Reversible Processes (paths)

\[P = \frac{nRT}{V} \]

Iso T.
\[n = \text{constant} \]
\[V_2 > V_1 \]

\[P = P_2 \]
\[P_{\text{ext}} = P_2 \]
\[W = 0 \]
\[dW = -P_{\text{ext}} \, dV \]
\[dW = 0 \]
\[\int dW = 0 \]
\[\int -P_{\text{ext}} \, dV = -P_2 (V_2 - V_1) \]

2nd case
\[W = \frac{2}{n} \]
Reversible process

→ isothermal expansion of \(V, T \)

→ \(W = W_{\text{max}} \) done by system

→ system is always infinitesimally away from equilibrium

\[\overline{\text{effectively: system always at equilibrium}} \]
Implication:

Consider process: \[\frac{1}{\text{equil}} \rightarrow \frac{2}{\text{equil}} \]

\[\Delta U = U_2 - U_1 \in \text{state function} \]
Reversible Process \[1 \rightarrow 2 \]

Irreversible Process \[1 \rightarrow 2 \]

\[dU_{\text{rev}} = dtq_{\text{rev}} + dtW_{\text{rev}} \]

\[dU_{\text{irrev}} = dtq_{\text{irrev}} + dtW_{\text{irrev}} \]

\[0 = dtq_{\text{rev}} - dtq_{\text{irrev}} + dtW_{\text{rev}} - dtW_{\text{irrev}} \]

\[dtW_{\text{irrev}} - dtW_{\text{rev}} = dtq_{\text{rev}} - dtq_{\text{irrev}} \]

\[\therefore \]

\[0 < dtq_{\text{rev}} - dtq_{\text{irrev}} \]

\[dtq_{\text{rev}} > dtq_{\text{irrev}} \]