next up previous
Next: About this document ...

DQ 4

Question 1

What amount of heat is exchanged between a system containing 50 moles of reacting mixture and its surroundings if the system is well-insulated?



A. 45 dyne/cm
B. 60 kJ
C. 0 lbs
D. 0 mN
E. 6.02 kcal/mole
F. 0 kJ/mole







Question 2

A partial molar property of a system at equilibrium describes how a particular extensive property of the system changes with a change in the system's size (i.e., the number of moles in the system) under conditions of constant temperature and pressure. A partial molar property is an example of:



A. extensive property
B. intensive property
C. size
D. length
E. diathermal boundary
F. none of the above
G. all of the above







Question 3

In order for 2 objects initially at different temperatures to thermally equilibrate after they are brought into contact, what type of boundary is necessary between the 2 objects:

A. adiabatic
B. impermeable
C. diathermal
D. well-insulated
E. none of the above
F. all of the above







Question 4

Pressure, macroscopically, is defined as:

A. energy
B. force per unit area
C. length
D. work
E. height







Question 5

For two vectorial quantities, such as force ( $\vec{F}=F_{x}\hat{i}+F_{y}\hat{j}+F_{z}\hat{k}$) and distance (or position) ( $\vec{R}=x\hat{i}+y\hat{j}+z\hat{k}$) what is the dot (or scalar) product?



A.

\begin{displaymath}xF_{x} + yF_{y} + zF_{x} \nonumber \end{displaymath}  

B.
\begin{displaymath}zF_{x} \hat{i} + yF_{y} \hat{j} + zF_{x} \hat{k} \nonumber \end{displaymath}  

C.
\begin{displaymath}xF_{x} + zF_{y} + xF_{x} \nonumber \end{displaymath}  

D.
\begin{displaymath}xF_{x} + yF_{y} + zF_{z} \nonumber \end{displaymath}  

E.
\begin{displaymath}xF_{x} + yF_{y} + zF_{x} \nonumber \end{displaymath}  

F.
\begin{displaymath}xF_{x} \hat{i} + yF_{y} \hat{j} + zF_{x} \hat{k} \nonumber \end{displaymath}  

G.
\begin{displaymath}zF_{z} \hat{i} + yF_{y} \hat{j} + zF_{x} \hat{k} \nonumber \end{displaymath}  







Question 6

The magnitude of reversible work done on or by a fluid system can be evaluated by knowledge of the relation between the fluid's pressure (P), temperature (T), and volume (V) (known as an equation of state, EOS), by the following expression:


\begin{displaymath}
\left \vert W \right \vert  =  \left \vert \int_{V_{1}}^{V_2}  P  dV \right \vert \nonumber
\end{displaymath}  

For a fluid for which the relation between P, T, V is given by $PV = k$, where $k$ is a constant under the conditions of interest, what is the magnitude of work for a volume change from $V_{1}=0.03 m^{3}$ to $V_{2} = 0.06m^{3}$? The system is initially at pressure $P=14  bar$.

A. 50 dyne/cm
B. 200.50 kJ/mole
C. 6.035 meters
D. 45.10 ft-lbs
E. 29112 J
F. 30102 J
G. none of the above







Question 7

What are possible types units of $k$ in Question 6:



A. energy
B. pressure
C. volume
D. length/time/time
E. surface tension
F. force







Question 8

What are the units of $F$ based on the following expression:


\begin{displaymath}
F  =  ln \left ( \frac{5m^3}{3m^3} \right) \nonumber
\end{displaymath}  



A. unitless
B. $m^3$
C. dimensionless
D. energy
E. length
F. none of the above
G. all of the above







Question 9

If a function $\mu(T,P)$ is defined by


\begin{displaymath}
\mu(T,P) = RT ln \left( \frac{P}{P_{ref}} \right ) \nonumber
\end{displaymath}  

with $P_{ref}$ a constant, which of the following is/are an appropriate expression for


\begin{displaymath}
\mu(T,P_{2}) - \mu(T,P_{1}) \nonumber
\end{displaymath}  



A.

\begin{displaymath}\mu(T,P_{2}) - \mu(T,P_{1})  =  RT ln \left ( \frac{P_2}{P_1} \right ) \nonumber \end{displaymath}  

B.
\begin{displaymath}\mu(T,P_{2}) - \mu(T,P_{1})  =  RT ln \left ( \frac{P_1}{P_2} \right ) \nonumber \end{displaymath}  


C.
\begin{displaymath}\mu(T,P_{2}) - \mu(T,P_{1})  =  -RT ln \left ( \frac{P_2}{P_1} \right ) \nonumber \end{displaymath}  


D.
\begin{displaymath}\mu(T,P_{2}) - \mu(T,P_{1})  =  -RT ln \left ( \frac{P_1}{P_2} \right ) \nonumber \end{displaymath}  


E.
\begin{displaymath}\mu(T,P_{2}) - \mu(T,P_{1})  =  RT ln \left ( \frac{P_{2}P_{ref}}{P_{1}P_{ref}} \right ) \nonumber \end{displaymath}  








Question 10

What is the type of unit for the product of the gas constant and absolute temperature, $RT$?



A. force
B. energy per amount
C. length
D. time
E. age
F. smoot







Question 11

How can one always describe the property $nRT$ where $n$ is the number of moles of a fluid, $R$ is the gas constant, and $T$ is the absolute temperature?



A. intensive
B. extensive
C. expensive
D. defensive
E. short




next up previous
Next: About this document ...
root 2014-09-02