NAG fl90 Library

Chapter 11: Quadrature


Chapter Introduction
Module 11.1: nag_quad_1d - Numerical integration over a finite interval
nag_quad_1d_gen 1-d quadrature, adaptive, finite interval, allowing for badly behaved integrand, allowing for singularities at user-specified break-points, suitable for oscillatory integrands
nag_quad_1d_wt_trig 1-d quadrature, adaptive, finite interval, weight function cos(omega x) or sin(omega x)
nag_quad_1d_wt_end_sing 1-d quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type
nag_quad_1d_wt_hilb 1-d quadrature, adaptive, finite interval, weight function 1/(x-c), Cauchy principal value (Hilbert transform)
nag_quad_1d_data 1-d quadrature, integration of function defined by data values, Gill-Miller method
Module 11.2: nag_quad_1d_inf - Numerical integration over an infinite interval
nag_quad_1d_inf_gen 1-d quadrature, adaptive, semi-infinite or infinite interval
nag_quad_1d_inf_wt_trig 1-d quadrature, adaptive, semi-infinite interval, weight function cos(omega x) or sin(omega x)
Module 11.3: nag_quad_md - Multi-dimensional integrals
nag_quad_md_rect Multi-dimensional adaptive quadrature over a hyper-rectangle
nag_quad_md_rect_mintg Multi-dimensional adaptive quadrature over a hyper-rectangle, multiple integrands
nag_quad_2d 2-d quadrature, finite region
Module 11.4: nag_quad_util - Numerical integration utilities
nag_quad_gs_wt_absc Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule


Last modified: new doc September 1999
© The Numerical Algorithms Group Ltd, Oxford UK. 1999