
	
   1	
  

NAME:                                                                              CHEMISTRY 443, Fall, 2014 (14F) 
Section Number: 10                                              Examination 1, October 1, 2014 
 
Answer each question in the space provided; use back of page if extra space is needed.  Answer questions so the grader can 
READILY understand your work; only work on the exam sheet will be considered. Clearly indicate your answer and all 
indications of your logic in arriving at your answer. Please answer the question asked and refrain from providing irrelevant 
comments or information. Potentially useful information is provided on Page 10. Write answers, where appropriate, with 
reasonable numbers of significant figures. You may use only the "Student Handbook," a calculator, and a straight edge.  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DO NOT WRITE IN 
THIS SPACE 
 
p. 1_______/20 
 
p. 2_______/20 
 
p. 3_______/20 
 
p. 4_______/20 
 
p. 5_______/20 
 
============= 
 
p. 6 _______/5 
    (Extra credit) 
============= 
TOTAL PTS 
 

  
/100 
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Problem 1 (20 Points) Lattice Models and Ideal Mixing  
Lattice models have found a broad range of application as models for physical processes involved 
with protein folding, phase transitions, protein-ligand binding, understanding surface adsorption 
isotherms (i.e. Langmuir isotherm), among many others. Here we consider a lattice solution model to 
obtain the entropy of mixing of	
   ideal liquids, A and B. In this case, the interactions between A-A 
particles and B-B particles are considered to be of the same magnitude as A-B, thus effectively 
precluding preferential interactions of homo-dimers. This is a renormalized way of constituting an 
ideal system that includes interactions. We need to find the entropy change of mixing for this lattice 
solution. The initial state is one where NA indistinguishable particles are arranged on NA sites of a 
lattice; NB indistinguishable particles of liquid B are arranged on NB lattice sites (shown in figure). 
After mixing, all particles are found in the total sites initially available. There are no empty lattice sites 
either before or after the mixing. Using your knowledge of thermodynamics and combinatorics, 
determine an expression for the mixing entropy of these ideal liquids. Consider the thermodynamic 
limit (Ni ! ∞). Your final answer must be in terms of mole fractions of species A and B. 
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Solution: 
 

€ 

ΔS = S final − Sinitial = Smix − SA − SB
= kB ln(Wmix ) − ln(WB ) − ln(WB )[ ]

= kB ln (NA + NB )!
NA!NB!

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ln (NA )!

NA!0!
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ln (NB )!

0!NB!
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= kB ln (NA + NB )!
NA!NB!

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ln 1( ) − ln 1( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = kB ln (NA + NB )!

NA!NB!
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Apply Stirling's Approx.

ΔS = kB ln((NA + NB )!) − ln((NA )!) − ln((NB )!)[ ]
= kB (NA + NB )ln(NA + NB ) − (NA + NB ) − NA ln(NA ) + NA − NB ln(NB ) + NB[ ]
= kB (NA + NB )ln(NA + NB ) − NA ln(NA ) − NB ln(NB )[ ]
= kB (NA )ln(NA + NB ) + (NB )ln(NA + NB ) − NA ln(NA ) − NB ln(NB )[ ]
= kB (NA )ln(NA + NB ) + (NB )ln(NA + NB ) − NA ln(NA ) − NB ln(NB )[ ]

= −kB (NA )ln NA

NA + NB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + (NB )ln NB

NA + NB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= −NkB (xA )ln xA( ) + (xB )ln xB( )[ ]
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Problem 2 (20 Points) For the following, match the statement in the left-hand side column with the  
most appropriate answer(s) from the right-hand side column.  
 
I. The First ‘Law’ guarantees full conversion of heat to work during a cyclically-
operating process. True or False? _______B__________ 

A. isentropic 

 B, true 
II. Enthalpy of an ideal gas depends on ____N____. C. false 
 D. greater than 0 
 E. equal to 0 
III. The entropy change of the universe for an adiabatic, irreversible process is 
____________D____________ 

F. less than 0 

 G. enthalpy 
 H. entropy 
 I. isenthalpic 
IV. What function of pressure and volume is constant along a reversible adiabat of 
a fluid described by the EOS: PV=nRT  (n = moles)? ______O,H________ 

J. 2 

 K. 3 
V. Entropy is an extensive state function. True or False? ________B__________ L. 4 
 M. internal 

energy 
VI. An ideal gas is contained in a vessel divided into two compartments initially 
separated by an impermeable barrier; the vessel is rigid and insulated. The barrier 
can move to accommodate the pressures in the individual compartments. The 
barrier is diathermal. The barrier is removed after the initial systems have 
equilibrated. The entropy change of the system (i.e. gas) for this adiabatic 
process is _________E or U or both______ 

N. temperature 

VII. To completely describe macroscopically a pure, single-phase fluid, the 
amount and _____J_____ independently-variable properties are required. 

O. PV γ  

 P. irreversible 

VIII. For an ideal gas, ∂U
∂V
"

#
$

%

&
'
T

= ?  __U or E or both______ (U = internal energy) 
Q. enthalpy is a 
state function 

 R. q is isentropic 

IX. The Joule-Thomson Process is described as _____P,I____________. S. enthalpy is 
path dependent 

X. Hess’ ‘Law’ is a restatement of the property that ______Q_________. T. yes! 
 U. zero 
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Problem 3 (20 Points) The Thermo of Electrostatics 
In this problem, we will consider energetics associated with electrostatics. Chemists and biochemists 
often invoke the notion of point (partial) charges to describe interactions between molecules (this is a 
classical treatment of matter as compared to a quantum mechanical picture which is treated in 
CHEM44). Let’s consider the reversible work associated with creating a spherical volume of radius ‘a’ 
with total charge Qfinal uniformly and continuously dispersed within that volume. The charge density 
(charge per volume) is taken to be constant and called ρ. The constancy of charge density means 
that regardless of the size of the spherical volume, the amount of charge dispersed within the sphere 
is such that the charge density is always ρ. Due to the spherical symmetry of the problem, the way we 
will consider building up to total charge Qfinal in the sphere is by forming infinitesimally thin layers (or 
shells if you prefer) around the center of the sphere (located at Cartesian coordinates x=y=z=0); the 
thin layers are defined between r and r+dr with r being the radial distance from the center of the 
sphere. We will add an infinitesimal amount of charge dQ within each layer by bringing dQ from a 
large distance away (r=infinity) into the thin, spherical shell/layer.	
   If Q(r) is the charge in the sphere 
when the sphere has attained radius r, then the work done in bringing a charge dQ to it is: 
 

€ 

dW =
1
4πε o

Q(r)
r

dQ  

 
Remember that this is done in the absence of any heat interactions, is reversible, and that the 
amount of charge in the sphere at any size of radius (during the growing process) can be determined 
in terms of the constant charge density and available geometric properties of the system; for 

instance, 

€ 

Qfinal =
4
3
πa3ρ . 

 
3A. What is the total reversible work needed to build up the sphere from radius 0 to radius ‘a’? Please 
provide your answer in terms of ‘a’ and Qfinal. 
 
 
Solution: 

€ 

dW =
1
4πε o

Q(r)
r

dQ

Q(r) = ρ
4
3
π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ r3

dQ = 4πρr2dr

dW =
4π
3ε o

ρ2r4dr

W =
4π
3ε o

ρ2 r4dr
r=0

r=a

∫ =
4π
15ε o

ρ2a5

ρ2 =
3Qfinal

4πa3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

W =
3
5
Qfinal
2

4ε oπa
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3B. Based on your answer to Part 3A, determine the amount of reversible work involved as this 
charge distribution becomes a true point charge. State any assumptions or limiting conditions you 
invoke in your response. 
 
Solution: 
Take the limit of the result from Part 3A as the sphere radius goes to 0. this is the limiting condition for 
taking the spherical volume to a point. 
 

€ 

W =
3
5
Qfinal

2

4ε oπa
→∞           a→0 

 
This suggests a dilemma since the work cannot be infinite in order to create a single point charge, let 
alone create an assembly of point charges that can interact. 
 
 
 
 
 
3C. What is the potential energy of this point charge? 
 
From the First ‘Law’, the reversible work in this case is equal to the change in potential energy.  If we 
take the reference potential energy as no charge in the volume, then the potential energy becomes 
the reversible work.  The potential energy is infinite. 
 
 

€ 

Upotential =W =
3
5
Qfinal

2

4εoπa
→∞           a→0  

 
 
 
 
3D. What is the potential energy of a configuration of point charges (i.e., a molecule defined 
classically, a protein in solution described by having point charges, etc.)?  Discuss your answer/result 
with some relevant comments.  
 

€ 

Upotential =W =
3
5
Qfinal

2

4εoπa
→∞           a→0  

 
This result is a consequence of the result of par b, which effectively states that the self-energy (the 
energy involved in just creating the point charge somewhere in space) of a collection of charges is 
infinite. This suggests that the idea of locating charge at a point and then using the point distribution 
for obtaining electrostatic fields and potentials (i.e. the Coulomb potential) is inconsistent. This 
suggests that perhaps we need to always consider some distribution of charge over a finite volume in 
space. Unfortunately, quantum mechanical treatments of electromagnetism encounter these same 
infinite self-energies of electrons! Fortunately, physicists have worked out a prescription called 
renormalization that avoids the infinities. 
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Problem 4 (20 Points) The First Law 
4A. How much heat is required to increase the temperature of nitrogen (1 kg) from -20 Celsius to 100 

Celsius via constant pressure process? 
  

€ 

C V = 5 cal
mol ⋅ !C

 ; R = 2 cal
mol ⋅ !C

 

 
 
Solution: 

  

€ 

q = n(C V + R)ΔT

=
1000gram
28gr /mole
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (5

cal
mol ⋅ !C

 + 2 cal
mol ⋅ !C

)(120!C)

= 30kcal

 

 
 
4B. What is the internal energy change of the nitrogen sample? 
 
 
 

  

€ 

ΔU = n(C V )ΔT

=
1000gram
28gr /mole
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (5

cal
mol ⋅ !C

)(120!C)

= 21.4kcal

 

 
 
 
4C. How much work is done? 
 
 
 
 

€ 

W = ΔU − q = n(C V )ΔT
= 21.4kcal − 30kcal
= −8.6kcal

 

 
 
 
 
8.6 kcal of work performed. 
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Problem 5 (20 Points) Thermochemistry 
Consider the following reaction: 
 

C (graphite) + H2O (g) ! CO (g) + H2 (g) 
 

The standard enthalpy of reaction at T=298.15K is 

€ 

ΔHT =298.15
0 =131.28 kJ

mol
. What is the standard 

enthalpy of reaction at 125°C? Assume constant molar heat capacities. 
 
 
 
 
 

  

€ 

ΔHreaction
! (T = 398.15K) = ΔHreaction

! (T = 298.15K) + ΔCP ,rxn  dT
T= 298.15K

T= 398.15K

∫

ΔCP ,rxn = ν iCP ,i
!

i
∑ = (1)(29.1 J

mol K
) + (1)(28.8 J

mol K
) − (1)(8.5 J

mol K
) − (1)(33.6 J

mol K
)

ΔCP ,rxn =15.8 J
mol K

ΔHreaction
! (T = 398.15K) =131.28 + ΔCP ,rxn  dT

T= 298.15K

T= 398.15K

∫ =131.28 + 0.0158 kJ
mol K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (100K) =132.86 kJ

mol 
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Problem 6. Extra Credit (5 Points) Show explicitly that the reversible work to accelerate a resting 
mass ‘m’ from zero initial velocity to final velocity ‘vx’ along the x-direction is ½ m v2. Specifically: 
 

€ 

UKE = dW∫ =
1
2
mvx

2  

 
The response will require showing how the force on the mass, for which there is an explicit 
mathematical form, leads to the expression involving velocity. 
 
 
 
Solution: 
 
 
 
 

€ 

UKE = dW∫

dW = Fxdx = m dvx
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dx

dx = vxdt

dW = Fxdx = m dvx
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ vxdt

dW = Fxdx = mvxdvx

dW = d 1
2
mvx

2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dW∫ = d 1
2
mvx

2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

vx

∫

UKE = dW∫ =
1
2
mvx

2 − 0 =
1
2
mvx

2
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Potentially Useful Information 
 
Stirling’s Approximation:  
 

€ 

ln(N!) = (N lnN) − N          N →∞  
 
 
NA R = kB = Boltzmann Constant 
 
 
Number of ways to place N indistinguishable objects into M bins: 

W =
M !

N!(M − N )!
 

 
 
S = kB ln (W)   (isolated system, statistical mechanical form of entropy for lattice model) 
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NAME:                                                                              CHEMISTRY 443, Fall, 2014 (14F) 
Section Number: 10                                              Examination 1, October 1, 2014 
 
Answer each question in the space provided; use back of page if extra space is needed.  Answer questions so the grader can 
READILY understand your work; only work on the exam sheet will be considered. Clearly indicate your answer and all 
indications of your logic in arriving at your answer. Please answer the question asked and refrain from providing irrelevant 
comments or information. Write answers, where appropriate, with reasonable numbers of significant figures. You may use only 
the "Student Handbook," a calculator, and a straight edge. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DO NOT WRITE IN 
THIS SPACE 
 
p. 1_______/20 
 
p. 2_______/20 
 
p. 3_______/20 
 
p. 4_______/20 
 
p. 5_______/20 
 
============= 
 
p. 6 _______/10 
    (Extra credit) 
============= 
TOTAL PTS 
 

  
/100 

 


