next up previous
Next: About this document ...

DQ 3

Question 1

For this question, treat 'z' as a function of the independent variable, 'y'. That is z = f(y) = z(y)


\begin{displaymath}
z(y) = \frac{ab}{y} \ \ \ \ \ \ \ \ \ \\ \ \ \ \ a,b \ = \ constants \newline \ \nonumber \newline
\end{displaymath}  


\begin{displaymath}
\int_{y_1}^{y_2} \ z(y) \ dy \ = \ ? \nonumber
\end{displaymath}  

A.

\begin{displaymath}ab \left [ln\left(\frac{y_2}{y_1} \right) \right] \nonumber \end{displaymath}  

B.

\begin{displaymath}ab \left [ln ( y_2 - y_1) \right] \nonumber \end{displaymath}  

C.

\begin{displaymath}ab \left [ln(y_2) - ln(y_1) \right] \nonumber \end{displaymath}  

D.

\begin{displaymath}ab \left [ ln(y_1 y_2) \right] \nonumber \end{displaymath}  

E.

\begin{displaymath}-ab \left [ln\left(\frac{y_1}{y_2} \right) \right ] \nonumber \end{displaymath}  

F.

\begin{displaymath}\ none \ of \ the \ above \ \nonumber \end{displaymath}  










Question 2

Consider a fluid for which the relation between its pressure (P), volume(V), and temperature(T) is given by:

\begin{displaymath}
PV \ = \ nRT \nonumber
\end{displaymath}  

What is the area under the curve representing a volume change from V1 to V2 (V1 less than V2) while T is constant. R and n are constants.

A.

\begin{displaymath}nRT \left [ ln(V_2) - ln(V_1) \right] \nonumber \end{displaymath}  

B.

\begin{displaymath}nRT \left [ ln ( V_2 - V_1) \right ] \nonumber \end{displaymath}  

C.

\begin{displaymath}nRT \left [ ln \left ( \frac{V_2}{V_1} \right) \right ] \nonumber \end{displaymath}  

D.

\begin{displaymath}ln(V_1) \nonumber \end{displaymath}  

E.

\begin{displaymath}\ none \ of \ the \ above \ \nonumber \end{displaymath}  










Question 3

Consider a function of 2 independent variables, g(x,y) where x and y are the independent variables. A partial derivative of g(x,y) is sometimes necessary to evaluate. Abstractly, this would meet a need to assess a change in g(x,y) when x changes while y is constant. The case of y changing with x constant is also a possibility. A partial derivative is written as the following for the differential change in g(x,y) with a differential change in x with y constant:


\begin{displaymath}
\left (\frac{\partial g(x,y)}{\partial x} \right)_y \ \nonumber
\end{displaymath}  

The partial derivative amounts to taking the derivative of the function g(x,y) and treating one of the independent variables as a constant while taking the derivative with respect to the other independent variable. The total differential of g(x,y), d(g(x,y)), is given as:


\begin{displaymath}
d(g(x,y)) \ = \ \left (\frac{\partial g(x,y)}{\partial x} \...
... (\frac{\partial g(x,y)}{\partial y} \right)_x dy \ \nonumber
\end{displaymath}  

For the following function, g(x,y), determine the total differential.


\begin{displaymath}
g(x,y) \ = \ x^2 + xy + y^2 \ \nonumber
\end{displaymath}  

A.

\begin{displaymath}d(g(x,y)) \ = \ (2x)dx+(2y)dy \nonumber \end{displaymath}  

B.

\begin{displaymath}d(g(x,y)) \ = \ (2x+y)dx+(x+2y)dy \nonumber \end{displaymath}  

C.

\begin{displaymath}d(g(x,y)) \ = \ (2x+y)dz+(x+2y)dy \nonumber \end{displaymath}  

D.

\begin{displaymath}d(g(x,y)) \ = \ (2x+y)dg+(x+2y)df \nonumber \end{displaymath}  

E.

\begin{displaymath}\ none \ of \ the \ above \ \nonumber \end{displaymath}  










Question 4

Find the total differential for the function:


\begin{displaymath}
f(x,y, z) \ = \ ln(x) \ + \ yz+x^2y^2z^2 \nonumber
\end{displaymath}  

A.

\begin{displaymath}d(f(x,y,z)) \ = \ xdx \ + \ (z + 2x^2yz^2)dy + (y + 2x^2y^2z)dz \nonumber \end{displaymath}  

B.

\begin{displaymath}d(f(x,y,z)) \ = \ ( \frac{1}{2x^2 + zy + 3} + 2xy^2z^2)dx \ + \ (z + 2x^2yz^2)dy + (y + 2x^2y^2z)dz \nonumber \end{displaymath}  

C.

\begin{displaymath}d(f(x,y,z)) \ = \ ( \frac{1}{x} + 2xy^2z^2)dx \ + \ (z + 2x^2yz^2)dy + (y + 2x^2y^2z)dz \nonumber \end{displaymath}  

D.

\begin{displaymath}d(f(x,y,z)) \ = \ ( \frac{1}{x} + 2xy^2z^2)dz \ + \ (z + 2x^2yz^2)dx + (y + 2x^2y^2z)dy \nonumber \end{displaymath}  

E.

\begin{displaymath}\ none \ of \ the \ above \ \nonumber \end{displaymath}  










Question 5

What is the area under the curve represented by f(x) between the values of x1 and x2 (x1 less than x2)?

A.

\begin{displaymath}\int_{x_3}^{y_2} f(x) \ dx \ \nonumber \end{displaymath}  

B.

\begin{displaymath}(-1) \ \int_{x_2}^{x_1} f(x) \ dx \ \nonumber \end{displaymath}  

C.

\begin{displaymath}\int_{x_1}^{x_2} f(x) \ dx \ \nonumber \end{displaymath}  

D.

\begin{displaymath}\int_{x_2}^{x_1} -f(x) \ dx \ \nonumber \end{displaymath}  

E.

\begin{displaymath}ln(Y) \nonumber \end{displaymath}  

F.

\begin{displaymath}\ none \ of \ the \ above \ \nonumber \end{displaymath}  




next up previous
Next: About this document ...
root 2014-09-01