\[\Delta W = -P_{\text{ext}} \, dV\]

\[V_m = \frac{V_{\text{total}}}{n}\]

\[V = n \, V_m\]

Reversible: limiting max work equilibrium states
$1 \rightarrow 2 \rightarrow 1$

no change in system + surroundings
no net work
no net heat exchange

$A + B \rightleftharpoons C + D$ equilibrium

$\rho_{ext} = \rho + SP$

$\Delta W = -p_{ext} \, dV$

$\Delta W = -(\rho + SP) \, dV$

$\Delta W = -pdV - SP \, dV$

Reversible: idealization

hard to establish in practice
\[dU = dQ + dW \]
\[dU = C_p \text{th}(T) \, dT - P_{\text{ext}} \, dV \]

constant volume process
\[dU = C_p \text{th}(T) \, dT \]

constant temp
\[dU = -P_{\text{ext}} \, dV \]

Adiabatic
\[dU = dW_{\text{reversible}} \]

U state fn. depends on \(T, V \)
\[U(T, V) \]

Total Differential of \(U(T, V) \)
\[dU(T, V) = \left(\frac{\partial U}{\partial T} \right)_V \, dT + \left(\frac{\partial U}{\partial V} \right)_T \, dV \]

partial differential

hold V

Constant while differentiating
Constant Volume:

\[dU(T, V) = \left(\frac{\partial H}{\partial T} \right)_V dT \]

\[dU(T, V) = dq_V - P_{ext} dv \]

const. vol. heat interaction.

\[dq_V = \left(\frac{\partial H}{\partial T} \right)_V dT \]

\[dq_v = C_v(T) dT \]

\[C_v(T) \equiv \left(\frac{\partial H(T, V)}{\partial T} \right)_V \]

At constant volume:

\[dU(T, V) = dq_v \]

\[\Delta U(T, V) = q_v \]
Total Differential of $U(T,V)$

$$dU(T,V) = \left(\frac{\partial U}{\partial T} \right)_V dT + \left(\frac{\partial U}{\partial V} \right)_T dV$$

$$dU(T,V) = C_v(T) dT + \left(\frac{\partial U}{\partial V} \right)_T dV$$

What is this?

Joule Free Expansion

![Diagram of gas and vacuum with insulation]

System: Gas

Process: Open stopper, let gas flow into vacuum

Apply 1st law:

$$dU = \oint_P d\Pi + \oint_{\delta V} = 0$$

Constant U process !!!!!
\[dU(T, v) = C_v(T) \, dT_u + \left(\frac{\partial Y}{\partial V} \right)_T \, dV_u = C \]

\[-C_v(T) \, dT_u = \left(\frac{\partial Y}{\partial V} \right)_T \, dV_u \]

\[-C_v(T) \, \frac{dT_u}{dV_u} = \left(\frac{\partial Y}{\partial V} \right)_T \]

\[-C_v(T) \, \left(\frac{dT}{dV} \right)_u = \left(\frac{\partial Y}{\partial V} \right)_T \]

\[\text{Vary } \Delta V \text{ limit } \frac{\Delta T}{\Delta V} \xrightarrow{\Delta V \to 0} \frac{\partial Y}{\partial V} \Delta T \]