
Introduction Essential Introduction

Essential Introduction to the
NAG Fortran 90 Library

This document is a summary of the essential features of the design of the NAG Fortran 90 Library. It
assumes that you are familiar with Fortran 90. Sections marked with an asterisk (*) can be omitted
at first reading unless specifically required. If you want a more informal and expansive introduction to
the Library, or are unfamiliar with Fortran 90, please turn to the document Tutorial for the NAG
Fortran 90 Library.

Contents

1 Structure of the Library and its Documentation 0.1.2

2 Naming Scheme 0.1.3

3 Accessing the Library 0.1.3

4 Design and Documentation of Procedures 0.1.4
4.1 Optional Arguments . 0.1.4
4.2 Assumed-shape Arrays . 0.1.5
4.3 Derived Types . 0.1.5
4.4 Generic Interfaces . 0.1.6
4.5 Key Arguments (*) . 0.1.6
4.6 Procedure Arguments . 0.1.6

5 Precision 0.1.7
5.1 Precision of Procedures . 0.1.7
5.2 Precision of Derived Types . 0.1.8

6 Memory allocation 0.1.8

7 Error Handling 0.1.9
7.1 Classification of Errors . 0.1.9
7.2 Default Error Handling . 0.1.10

8 Example Programs 0.1.10

9 Library Details 0.1.11
9.1 Releases of the Library . 0.1.11
9.2 Implementations of the Library . 0.1.11
9.3 The Procedure nag lib ident . 0.1.12

10 Non-default Error Handling (*) 0.1.12
10.1 The Argument error . 0.1.12
10.2 Examples . 0.1.13

11 Portability and Precision (*) 0.1.14

12 Relationship to the NAG Fortran 77 Library (*) 0.1.15

13 Contact Between Users and NAG (*) 0.1.15

A List of Abbreviations (*) 0.1.16

[NP3245/3/pdf] 0.1.1

Essential Introduction Introduction

1 Structure of the Library and its Documentation

The NAG Fortran 90 Library — known as NAG fl90 — is divided into chapters , each covering one major
area of numerical or statistical computing. For a complete list of chapters, see the List of Contents
document.

Each chapter contains a number of modules, and each module typically contains a group of closely related
procedures (subroutines or functions). Some modules also contain definitions of derived types or named
constants which are required for use with the procedures in the module.

For example, Chapter 8 on Curve and Surface Fitting contains a module nag spline 1d, which
handles curve fitting problems using splines. This module contains seven procedures for fitting or
evaluating a spline and so on; it also defines a derived type which is used to represent a spline. The chapter
on Curve and Surface Fitting also contains three other modules: nag pch interp for piecewise cubic
Hermite interpolation, nag spline 2d for surface fitting with splines, and nag scat interp for curve
and surface fitting of scattered data.

Documentation for NAG fl90 is available in the form of a printed Manual or in a hypertext-based
electronic form (called NAG fl90 TextWare). The TextWare form is supplied with each Library
implementation, where appropriate. The printed manual is also supplied free of charge for some types
of user licence; further copies may be purchased from NAG (see Section 13).

The documentation has the same chapter structure as the Library. There is

a Chapter Introduction document for each chapter, and
a module document for each module.

The module document is the basic unit of documentation. Each module document has an index number
of the form c.m, where c is the chapter number and m is the module number within the chapter. The
index number defines the order in which the module documents appear in the Manual.

Thus, for example, the module documents in Chapter 8 are numbered as follows:

8.1 – Module nag pch interp
8.2 – Module nag spline 1d
8.3 – Module nag spline 2d
8.4 – Module nag scat interp

Each module document contains the following sections and subsections:

Introduction (optional)
Procedure Specifications

1. Description
2. Usage
3. Arguments
4. Error Codes
5. Examples of Usage
6. Further Comments (optional)

Derived Type Specifications (optional)

1. Description
2. Type Definition
3. Components

Examples
Additional Examples (optional)
Mathematical Background (optional)
References (optional)

A Keywords in Context (KWIC) index and an index based upon GAMS classification are provided in
the printed manual to help you find a module or procedure to meet your needs. Alternatively, the Search
facility in the online hypertext version could be used.

0.1.2 [NP3245/3/pdf]

Introduction Essential Introduction

2 Naming Scheme

All modules, procedures, derived types and named constants provided by the Library have names
beginning with the prefix ‘nag ’.

All names are constructed from components separated by underscores. Many of the components are
abbreviations which come from a list of abbreviations given in Appendix A. These abbreviations are
also used in the names of dummy arguments and components of derived types.

The names have been designed, as far as possible, to be reasonably compact, intelligible, memorable and
indicative of the essential function of the named entity. But obviously these are conflicting criteria about
which individuals may have widely varying views.

Note that it is always possible to rename an entity from the Library when you access it in a USE statement,
as described in Section 3.

3 Accessing the Library

Suppose that you have found a module which deals with your problem.

Any of your program units which refer to procedures (or other entities) from that module must contain
a USE statement for that module.

For example, if you wish to fit a spline curve, you will need to use the module nag spline 1d (8.2).
If you wish to call the procedure nag spline 1d auto fit from that module, your program unit must
contain the statements:

USE nag_spline_1d

. . .

CALL nag_spline_1d_auto_fit(. . .)

The required USE statement is given in the Usage section of each procedure specification.

The USE statement gives access to an explicit interface for each documented procedure in the module.
Therefore mismatches between actual and dummy arguments can be detected at compile time.

The USE statement also gives access to all entities in the Library that are required for the use of the
procedures in the module, for example, definitions of derived types and elements of the infrastructure of
the Library, such as those concerned with error handling (see Section 7) or deallocation of memory (see
Section 6).

If within a single program unit you call procedures from more than one module, you will need to include
more than one USE statement.

Access to the Library is carefully controlled by use of PRIVATE and PUBLIC statements in the library
modules, so that only the documented entities are accessible.

Note that it is good practice to document which entities you access through a USE statement, by naming
them in an ONLY clause, for example:

USE nag_spline_1d, ONLY : nag_spline_1d_auto_fit

You may also rename a procedure (or other entity) in the USE statement if you wish:

USE nag_spline_1d, ONLY : fit => nag_spline_1d_auto_fit

. . .

CALL fit(. . .)

[NP3245/3/pdf] 0.1.3

Essential Introduction Introduction

4 Design and Documentation of Procedures

Several features of the Fortran 90 language have been employed in NAG fl90 to increase the power and
ease of use of library procedures, in particular:

optional arguments
assumed-shape arrays
derived types
generic interfaces

Sections 4.1 to 4.5 describe how these features are used and documented.

Section 4.6 focuses on the design and documentation of procedure arguments, that is, arguments which
are themselves procedures (subroutines or functions), to be supplied by users.

4.1 Optional Arguments

Most procedures in the Library have several optional arguments. In particular, the argument error,
which controls error handling, is always optional (see Section 7).

As a general rule, mandatory arguments are used to supply the essential data to a procedure and to
receive the essential results. Optional arguments are used, for example:

• to define additional aspects of the problem (for example, constraints)

• to supply non-default values for arguments which control the execution of the algorithm (for
example, requested accuracy, or maximum number of iterations)

• to request additional results to be computed by the algorithm (for example, eigenvectors in addition
to eigenvalues, or an estimate of the accuracy actually achieved)

• to request information about the performance of the algorithm (for example, number of iterations
required)

If an optional input argument is not supplied, then the procedure uses a default value (which of course
is documented), or in some cases may take some more general default action.

In the procedure specifications, there are separate subsections for Mandatory Arguments and
Optional Arguments.

It is a convention of NAG fl90 that optional arguments must be passed by keyword , for example:

CALL nag_quad_1d_gen(f, a, b, result, abs_acc=zero, rel_acc=0.00001_wp)

and not

CALL nag_quad_1d_gen(f, a, b, result, zero, 0.00001_wp)

The reason for this convention is that the order in which the optional arguments are listed in the
documentation is not necessarily the same as their positional order in the argument list. Additional
optional arguments may be introduced at future releases. (Calls in which optional arguments are passed
by position may work correctly, but NAG does not support this mode of use and does not guarantee that
such calls will continue to work indefinitely.)

The fact that an argument is optional does not necessarily mean that you have complete freedom to
supply it or not. Some library procedures impose constraints on the combinations of optional arguments
that are allowed to be present. These constraints are stated in the documentation, and checked at
run-time by the library procedures.

See also Section 4.6 on optional arguments of (user-supplied) procedure arguments.

0.1.4 [NP3245/3/pdf]

Introduction Essential Introduction

4.2 Assumed-shape Arrays

All array arguments of library procedures are assumed-shape arrays, apart from a few which are array
pointers. An actual argument which corresponds to an assumed-shape array can be a whole array or
an array section; or if it is an input argument, it can be an array expression (which includes an array
constructor or the result of an array-valued function). In all cases the actual argument must have the
exact shape required by the problem; in other words it must have the correct extent in each dimension.

For example, the procedure nag gen lin sol (5.1) solves a (square) system of linear equations Ax = b of
order n. The supplied rank-2 array a which holds the matrix A must have exactly n rows and n columns,
and the rank-1 array b which holds the right-hand side must have exactly n elements. If necessary, the
array-section notation can be used to achieve this, for example:

CALL nag_gen_lin_sol(a(1:n,1:n), b(1:n))

Library procedures normally determine the dimensions of the problem from the shapes of the supplied
arrays (thus reducing the number of arguments): in the above example, n is determined from the first (or
leading) dimension of a. Library procedures check that the shapes of array arguments are consistent with
one another: for example, nag gen lin sol checks that a is square, and that the number of elements in
b is the same as the number of rows or columns in a.

Array arguments are specified in the documentation in the following style:

x(n) — real(kind=wp), intent(. . .)

y(m, n) — real(kind=wp), intent(. . .)

(See Section 5 for the documentation of real types.) Here x must be a rank-1 array which must have
exactly n elements, and y must be a rank-2 array with exactly m rows and n columns; m and n will
have already been defined in the description of the problem that the procedure solves.

4.3 Derived Types

Some library procedures have arguments which are structures , that is, objects of a derived type which
is defined by the Library. The definition of the derived type is accessible from the same module as the
procedure.

One use of structures is to communicate data from one library procedure to another, or between repeated
calls of the same procedure. In such cases, the components of the type are usually private, so that the
data is protected from accidental corruption. Additional service procedures are provided to access some
of these components if that is likely to be useful.

Another use of structures is to package together items of data which serve a similar function: for example,
several parameters which control an optimization algorithm are grouped together in an argument
control; in these cases, the components are public.

If a derived type contains real or complex components, then its name is precision dependent (see
Section 5.2).

The specification of a derived type is given in a separate section of the module document for the module(s)
in which it is used, with the exception of the derived type nag error, which is used throughout the
Library, and is described in Section 10.1 and in the module document nag error handling (1.2).

Many derived types defined by the Library have a special component which allows a library procedure
to check whether a structure of this type has been initialized.

See also Section 6 concerning the allocation of memory to components of types defined by the Library.

[NP3245/3/pdf] 0.1.5

Essential Introduction Introduction

4.4 Generic Interfaces

Each procedure in the Library is made accessible through a generic interface. The documented procedure
name is the generic name. With few exceptions, each generic interface provides access to more than one
specific version of the procedure. These specific versions may differ according to the following properties
of their arguments.

precision: see Section 5 for more details. This is the commonest type of genericity.

data type: for example, an argument may be real or complex.

rank: for example, an argument may be a scalar or an array.

Each procedure specification describes the generic interface as if it were a single procedure with generic
capabilities. For example, a single generic procedure is provided to solve real or complex systems of
linear equations with one or several right-hand sides.

The alternatives are documented in the following style:

b(n) / b(n, r) — real(kind=wp) / complex(kind=wp), . . .

This means that the argument b may be either a rank-1 array of shape (n) or a rank-2 array of shape (n, r);
its type may be either real(kind=wp) or complex(kind=wp). (See Section 4.2 for the documentation of
array arguments and Section 5 for the documentation of real and complex types.)

In addition (except in the simplest cases), the properties of the different interfaces are summarised in an
extra Interfaces subsection of the Usage section of the procedure specification.

You do not normally need to know the specific procedure names; you may however see them in loader
maps, traceback or debug information.

4.5 Key Arguments (*)

This section describes a convention of NAG fl90 which is used only in some procedures for linear algebra
and Fourier transforms.

These procedures have arguments, referred to as ‘keys’, whose sole function is to distinguish between
different specific versions of a generic procedure, in cases where the other mandatory arguments are
insufficient to do this.

For example, most of the procedures for linear algebra in the Library are generic procedures for real or
complex data, and the different versions are distinguished by the type of one or more of the mandatory
arguments. However, in the procedure nag bidiag svd (6.3), it is only the optional arguments that can
differ in type between real and complex. Therefore this procedure has a mandatory ‘key’ argument, and
real and complex problems are distinguished thus:

CALL nag_bidiag_svd(nag_key_real, uplo, d, e, vt=vt) ! vt is real

CALL nag_bidiag_svd(nag_key_cmplx, uplo, d, e, vt=vt) ! vt is complex

Here nag key real and nag key cmplx are named constants defined by the Library, which are accessible
from the same module as the procedure nag bidiag svd; you must supply one of them as the first actual
argument to the procedure.

All key arguments in the Library have the dummy argument name nag key, and the values supplied
by the Library all have names beginning with the prefix ‘nag key ’. As a user, all you need to do is
to supply the correct name. (Formally, key arguments are named constants, each of a different derived
type, defined by the Library.)

4.6 Procedure Arguments

Some NAG fl90 procedures require you to supply a Fortran 90 procedure (subroutine or function) as an
argument. It is referred to as a procedure argument . It may be optional.

A procedure argument is documented in a similar style to a library procedure, with its specification
enclosed in a box. However, because you must write the procedure, rather than call it, there are some
important differences. Here is a simple example:

0.1.6 [NP3245/3/pdf]

Introduction Essential Introduction

f — function

f must return the value of the integrand f at a given point.

function f(x)

real(kind=wp), intent(in) :: x(:)

Shape: x has shape (n).

Input: the co-ordinates of the point at which the integrand f must be evaluated.

real(kind=wp) :: f

Result: f must contain the value of f at the point with co-ordinates x(i), i = 1, 2, . . . , n.

This example illustrates the following general points.

1. The specification gives a precise Fortran 90 declaration of the attributes of each argument, which
can be copied exactly into your code (except for the symbol wp which is explained in Section 5).

2. Array arguments are specified as assumed-shape arrays.

The dimensions of the actual arguments (passed by the library procedure) are usually specified
under the subheading Shape, in terms of the dimensions of the problem. In the above example,
n is a problem-dependent value (the number of dimensions of the integrand): within the code of
your procedure f, n may have a known fixed value, or its value may be accessible from elsewhere
in your calling program; alternatively it can be determined as the value of SIZE(x).

However, in some procedure arguments, the dimensions of assumed-shape arrays are determined
within the library procedure by the details of the algorithm, not by the problem: in such cases
the actual dimensions of the supplied arrays can be determined (if needed) within the code of the
procedure argument only by using the intrinsic function SIZE.

3. If an argument has the attribute intent(in), its value must not be changed by the user-supplied
procedure.

4. The result returned by a function argument is described in the same style as the arguments, with
the special subheading Result.

Some procedure arguments have optional arguments.

Optional arguments allow more flexibility in the ways in which a procedure argument can be called by
a library procedure: for example, the presence of an optional argument can be used to indicate that the
the procedure argument is required to compute and return additional information.

The code of the procedure argument must test for the presence of each optional argument, using the
Fortran 90 intrinsic function PRESENT, and must take appropriate action depending on the result of the
test.

5 Precision

5.1 Precision of Procedures

On your machine, NAG fl90 may contain versions of procedures in double precision or single precision,
or possibly both. In the double precision version of a library procedure all real or complex arguments
are in double precision; in a single precision version, they are all in single precision. On some systems,
there may be versions in other precisions as well (e.g., quadruple).

[NP3245/3/pdf] 0.1.7

Essential Introduction Introduction

Each procedure has a generic name (see Section 4.4) which covers all available precision versions. The
compiler will determine which precision-specific version of the procedure to call, according to the precision
of the real or complex arguments that you have used. You may even call different specific versions of
the same procedure within one program unit.

If there is no version available corresponding to the precision of your arguments, the compiler will report
an error. All real and complex arguments in a call to a library procedure must be in the same precision;
if they are in mixed precision, the compiler will report an error.

You need to know which precisions are available in the Library on your machine. This information can
be obtained by calling the NAG fl90 procedure nag lib ident in the module nag lib support (see
Section 9.3).

In the procedure specifications, the type of a real or complex argument is given as

real(kind=wp) or complex(kind=wp).

Here wp denotes a kind value, which needs to be interpreted in a way that fits the precision of your
program and the style in which you have coded it. (The symbol wp stands for ‘working precision’; the
different typeface is a reminder that its interpretation may vary.)

Suppose that on your machine the Library contains procedures in both double and single precision:

for double precision, ‘real(kind=wp)’ is equivalent to ‘real(kind=kind(1.0D0))’ or ‘double precision’;

for single precision, ‘real(kind=wp)’ is equivalent to ‘real(kind=kind(1.0))’ or ‘real’.

However, there are advantages in using a named constant (such as wp) to define the kind values for all real
or complex data in your program; for further guidance, see Section 11 on Portability and Precision.

5.2 Precision of Derived Types

Derived types cannot be parameterized with a kind value; this is a limitation of the Fortran 90 language.
Derived types defined by the Library with real or complex components must have distinct names for
each available precision. The following convention is used.

• In double precision, the type name has the suffix dp; in single precision, it has the suffix sp; for
example, nag seed dp and nag seed sp. (For other precisions, if available, see the Users’ Note for
your implementation.)

• The name used in the documentation has the suffix wp, for example nag seed wp; note that the
suffix is in a different typeface to remind you that its interpretation may vary.

6 Memory allocation

Many library procedures allocate memory for internal workspace; such workspace is always deallocated
before exit from the procedure.

Some library procedures have dummy arguments which are array pointers. Array pointers are used
when the precise amount of memory required can only be determined by the procedure in the course of
computation. Fortran 90 does not allow allocatable arrays as dummy arguments, so array pointers are
used instead.

When you call the procedure, you must supply a pointer of the correct type and rank. In order to avoid
problems with potential memory leaks, the pointer should not be associated as the association will be
lost. The procedure allocates the required amount of memory to the pointer, and on return, you may
use the pointer to refer to the results.

If and when the results are no longer needed, you can deallocate the memory in your calling program,
using a DEALLOCATE statement (this will keep memory usage to a minimum). (It will be deallocated
automatically at the end of your program.) If you pass the same pointer repeatedly to several calls of
a library procedure, you should deallocate it between calls; otherwise, the previously allocated memory
will become inaccessible (a ‘memory leak’).

0.1.8 [NP3245/3/pdf]

Introduction Essential Introduction

For example, you may wish to compute the eigenvectors corresponding to the eigenvalues in a given
interval; how many such eigenvalues there are may not be known in advance, so you are asked to supply
array pointers to receive the eigenvalues and eigenvectors. The following code-fragment illustrates the
pattern:

REAL (KIND=wp), POINTER :: lambda(:), z(:,:)

. . .

CALL nag_sym_eig_sel(uplo, a, lambda, z=z, . . .)

. . .

DEALLOCATE (lambda,z)

A similar situation occurs when an argument is a structure with components which are array pointers.
Again, memory is allocated by the procedure, and it is your responsibility to deallocate it if and when
it is no longer needed. A generic procedure nag deallocate (1.1) is provided for this purpose: it has
one mandatory argument, namely the structure (a scalar). The specification of each derived type states
whether it has components which may need to be deallocated using nag deallocate.

In the following fragment of code, spline is a structure which represents a spline curve. Memory
is allocated to the structure by the call to nag spline 1d lsq fit; the structure is passed to
nag spline 1d eval, and the memory is deallocated by a call to nag deallocate:

TYPE (nag_spline_1d_dp) :: spline

. . .

CALL nag_spline_1d_lsq_fit(x, f, knots, spline)

CALL nag_spline_1d_eval(spline, x, s)

CALL nag_deallocate(spline)

7 Error Handling

7.1 Classification of Errors

NAG fl90 procedures may detect and report various kinds of error, failure or warning conditions. They
are classified into three levels of increasing severity.

Level 1 (Warning): a warning that, although the computation has been completed, the results
may not be completely satisfactory.

Level 2 (Failure): a numerical failure during computation (for example, failure of an iterative
algorithm to converge).

Level 3 (Fatal): a fatal error which prevents the procedure from attempting any computation
(for example, invalid arguments, or failure to allocate enough memory).

Each error is given a numeric code. Warnings (level 1) have codes in the range 100–199; failures (level
2) have codes in the range 200–299; fatal errors (level 3) have codes in the range 300–399.

Standard error codes are used for the common types of fatal errors.

301: an argument has an invalid value

302: an array argument has an invalid shape

303: array arguments have inconsistent shapes

304: an optional argument is present when it is not allowed (for example, because certain combinations
of optional arguments are forbidden)

305: an optional argument is absent when it must be present (for example, because certain pairs of
optional arguments must be present together)

[NP3245/3/pdf] 0.1.9

Essential Introduction Introduction

You do not need to remember the meanings of these codes: they are repeated, where relevant, in the
specifications of the procedures. The error messages which are output by the procedures give full details
of the particular arguments which have caused the errors.

To control the way in which any of these errors are handled, all NAG fl90 procedures have an optional
argument error (except for a few which cannot give rise to any error condition).

7.2 Default Error Handling

If the optional argument error is omitted , then the library procedure takes the following default action.

• If no error is detected, it returns control to your calling program.

• If it detects an error of level 1 (warning), it writes an error message to the standard output unit
and returns control to your calling program.

• If it detects an error of level 2 or 3 (failure in computation or fatal error), it writes an error message
to the standard output unit and halts execution of the program.

The default action may not always be suitable: for example, you may wish to take corrective action after
a computational failure, or you may wish to halt execution after a warning. For details, see Section 10
on Non-default Error Handling.

8 Example Programs

Each module document contains one or more complete example programs, together with data (if required)
and typical results, illustrating a simple use of the procedures in the module (often in combination).

These example programs are distributed to sites as source code, and are designed so that they can easily
be modified to solve similar simple problems.

For procedures with a high degree of genericity (see Section 4.4), the example programs published in the
documentation may not illustrate all the different specific versions of the procedure. However, example
programs covering each specific version are provided with the software, and are listed in the Additional
Examples section of each module document.

The published example programs may illustrate the use of only some of the optional arguments of
a procedure. The Examples of Usage section in each procedure specification presents additional
fragments of code, if necessary, to supplement the complete example programs in the module document.

The following programming conventions are used in the example programs.

• Fortran 90 statement keywords and intrinsic function names appear in upper case; all other names
are in lower case.

• The published example programs are all in double precision. To convert them to single precision,
you need only change the definition of the named constant wp and the names of any precision-
dependent derived types defined by the Library; see below for details.

• An integer named constant wp is used as the kind value for all real and complex entities. Type
declarations for real and complex data appear simply as REAL (wp) and COMPLEX (wp), rather
than the equivalents REAL (KIND=wp) and COMPLEX (KIND=wp).

• The constant wp is defined to be the kind value for double precision, in the following statement:

INTEGER, PARAMETER :: wp = KIND(1.0D0)

To change the precision to single, simply change 1.0D0 to 1.0 (or 1.0E0) in this statement.

• All USE statements have an ONLY qualifier, whose purpose is to document which entities are accessed
from the module.

• If the program uses a precision-dependent derived type defined by the Library (see Section 5.2),
the type is renamed when it is accessed in a USE statement, so that the suffix is changed from dp
to wp. For example:

0.1.10 [NP3245/3/pdf]

Introduction Essential Introduction

USE nag_rand_contin, ONLY :: nag_seed_wp => nag_seed_dp

All other references to this type use the local name nag seed wp. If you are converting the program
to single precision, you must change the name nag seed dp in the USE statement to nag seed sp:

USE nag_rand_contin, ONLY :: nag_seed_wp => nag_seed_sp

• Allocatable arrays are used in many programs for passing as array arguments to NAG fl90
procedures. Integers which specify the size of the problem are read from a data file, and the
arrays are then allocated with the required shape.

• All allocatable arrays and array pointers are explicitly deallocated at the end of the program,
using a DEALLOCATE statement; all structures that have had memory allocated to them by NAG
fl90 procedures are deallocated by a call to nag deallocate. See Section 6. Of course, it is not
necessary to deallocate storage immediately before the end of a main program, but these statements
are included in case the code is copied into part of a much larger program where it may be important
to avoid memory leaks.

• In calls to NAG fl90 procedures, arguments are called by keyword if and only if they are optional.
Note that it is a convention of NAG fl90 that all optional arguments must be called by keyword
(see Section 4.1).

• If the library procedure has an argument which is a user-supplied procedure, the actual procedure
is always contained in a user-supplied module. This ensures that an explicit interface for the user-
supplied procedure is automatically available, and in some example programs allows global data
to be shared between the user’s procedure and the main program (without using COMMON).

• Named constants nag std in and nag std out (which are obtained from the module
nag examples io) are used as the unit numbers for input and output, respectively.

• A one-line heading appears (for purposes of identification) as the first record of each data file; it is
skipped by a READ statement with no input list. Similarly a one-line heading is output as the first
record of each results file.

9 Library Details

9.1 Releases of the Library

Periodically, the Library and its documentation will be updated to a new release; new modules
and procedures will be added, and corrections or improvements may be made to existing code and
documentation.

The code may also be updated between releases to an intermediate maintenance level, in order to
incorporate corrections. Maintenance levels are indicated by a letter following the release number, for
example 1A, 1B.

9.2 Implementations of the Library

Distinct implementations of the Library are provided for different systems. Each implementation is
distributed to sites as a tested, compiled library. An implementation is usually specific to a range of
machines (for example, Sun 4); it may also be specific to a particular operating system, Fortran 90
compiler, or compiler option.

The documentation supports all implementations of the Library; a small amount of implementation-
dependent information is provided in a separate Users’ Note for each implementation.

The Users’ Note states in particular which precisions are supported (see Section 5).

[NP3245/3/pdf] 0.1.11

Essential Introduction Introduction

9.3 The Procedure nag lib ident

To find out which release, which implementation, and which precision(s) of the Library are available
at your site, you can run a program which calls the procedure nag lib ident in the module
nag lib support (1.1). This is a subroutine with no arguments, which writes the information onto
the standard output unit.

The following program is all that is needed to call nag lib ident:

USE nag_lib_support

CALL nag_lib_ident

END

and here is an example of the output (which will of course vary from one implementation of the Library
to another):

*** Start of NAG Fortran 90 Library implementation details ***

Implementation title: Silicon Graphics 4D, NAGWare f90 compiler

Product Code: FNSG403D9

Release: 3

Precision: double (KIND= 2)

*** End of NAG Fortran 90 Library implementation details ***

10 Non-default Error Handling (*)

The information given here should be sufficient for handling errors in almost all situations.

10.1 The Argument error

All library procedures (except for a few which cannot give rise to any error condition) have an optional
argument error. If the default error handling action described in Section 7 is not suitable, you must
supply the argument error. It is a structure of a derived type nag error, defined by the Library. A
complete specification of this derived type is given in the document for the module nag error handling
(1.2), but you do not normally need to know more than is given here.

The argument error is an intent(inout) argument which serves two purposes.

1. It allows you to specify what action a library procedure should take should it detect an error.

2. It reports the state of the library procedure (either success or an error-condition), and returns the
text of any error message, to your calling program.

If you supply the argument error

• you must initialize it before calling the procedure. To initialize it, you must call the procedure
nag set error. For a complete specification of this procedure, see the module document
nag error handling (1.2). The following is all you normally need to know. The procedure has
one mandatory output argument, a scalar of type nag error (the structure to be initialized), and
three optional input arguments:

halt level — integer, intent(in), optional

Input: specifies that the program is to be halted if an error of level ≥ halt level
is detected.

Default: halt level = 2.

print level — integer, intent(in), optional

Input: specifies that an error message is to be printed if an error of level ≥
print level is detected.

Default: print level = 1.

0.1.12 [NP3245/3/pdf]

Introduction Essential Introduction

unit — integer, intent(in), optional

Input: specifies the unit on which any error message is to be printed.

Default: unit = nag std out (the default output unit in your implementation of
the Library).

• you must test one of the integer components code or level of the structure error on return to your
calling program; if you do not, your program may continue computing with invalid or undefined
results. The components code and level are set by the procedure as follows:

= 0: the procedure has exited successfully;

�= 0: the procedure has detected an error: the value of code indicates the nature of the error, as
stated in the specification of the procedure, and the value of level indicates its classification.

If you do not call nag set error to initialize the structure, this will almost certainly be reported by the
procedure, or by the system, but there is a small possibility that your program may handle errors in an
unpredictable way.

You do not normally need to include any additional USE statements in your calling program in order to
use the derived type nag error and the procedure nag set error; they are always accessible through
any USE statement which gives access to a library procedure with the optional argument error. (They
are also accessible through the module nag error handling.)

10.2 Examples

The following examples use the procedure nag gen lin sol (5.1), which may exit with the following
error codes:

301, 302, 303: fatal errors, due to invalid arguments;

201: a failure, because exact singularity has been detected;

101: a warning that approximate singularity (extreme ill conditioning) has been detected.

All examples (except the first) assume that a structure error has been declared of type nag error, using
statements such as the following:

USE nag_gen_lin_sys, ONLY : nag_gen_lin_sol, nag_error, nag_set_error

TYPE (nag_error) :: error

• Default action (see Section 7.2): print an error message after a warning, failure or fatal error; halt
program after failure or fatal error.

CALL nag_gen_lin_sol(a, b)

• To take special action after a warning, without changing the default conditions for halting or
printing an error message; note that you must still call nag set error to initialize the structure.

CALL nag_set_error(error)

CALL nag_gen_lin_sol(a, b, error=error)

IF (error%level==1) THEN

! code to handle the warning

END IF

• To halt execution (with an error message) after a warning (as well as after failures and fatal errors):

CALL nag_set_error(error, halt_level=1)

CALL nag_gen_lin_sol(a, b, error=error)

[NP3245/3/pdf] 0.1.13

Essential Introduction Introduction

• To continue execution after a failure or warning, without printing an error message, and to take
corrective action (different action is assumed for different error codes):

CALL nag_set_error(error, halt_level=3, print_level=3)

CALL nag_gen_lin_sol(a, b, error=error)

SELECT CASE (error%code)

CASE (0)

! code to handle successful exit

CASE (101)

! code to handle error code 101

CASE (201)

! code to handle error code 201

END SELECT

• Default action, except that any error message is to be printed on unit 20:

CALL nag_set_error(error, unit=20)

CALL nag_gen_lin_sol(a, b, error=error)

The document for the module nag error handling (1.2) gives complete example programs illustrating
various aspects of error handling, and examples of the text of error messages from the Library.

11 Portability and Precision (*)

This section offers some advice in case you wish to port a program which calls NAG fl90 procedures
from one system to another — assuming that the Library is available on each system — or to run
your program in more than one precision on the same system. The example programs in the module
documents illustrate the style of programming which is described here.

Calls to NAG fl90 procedures do not need to be modified, because the generic names will be matched
with the required specific version, according to the kind values of the real or complex arguments.

The Fortran 90 standard does not prescribe what kind values should be used for ‘double precision’
or ‘single precision’ (for example, it could be 2 and 1, 8 and 4, or 64 and 32). In other words, ‘double
precision’ on one machine may offer roughly the same precision as ‘single precision’ on another. Therefore
it is good programming practice always to use a named integer constant as the kind value for all your
real and complex data; this is true whether or not you call NAG fl90 procedures. If this constant is
defined in a module, this is the only statement that may need to be changed should you need to use a
different kind value.

MODULE my_precision ! precision-dependent

INTEGER, PARAMETER :: wp = KIND(1.0D0) ! kind value for double precision

END MODULE my_precision

PROGRAM portable

USE my_precision, ONLY : wp

USE nag_gamma_fun, ONLY : nag_gamma

REAL (wp) :: x, y

. . .

y = nag_gamma(x)

. . .

END PROGRAM portable

If you can define your required precision in absolute terms, you can even make the module my precision
portable, by writing, say:

MODULE my_precision ! gives at least 10 digits of precision

INTEGER, PARAMETER :: wp = SELECTED_REAL_KIND(10)

END MODULE my_precision

There is one complication that arises if your program calls NAG fl90 procedures which require the
use of precision-dependent derived types, that is, types defined by the Library with real or complex
components. Derived types cannot be parameterized with a kind value in the same way as the intrinsic
real and complex types, as was mentioned in Section 5.2; the Library provides distinct types for each

0.1.14 [NP3245/3/pdf]

Introduction Essential Introduction

available precision, and you may need, for example, to use the double precision type nag seed dp on one
system, but the single precision type nag seed sp on another.

A convenient practice is to use a neutral name (say, nag seed wp) throughout your program, and to
define this name in a separate module in only one place.

MODULE my_precision

INTEGER, PARAMETER :: wp = KIND(1.0D0) ! kind value for double precision

USE nag_rand_util, ONLY : nag_seed_wp => nag_seed_dp ! double precision type

END MODULE my_precision

PROGRAM portable

USE my_precision , ONLY : wp, nag_seed_wp

USE nag_rand_contin, ONLY : nag_rand_uniform

REAL (wp) :: x

TYPE (nag_seed_wp) :: seed1

. . .

x = nag_rand_uniform(seed1)

. . .

END PROGRAM PORTABLE

12 Relationship to the NAG Fortran 77 Library (*)

NAG fl90 is a distinct library from the NAG Fortran 77 Library, although it uses essentially the same
algorithms. You may call routines from both libraries within the same program unit — provided of course
that implementations of both libraries are available for your system and compiler. Implementations of the
Fortran 77 Library are already available for use with a Fortran 90 compiler on several systems, enhanced
by the provision of modules of interface blocks which enable calls to Fortran 77 library routines to be
checked at compile time.

Thus the Fortran 77 Library may be used as a source of algorithms that are not yet provided in NAG
fl90. The two libraries are available together as a single product with the name NAG FL90plus.

The document Conversion from the NAG Fortran 77 Library gives advice on replacing calls to
NAG Fortran 77 library routines with calls to NAG fl90 procedures (if an equivalent procedure exists).

13 Contact Between Users and NAG (*)

For further advice or communication about NAG fl90, you should first turn to the staff of your local
computer installation. This covers such matters as:

obtaining a copy of the Users’ Note for your implementation;

obtaining information about local access to the Library;

seeking advice about using the Library;

reporting suspected errors in procedures or documents;

making suggestions for new procedures or features;

purchasing NAG documentation (printed or online).

Your installation may have advisory and/or information services to handle such enquiries. In addition,
NAG asks each installation mounting the Library to nominate a NAG site contact , who may be
approached directly in the absence of an advisory service. Site contacts receive information from
NAG about confirmed errors, the imminence of updates, etc., and will forward users’ enquiries to the
appropriate person at NAG if they cannot be dealt with locally. If you do have unresolved difficulties,
then please do not hesitate to contact NAG. Full details of the NAG Response Centres are given in the
Users’ Note.

[NP3245/3/pdf] 0.1.15

Essential Introduction Introduction

A List of Abbreviations (*)

1d one-dimensional
1v one-variable
2d two-dimensional
3d three-dimensional
abs absolute
acc accuracy
ampl amplitude
acf autocorrelation function
alg algorithm
arb arbitrary
auto automatic
bidiag bidiagonal
binom binomial
bivar bivariate
bnd band, banded
brk break
bwd backward
canon canonical
cg conjugate gradient
chisq chi-square
chol Cholesky
cmplx complex
coeff coefficients
coh coherence
col column
comm communication
comp component(s)
con constraint(s)
cond condition
conj conjugate
contin continuous
conv convolution
correl correlation
cos cosine
cov covariance
cntrl control(s)
decomp decompose
deg degree
deriv derivative
det determinant
dev deviation
diag diagonal
dist distribution
eig eigenproblem
ell elliptic
eqn equation
err error
eval evaluation
exp exponential
gs Gaussian
fac factorize, factorization
feas feasibility
fft FFT (fast Fourier transform)
form format

freq frequency
fun function
fwd forward
helm Helmholtz
herm Hermitian
hess Hessian
hilb Hilbert
hyp hyperbolic
hypergeo hypergeometric
gen general
incompl incomplete
inf infinite
init initialize
int integer
intg integrand, integral
interp interpolation
intvl interval
inv inverse
invar invariant
iter iteration
ivp IVP (initial value problem)
jac jacobian
len length
lev level
lib library
lim limit
lin linear
log logarithm, logarithmic
lsq least-squares
mat matrix
max maximum
md multidimensional
min minimum
mintg multiple integrands
miss missing
mom moment
monot monotonic
mult multi-, multiple
msg message
mv multivariate
neg negative
nlin nonlinear
nlp nonlinear programming
nsym nonsymmetric
num number
obj objective
ode ODE (ordinary differential equation)
optim optimality
orth orthogonal
pacf partial autocorrelation function
part partial
pch piecewise cubic Hermite
pde PDE (partial differential equation)

0.1.16 [NP3245/3/pdf]

Introduction Essential Introduction

pdf PDF (probability distribution
function)

perm permutation
polynom polynomial
pos positive (as in positive definite)
prin principal
prob probability; problem
prod product
pt point
qp quadratic programming
qtr quarter
quad quadrature
rand random
rcond reciprocal condition number
rec record
rect rectangular
reduc reduction
ref reference
reg regression
rel relative
resid residual
rk Runge–Kutta
rms root mean square;

residual mean square
scat scattered
sel selected
sig significance
sin sine
sing singular
sol solution
sqrd squared
sqrt square root
stats statistics
std standard
subint subintervals
subrgn subregion
sup super
svd SVD (singular value decomposition)
sys system
sym symmetric
thresh threshold
tol tolerance
trans transpose
tri triangular
tridiag tridiagonal
trig trigonometric
tsa time series analysis
util utility
uv univariate
val value(s)
var variable(s); variance; variate;

varying
vec vector(s)
wt weight

[NP3245/3/pdf] 0.1.17

