free
particle

@Ii_)etermme the PRI P
linear momentum .
of a particle in the -~ = p¥
state with

. d o)
wavevector k —ing(ne) =
#This function is —ink(ae®) = kn(ae™)
an eigenfunction
of the linear
momentum

operator




The particle in a 1D box

@ A model for 1D
translation of a gas
molecule

@ Two regions

= In the box, V(x) =0
= Outside the box,
V(X) = o *
@ In the box, the

Eigenvalue equation for the
particle in a 1D box

@ Schroedinger’s equation
= Inside the box
R diY
2m dx?
= Outside the box
oV = E¥
@ The only solution outside the box is
Y(x) =0
= Provides a boundary condition on W(x) at
the box edges

= EY¥Y

Hamiltonian is well ~ 2 42
known H = _h_d_z
2m dx
Particle-in-a-1D-box
eigenvalue equation
@ Differential equation
2 2
L a7 + E¥ =0
2m dx?
# Use methods of differential calculus to solve
Y A(x) =A%

@ This gives a equation for s and ¥:

. [2mE
Se = =i 2

Ye(x) = Aexp(i, 2;:2Ex) + Bexp(-i Z;TzEX)

Particle-in-a-1D-box
eigenvalue equation

@ Solution may be written in terms of sines and
cosines, which is more convenient

Y. = Csin( Zg]zExJ + Dcos[ thEx]

2

#® Boundary conditions give a quantum number n
= ¥(0) =0 = P =0
= ¥(@) =0 = ¢

2

= nz

2
Y.(x) = Csin(nTﬂxj E, = e

8ma?

Normalized wave functions

@ The coefficient, C, is so far undetermined
= Use the requirement that the wave function be
square integrable with an integral of 1

[ 00w = 1

@ This gives the final specification of the wave
function

T‘P'(x)‘i’(x)dx = Czjsinz(nlxjdx -1
2 5 \a

c - |2
a

Grotrian diagram

@ The particle in a 1D box

@ Quantized energy levels

= Quantum numbers are
the positive integers

Enerr

@ Zero point energy —a
= Lowest-energy state is
notatE =0
= Particle is moving, even in
the lowest-energy state —_—

= Consistent with
Heisenberg's principle

Zaes-peant arwagy




Summary

@ Operator eigenvalue equations give the
wave functions from which one obtains all
system information

# Schroedinger’s equation results in
differential equations because of the
presence of the momentum operators

# Solution requires finding Hamiltonian
operator

@ Boundary conditions determine quantum
conditions

@ Example: particle in a one-dimensional
box




