next up previous
Next: About this document ...

DQ 2

Question 1

For this question, treat 'y' as a function of the independent variable, 'x'. That is y = f(x) = y(x)


\begin{displaymath}
y(x) = \frac{ab}{x}          \     a,b  =  constants \newline  \nonumber \newline
\end{displaymath}  


\begin{displaymath}
\int_{x_1}^{x_2}  y(x)  dx  =  ? \nonumber
\end{displaymath}  

A.

\begin{displaymath}-ab \left [ln\left(\frac{x_1}{x_2} \right) \right ] \nonumber \end{displaymath}  

B.

\begin{displaymath}ab \left [ln\left(\frac{x_2}{x_1} \right) \right] \nonumber \end{displaymath}  

C.

\begin{displaymath}ab \left [ln ( x_2 - x_1) \right] \nonumber \end{displaymath}  

D.

\begin{displaymath}ab \left [ln(x_2) - ln(x_1) \right] \nonumber \end{displaymath}  

E.

\begin{displaymath}ab \left [ ln(x_1 x_2) \right] \nonumber \end{displaymath}  

F.

\begin{displaymath} none  of  the  above  \nonumber \end{displaymath}  










Question 2

Consider a fluid for which the relation between its pressure (P), volume(V), and temperature(T) is given by:

\begin{displaymath}
PV  =  nRT \nonumber
\end{displaymath}  

Consider a volume change from V1 to V2 while T is constant. R and n are constants.


\begin{displaymath}
\int_{V_1}^{V_2}  p  dV  =  ? \nonumber
\end{displaymath}  

A.

\begin{displaymath}nRT \left [ ln(V_2) - ln(V_1) \right] \nonumber \end{displaymath}  

B.

\begin{displaymath}nRT \left [ ln ( V_2 - V_1) \right ] \nonumber \end{displaymath}  

C.

\begin{displaymath}nRT \left [ ln \left ( \frac{V_2}{V_1} \right) \right ] \nonumber \end{displaymath}  

D.

\begin{displaymath}ln(V_1) \nonumber \end{displaymath}  

E.

\begin{displaymath} none  of  the  above  \nonumber \end{displaymath}  




next up previous
Next: About this document ...
root 2014-08-29