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1 Using this Tutorial

The aim of this Tutorial is to help you to use the NAG Parallel Library. Please take your time to read this
section of the manual. The NAG Parallel Library comes in two versions, depending on which software
is used for the underlying message-passing mechanism. One version uses PVM, the other uses MPI. You
will need to know which version you will be using.

This version of the Tutorial describes the MPI version of the Library; see Section 2.1 for more information
about MPI. A separate version of the Tutorial describes the PVM version. The rest of the documentation
applies to both the PVM and MPI versions.

The NAG Parallel Library is designed to simplify problem solving on parallel machines as far as possible,
and is intended for three classes of users:

(1) those who want to call the Library routines as part of their larger parallel code;

(2) those who want to use the Library routines in isolation;

(3) those who have codes which utilize sequential libraries (such as the NAG Fortran Library) and wish
to replace the sequential code sections with calls to the equivalent NAG Parallel Library routines.

In any of the above cases the following assumptions are made:

you are familiar with the Fortran 77 language;

you are working in a Unix environment;

you have a copy of MPI installed on your computer; this copy may be implementation dependent.
Please see the Users’ Guide for the implementation of MPI used in implementing the NAG Parallel
Library.

The Tutorial presents a series of simple example programs, illustrating the use of the Library. The
numerical problems which have been chosen for the examples should be simple to understand. This
Tutorial aims neither to instruct you in the numerical background of the chosen problems nor to instruct
you in the techniques utilized in parallelization in general. Note that the examples are intended to be
followed in order, one after the other.

You will need to refer to the documentation of the routines which are used in the examples.

If you run the example programs presented in this Tutorial using your own compiler and machine, you
should not expect to get exactly the same results as those which are reproduced in this document,
especially when numerical values are printed to high precision.

All the information presented in this Tutorial is also presented in a more condensed form in the Essential
Introduction. You are definitely not expected to read the Essential Introduction before reading this
Tutorial. But after working through the Tutorial, you should find the Essential Introduction helpful for
reference purposes.

2 What are MPI and BLACS?

This version of the NAG Parallel Library is based on MPI and the BLACS communication mechanisms.
This section will give you a short overview of these communication mechanisms and their relationship.
If you are already familiar with these mechanisms, you may proceed to the next section.

2.1 MPI

MPI stands for Message Passing Interface. Message passing is a paradigm used widely on certain
classes of parallel machines, especially those with distributed memory and MPI is a standard for writing
parallel programs in message-passing environments. Implementations of MPI are widely available for
most common UNIX workstations and many parallel machines. In addition some manufacturers provide
efficient machine-specific implementations. You are referred to [4] for more information.
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2.2 BLACS

The BLACS (Basic Linear Algebra Communication Subprograms) are also a collection of routines that
provide a mechanism for message passing on parallel machines. The BLACS are composed of a series
of communication primitives, global operations and support routines. The NAG Parallel Library makes
extensive calls to the BLACS. The BLACS constitute a linear algebra oriented message-passing interface
that may be implemented efficiently and uniformly across a broad range of distributed memory platforms.
The BLACS exist in order to make linear algebra applications both easier to program and more portable.
It is for this reason that the BLACS are used as the communication layer of ScaLAPACK, a linear algebra
package targeted at distributed memory machines. We will cover ScaLAPACK in greater detail in Section
10. One of the main strengths of the BLACS is that it shields the developer from the underlying message-
passing system (PVM, MPI etc.) by providing a consistent interface to it and as a consequence increases
the portability of applications.

3 How to Run Programs which Call Library Routines

It is important that you read and understand this and Section 4. They give you information about what
you need to know before you start using the NAG Parallel Library.

3.1 About the Library

This version of the NAG Parallel Library is based on MPI and the BLACS communication mechanisms,
and is intended primarily for distributed memory parallel machines, including networks and clusters of
machines. It can also be used on shared memory systems which have an efficient implementation of MPI.
The Library can also be run on single processor machines (provided MPI is installed).

The Library supports parallelism and memory scalability and has been designed to be portable across a
wide range of parallel machines. But the Library cannot be expected to achieve near peak performance
for all problems on all machines, and in particular algorithmic scalability is unlikely across the whole
Library.

The routines in this Library fall into two categories:

Numerical routines – the routines which you call to carry out computation in the area(s) in which
you are interested;

Utility routines – the routines which you call to help you to define and initialise the Library
mechanism, distribute data, exit MPI and the BLACS communication systems, input/output
matrices, etc.. These routines can be found in the F01, X04 and Z01 chapters of the Library.

Before going any further, here are some definitions of terminology which will be used throughout this
tutorial. These terminologies will be discussed in more detail in the appropriate sections.

Root processor The logical processor attached to the output peripheral. (Those of you who are
familiar with MPI terminology this is usually the process with rank 0.)

SPMD model Stands for Single Program Multiple Data. In this model the same program is
executed on all processors of a system, but the execution may follow different
paths through the program on different processors.

Processor Grid A virtual machine consisting of logical processors arranged in a two-dimensional
array.

Library Grid Essentially a Processor Grid created by the mechanism in the NAG Parallel
Library. This mechanism can be invoked by some utility routines in the Library.

In order to run a program which makes use of this version of the NAG Parallel Library, you must know
how to run an MPI program on your machine.

3.2 Running an MPI Application Program

MPI makes it relatively easy to write portable parallel programs. However, MPI does not standardise
the environment within which a parallel program will be running. There are two basic types of parallel
environments: parallel computers and clusters of workstations. Naturally, a parallel computer (usually)
provides an integrated, relatively easy way of running parallel programs. Clusters of workstations and
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other computers, on the other hand, usually have no standard way of running a parallel program using
MPI and will require some additional setup. However, certain implementations of MPI provide facilities
which hide these differences behind some kind of script. An example is the MPICH implementation
of MPI. MPICH is a freely available, portable implementation of MPI developed at Argonne National
Laboratory. MPICH is supported on a variety of parallel computers and workstation networks. See
the web page http://www.mcs.anl.gov/home/lusk/mpich/index.html for information on availability
of MPICH on wide range of systems. For example, MPICH provides the ‘mpirun’ script for running an
MPI program on a cluster of workstations. By issuing the command:

% mpirun -machinefile hostfile -np 4 myprog

(% denotes a shell prompt) 4 instances of the MPI program myprog are executed on 4 machines specified
in the file hostfile. The command mpirun -help gives you a summary of all the available options. See
[2] for other available scripts under MPICH. Although ‘mpirun’ is not part of the MPI Standard (but
some version of it is common to several MPI implementations), for convenience in the remainder of this
tutorial, we use this script to illustrate the execution of programs which use the NAG Parallel Library
routines.

3.3 Accessing the Library

In order to use the NAG Parallel Library, you will need to know how to compile a Fortran 77 program,
link it to the appropriate Libraries provided in the NAG Parallel Library (e.g. BLACS, PBLAS) and the
appropriate implementation of MPI, and execute it. These details can be found in the Users’ Note, and
may vary from one computing system to another, and in some respects from one installation to another.
You also must refer to local information provided by your installation. We assume that you have this
information available whenever you want to execute a program which calls the NAG Parallel Library
routines.

In the rest of the Tutorial, the term routine is used to refer to both subroutines and functions.

4 Conventions Assumed by the Library and its Documentation
4.1 Finding the Documentation You Need

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each
chapter has a three-character name and a title, e.g.

D01 – Quadrature

(The chapters and their names are based on the ACM modified SHARE classification index [5].) Most
documented routines in the Library have seven-character names. Although seven-character names are
not standard Fortran 77 [6] , they are a supported extension of any compiler capable of supporting MPI
and the BLACS. These routines names always begin with the characters of the chapter name, e.g.

D01AUFP

Note that the second and third characters are digits, not letters; e.g. 0 is the digit zero, not the letter
O. The last letters of each routine name are always ‘FP’. The chapters occur in alphanumeric order.

Therefore, in order to use the routine D01AUFP, you must refer to Chapter D01 of the Library.

Chapter F07 (Linear Equations (ScaLAPACK)) and Chapter F08 (Least-squares Problems
(ScaLAPACK)) contain routines derived from ScaLAPACK. These routines may be referenced either
by their NAG-style names or their ScaLAPACK names, e.g. F07ADFP (PDGETRF). Details regarding
these alternate names can be found in the relevant Chapter Introductions.

A few of the documented routines have six-character names and are identical to routines, with the same
name, in the NAG Fortran Library (a comprehensive mathematical and statistical Library in Fortran
77). The naming structure of these routines is as described above, except for the absence of the final ‘P’
in the routine name.
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4.2 The ‘Library Grid’

Before we go any further, we describe the way in which the NAG Parallel Library views the concept of a
process. A process can be viewed as a thread of execution (which minimally includes a stack, registers
and memory). In general, multiple processes may share a physical processor. Here, the term processor
refers to the actual hardware.

In the NAG Parallel Library, each process is treated as if it were running on a separate physical
processor. In this case, the process must exist for the lifetime of the NAG Parallel Library routines
run, and its execution should only affect the execution of other processes through the message-passing
calls. Furthermore, in the NAG Parallel Library, algorithms are presented in terms of processes, rather
than physical processors. In general there may be several processes on one processor, in which case we
assume that the run-time system handles the schedule of processes. Since the Library does not control
the allocation of processes onto processors, it assumes one process for one processor. For this reason, in
this Tutorial, we use the term process and processor interchangeably.

The NAG Parallel Library is designed to execute on a two-dimensional (2-d) grid of logical
processors which we refer to as the Library Grid hereafter. This simply means that the Library
views a parallel machine as a 2-d rectangular grid of processors. However, whilst the Library assumes
this logical topology, no assumption is made about the actual physical topology of the system.

Before calling any Library routine (expect for a few) in the NAG Parallel Library, it is essential that you
first set up the Library Grid. There are two ways in which a Library Grid can be created:

(1) using the utility routine provided in the NAG Parallel Library;

(2) using the BLACS or MPI directly; in this case we assume that you have some familiarity with
the BLACS and/or MPI. This mechanism allows sophisticated application of the NAG Parallel
Library, e.g. multigridding, a technique which enables the users to create and use many logical
grids simultaneously on their parallel machines. See Section 12.

The above two grid-creation methods can both be invoked by calls to the NAG Parallel Library routine.
If you want to use method (1) you must call Z01AAFP and if you want to use method (2) you must call
Z01AEFP.

It is also important that you understand that all the Library routines use certain internal variables:

Communication internal variables – required for use by MPI and the BLACS communication
mechanisms;

Library internal variables – required for use by the Library routines.

A call to Z01AAFP initializes the ‘communication internal variables’ and the ‘library internal variables’.
It also informs the other Library routines (subsequently called) that the Library Grid has been set up
by a call to Z01AAFP, whereas a call to Z01AEFP informs the Library routines (subsequently called)
to initialize only the ‘communication internal variables’ and informs the Library that there is no need to
initialize the ‘library internal variables’ as the Library Grid has already been set up using the BLACS
(or MPI).

Hence, both grid-creation methods (1) and (2) may be used to initialize the ‘communication internal
variables’, but only method (1) initializes the ‘library internal variables’.

It is also important that, once the use of the Library Grid has been completed, all the memory allocated
by initializing the above internal variables be released and the Library Grid be un-defined and destroyed.

4.2.1 Defining a Library Grid using Z01AAFP

Z01AAFP sets up a 2-d grid of logical processors on which programs calling NAG Parallel Library routines
will execute upon in parallel. This routine takes the available processors specified by MPI at run time
and maps them onto the Library Grid. A call to Z01AAFP has the following specification:

CALL Z01AAFP( ICNTXT, MP, NP, IFAIL )

Z01AAFP has two explicit functions.
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It claims the MP×NP processors from a pool of processors specified in your parallel environment
using MPI and creates a 2-d MP by NP logical grid; the user-supplied input arguments MP and NP
to Z01AAFP specify the dimensions of the logical processor grid which will be the Library Grid.
MP represents the number of processor rows, and NP represents the number of processor columns.

It also returns a context (ICNTXT) for the Library Grid. The idea of using a context was adopted
from the BLACS (used extensively as one of our message-passing mechanisms). Simply, a context can
be viewed as an identifier for that Library Grid which was set up by a call to Z01AAFP. This means
that processors enclosed in the Library Grid using a particular context can safely communicate even
if other (possibly overlapping) grids are also communicating with different contexts. Contexts are
used so that individual routines using the BLACS for communication can, when required, safely
operate without worrying if other distributed codes are being executed on the same machine. Most
of the Library routines use this context to ensure that message passing in the NAG Parallel Library
does not interact with any other processor grids created in your program. In summary, a context
allows us to:

create arbitrary groups of processes upon which to execute (the Library Grid);
create an indeterminate number of overlapping or disjoint grids (multigridding);
isolate each grid so that grids do not interfere with each other (safe communication).

Note: No attempt should be made to examine or modify the value of a context.

(As you gain more familiarity with the NAG Parallel Library in this Tutorial, you will realize that
almost all routines in the NAG Parallel Library have a context as their first argument, except those
routines derived from ScaLAPACK routines which have a context as an element of an integer array.)

As with most of the Library routines, Z01AAFP also returns the integer value IFAIL which reports its
success or failure. IFAIL is considered in Section 5.3 and Section 9.3.

4.2.2 Using BLACS and/or MPI for defining a Library Grid

The use of this facility assumes that you know how to initialise a 2-D grid using the BLACS or MPI. If
you do not wish to make a direct call to Z01AAFP to set up the Library Grid and wish to use BLACS
or MPI routines, then a call to Z01AEFP must be made prior to a call to the first NAG Parallel Library
routine in your program . This feature is particularly useful for advanced users who need to pass their own
generated context to the NAG Parallel Library routines. The use of Z01AEFP also allows multigridding;
(a concept which is used to mean the concurrent application of a routine on multiple instances of the
data, see also below). This routine need be called only once and if not called prior to the first call to a
Library routine, the Library routine exits with an error condition.

4.2.3 Un-defining and Un-initialising a Library Grid: Z01ABFP

When you have finished using the current Library Grid (created by a call to Z01AAFP), you must call
Z01ABFP to ‘un-define’ the grid. This informs the Library mechanism that the current Library Grid
is no longer valid and may also optionally exit from the message-passing environment. If you choose to
exit from the message-passing environment, you should set the value of CONT = ‘N’; any subsequent
call to a Library routine will result in a failure and an error condition. If you choose to declare a new
Library Grid with a different shape or total number of processors (by varying MP and NP), you must call
Z01ABFP with CONT = ‘Y’ and then call Z01AAFP to declare your new 2-d Library Grid. Z01ABFP
can also be used to un-define and destroy the Library Grid when Z01AEFP is used.

The Library has a restriction that the number of new processors (MP×NP) must not exceed the total on
the first entry to Z01AAFP. An example of grid reshaping will be given in Section 12.1.

This Tutorial mainly uses a Library Grid created by a call to Z01AAFP, and the use of Z01AEFP will
only be considered in Section 12.

Hence, a typical call to a NAG Parallel Library routine such as D01AUFP must look like:

Call the NAG Parallel Library routine to initialize the Library Grid
CALL Z01AAFP( ICNTXT,MP,NP,IFAIL )
.
.

[NP3053/2/pdf] TUTOR.7



Tutorial NAG Parallel Library Manual

Call the NAG Parallel Library routine(s) to solve your problem
CALL D01AUFP( ICNTXT, ... )
.
.

Call the NAG Parallel Library to release the Library Grid
CALL Z01ABFP( ICNTXT,CONT,IFAIL )

It is useful to think of Z01AAFP and Z01ABFP as left and right braces around calls to the
Library routines.

Exceptions are those Library routines which have no argument, and the NAG Fortran Library routines
(routines whose names do not end with ‘P’). These routines do not use the Library Grid information set
by Z01AAFP, so they may be called prior to a call to Z01AAFP.

In what follows, the Tutorial uses the symbol {i, j} to denote the logical processor in row i and column
j of the grid, with {0, 0} as the processor at the top left corner of the grid. The Library also associates
this processor with the root processor.

4.3 Library Model

The Library assumes a Single Program Multiple Data (SPMD) model of parallelism in which a single
instance of your program executes on each of the logical processors with (possibly) different data. In the
current version of the Library, only one Library Grid is allowed to execute Library routines at any one
time, but you may be able to define more than one grid yourself. This is called multigridding, and an
example will be given in Section 12.2.

4.4 Input/Output in the Library

Most NAG Parallel Library routines perform no output to external files, except possibly to output
error messages. All error messages are written by a single processor (usually the root) to
a logical error message unit. The corresponding unit number (which is set by default to 6 in most
implementations) can be changed by calling the Library routine X04AAF.

Some Library routines (e.g. A00AAFP) output messages, only by the root processor, to a logical advisory
message unit. This unit number (which is also set by default to 6 in most implementations) can be
changed by calling the Library routine X04ABF. Although the advisory message unit is logically distinct
from the error message unit, in practice the two unit numbers may be the same.

All output from the Library is formatted.

You must ensure that the relevant Fortran unit number is associated with the desired external file, either
by an OPEN statement in your calling program, or by operating system commands.

If more than one grid is defined, then you must ensure that one of the processors in the Library Grid
is attached to the terminal which performs input/output, otherwise error messages may be lost (unless
your system supports parallel input/output which is currently beyond the scope of this Tutorial) .

5 Example 1: Displaying Library Information

In this section we consider the simplest task of displaying information about the Library as it is installed
on your system (for example, the type of machine, the compiler, the precision, the release). This task
is performed by the routine A00AAFP. The routine A00AAFP is trivial: it is a subroutine with no
arguments which writes information to the standard output unit attached to the root processor. This
routine is one of the few routines in the NAG Parallel Library which may be called either with calls to
or without calls to Z01AAFP and Z01ABFP. We illustrate both cases here.

5.1 A First Program

Here is a complete program to call A00AAFP:
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1: PROGRAM EX1A
2: CALL A00AAFP
3: STOP
4: END

If this program is first compiled and linked to appropriate libraries, the executable may be run by issuing
the command:

% mpirun -machinefile hostfile -np 1 ex1a

(For convenience, the program name in lower case is used as our executable name.) You should see
something like this appear on the standard output unit (normally the screen):

** Start of NAG Parallel Library implementation details **

Implementation title: Silicon Graphics IRIX 5
Product Code: FDSG502DM

Release: 2
Precision: FORTRAN double precision

Message passing library: MPICH implementation of MPI

** End of NAG Parallel Library implementation details **

You will probably not see exactly the same text, but that is as it should be: the precise details depend
on the system on which your program is running. It is enough for now to have verified that you have
correctly called a Library routine.

5.2 Displaying Library Information Using Z01AAFP and Z01ABFP

Here is another complete program to call the routine A00AAFP which achieves the same result as Program
EX1A:

1: PROGRAM EX1B
2: INTEGER MP,NP,IFAIL,ICNTXT
3: CHARACTER*1 CONT
4: MP = 2
5: NP = 2
6: IFAIL = 0
7: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
8: CALL A00AAFP
9: CONT = ’N’
10: IFAIL = 0
11: CALL Z01ABFP(ICNTXT,CONT,IFAIL)
12: STOP
13: END

If you run this program by issuing the command:

% mpirun -machinefile hostfile -np 4 ex1b

you should see exactly the same output as from Program EX1A.

The output from Programs EX1A and EX1B is identical; however, the programs use different mechanisms
to provide the same Library information. In fact Program EX1B is executed on a 2 by 2 Library Grid.
It should be emphasized that nothing is gained by running A00AAFP in parallel because the Library
information is output only on the root processor ({0, 0} processor). Despite this fact, Program EX1B
provides a useful and simple example for describing how Z01AAFP and Z01ABFP may be utilized in
your program. Here is the description of Program EX1B:
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Lines 2-3: declarative section of the program.

Lines 4-5: MP and NP indicate the number of rows and columns to be used in the Library Grid,
respectively. In this example, we have set a 2 by 2 grid.

Line 7: the call to Z01AAFP initializes some internal variables and defines a 2 by 2 grid as well as a
unique Library context (ICNTXT). This context, which is an argument to most of the Library routines,
is used to create an environment for the underlying Library message-passing mechanism.

Line 8: the call to the Library routine, in this case A00AAFP.

Lines 9-11: On completion of calls to NAG Parallel Library routines, it is essential that we exit from
the Library mechanism. Z01ABFP frees the internal variables and un-defines the grid context set in
Z01AAFP. Line 9 indicates that the program is not participating in any further message passing.

5.3 A First Look at Run-Time Errors

In this example, we illustrate what happens if you forget to call Z01AAFP in your program but not
Z01ABFP. Consider the following example:

* This program will exit with an error condition
*

1: PROGRAM EX1C
2: INTEGER MP,NP,IFAIL,ICNTXT
3: CHARACTER*1 CONT
4: MP = 2
5: NP = 2
6: CALL A00AAFP
7: CONT = ’N’
8: IFAIL = 0
9: CALL Z01ABFP(ICNTXT,CONT,IFAIL)
10: STOP
11: END

The above program is exactly the same as Program EX1B, except that the call to Z01AAFP is missing.
If you try it, you should see the following output:

** Start of NAG Parallel Library implementation details **

Implementation title: Silicon Graphics IRIX 5
Product Code: FDSG502M

Release: 2
Precision: FORTRAN double precision

Message passing library: MPICH implementation of MPI

** End of NAG Parallel Library implementation details **
** ABNORMAL EXIT from NAG Parallel Library routine Z01ABFP: IFAIL = -1000
** Z01ABFP has been called without calling Z01AAFP first.
** NAG hard failure - execution terminated

{-1,-1}, pnum=0, Contxt=-666, killed other procs, exiting with error #0.

A00AAFP generates the Library information, but the program exits with an error condition with the
value of IFAIL = −1000. As the error message indicates, the error was detected in Z01ABFP.

Each error which can be detected by a Library routine is associated with a number assigned to the
integer argument IFAIL (−1000 in this case). These numbers, with explanations of the errors, are listed
in Section 5 (Error Indicators and Warnings) in the routine document. If you look in Section 5 of the
document for Z01ABFP, the following description can be found:

IFAIL = −1000

The logical processor grid and library mechanism (Library Grid) have not been correctly defined,
see Z01AAFP.

TUTOR.10 [NP3053/2/pdf]



Introduction Tutorial

This is indeed the case. Since A00AAFP is a special routine with no argument, it can be run independently
of the routines Z01AAFP and Z01ABFP (as was illustrated in Program EX1A); hence the Library
information appears. Remember that a call to Z01AAFP is required to initialize and define some internal
variables, a logical grid and a Library context. The information generated by Z01AAFP is internally
checked and utilized by most Library routines. In Program EX1C, Z01ABFP is the first routine in the
program which requires the use of this information. Since this information was not available, Z01ABFP
detected this, output an informative error message, and halted the program. The final line of the error
message:

{-1,-1}, pnum=0, Contxt=-666, killed other procs, exiting with error #0.

is output from a BLACS routine (BLACS ABORT) which kills the processes associated with the Library
Grid. We will come back to this later.

This is the cue to start explaining how run-time errors are handled by the Library. The error, failure or
warning conditions considered here are those that can be detected by explicit coding in a Library routine.
They should not be confused with run-time errors which may be detected by your system, e.g. detection
of overflow or failure to assign an initial value to a variable.

In the rest of this Tutorial we use the word ‘error’ to cover all types of error, failure or warning conditions
detected by a routine. They fall roughly into four classes:

(i) Essential initialization routines were not called. This means that it is not possible to begin
computation.

(ii) On entry to the routine the value of an argument is out of range or inconsistent with other processors.
This means that it is not useful, or perhaps not even meaningful, to begin computation.

(iii) During computation the routine decides that it cannot yield the desired results, and indicates a
failure condition. For example, a Black Box routine for solving a system of linear equations will
indicate a failure condition if it considers that the matrix is singular.

(iv) Although the routine completes the computation and returns results, it cannot guarantee that the
results are completely reliable; it therefore returns a warning. For example, an optimization routine
may return a warning if it cannot guarantee that it has found a local minimum.

All four classes of errors are handled in the same way by the Library.

Most of the NAG Parallel Library routines which you can call directly have an integer argument
called IFAIL. As you may already have guessed, this argument is concerned with the Library error
trapping mechanism (and, for some routines, with controlling the output of error messages and advisory
messages). You should have noticed this argument in the documentation of Z01AAFP and Z01ABFP.
The specification of IFAIL is a standard text which appears in the documentation of most NAG Parallel
Library routines. It reads:

IFAIL — INTEGER Global Input/Global Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in the Essential Introduction) the recommended values are:

IFAIL = 0, if multigridding is not employed;
IFAIL = −1, if multigridding is employed.

On exit: IFAIL = 0 unless the routine detects an error (see Section 5).

IFAIL has two purposes:

(i) to allow the user to specify what action the Library routine should take if an error is detected;

(ii) to inform the user of the outcome of the call of the routine.

For purpose (i), the user must assign a value to IFAIL before the call to the Library routine. Since
IFAIL is reset by the routine for purpose (ii), the argument must be the name of a variable, not a literal
or constant. For example,
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CALL Z01AAFP(ICNTXT,MP,NP,0)

will result in unpredictable behaviour. The correct way to use the argument IFAIL is:

IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)

The value assigned to IFAIL before entry should be either 0 (hard fail option), or 1 or −1 (soft fail
option). If after completing its computation the routine has not detected an error, IFAIL is reset to 0 to
indicate a successful call and control returns to the calling program in the normal way. If the routine
does detect an error, its action depends on whether the hard or soft fail option was chosen. We shall
leave it until Section 9.3 to explain how we can handle a soft fail option.

As its description suggests, IFAIL is of type integer, and is classified as Global Input/Global Output.
Before continuing with further examples, it is helpful to understand the way in which routine arguments
are classified in the NAG Parallel Library. This is described in the next section.

6 Arguments of Library Routines

Section 4 of each routine document contains the specification of the arguments, in the order of their
appearance in the argument list.

Arguments in the NAG Parallel Library are classified as follows:

Input: you must assign values to these arguments before entry to the routine, and these values are
unchanged on exit from the routine.
Output: you need not assign values to these arguments on or before entry to the routine; the routine
assigns values to them.
Input/Output: you must assign values to these arguments before entry to the routine, and the
routine may then change these values.
Workspace: array arguments which are used as workspace by the routine. You must supply arrays
of the correct type and dimension. In general, you need not be concerned with their contents.
External Procedure: a subroutine or function which must be supplied (e.g. to evaluate an integrand
or to print intermediate output). Usually it must be supplied as part of your calling program, in
which case its specification includes full details of its argument list and specifications of its arguments
(all enclosed in a box). Its arguments are classified in the same way as those of the Library routine,
but because you must write the procedure rather than call it, the significance of the classification is
different:

Input: values may be supplied on entry, which your procedure must not change.
Output: you should assign values to these arguments before exit from your procedure.
Input/Output: values may be supplied on entry, and you should assign values to them before
exit from your procedure.

User Workspace: array arguments which are passed by the Library routine to an external procedure
argument. They are not used by the routine, but you may use them to pass information between
your calling program and the external procedure.

In addition arguments are also classified as being either Local or Global.

Local: local input arguments may have different values on different logical processors on entry to
the Library routine. Local output arguments may be assigned different values on different logical
processors on exit from a Library routine. The significance of these values is given in the routine
documentation.
Global: global input arguments must have the same value on each logical processor on entry to a
Library routine. If this is not the case then the Library routine exits with an error condition. For
global input array arguments this condition applies element-wise. Global output arguments will be
assigned the same value on all processors on exit from a Library routine.

As an example the argument IFAIL is classified as Global Input/Global Output. This essentially means:
on entry to those routines which have IFAIL as an argument, when IFAIL is set to 0, say, then all the
participating processors in the Library Grid must also have the value of IFAIL set to 0, and on exit it
will have the same value on all the processors.
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7 Example 2: Generating Random Numbers

For our next example, we take another simple task, but one that does involve some numerical computation,
namely to generate a sequence of random numbers from a uniform distribution over the interval (0,1).

7.1 Searching for Random Number Generating Routine

If you look up ‘pseudo-random’ in the Keywords in Context (KWIC) index, you will be referred to
the routine G05AAFP, which generates random numbers. The name indicates that you should refer to
Chapter G05 (as described in Section 4.1).

The chapter starts with a Chapter Introduction with the title ‘Random Number Generators’ which is
followed by a Chapter Contents which lists the available routines in Chapter G05. If you search for
G05AAFP in the Chapter Contents, you will find the routine name and a one-line description which
confirms that G05AAFP generates pseudo-random real numbers from a uniform (0,1) distribution using
a Wichmann–Hill generator. G05AAFP is another example of a Library routine which has no argument.
Therefore, it may be used prior to a call to Z01AAFP, after a call to Z01ABFP, or without any calls to
Z01AAFP and Z01ABFP in your program.

7.2 Functions in the Library

The specification section of the document for G05AAFP states that it is a double precision function
with no argument. The ‘Specification’ section reads:

DOUBLE PRECISION FUNCTION G05AAFP()

Before going any further, we need to say something about the precision in which the Library is
implemented. The NAG Parallel Library is implemented principally in ‘double precision’. The
information displayed by A00AAFP should confirm this. Hence, assuming that your implementation
is double precision, you must make sure that, in your program, all floating-point arguments are declared
of type ‘double precision’, either with an explicit DOUBLE PRECISION declaration, or by using a suitable
IMPLICIT statement. Using double precision in all the programs, you can compile and run the following
program to generate a sequence of four random numbers:

1: PROGRAM EX2A
2: INTEGER N
3: PARAMETER (N = 4)
4: INTEGER I
5: DOUBLE PRECISION RAND(N),G05AAFP
6: DO 10 I = 1, N
7: RAND(I) = G05AAFP()
8: 10 CONTINUE
9: WRITE (6,*) (RAND(I), I = 1, N)
10: STOP
11: END

If you run the above sequential program, you should see something similar to the the following on your
screen:

0.9760044636156003 0.3584819212790158 0.7684902391334956
0.9150123074167526

7.3 A First Parallel Numerical Program

Suppose that you need to generate identical sequences of random numbers on each processor in a Library
Grid. This can be done in a very simple manner! Before a call to G05AAFP you need to set up a Library
Grid. You can easily achieve this by first specifying the number of rows and columns in the grid, followed
by a call to Z01AAFP. The following program generates identical sequences of four random numbers on
each processor in a 2 by 2 Library Grid:
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1: PROGRAM EX2B
2: INTEGER N
3: PARAMETER (N = 4)
4: INTEGER I,ICNTXT,IFAIL,MP,NP
5: DOUBLE PRECISION RAND(N),G05AAFP
6: MP = 2
7: NP = 2
8: IFAIL = 0
9: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
10: DO 10 I = 1, N
11: RAND(I) = G05AAFP()
12: 10 CONTINUE
13: IFAIL = 0
14: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
15: STOP
16: END

It is also possible to generate different sequences of random numbers on different processors; this is
illustrated in Section 7.6.

If you try to run Program EX2B, no output is produced. The program generates four random numbers
on each processor and then stops. Lines 6-7 specify the dimensions of a 2 by 2 Library Grid, which is
set up by a call to Z01AAFP at line 9. Z01AAFP also defines a Library context. Calls to G05AAFP
at lines 10-12 generate the random numbers. Since no further action is required in the program after
generating the random numbers, Z01ABFP is called at line 14 to un-define the Library Grid and the
associated context.

We now take a closer look at the way in which parallelism is invoked by Program EX2B.

7.4 A Closer Look at Z01AAFP

We remind you that the SPMD paradigm simply means that the same program is run on each processor.
Taking Program EX2B as our example, we will illustrate how the same program is mapped onto each
processor.

It is important to know that, in general, Z01AAFP claims MP × NP processors from a pool of processors
in the environment which MPI is run. When you start running Program EX2B, all the processors specified
in the MPI environment start executing the program until a call to Z01AAFP is made. At this point
Z01AAFP sets up the ‘library mechanism’ and an associated ‘context’ (ICNTXT) for the MP by NP
grid. Then the ‘library mechanism’ informs the calling program to proceed only on the specified MP by
NP grid indentified by ICNTXT. For example if you issue the command:

% mpirun -machinefile hostfile -np 5 ex2b

Program EX2B is only run on 4 processors (2 by 2 grid) identified by ICNTXT. However, if you provide
less processors in the above command than what you have specified in your program, e.g.,

% mpirun -machinefile hostfile -np 3 ex2b

then Z01AAFP exits with an error condition. We will consider this error condition in more detail in
Section 7.7.2.

Figure 1 gives a clear pictorial description of how Z01AAFP works in Program EX2B. Each box represents
a processor.

Note: You can also view the call to Z01AAFP in your program as a synchronisation point. For this
reason Z01AAFP must be called by all the participating processors, otherwise the execution
will not proceed beyond this point until all processors have reached it together.

It is also possible to set the row and column numbers (MP and NP) of the processor grid only on the
root processor. In this case the call to Z01AAFP on the root processor will broadcast these values to the
other processors. To do this, you must know how to identify the root processor in your processor grid.
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PROGRAM EX2B
.
.
MP = 2
NP = 2
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT,’N’, IFAIL)
STOP
END

PROGRAM EX2B
.
.
MP = 2
NP = 2
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT,’N’,IFAIL)
STOP
END

PROGRAM EX2B
.
.
MP = 2
NP = 2
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT,’N’,IFAIL)
STOP
END

PROGRAM EX2B
.
.
MP = 2
NP = 2
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT,’N’,IFAIL)
STOP
END

Processor{0,0} Processor{0,1}

Processor{1,0} Processor{1,1}

Figure 1
Library mechanism with an SPMD model

7.5 Z01ACFP: A Routine for Identifying the Root Processor

In this section we introduce another useful utility routine, namely Z01ACFP, which identifies the root
processor in your processor grid. Since input and output normally occurs through the root processor (see
Section 4.4), Z01ACFP is a very useful routine for identifying it in your processor grid. Z01ACFP is a
logical function and has no argument, so it can be called anywhere in your program, even before a call
to Z01AAFP. When called by all processors in the Library Grid, Z01ACFP returns .TRUE. on the root
processor and .FALSE. on the others.

7.6 Setting Processor Rows and Columns on the Root Processor

If you look up the ‘Arguments’ section of Z01AAFP, the specification of arguments MP and NP are as
follows:

MP — INTEGER Local Input/Global Output

On entry: the number of rows, mp, in the logical processor grid will be taken to be the value
supplied on the root processor (usually the {0,0} processor and identifiable by a call to Z01ACFP).

On exit: the value supplied to this routine on the root processor will be returned on all other
processors. The value is unchanged on the root processor.
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NP — INTEGER Local Input/Global Output

On entry: the number of columns, np, in the logical processor grid will be taken to be the value
supplied on the root processor (usually the {0,0} processor and identifiable by a call to Z01ACFP).

On exit: the value supplied to this routine on the root processor will be returned on all other
processors. The value is unchanged on the root processor.

As the specifications suggest, MP and NP are classified as Local Input/Global Output. On entry to
Z01AAFP, their values must be set on the root processor, but need not be the same on all other
participating processors. However, on exit, all the processors will have the same values, namely the
values of MP and NP on the root processor.

The following example has the same functionality as Program EX2B.

1: PROGRAM EX2C
2: INTEGER N
3: PARAMETER (N = 4)
4: INTEGER I,ICNTXT,IFAIL,MP,NP
5: DOUBLE PRECISION RAND(N),G05AAFP
6: LOGICAL Z01ACFP
7: IF (Z01ACFP()) THEN
8: MP = 2
9: NP = 2
10: END IF
11: IFAIL = 0
12: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
13: DO 10 I = 1, N
14: RAND(I) = G05AAFP()
15: 10 CONTINUE
16: IFAIL = 0
17: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
18: STOP
19: END

A pictorial description of the execution path of this program, on different processors, is given in Figure 2.
It is evident from lines 7-10 of Program EX2C that MP and NP are initially set on the root processor
only. Then, a call to Z01AAFP on line 12 internally broadcasts these values to other processors in the
Library Grid.

Before leaving this section, as a final example, we develop a more elaborate program which reads the
values of MP and NP from the root processor (standard input) and writes the random numbers, generated
by calls to G05AAFP, on the root processor (standard output):

1: PROGRAM EX2D
2: INTEGER N
3: PARAMETER (N = 4)
4: INTEGER I,ICNTXT,IFAIL,MP,NP
5: DOUBLE PRECISION RAND(N),G05AAFP
6: LOGICAL Z01ACFP
7: IF (Z01ACFP()) THEN
8: WRITE (6,*) ’Enter MP and NP’
9: READ (5,*) MP, NP
10: END IF
11: IFAIL = 0
12: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
13: DO 10 I = 1, N
14: RAND(I) = G05AAFP()
15: 10 CONTINUE
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PROGRAM EX2C
.
.
MP = 2
NP = 2
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT, ’N’, IFAIL)
STOP
END

PROGRAM EX2C
.
.
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT, ’N’,IFAIL)
STOP
END

PROGRAM EX2C
.
.
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT, ’N’,IFAIL)
STOP
END

PROGRAM EX2C
.
.
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
DO 10 I = 1, N

RAND(I) = G05AAFP()
10 CONTINUE

IFAIL = 0
CALL Z01ABFP(ICNTXT, ’N’,IFAIL)
STOP
END

Processor{0,0} Processor{0,1}

Processor{1,0} Processor{1,1}

Figure 2
Different execution paths in SPMD paradigm.

16: IF (Z01ACFP()) WRITE (6,*) (RAND(I), I = 1, N)
17: IFAIL = 0
18: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
19: STOP
20: END

If you run the above program, you should see something like this on your screen:

Enter MP and NP
2
2

0.9760044636156003 0.3584819212790158 0.7684902391334956
0.9150123074167526

The program is quite self-explanatory, but a few words need to be said about the generated output. Since
the WRITE statement, on line 16, is only executed on the root processor, then the printed values are the
values of RAND generated on this processor. To output the values of RAND on the other processors to the
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standard output, you need to collect these values onto the root processor. To do this, you need to be
familiar with calls to routines in the BLACS and/or the MPI Libraries.

7.7 A Second Look at Run-Time Errors: Invalid Context and Insufficient
Number of Processors

In this section we consider one of the commonly occurring errors in the use of the NAG Parallel Library:
invalid Library context and insufficient number of processors.

7.7.1 Invalid Context

As an example, consider Program EX2E, which attempts to generate four random numbers on four different
processors. The example calls G05ABFP, which selects a Wichmann–Hill random number generator from
some available generators and initializes the seeds on a Library Grid of processors. It then calls G05AAFP
to generate the distinct sequences of random numbers.

Here is the program:

* This program may exit with an error condition
*

1 : PROGRAM EX2E
2 : INTEGER N
3 : PARAMETER (N = 4)
4 : INTEGER I,ICNTXT,IGEN,MYCOORD(2),MYRANK,NTASKS,

+ MP,NP,ISEED(4)
5 : DOUBLE PRECISION RAND(N),G05AAFP
6 : MP = 2
7 : NP = 2
8 : IFAIL = 0
9 : CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
10 : CALL Z01BGFP(ICNTXT,MYRANK,MYCOORD,NTASKS,IFAIL)
11 : DO 10 I = 1, 4
12 : ISEED(I) = (I*MYCOORD(1)+(I+1)*MYCOORD(2)+ 5)*550008
13 : 10 CONTINUE
14 : IGEN = NP*MYCOORD(1)+MYCOORD(2)+1
15 : IFAIL = 0
16 : CALL G05ABFP(ICONTXT,ISEED,IGEN,IFAIL)
17 : DO 20 I = 1, N
18 : RAND(I) = G05AAFP()
19 : 20 CONTINUE
20 : CALL Z01ABFP(ICNTXT,’N’,IFAIL)
21 : STOP
22 : END

Note: This example assumes that your compiler does not set any un-initialised variables to zero.
Otherwise, the program may produce the correct result.

At line 10, a call to the Library routine Z01BGFP is made. This routine is a very useful routine that
returns information on a grid associated with a particular context. Given the Library context ICNTXT
(returned by Z01AAFP), Z01BGFP returns the number of tasks in the Library Grid (= MP×NP), the
row and column grid coordinate {MYCOORD(1),MYCOORD(2)} of the calling processor; and the rank
of the calling process associated with MYCOORD. If a process belongs to a context with NTASKS
processes, then this process may be identified by a rank which is an integer between 0 and NTASKS−1.

The reason why a call to Z01BGFP is needed in Program EX2E is as follows. In order to generate a different
sequence of random numbers on each processor, we must ensure that ISEED and/or IGEN are initialised
to different values on different processors before using G05AAFP. One way of generating different values
for ISEED and IGEN is to use the node coordinates as they are different on each processor. A call to
Z01BGFP provides this information. Lines 11-14 show how MYCOORD(1) and MYCOORD(2) were
used to set the local arguments ISEED and IGEN.
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Now, if you run Program EX2E by issuing the command:

% mpirun -machinefile hostfile -np 4 ex2e

you should see something like this:

** ABNORMAL EXIT from NAG Parallel Library routine G05ABFP: IFAIL = -2000
** The value of ICNTXT was not returned by a call to Z01AAFP.
** NAG hard failure - execution terminated
Error messages from BLACS ABORT may follow

{0,0}, pnum=0, Contxt=0, killed other procs, exiting with error #0.

(Depending on the implementation of the MPI-BLACS that you are using, BLACS ABORT may output
additional error messages.)

The message indicates that the error was detected in G05ABFP and it is due to an invalid value for
ICNTXT. If you look at line 9 of Program EX2E, a call to Z01AAFP defines the context ICNTXT. The
failure occurred because the call to G05ABFP mistakenly used the uninitialised argument ICONTXT
instead of ICNTXT (note the extra letter O). Note that if by chance the value associated to the BLACS
context is identical to the value assigned by the compiler to uninitialised variables, then the above program
will appear to work.

The value −2000 is always reserved for this failure. A description associated with this IFAIL can be
found in Section 5 of the document for G05ABFP document (and any other Library routines which have
ICNTXT as an argument). It reads:

IFAIL = −2000

The routine has been called with an invalid value of ICNTXT on one or more processors.

7.7.2 Insufficient Number of Processors

Program EX2E would successfully generate different sequences of random numbers on different processors,
as desired, if line 16 is replaced by:

CALL G05ABFP(ICNTXT,ISEED,IGEN,IFAIL)

with four processors in the ‘mpirun’ command. But if we issue the command:

% mpirun -machinefile hostfile -np 3 ex2e

(note ‘-np 3’), Z01AAFP fails with the following error message:

** ABNORMAL EXIT from NAG Parallel Library routine Z01AAFP: IFAIL = 2
** Too few processes exist to map the requested grid onto.
** NAG hard failure - execution terminated

{-1,-1}, pnum=0, Contxt=-666, killed other procs, exiting with error #0.

The error message is obviously self-explanatory and again confirms that the Library mechanism tries its
best to guard against users’ minor mistakes.

8 Example 3: Solving Systems of Linear Equations

Chapter F04 and Chapter F07 of the NAG Parallel Library are concerned with solving systems of linear
equations, for which the conventional mathematical notation is

Ax = b. (1)

Chapter F07 and Chapter F08 contain routines derived from ScaLAPACK, a linear algebra package aimed
at distributed memory machines. Because their interfaces are different to the other Library routines, the
ScaLAPACK routines are considered in a greater detail in Section 10.
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The routines in Chapter F04 are categorised as Black Box routines, in that they solve the linear equations
in a single call with the matrix A and the right-hand sides b being supplied as data. These are the simplest
routines to use for solving linear systems and are suitable for equations with a number of right-hand-sides.

General Purpose routines require a previous call to a routine to factorize the matrix A. This factorization
can then be used repeatedly to solve the equations for one or more right-hand sides which may be
generated in the course of the computation. The Black Box routines simply call a factorization routine
and then a General Purpose routine to solve the equations. There are currently no General Purpose
routines in Chapter F04, but such routines are available in Chapter F07, and these routines also allow a
little more flexibility with the distribution of the matrices.

The Chapter F04 contains a number of Black Box routines for solving real and complex linear systems and
least-squares problems. The following two routines specifically are designed to solve real linear equations:

F04EBFP: solves a general linear systems with a real matrix A;

F04FBFP: solves linear systems with a real symmetric positive-definite matrix A.

In this Tutorial we will illustrate the use of F04EBFP, but if you have a real system with a symmetric
positive-definite matrix, it is preferable to use F04FBFP. Complex versions of the above routines are also
available.

People often wish to solve several systems with the same matrix A, but with different right-hand sides bi

and different solutions xi:
Ax(i) = b(i) for i = 1, . . . , r,

which can be rewritten in matrix notation as

AX = B, (2)

the columns of B being the right-hand side vectors b(i), and the columns of X being the solution vectors
x(i). In the rest of this section we use the notation in (2) as vectors can be considered as a special case
of matrices.

8.1 Arrays in the Library

For solving systems of the form (2), it is convenient to store the matrix B in a two-dimensional array
B. Most array arguments in the NAG Parallel Library have dimensions which depend on the size of
the problem. In Fortran terminology they have ‘adjustable dimensions’: the dimensions occurring in
their declarations are integer variables which are also arguments of the Library routine. However, some
Library routines are designed so that they can be called with an argument which may be set to 0 (in
which case they would usually exit immediately without doing anything). If so, the declarations in the
Library routine use the ‘assumed size’ array dimension.

If you look up the F04EBFP document, the specification of argument B takes the form:

B(LDB,∗) — DOUBLE PRECISION array Local Input/Local Output

Note: the second dimension of the array B must be at least max(1,numroc(NRHS,NB,pc,0,np)).

On entry: the local part of the the n by r right-hand side matrix B.

On exit: the n by r solution matrix X distributed in the same cyclic 2-d block distribution.

and the argument LDB is described as follows:

LDB — INTEGER Local Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04EBFP
is called.

Constraint: LDB ≥ max(1, numroc(N, NB, pr, 0, mp)).

B is an example of an ‘assumed size’ array and you must make sure that you supply the first dimension
of the array B, as declared in your calling (sub)program, through the argument LDB.
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8.2 Constraints

The specification of the argument LDB contains the text:

Constraint: LDB ≥ max(1, numroc(N, NB, pr, 0, mp)).

The word ‘Constraint’ or ‘Constraints’ in the specification of an Input argument precedes a statement of
the range of valid values for that argument. If F04EBFP is called with LDB = 0, the routine will take
an error exit, returning a non-zero value of IFAIL.

Constraints on arguments of type CHARACTER only list upper-case alphabetic characters. For example,
in the F04EBFP document:

Constraint: TRANS = ‘N’, ‘T’ or ‘C’.

In practice all routines with CHARACTER arguments will permit the use of lower-case characters.

In case you are wondering, we have not forgotten about ‘numroc’, ‘pr’ and ‘mp’ which appear in the
above ‘Constraint’ text. Section 3.1 of each routine document defines the terms and symbols used in
describing the data distribution within the document. If you look up the F04EBFP document, you will
find the definitions of these terms in Section 3.1 of the document for F04EBFP. However, the meaning
of ‘numroc’ will become clearer in the later part of this section.

8.2.1 A Prototype Program

Let us go back to our original problem of solving a system of linear equations.

Suppose we wish to solve (2), where

A =




1.80 2.88 2.05 −0.89 2.20 0.45 1.40 0.50
5.25 −2.95 −0.95 −3.80 6.00 2.40 0.60 −1.80
1.58 −2.69 −2.90 −1.04 3.20 −1.80 2.20 −0.60

−1.11 −0.66 −0.59 0.80 2.10 2.20 0.40 −2.40
4.25 3.75 2.00 −1.80 2.10 0.25 −1.62 0.70
3.25 0.55 −4.00 0.44 −2.25 1.12 2.65 −0.86

−1.34 0.34 −4.00 3.20 1.10 −0.44 3.20 2.00
−0.90 1.34 −3.32 4.85 0.40 0.26 −2.44 0.80




and B =




14.82
44.15
9.37

11.08
10.44
−0.12
−27.86
−46.05




. (3)

Here is a program which attempts to solve (3) using F04EBFP on a single processor:

1: PROGRAM EX3A
2: INTEGER N,LDA,LDB,NRHS,NB,NIN,NOUT,NIP,NL,NRHSL
3: PARAMETER (N=8,NRHS=1,NB=2,NIN=1,NOUT=6)
4: PARAMETER (LDA=N,LDB=LDA,NL=N,NRHSL=NRHS,NIP=NB+NL)
5: INTEGER ICNTXT,IFAIL,MP,NP,I,J,IPIV(NIP)
6: CHARACTER*1 TRANS
7: DOUBLE PRECISION A(LDA,NL),B(LDB,NRHSL)
8: LOGICAL Z01ACFP
9: MP = 1
10: NP = 1
11: IFAIL = 0
12: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
13: OPEN (UNIT=NIN,FILE=’./tutorial ex3a.dat’)
14: TRANS = ’N’
15: DO 10 I = 1, N
16: READ(NIN,*) (A(I,J), J = 1, N)
17: 10 CONTINUE
18: DO 30 J = 1, NRHS
19: DO 20 I = 1, N
20: READ(NIN,*) B(I,J)
21: 20 CONTINUE
22: 30 CONTINUE
23: IFAIL = 0
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24: CALL F04EBFP(ICNTXT,TRANS,N,NB,A,LDA,NRHS,B,LDB,IPIV,IFAIL)
25: IF (Z01ACFP()) THEN
26: WRITE (NOUT,*) ’Solution(s)’
27: DO 50 J = 1, NRHS
28: DO 40 I = 1, NL
29: WRITE (NOUT,9999) B(I,J)
30: 40 CONTINUE
31: 50 CONTINUE
32: END IF
33: CLOSE (NIN)
34: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
35: STOP
36: 9999 FORMAT(1X,F8.4)
37: END

Here is the data file tutorial_ex3a.dat:

1.80 2.88 2.05 -0.89 2.20 0.45 1.40 0.50
5.25 -2.95 -0.95 -3.80 6.00 2.40 0.60 -1.80
1.58 -2.69 -2.90 -1.04 3.20 -1.80 2.20 -0.60

-1.11 -0.66 -0.59 0.80 2.10 2.20 0.40 -2.40
4.25 3.75 2.00 -1.80 2.10 0.25 -1.62 0.70
3.25 0.55 -4.00 0.44 -2.25 1.12 2.65 -0.86

-1.34 0.34 -4.00 3.20 1.10 -0.44 3.20 2.00
-0.90 1.34 -3.32 4.85 0.40 0.26 -2.44 0.80 : End of matrix A
14.82
44.15
9.37
11.08
10.44
-0.12

-27.86
-46.05 : End of rhs B

Note: The listing of the Program EX3A at line 13 does not give a full pathname for the data file
tutorial_ex3a.dat. You must make sure that the full pathname is given in this and any similar
statement.

Here are the (correct) results:

Solution(s)
1.0000
-1.0000
3.0000
-5.0000
1.0000
2.0000
3.0000
-4.0000

Lines 9-11, in Program EX3A, set up a 1 by 1 Library Grid and lines 14-23 read and initialize input
arguments which are needed by F04EBFP. A call to F04EBFP is made on line 24, and lines 25-32
output the results. Finally, a call to Z01ABFP, on line 34, un-defines the Library Grid-logical and shuts
down the message-passing environment.
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8.2.2 Data Distribution

To solve (3) on four processors (a 2 by 2 Library Grid, say), you may be tempted to replace lines 9-10
by:

MP = 2
NP = 2

The question is whether this change is sufficient to produce the correct result. The answer is simple: no,
it is not! If you run this program, you will encounter an unpredictable, system dependent run-time error
and the major factor behind this behaviour is related to the way in which data (here our matrices)
should be distributed before a call to F04EBFP.

The underlying algorithm used in F04EBFP will perform correctly provided that, before a call to this
routine, the matrices A and B are distributed in a special way over the Library Grid. Before describing
the data distribution required by F04EBFP, it is useful to have a closer look at the specification of the
array A in the F04EBFP document. It reads:

A(LDA,∗) — DOUBLE PRECISION array Local Input/Local Output

Note: the second dimension of the array A must be at least max(1,numroc(N,NB,pc,0,np)).

On entry: the local part of the matrix A.

On exit: A is overwritten by the factors L and U distributed in the same cyclic 2-d block fashion;
the unit diagonal elements of L are not stored.

As its specification states, array A is classified as Local Input/Local Output. Its description also specifies
that on entry to the routine it should be set to ‘the local part of the matrix A’. What does ‘local part
... ’ mean? Since the linear solver is designed to run on a parallel machine (with many processors), it
is useful to store different portions of the matrix A on different processors rather than have the whole
matrix stored on each processor. This will allow problems to be solved which may be beyond the memory
capability of a single machine (particularly on networks of workstations or PCs).

Now, if you take a closer look at Program EX3A, the array A is treated as a global argument! On a
single processor (1 by 1 Library Grid) this will not cause any problem because the communication and
distribution of data are not an issue in this example. However, this will clearly cause a problem if you
increase the number of processors in the program.

As a rule, the data distribution strategy used in a parallel algorithm should try to minimize data
movement between processors and reduce the communication time. In particular, the way in which
a matrix is distributed over the Library Grid has a major impact on the load balance and communication
characteristic of the parallel algorithm. The F04 routines use what is termed as a block-partitioned
algorithm. This means that the matrices are partitioned into rectangular blocks and at each major step
of the algorithm a block of rows or columns is updated, and most of the computation is performed by
matrix–matrix operations on these blocks. The block distribution strategy used in F04EBFP is called the
cyclic 2-d block distribution and is parameterized by the number of rows and columns in a Library
Grid and the blocking factor — that is, the number of rows and columns per block. The F04 routines
use a square block and provide the argument NB which allows you to specify the block size used in the
algorithm. In Program EX3A the block size NB was set to 2.

8.3 Cyclic 2-d Block Distribution

This distribution is also used by the ScaLAPACK routines in Chapter F07 and Chapter F08, and is such
that row blocks of the matrix are distributed in a cyclic fashion to the associated rows of logical processors,
and column blocks are distributed in cyclic fashion to the associated columns of logical processors. Here
the terms row blocks and column blocks refer to one or more contiguous rows or columns of a matrix
which are treated as a single entity from the algorithmic point of view.

Figure 3 and Figure 4 illustrate the cyclic 2-d block distribution of a matrix consisting of 12 row and
column blocks on a 2 by 3 grid. The block rows (and the block columns) of the matrix are numbered
from 1 to 12, and the processors are represented by their coordinate indices.
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Figure 3
Cyclic 2-d block distribution over a 2 by 3 logical grid of processors.
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Figure 4
Cyclic 2-d block distribution from the processors’ point of view.

Using Figure 3 and Figure 4 as our basis, and using a block of size 2, Figure 5 illustrates the way in which
an 8 by 8 matrix A with elements ai,j must be distributed before entering F04EBFP. Figure 6 illustrates
the explicit distribution of the matrices A and B in (3) as specified in the data file tutorial_ex3a.dat.
Note the distribution of array B. The elements of B which were not set in Processors P1 and P3 are never
accessed by F04EBFP.

We are now in a position to say what exactly ‘numroc’ means. ‘numroc’ is a function which gives the
‘number of rows or columns’ of a distributed matrix owned by a specific processor. Obviously, the value
of ‘numroc’ may differ from processor to processor (i.e., it is local) in the Library Grid as it depends
on local information such as the row or column coordinate of the processor within the Library Grid.
However, the Library provides the function Z01CAFP (NUMROC) for the evaluation of this value. For
example, if you look up Figure 6, the value of ‘numroc’ (both row or column) of the matrix A on each
processor is four. For the matrix B, the values of ‘numroc’ (both row and column) on processors {0, 1}
and {1, 1} are zero. However, the number of rows on processors {0, 0} and {1, 0} is four and the number
of columns on these processors is equal to one.

For F04EBFP (as with many other Library routines) the distribution of the matrix on to the Library
Grid is the responsibility of the user, as is the collection of results if this is required. However, the NAG
Parallel Library has minimized this burden by providing routines which aid you in the distribution and
collection of data.
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Figure 5
Cyclic 2-d block distribution of an 8 by 8 matrix A using a block of size 2.

8.4 Reading and Printing General Matrices

In order to develop a program which solves (3) in parallel, we need to distribute matrix A in cyclic 2-d
block form on our Library Grid. This task can easily be achieved by the routine X04BGFP, which reads
in a matrix in its natural non-distributed form (as in the file tutorial_ex3a.dat) and distributes it into
an array in a cyclic 2-d block form on a Library Grid.

Replacing lines 9-10 in Program EX3A by

MP = 2
NP = 2

and lines 15-22 by

IFAIL = 0
CALL X04BGFP(ICNTXT,NIN,N,N,NB,A,LDA,IFAIL)
IFAIL = 0
CALL X04BGFP(ICNTXT,NIN,N,NRHS,NB,B,LDB,IFAIL)
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Processor             {0, 0} Processor        {0, 1}

Processor             {1, 0} Processor       {1, 1}

 A                  B                       A                 B

 A                  B   A                 B

 1.80  2.88     2.20  0.45     14.82              2.05 −0.89     1.40  0.50
 5.25 −2.95     6.00  2.40     44.15             −0.95 −3.80     0.60 −1.80

 4.25  3.75     2.10  0.25     10.44              2.00 −1.80    −1.62  0.70
 3.25  0.55    −2.25  1.12     −0.12             −4.00  0.44     2.65 −0.86

 1.58 −2.69     3.20 −1.80       9.37            −2.90 −1.04     2.20 −0.60
−1.11 −0.66     2.10  2.20      11.08            −0.59  0.80     0.40 −2.40

−1.34  0.34     1.10 −0.44     −27.86            −4.00  3.20     3.20  2.00
−0.90  1.34     0.40  0.26     −46.05            −3.32  4.85    −2.44  0.80

Figure 6
Cyclic 2-d block distribution of matrices A and B in (3) using a block of size 2.

and modifying the dimensions of the local arrays A, B and IPIV to use less storage on each processor (by
changing the parameters in the second PARAMETER statement), here is a program to solve (3) in parallel
on a 2 by 2 grid:

* This program does not produce the correct solution
*

1: PROGRAM EX3B
2: INTEGER N,LDA,LDB,NRHS,NB,NIN,NOUT,NIP,NL,NRHSL
3: PARAMETER (N=8,NRHS=1,NB=2,NIN=1,NOUT=6)
4: PARAMETER (LDA=4,LDB=LDA,NL=4,NRHSL=NRHS,NIP=NB+NL)
5: INTEGER ICNTXT,IFAIL,MP,NP,I,J,IPIV(NIP)
6: CHARACTER*1 TRANS
7: DOUBLE PRECISION A(LDA,NL),B(LDB,NRHSL)
8: LOGICAL Z01ACFP
9: MP = 2
10: NP = 2
11: IFAIL = 0
12: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
13: OPEN (UNIT=NIN,FILE=’./tutorial ex3a.dat’)
14: TRANS = ’N’
15: IFAIL = 0
16: CALL X04BGFP(ICNTXT,NIN,N,N,NB,A,LDA,IFAIL)
17: IFAIL = 0
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18: CALL X04BGFP(ICNTXT,NIN,N,NRHS,NB,B,LDB,IFAIL)
19: IFAIL = 0
20: CALL F04EBFP(ICNTXT,TRANS,N,NB,A,LDA,NRHS,B,LDB,IPIV,IFAIL)
21: IF (Z01ACFP()) THEN
22: WRITE (NOUT,*) ’Solution(s)’
23: DO 50 J = 1, NRHS
24: DO 40 I = 1, LDB
25: WRITE (NOUT,9999) B(I,J)
26: 40 CONTINUE
27: 50 CONTINUE
28: END IF
29: CLOSE (NIN)
30: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
31: STOP
32: 9999 FORMAT(1X,F8.4)
33: END

Using the data file tutorial_ex3a.dat, Program EX3B gives the results:

Solution(s)
1.0000
-1.0000
1.0000
2.0000

If you compare this result with the correct result provided in the previous section, you see that the first
two elements of the solution are correct, but the third and the fourth elements are the fifth and sixth
elements of the correct solution vector. The reason behind this behaviour is quite simple; a look at the
specification of the argument B will help you to understand this better. The description of the argument
B specifies that B is not only classified as Local Input, but also as Local Output. Its description says On
exit: ‘solution matrix X distributed in the same cyclic 2-d block distribution’ which clearly emphasizes
that the solution not only overwrites the array B, but is also stored in cyclic 2-d block distribution. After
a call to F04EBFP, lines 21-28 of Program EX3B attempt to output the solution on the root processor
which clearly does not possess the solution in its non-distributed form.

To output the correct solution computed by F04EBFP, you need to collect the result onto the root
processor in its natural order. The Library provides the routine X04BHFP which outputs a general real
matrix A stored in cyclic 2-d block distribution over the Library Grid in its natural and non-distributed
form. X04BHFP can be viewed as having the reverse functionality to X04BGFP.

To produce our final and correct program, you simply need to replace lines 21-28 by

IF (Z01ACFP()) WRITE (NOUT,*) ’Solution(s)’
FORMAT = ’(F9.4)’
IFAIL = 0
CALL X04BHFP(ICNTXT,NOUT,N,NRHS,NB,B,LDB,FORMAT,WORK,IFAIL)

Note that X04BHFP requires a double precision workspace argument WORK of size N and a global input
argument FORMAT of type CHARACTER (note this makes FORMAT 9999 redundant and so it can be
deleted). Incorporating these arguments in the declarative section of Program EX3B, we have:

1: PROGRAM EX3C
2: INTEGER N,LDA,LDB,NRHS,NB,NIN,NOUT,NIP,NL,NRHSL
3: PARAMETER (N=8,NRHS=1,NB=2,NIN=1,NOUT=6)
4: PARAMETER (LDA=4,LDB=LDA,NL=4,NRHSL=NRHS,NIP=NB+NL)
5: INTEGER ICNTXT,IFAIL,MP,NP,I,J,IPIV(NIP)
6: CHARACTER*1 TRANS
7: CHARACTER*80 FORMAT
8: DOUBLE PRECISION A(LDA,NL),B(LDB,NRHSL),WORK(N)
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9: LOGICAL Z01ACFP
10: MP = 2
11: NP = 2
12: IFAIL = 0
13: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
14: OPEN (UNIT=NIN,FILE=’./tutorial ex3a.dat’)
15: TRANS = ’N’
16: IFAIL = 0
17: CALL X04BGFP(ICNTXT,NIN,N,N,NB,A,LDA,IFAIL)
18: IFAIL = 0
19: CALL X04BGFP(ICNTXT,NIN,N,NRHS,NB,B,LDB,IFAIL)
20: IFAIL = 0
21: CALL F04EBFP(ICNTXT,TRANS,N,NB,A,LDA,NRHS,B,LDB,IPIV,IFAIL)
22: IF (Z01ACFP()) WRITE (NOUT,*) ’Solution(s)’
23: FORMAT = ’(F9.4)’
24: IFAIL = 0
25: CALL X04BHFP(ICNTXT,NOUT,N,NRHS,NB,B,LDB,FORMAT,WORK,IFAIL)
26: CLOSE (NIN)
27: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
28: STOP
29: END

If you run this with the data file tutorial_ex3a.dat, you should get the correct results:

Solution(s)
1.0000
-1.0000
3.0000
-5.0000
1.0000
2.0000
3.0000
-4.0000

8.5 Another Look at Run-Time Errors: Inconsistent Global Argument

All global input arguments in Library routines must have the same values on all processors in the
Library Grid. If you provide different values to an argument which is classified as Global Input or
Global Input/Global Output, the Library detects this error.

As our example, we consider the argument NB in Program EX3C in the following program:

* This program will exit with an error condition
*

1: PROGRAM EX3D
2: INTEGER N,LDA,LDB,NRHS,NB,NIN,NOUT,NIP,NL,NRHSL
3: PARAMETER (N=8,NRHS=1,NIN=1,NOUT=6)
4: PARAMETER (LDA=4,LDB=LDA,NL=4,NRHSL=NRHS,NIP=2+NL)
5: INTEGER ICNTXT,IFAIL,MP,NP,I,J,IPIV(NIP)
6: CHARACTER*1 TRANS
7: CHARACTER*80 FORMAT
8: DOUBLE PRECISION A(LDA,NL),B(LDB,NRHSL),WORK(N)
9: LOGICAL Z01ACFP
10: MP = 2
11: NP = 2
12: IFAIL = 0
13: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
14: NB = 2
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15: OPEN (UNIT=NIN,FILE=’./tutorial ex3a.dat’)
16: TRANS = ’N’
17: IFAIL = 0
18: IF (Z01ACFP()) NB = 1
19: CALL X04BGFP(ICNTXT,NIN,N,N,NB,A,LDA,IFAIL)

.

.

28: END

If you look at Section 3.2 of the document for X04BGFP document, it starts with: ‘The arguments M,
N, NB and IFAIL are all global, and ...’. Obviously, this indicates that NB is a global argument. And, if
you look at its specification:

NB — INTEGER Global Input

it is confirmed that NB is classified as Global Input. Inserting the line

IF (Z01ACFP()) NB = 1

before line 17 of Program EX3C results in NB having the value 1 on the root processor and 2 on the
other three processors (we also defined NB as a variable in Program EX3D rather than a constant). If you
run this modified program, you should get something like this:

** ABNORMAL EXIT from NAG Parallel Library routine X04BGFP: IFAIL = -5
Global argument NB did not have the same value on all processors

** NAG hard failure - execution terminated
Error messages from BLACS ABORT may follow

{0,0}, pnum=0, Contxt=0, killed other procs, exiting with error #0.

The error message indicates that it occurred in X04BGFP because ‘Global argument NB did not have
the same value on all processors’. Furthermore, NB occupies the fifth position in the argument list of
X04BGFP, and it is no coincidence that IFAIL was set to −5 on exit. The following description in
the ‘Errors and Warning’ section of the X04BGFP document makes it clear why IFAIL was set to this
negative value:

IFAIL = −i

On entry, the ith argument had an invalid value. This error occurred either because a global
argument did not have the same value on all logical processors, or because its value on one or more
processors was incorrect. An explanatory message distinguishes between these two cases.

In fact, negative error conditions occur in all routines which have global input arguments.

9 Example 4: Evaluation of Integrals
9.1 Routines with Subroutine Arguments

The problem considered in this section is to compute an approximation to the integral
∫ 1

0

dx√
|x2 + 2x − 2|

. (4)

The routine D01ATFP in Chapter D01 handles numerical integration of a function of one variable, over
a finite interval, and is particularly designed to handle general integrands.

This routine requires a user-supplied subroutine to evaluate the integrand at an array of different points.
In fact all the one-dimensional routines in Chapter D01 require a user-supplied subroutine for the
evaluation of the integrand.
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It is documented as follows:

F — SUBROUTINE, supplied by the user. Global External Procedure

F must return the values of the integrand f at a set of points.

Its specification is:

SUBROUTINE F(X, FV, N)
INTEGER N
DOUBLE PRECISION X(N), FV(N)

X(N) — DOUBLE PRECISION array Local Input
On entry: the points at which the integrand f must be evaluated.

FV(N) — DOUBLE PRECISION array Local Output
On exit: FV(j) must contain the value of f at the point X(j), for j = 1, 2, ...,N.

N — INTEGER Global Input
On entry: the number of points at which the integrand is to be evaluated. The actual value of
N is always 21 which is the number of points in the Kronrod rule being used.

F must be declared as EXTERNAL in the (sub)program from which is called. Arguments denoted
as Input must not be changed by this procedure.

It is also important to emphasize that all routine arguments are classified as global (i.e., the same
procedure must be supplied to each processor), whereas their argument(s) may be either local or global.

Here is a program to evaluate the integral (4) on a 2 by 2 Library Grid:

1: PROGRAM EX4A
2: INTEGER MAXSUB,LIW,LW
3: PARAMETER (MAXSUB=100,LIW=400,LW=2000)
4: INTEGER ICNTXT,IFAIL,NFUN,MP,NP,IWORK(LIW)
5: DOUBLE PRECISION A,ABSERR,B,EPSABS,EPSREL,RESULT,WORK(LW)
6: EXTERNAL F
7: LOGICAL Z01ACFP
8: MP = 2
9: NP = 2
10: IFAIL = 0
11: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
12: A = 0.0D0
13: B = 1.0D0
14: EPSREL = 0.0D0
15: EPSABS = 1.0D-4
16: IFAIL = 0
17: CALL D01ATFP(ICNTXT,F,A,B,EPSABS,EPSREL,RESULT,ABSERR,NFUN,
18 + WORK,LW,IWORK,LIW,IFAIL)
19: IF (Z01ACFP()) THEN
20: WRITE (*,9998) ’RESULT =’,RESULT, ’ ABSERR =’,ABSERR
21: WRITE (*,9999) ’No. of function evaluations =’,NFUN
22: END IF
23: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
24: STOP
25: 9999 FORMAT (1X,A,I6)
26: 9998 FORMAT (1X,A,F12.8,A,E12.2)
27: END
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28: SUBROUTINE F(X,FV,N)
29: INTEGER N,I
30: DOUBLE PRECISION FV(N),X(N)
31: DO 20 I = 1,N
32: FV(I) = 1.D0/SQRT(ABS(X(I)**2+2.D0*X(I)-2.D0))
33: 20 CONTINUE
34: RETURN
35: END

This gives the results:

RESULT = 1.50460652 ABSERR = 0.35E-04
No. of function evaluations = 1113

9.2 Handling Failure Exits from the Library

Now suppose that we wish to investigate the effect of specifying different values for the requested accuracy
in Program EX4A. Since the value of the integral is close to 1, absolute and relative accuracy have roughly
the same meaning. We will set the relative accuracy EPSREL to 0, which means that only absolute
accuracy is operative.

The following program requests a progressively more accurate result, setting EPSABS to 10−3, 10−4, . . . :

* This program will eventually exit with an error condition
*

1: PROGRAM EX4B
2: INTEGER MAXSUB,LIW,LW
3: PARAMETER (MAXSUB=100,LIW=400,LW=2000)
4: INTEGER ICNTXT,IFAIL,NFUN,MP,NP,IWORK(LIW)
5: DOUBLE PRECISION A,ABSERR,B,EPSABS,EPSREL,RESULT,WORK(LW)
6: EXTERNAL F
7: LOGICAL Z01ACFP
8: MP = 2
9: NP = 2
10: IFAIL = 0
11: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
12: A = 0.0D0
13: B = 1.0D0
14: EPSREL = 0.0D0
15: IF (Z01ACFP()) THEN
16: WRITE (*,*) ’ Requested Result Estimated Number of’
17: WRITE (*,*) ’ accuracy accuracy evaluations’
18: WRITE (*,*) ’ ..............................................’
19: END IF
20: DO 10 I = 3, 10
21: EPSABS = 10.0**(-I)
22: IFAIL = 0
23: CALL D01ATFP(ICNTXT,F,A,B,EPSABS,EPSREL,RESULT,
24: + ABSERR,NFUN,WORK,LW,IWORK,LIW,IFAIL)
25: IF (Z01ACFP()) WRITE (*,9999) EPSABS, RESULT, ABSERR,NFUN
26: 10 CONTINUE
27: CALL Z01ABFP(ICNTXT,’No’,IFAIL)
28: STOP
29: 9999 FORMAT (1X,E12.2,F12.8,E12.2,I10)
30: END
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31: SUBROUTINE F(X,FV,N)
32: INTEGER N,I
33: DOUBLE PRECISION FV(N),X(N)
34: DO 20 I = 1,N
35: FV(I) = 1.D0/SQRT(ABS(X(I)**2+2.D0*X(I)-2.D0))
36: 20 CONTINUE
37: RETURN
38: END

The results are:

Requested Result Estimated Number of
accuracy accuracy evaluations
..............................................
0.10E-02 1.50446645 0.98E-04 903
0.10E-03 1.50460652 0.35E-04 1113
0.10E-04 1.50460652 0.11E-05 1197
0.10E-05 1.50462235 0.77E-07 1785

** ABNORMAL EXIT from NAG Library routine D01ATFP: IFAIL = 3
** Extremely bad integrand behaviour occurs around one or more subintervals.
** NAG hard failure - execution terminated
Error messages from BLACS ABORT may follow

{0,0}, pnum=0, Contxt=0, killed other procs, exiting with error #0.

When the requested accuracy is 10−7, the routine takes an error exit, returning a value IFAIL = 3, which
is a computational failure: the routine cannot satisfy the requested accuracy. More extensive advice is
provided in Section 5 of the routine document.

However, you may want to examine the value of the estimated error ABSERR, and depending on its value
you may decide to accept the value of the integral returned in RESULT. But we cannot examine ABSERR
unless we enable the program to continue execution on return from D01ATFP after the computational
failure.

Before showing you how this can be done, we need to have another look at the argument IFAIL.

9.3 Another Look at IFAIL
9.3.1 Hard Fail Option

So far, we have been using the hard fail option in all our example programs. If the value of IFAIL is set
to 0 on all processors (associated with the Library Grid) before calling the Library routine, execution of
the program will terminate if the routine detects an error, and the IFAIL argument will have the same
value on all processors. This option aborts not only the Library Grid, but also other grids which have
been created in your program using BLACS. Before the program is stopped, this error message is output
to the root processor:

** ABNORMAL EXIT from NAG Parallel Library routine XXXXXXX: IFAIL = n
** NAG hard failure - execution terminated

where XXXXXXX is the routine name, and n is the number associated with the detected error. An
explanation of error number n is given in Section 5 of the routine document XXXXXXX. (Error messages
may be sent to an external file by calling the support routine X04AAF to change the default unit number
for error messages.)

In addition, all the routines output explanatory error messages immediately before the standard
termination message shown above.

The hard fail option should be selected if you are in any doubt about continuing the execution of the
program after an unsuccessful call to a NAG Parallel Library routine.

In the case of hard failure, all processes created by BLACS will stop, including all those which are not in
the Library context. Users familiar with the BLACS might like to note that the routine BLACS ABORT
is used for this purpose. That is why the error message
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Error messages from BLACS ABORT may follow
{0,0}, pnum=0, Contxt=0, killed other procs, exiting with error #0.

is output.

For this reason, this option is not recommended for multigridding, a technique which enables the users
to have many logical grids, including only one Library Grid, simultaneously.

9.3.2 Soft Fail Option

To select this option, you must set IFAIL to 1 or −1 on all processors (associated with the Library Grid)
before calling the Library routine.

If the routine detects an error, IFAIL is reset to the associated error number on all processors; further
computation within the routine is suspended and control returns to the calling program.

If you set IFAIL to 1, then no error message is output on the root processor (silent exit).

If you set IFAIL to −1 (noisy exit), then before control is returned to the calling program, the following
error message is output on the root processor:

** ABNORMAL EXIT from NAG Parallel Library routine XXXXXXX: IFAIL = n
** NAG soft failure - control returned

In addition, all routines output explanatory error messages immediately before the above standard
message.

It is essential to test the value of IFAIL on exit if the soft fail option is selected.

A non-zero exit value of IFAIL implies that the call was not successful, so it is imperative that your
program be coded to take appropriate action. That action may simply be to print IFAIL with an
explanatory caption and then terminate the program. Some of the example programs in Section 8 of the
routine documents have tests of this form. In the more ambitious case, where you wish your program
to continue, it is essential that the program can branch to a point at which it is sensible to resume
computation.

The soft fail option puts the onus on you to handle any errors detected by the Library routine. With the
proviso that you are able to implement it properly, it is clearly more flexible than the hard fail option
since it allows computation to continue in the case of errors. In particular there are at least three cases
where its flexibility is useful:

(i) where additional information about the error or the progress of computation is returned via some
of the other arguments;

(ii) in some routines, ‘partial’ success can be achieved, e.g. a probable solution found but not all
conditions fully satisfied, so the routine returns a warning. On the basis of the advice in Section 5
and elsewhere in the routine document, you may decide that this partially successful call is adequate
for certain purposes;

(iii) on a parallel machine, actions taken on discovering an error may be complicated by the fact that you
may have other processes executing on grids other than the Library Grid. For example it may be
unreasonable to simply stop the Library Grid when other grids in your program may be expecting
results from it.

Let us return to our one-dimensional quadrature problem. Here is a program which prints information
about the integral if on exit IFAIL = 0 or ABSERR ≤ 10−7:

1: PROGRAM EX4C
2: INTEGER MAXSUB,LIW,LW
3: PARAMETER (MAXSUB=100,LIW=400,LW=2000)
4: INTEGER ICNTXT,IFAIL,NFUN,MP,NP,IWORK(LIW)
5: DOUBLE PRECISION A,ABSERR,B,EPSABS,EPSREL,RESULT,WORK(LW)
6: EXTERNAL F
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7: LOGICAL Z01ACFP
8: MP = 2
9: NP = 2
10: IFAIL = 0
11: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
12: A = 0.0D0
13: B = 1.0D0
14: EPSREL = 0.0D0
15: IF (Z01ACFP()) THEN
16: WRITE (*,*) ’ Requested Result Estimated Number of’
17: WRITE (*,*) ’ accuracy accuracy evaluations’
18: WRITE (*,*) ’ ..............................................’
19: END IF
20: DO 10 I = 3, 10
21: EPSABS = 10.0**(-I)
22: IFAIL = 1
23: CALL D01ATFP(ICNTXT,F,A,B,EPSABS,EPSREL,RESULT,
24: + ABSERR,NFUN,WORK,LW,IWORK,LIW,IFAIL)
25: IF (IFAIL.EQ.0 .OR. ABSERR.LE.1.0D-7) THEN
26: IF (Z01ACFP()) WRITE (*,9999) EPSABS, RESULT, ABSERR,NFUN
27: END IF
28: 10 CONTINUE
29: CALL Z01ABFP(ICNTXT,’No’,IFAIL)
30: STOP
31: 9999 FORMAT (1X,E12.2,F12.8,E12.2,I10)
32: END

33: SUBROUTINE F(X,FV,N)
34: INTEGER N,I
35: DOUBLE PRECISION FV(N),X(N)
36: DO 20 I = 1,N
37: FV(I) = 1.D0/SQRT(ABS(X(I)**2+2*X(I)-2))
38: 20 CONTINUE
39: RETURN
40: END

And here are the results:

Requested Result Estimated Number of
accuracy accuracy evaluations
..............................................
0.10E-02 1.50446645 0.98E-04 903
0.10E-03 1.50460652 0.35E-04 1113
0.10E-04 1.50460652 0.11E-05 1197
0.10E-05 1.50462235 0.77E-07 1785
0.10E-06 1.50462235 0.77E-07 2079
0.10E-07 1.50462235 0.54E-07 2205
0.10E-08 1.50462235 0.54E-07 2457
0.10E-09 1.50462235 0.54E-07 2877

As IFAIL was set to 1 on line 22 no error message is output when the estimated accuracy does not
satisfy the required absolute accuracy. However, for completeness we present the results when IFAIL is
set to −1 in Program EX4C on line 22:
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Requested Result Estimated Number of
accuracy accuracy evaluations
..............................................
0.10E-02 1.50446645 0.98E-04 903
0.10E-03 1.50460652 0.35E-04 1113
0.10E-04 1.50460652 0.11E-05 1197
0.10E-05 1.50462235 0.77E-07 1785

** ABNORMAL EXIT from NAG Parallel Library routine D01ATFP: IFAIL = 3
** Extremely bad integrand behaviour occurs around one or more subintervals.
** NAG soft failure - control returned

0.10E-06 1.50462235 0.77E-07 2079
** ABNORMAL EXIT from NAG Parallel Library routine D01ATFP: IFAIL = 3
** Extremely bad integrand behaviour occurs around one or more subintervals.
** NAG soft failure - control returned

0.10E-07 1.50462235 0.54E-07 2205
** ABNORMAL EXIT from NAG Parallel Library routine D01ATFP: IFAIL = 3
** Extremely bad integrand behaviour occurs around one or more subintervals.
** NAG soft failure - control returned

0.10E-08 1.50462235 0.54E-07 2457
** ABNORMAL EXIT from NAG Parallel Library routine D01ATFP: IFAIL = 3
** Extremely bad integrand behaviour occurs around one or more subintervals.
** NAG soft failure - control returned

0.10E-09 1.50462235 0.54E-07 2877

10 Example 5: Using ScaLAPACK Routines

Chapter F07 and Chapter F08 of the NAG Parallel Library contain routines derived from ScaLAPACK,
a package designed for the solution of dense or banded linear algebra problems on parallel distributed
memory machines. These chapters provide routines for:

Real and complex matrix factorization: LU , Cholesky, QR

Solution of real and complex linear equations: general, symmetric positive-definite

Real and complex linear least-squares and associated problems

Estimating (real) triangular matrix condition numbers

Real symmetric eigenproblems

The routines in Chapter F07 and Chapter F08 utilize the same Library mechanism as the rest of the
Library, but their interfaces are different. As with other Library routines, Z01AAFP and Z01ABFP may
be used in conjunction with these routines to set up and un-define the Library Grid respectively.

10.1 Chapter F07 and Chapter F08 Routines and Other Library Routines

Before we proceed, here is a typical call to a ScaLAPACK routine:

.
CALL Z01AAFP( ICNTXT, MP, NP,IFAIL )
.
CALL F07ADFP( M, N, A, IA, JA, IDESCA, IPIV, INFO )
.
CALL Z01ABFP( ICNTXT, CONT, IFAIL )
.

F07ADFP performs LU factorization of a real matrix. In addition to their NAG names (beginning with
F07 or F08), these routines can be referenced by their ScaLAPACK names. So the call to F07ADFP in
the above code fragment may be replaced by

CALL PDGETRF( M, N, A, IA, JA, IDESCA, IPIV, INFO )
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The equivalent ScaLAPACK name for an Chapter F07 or Chapter F08 routine can be found in the
relevant routine document or the Chapter Introduction.

Essentially, there are two major differences between ScaLAPACK routines and the rest of the Library
routines.

(i) Context: unlike other Library routines, the argument lists in the Chapter F07 and Chapter F08
routines do not start with the argument ICNTXT. (As we will see later, the value of ICNTXT
must be contained in an element of the integer array IDESCA.)

(ii) Error Mechanism: the routines in Chapter F07 and Chapter F08 do not use the usual Library
error-handling mechanism, involving the argument IFAIL. Instead they have a diagnostic parameter
INFO, which allows us to preserve complete compatibility with the ScaLAPACK routines.

INFO is classified as Global Output and need not be set on entry. If the routine detects an error,
INFO is reset to the associated error number on all processors; further computation within the
routine is suspended and control returns to the calling program (this corresponds to a soft failure
in terms of the error-handling terminology used in the rest of the Library). INFO indicates the
success or failure of the computation, as follows:

INFO = 0 , successful termination;
INFO = −(i × 100 + j) , error in the jth component of the ith argument (for example, a component

of an array descriptor);
INFO = −i , error in the ith argument;
INFO > 0 , error detected during execution, control is returned to the calling program.

It is essential to test INFO on exit from the routine.

10.2 Treatment of Matrices by ScaLAPACK

In common with Chapter F04, the routines in Chapter F07 and Chapter F08 use the cyclic 2-d block
distribution strategy for all matrices and vectors (see Section 8.3 for a full description and example).
However, the specification of the problem dimensions are not as straightforward as for other Library
routines. We need to elaborate further.

The ScaLAPACK routines offer greater flexibility in dealing with matrices than other linear algebra
routines in the Library (e.g., those in Chapters F02, F04 and F11 ).

Suppose you have an mA by nA matrix A. Before a call to an Chapter F07 or Chapter F08 routine,
you must first make sure that A is distributed in a cyclic 2-d block form across the Library Grid.
Then, ScaLAPACK allows you to reference and perform operations (such as factorization) on an m by
n submatrix As. If we denote the starting row and column indices of the submatrix As by iA and jA

respectively, then
As(1 : m, 1 : n) ≡ A(iA : iA + m − 1, jA : jA + n − 1).

Note that if iA = jA = 1, m = mA and n = nA, then As = A.

On entry, most routines in ScaLAPACK require information about the matrix A and its submatrix As.
The information about As can be easily provided by specifying its order and its starting row and column
coordinate within the matrix A. One issue which is central in understanding ScaLAPACK is: although
it is the matrix A which must be distributed on all the processors across the Library Grid,
the operation is only performed on the submatrix As.

As an example, if you look up the specification of F07ADFP, it reads:

SUBROUTINE F07ADFP(M, N, A, IA, JA, IDESCA, IPIV, INFO)
ENTRY PDGETRF(M, N, A, IA, JA, IDESCA, IPIV, INFO)
INTEGER M, N, IA, JA, IDESCA(9), IPIV(∗), INFO
DOUBLE PRECISION A(∗)
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The ENTRY statement enables the routine to be called by its ScaLAPACK name.

The matrix A is stored in array A in a cyclic 2-d block distribution. Associated with this array are three
arguments IA, JA and the descriptor array IDESCA. In fact all the ScaLAPACK routines which
have array argument(s) representing a matrix have three similar arguments for each array.

On entry to F07ADFP, IA and JA must be set to the row and column coordinate at which the first
element of the matrix As is stored in matrix A. IDESCA, which is referred to as the Integer array
DESCriptor for array A, should contain information about the array A and some other information.

10.2.1 Array Descriptors

An ‘array descriptor’ is associated with each array representing a matrix in the argument list of a
ScaLAPACK routine. The array stores the information required to establish the mapping between each
array entry and its corresponding process and memory location. Array descriptors are provided for

dense matrices (which are distributed in a cyclic 2-d block form)

band and tridiagonal matrices (which are distributed in a column block form);

out-of-core matrices (which use a variation of the above distribution);

In Release 2 of the NAG Parallel Library provision is only made for dense matrices.

The first element of this array indicates the matrix and the distribution types used in the algorithm. Since
this Release of the Library only includes ScaLAPACK routines for dense matrices, we merely consider
the descriptor array associated with this type of matrices. Here is the definition of all its elements.

IDESCA(1) the descriptor type: for dense matrices using cyclic 2-d block distribution this must be set
to 1;

IDESCA(2) the BLACS context (ICNTXT) for the Library Grid;

IDESCA(3) mA, the number of rows of A;

IDESCA(4) nA, the number of columns of A;

IDESCA(5) Mb, the blocking factor used to distribute the rows of A, i.e., the number of rows stored in
a block;

IDESCA(6) Nb, the blocking factor used to distribute the columns of A, i.e., the number of columns
stored in a block;

IDESCA(7) the processor row index over which the first row of A is distributed;

IDESCA(8) the processor column index over which the first column of A is distributed;

IDESCA(9) the leading dimension (LDA) of the array A storing the local blocks of A.

Note: An array descriptor does not change, in general, throughout the life cycle of the matrix with
which it is associated.

Figure 7 illustrates graphically the meaning and use of the parameters M, N, IA and JA and of some of
the entries of the array descriptor IDESCA. The case depicted shows a matrix distributed over a 2 by 3
logical grid. The first row of the matrix is stored in the second row of the grid (IDESCA(7) = 1), and the
first column is stored in the third column of the grid (IDESCA(8) = 2). The indices within each block
refers to the processor row and column which stores that block.

As an example, let each small box represent a 4 by 4 block (i.e., IDESCA(5) = IDESCA(6) = 4). Since
there are twelve blocks, then A is a 48 by 48 matrix (i.e., IDESCA(3) = IDESCA(4) = 48). Similarly,
the shaded area which is occupied by the submatrix As has seven row blocks and nine column blocks.
Hence, As is a 28 by 36 matrix (i.e., M = 28 and N = 36). The row and column indices in which the
submatrix As starts in the matrix A are 13 and 9 respectively (i.e., IA = 13 and JA = 9).
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IDESCA(4)

IDESCA(3)

JA N

M

IA

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{1,0} {1,2}{1,1} {1,0} {1,2}{1,1} {1,0} {1,2}{1,1}

{0,0} {0,2}{0,1} {0,0} {0,2}{0,1} {0,0} {0,2}{0,1}

{1,2}

{0,2}

{1,2}

{0,2}

{1,2}

{0,2}

{1,2}

{0,2}

{1,2}

{0,2}

{1,0}

{0,0}

{1,1}

{0,1}

{1,0}

{0,0}

{1,1}

{0,1}

{1,0}

{0,0}

{1,1}
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Figure 7
Referencing a submatrix

It is essential that you note the following.

The second element of the array descriptor for the array A should be set to the context value
ICNTXT returned by a call to Z01AAFP.
Note: Any error condition due to invalid IDESCA(2) (ICNTXT) will set the value of INFO to
−N02, where N is the position of IDESCA in the argument list of the ScaLAPACK routine, not
−1000 or −2000 as is the convention with IFAIL.

In all routines in this chapter the local elements of a matrix are stored in a 1-d array. For example,
the local elements of the mA by nA matrix A can be stored in the real array A(∗). However, it is
more convenient to consider A as a 2-d array of dimension (LDA,∗), where LDA must be greater
than or equal to the number of rows of A stored in the specific row of the Library Grid and the
array A must have a number of columns greater than or equal to the number of columns of A stored
in the specific column of the Library Grid.

For the default Library mechanism, you may assume that the first row and column of the matrix A
is always stored on the {0, 0} processor. Hence, IDESCA(7) = IDESCA(8) = 0.

If the whole matrix is referenced, then, IA = 1, JA = 1, M = IDESCA(3) = mA and N =
IDESCA(4) = nA.

In general, submatrices must start on the boundary between blocks. Exceptions are the right-
hand side matrices for the solution of linear equations which can start in any column of the overall
matrices.

We now proceed with an example.

10.3 Solution of Linear Equations Revisited

In this section we consider again the solution of equation (3) as presented in Section 8.2, but using
routines from Chapter F07.

If you look up Chapter F07, you will find two routines which can be used in conjunction with each other
to solve the equation

AX = B.

They are:

F07ADFP – performs the LU factorization of a real m by n matrix.

F07AEFP – solves an n by n real system of linear equations with multiple right hand-sides,
previously factorized by a call to F07ADFP.
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The aim of our next example is to reproduce the solution of equation (3) in Section 8.3.

When using a ScaLAPACK routine, it is always a good practice to set up the array descriptor(s) associated
with an array first. We do this in a step by step fashion for the matrix A:

Step 1: set IDESCA(1) = 1;

Step 2: set IDESCA(2). IDESCA(2) determines on which grid the matrix A was distributed. Since
we are using the Library Grid, IDESCA(2) may be set to the value of context which was returned
by a call to Z01AAFP. Hence, IDESCA(2) = ICNTXT

Step 3: A is an 8 by 8 matrix, so we must set IDESCA(3) = 8 and IDESCA(4) = 8;

Step 4: a square block of size 2 was used in Program EX3C, so IDESCA(5) = 2 and IDESCA(6) =
2;

Step 5: the first row and column of the matrix A was distributed on the first row and the first
column of the Library Grid, so IDESCA(7) = 0 and IDESCA(8) = 0.

Step 6: the leading dimension of the array A was set to 4 in Program EX3C, so IDESCA(9) = 4.

The next stage is to set up the arguments associated with the submatrix As. The matrix which appears
in the linear system (3) and needs to be factorized is the matrix A itself. In other words, As = A. In this
case, we simply set IA = JA = 1.

Here is a program which incorporates the above settings of IDESCA, IA and JA to compute the solution
of the linear system (3):

1: PROGRAM EX5A
2: INTEGER N,LDA,LDB,NRHS,NB,NIN,NOUT,NIP,NL,NRHSL,DT
3: PARAMETER (N=8,NRHS=1,NB=2,NIN=1,NOUT=6,DT=1)
4: PARAMETER (LDA=4,LDB=LDA,NL=4,NRHSL=NRHS,NIP=NB+NL)
5: INTEGER ICNTXT,IFAIL,MP,NP,IA,JA,IB,JB
6: INTEGER IDESCA(9),IDESCB(9),IPIV(NIP)
7: CHARACTER*1 TRANS
8: CHARACTER*80 FORMAT
9: DOUBLE PRECISION A(LDA,NL),B(LDB,NRHSL),WORK(N)
10 LOGICAL Z01ACFP
11: MP = 2
12: NP = 2
13: IFAIL = 0
14: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
15: OPEN (UNIT=NIN,./tutorial ex3a.dat’)
16: IDESCA(1) = DT
17: IDESCA(2) = ICNTXT
18: IDESCA(3) = N
19: IDESCA(4) = N
20: IDESCA(5) = NB
21: IDESCA(6) = NB
22: IDESCA(7) = 0
23: IDESCA(8) = 0
24: IDESCA(9) = LDA
25: IA = 1
26: JA = 1
27: CALL X04BCFP(NIN,N,N,A,1,1,IDESCA,IFAIL)
28: CALL F07ADFP(N,N,A,IA,JA,IDESCA,IPIV,INFO)
29: IF (INFO .NE. 0) GO TO 10
30: IDESCB(1) = DT
31: IDESCB(2) = IDESCA(2)
32: IDESCB(3) = N
33: IDESCB(4) = NRHS
34: IDESCB(5) = NB
35: IDESCB(6) = NB
36: IDESCB(7) = 0
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37: IDESCB(8) = 0
38: IDESCB(9) = LDB
39: IB = 1
40: JB = 1
41: IFAIL = 0
42: CALL X04BCFP(NIN,N,NRHS,B,1,1,IDESCB,IFAIL)
43: TRANS = ’N’
44: CALL F07AEFP(TRANS,N,NRHS,A,IA,JA,IDESCA,IPIV,B,IB,JB,IDESCB,INFO)
45: IF (Z01ACFP()) WRITE (NOUT,FMT=*) ’Solution(s)’
46: FORMAT = ’(F9.4)’
47: CALL X04BDFP(NOUT,N,NRHS,B,1,1,IDESCB,FORMAT,WORK,IFAIL)
48: 10 CONTINUE
49: CLOSE (NIN)
50: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
51: STOP
52: END

Using the data file tutorial_ex3a.dat, we obtain:

Solution(s)
1.0000
-1.0000
3.0000
-5.0000
1.0000
2.0000
3.0000
-4.0000

which is the result obtained in Section 8.3.

Calls to X04BCFP at lines 27 and 42 read and distribute the matrices A and B in cyclic 2-d block form
across the Library Grid. The subroutine X04BCFP has the same functionality as X04BGFP, except that
the user interface is designed to be compatible with the ScaLAPACK routines. A call to F07ADFP at
line 28 computes the LU factorization of the submatrix As (= A).

Before a call to F07AEFP, we need to set up the array descriptor IDESCB associated with the array
B. This is set at lines 30-38 in exactly the same manner as IDESCA. Since the arrays A and B are
participating on the same Library Grid, it is important that you also set IDESCB(2) to the context
ICNTXT generated by Z01AAFP (as indicated by line 31).

After calling F07AEFP, a call to X04BDFP at line 47 outputs the solution. Again, X04BDFP has the
same functionality as X04BHFP, except that the user interface is designed to be compatible with the
ScaLAPACK routines.

Finally, a call to Z01ABFP on line 50 un-defines the Library Grid.

10.4 Solving Linear Equations Involving submatrices

Suppose that the matrices A and B in (3) (Section 8) were partitioned in the following manner:

A =
(

A1 A2

A3 A4

)
and B =

(
B1

B2

)
(5)

where each Ai for i = 1, 2, 3, 4 is a 4 by 4 matrix and each Bi for i = 1, 2 is a 4 by 1 matrix.

Using the data file tutorial_ex3a.dat, we wish to show how you can solve A4X = B2, where

A4 =




2.10 0.25 −1.62 0.70
−2.25 1.12 2.65 −0.86
1.10 −0.44 3.20 2.00
0.40 0.26 −2.44 0.80


 and B2 =




10.44
−0.12
−27.86
−46.05


 . (6)
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However, a simple way of solving (6) is to use Program EX5A by setting the values of N = 4, LDA = 2
and NL = 2 with the following data file:

2.10 0.25 -1.62 0.70
-2.25 1.12 2.65 -0.86
1.10 -0.44 3.20 2.00
0.40 0.26 -2.44 0.80 : End of matrix A
10.44
-0.12

-27.86
-46.05 : End of rhs B

If you do that, you should get the following results:

Solution(s)
26.3758
-1.3300
8.9438

-43.0394

The disadvantage of the above approach is the situation when you already have the matrices A and B
distributed in cyclic 2-d block distribution and you are only interested in solving equations which involve
submatrices of A and B.

To solve A4X = B2 with A and B already distributed, we can use the approach adopted in Section 10.3
with a few minor modifications:

(1) N must be set to 4;

(2) the array elements IDESCA(3), IDESCA(4) and IDESCB(3) should be set to 8, which signifies
the number of rows and columns of the matrices A and B. The values of input arguments to X04
routines should also be changed accordingly.

(3) the matrix that we want to factorize is the submatrix A4, which is a 4 by 4 matrix and has its first
element at the fifth row and the fifth column of the matrix A. In this case, we simply need to set
IA = JA = 5.

(4) Likewise, for submatrix B2, we need to set IB = 5 and JB = 1.

Here is the program which incorporates the above values of IA, JA, IB and JB:

1: PROGRAM EX5B
2: INTEGER N,LDA,LDB,NRHS,NB,NIN,NOUT,NIP,NL,NRHSL,DT,NA
3: PARAMETER (N=4,NRHS=1,NB=2,NIN=1,NOUT=6,DT=1,NA=8)
4: PARAMETER (LDA=4,LDB=LDA,NL=4,NRHSL=NRHS,NIP=NB+NL)
5: INTEGER ICNTXT,IFAIL,MP,NP,IA,JA,IB,JB
6: INTEGER IDESCA(9),IDESCB(9),IPIV(NIP)
7: CHARACTER*1 TRANS
8: CHARACTER*80 FORMAT
9: DOUBLE PRECISION A(LDA,NA),B(LDB,NRHSL),WORK(NA)
10 LOGICAL Z01ACFP
11: MP = 2
12: NP = 2
13: IFAIL = 0
14: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
15: OPEN (UNIT=NIN,./tutorial ex3a.dat’)
16: IDESCA(1) = DT
17: IDESCA(2) = ICNTXT
18: IDESCA(3) = NA
19: IDESCA(4) = NA
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20: IDESCA(5) = NB
21: IDESCA(6) = NB
22: IDESCA(7) = 0
23: IDESCA(8) = 0
24: IDESCA(9) = LDA
25: IA = 5
26: JA = 5
27: CALL X04BCFP(NIN,NA,NA,A,1,1,IDESCA,IFAIL)
28: CALL F07ADFP(N,N,A,IA,JA,IDESCA,IPIV,INFO)
29: IF (INFO .NE. 0) GO TO 10
30: IDESCB(1) = DT
31: IDESCB(2) = IDESCA(2)
32: IDESCB(3) = NA
33: IDESCB(4) = NRHS
34: IDESCB(5) = NB
35: IDESCB(6) = NB
36: IDESCB(7) = 0
37: IDESCB(8) = 0
38: IDESCB(9) = LDB
39: IB = 5
40: JB = 1
41: IFAIL = 0
42: CALL X04BCFP(NIN,NA,NRHS,B,1,1,IDESCB,IFAIL)
43: TRANS = ’N’
44: CALL F07AEFP(TRANS,N,NRHS,A,IA,JA,IDESCA,IPIV,B,IB,JB,IDESCB,INFO)
45: IF (Z01ACFP()) WRITE (NOUT,FMT=*) ’Solution(s)’
46: FORMAT = ’(F9.4)’
47: CALL X04BDFP(NOUT,N,NRHS,B,IB,JB,IDESCB,FORMAT,WORK,IFAIL)
48: 10 CONTINUE
49: CLOSE (NIN)
50: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
51: STOP
52: END

Using the data file tutorial_ex3a.dat we obtain the correct results:

Solution(s)
26.3758
-1.3300
8.9438

-43.0394

Note that calls to X04BCFP at lines 27 and 42 distribute the whole matrices A and B, not the
submatrices A4 and B2.

11 Example 6: Using the NAG Parallel Library with the NAG
Fortran Library

One of NAG’s most successful products is its Fortran 77 Library, a library which contains over 1000 well-
documented user-callable routines covering areas such as linear algebra, differential equations, quadrature,
Fast Fourier Transform (FFT), optimization and statistics.

The NAG Parallel Library is distinct from the Fortran 77 Library, but you may call routines from both
Libraries within the same program unit, provided that implementations of both Libraries are available
for your system and compiler. In fact, a small number of routines in the NAG Parallel Library, whose
names do not end with a ‘P’, were taken from the Fortran 77 Library.

TUTOR.42 [NP3053/2/pdf]



Introduction Tutorial

Clearly the key application areas for which these Libraries may be used together are those areas in
which the application of a numerical process generates independent tasks, each of which can be executed
simultaneously on different processors. As an example, the equation which is concerned with the model
of air flow over hills and small mountains is governed by a singular integral equation with a convolution
kernel function on an infinite domain. This equation can be solved by splitting the Fourier transform
of the solution into a singular and a non-singular part. The non-singular part can be computed by an
appropriate FFT routine, whereas the singular part can be evaluated by an adaptive quadrature routine
suitable for integrals on a semi-infinite interval. To speed up the process of solving this equation, it is
conceivable to perform the task of computing the Fourier transforms and the evaluation of the integrals
simultaneously on different processors. This can be achieved by setting up a Library Grid by a call
to Z01AAFP, followed by calls to the quadrature and FFT routines in the NAG Fortran 77 Library
(which provides extensive coverage in these areas). You have to note that issues such as load-balancing,
synchronization and communication become your responsibilities. However, continuing the spirit of the
Tutorial, we do not address the solution of the above integral equation here, but present a much simpler
example which involves the computation of discrete Fourier transforms (DFTs).

In many application areas, it is often required to compute DFTs of several sequences of the same length.
The aim of this section is to show you how this can be done in parallel using routines from the NAG
Fortran 77 and the NAG Parallel Libraries.

The problem to be tackled in this section is to compute the DFT of m sequences, each containing n
real data values. The DFT of n real data values is a particular type of complex sequence, called a
Hermitian sequence which can be represented by only n, rather than 2n, independent real values. For
other properties of the Fourier transform, you should consult a standard textbook on the subject.

Chapter C06 of the NAG Fortran 77 Library is concerned with the computation of the discrete Fourier
transform of a sequence of real or complex data values, as well as the computation of inverse Laplace
transform, the direct summation of orthogonal series, etc. C06EAF is a NAG Fortran 77 Library routine
which computes the discrete Fourier transform of a sequence of n real data values. Its specification is:

SUBROUTINE C06EAF(X,N,IFAIL)
INTEGER N, IFAIL
DOUBLE PRECISION X(N)

On entry, the array X must contain the sequence to be transformed, and on exit, X is over-written by
the discrete Fourier transform stored in Hermitian form.

By setting m = 4 and n = 6, our aim is to use the mechanism used in the NAG Parallel Library to set up
a 2 by 2 Library Grid and compute the discrete Fourier transform of the four sequences independently,
one on each processor. Using the data file tutorial_ex6a.dat:

4 6
0.3490 0.3854 0.5417 0.9172
0.5489 0.6772 0.2983 0.0644
0.7478 0.1138 0.1181 0.6037
0.9446 0.6751 0.7255 0.6430
1.1385 0.6362 0.8638 0.0428
1.3285 0.1424 0.8723 0.4815

the following simple program reads in the four sequences on each processor and computes the discrete
Fourier transform of the first sequence on {0, 0} processor, the second sequence on {0, 1} processor and
so on. Here is the program:

1: PROGRAM EX6A
2: INTEGER LDX,NIN, NOUT
3: PARAMETER (NIN=1,NOUT=6,LDX=20)
4: INTEGER IFAIL,I,INDX,J,ICNTXT,MP,NP,MYRANK,MYCOORD(2),NTASKS
5: DOUBLE PRECISION X(LDX,4)
6: MP = 2
7: NP = 2
8: IFAIL = 0
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9: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
10: OPEN (UNIT=NIN,FILE=’./tutorial ex6a.dat’)
11: READ(NIN,*) M, N
12: DO 10 I = 1, N
13: READ(NIN,*) (X(I,J), J = 1, M)
14: 10 CONTINUE
15: CALL Z01BGFP(ICNTXT,MYRANK,MYCOORD,NTASKS,IFAIL)
16: INDX = NP*MYCOORD(1)+MYCOORD(2)+1
17: IFAIL = 0
18: CALL C06EAF(X(1,INDX),N,IFAIL)
19: CLOSE(NIN)
20: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
21: STOP
22: END

This simple program does not generate any output. line 9 sets up the 2 by 2 Library Grid and
lines 10-14 opens the data file tutorial_ex6a.dat and reads its contents. line 16 sets the processor
position INDX (= 1, 2, 3 or 4) using the row and column grid coordinates of the calling processor which
were returned by a call to Z01BGFP.

In order to show that Program EX6A indeed produces the correct result, we need to print the DFT of
the sequences, and compute and print their inverse transforms to show that the original sequences are
restored. Here is the program:

1: PROGRAM EX6B
2: INTEGER LDX,NIN, NOUT
3: PARAMETER (NIN=1,NOUT=6,LDX=20)
4: INTEGER IFAIL,I,J,ICNTXT,MP,NP,MYRANK,MYCOORD(2),NTASKS
5: DOUBLE PRECISION X(LDX,4)
6: LOGICAL Z01ACFP
7: MP = 2
8: NP = 2
9: IFAIL = 0
10: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
11: OPEN (UNIT=NIN,FILE=’./tutorial ex6a.dat’)
12: READ(NIN,*) M, N
13: DO 10 I = 1, N
14: READ(NIN,*) (X(I,J), J = 1, M)
15: 10 CONTINUE
16: CALL Z01BGFP(ICNTXT,MYRANK,MYCOORD,NTASKS,IFAIL)
17: INDX = NP*MYCOORD(1)+MYCOORD(2)+1
18: IFAIL = 0
19: CALL C06EAF(X(1,INDX),N,IFAIL)
20: IF (Z01ACFP())

+ WRITE (NOUT,*) ’Discrete Fourier transform in Hermitian form’
21: CALL SNDRCV(ICNTXT,X,MP,NP,M,N,LDX,INDX,NOUT)
22: CALL C06GBF(X(1,INDX),N,IFAIL)
23: CALL C06EBF(X(1,INDX),N,IFAIL)
24: IF (Z01ACFP()) WRITE (NOUT,*)

+ ’Original data as restored by inverse transform’
25: CALL SNDRCV(ICNTXT,X,MP,NP,M,N,LDX,INDX,NOUT)
26: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
27: STOP
28: END
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29: SUBROUTINE SNDRCV(ICNTXT,X,MP,NP,M,N,LDX,INDX,NOUT)
30: INTEGER ICNTXT,MP,NP,N,INDX,I,J,INDXR,LDX,NOUT,NROOT,MROOT,

+ IFAIL
31: DOUBLE PRECISION X(LDX,M)
32: LOGICAL Z01ACFP
33: IFAIL = 0
34: CALL Z01BAFP(ICNTXT,MROOT,NROOT,IFAIL)
35: IF (.NOT. Z01ACFP()) THEN
36: CALL IGESD2D(ICNTXT,1,1,INDX,1,MROOT,NROOT)
37: CALL DGESD2D(ICNTXT,N,1,X(1,INDX),LDX,MROOT,NROOT)
38: ELSE
39: DO 20 J = 0,NP - 1
40: DO 10 I = 0,MP - 1
41: IF (I.NE.MROOT .OR. J.NE.NROOT) THEN
42: CALL IGERV2D(ICNTXT,1,1,INDXR,1,I,J)
43: CALL DGERV2D(ICNTXT,N,1,X(1,INDXR),LDX,I,J)
44: END IF
45: 10 CONTINUE
46: 20 CONTINUE
47: DO 30 I = 1, N
48: WRITE (NOUT,9999) (X(I,J), J = 1, M)
49: 30 CONTINUE
50: WRITE (NOUT,*)
51: END IF
52: RETURN
53: 9999 FORMAT(1X,4F9.4)
54: END

Using the data file tutorial_ex6a.dat once more, Program EX6B reads in four real sequences of length
6 on each processor and prints their DFTs in Hermitian form. It then performs the inverse transforms
and prints the original sequences. Here are the results:

Discrete Fourier transform in Hermitian form
2.0646 1.0737 1.3961 1.1237

-0.2450 -0.1041 -0.0365 0.0914
-0.2402 0.1126 0.0780 0.3936
-0.2395 -0.1467 -0.1521 0.1530
0.1375 -0.3738 -0.0607 0.3458
0.4138 -0.0044 0.4666 -0.0508

Original data as restored by inverse transform
0.3490 0.3854 0.5417 0.9172
0.5489 0.6772 0.2983 0.0644
0.7478 0.1138 0.1181 0.6037
0.9446 0.6751 0.7255 0.6430
1.1385 0.6362 0.8638 0.0428
1.3285 0.1424 0.8723 0.4815

Up to line 20, Program EX6B does exactly the same as Program EX6A, i.e., it evaluates the four DFTs
independently on different processors. But before going any further, a few words need to be said about
the evaluation of the inverse transform.

To compute the inverse transform of a Hermitian sequence (DFT of a real sequence), you first need to
form its complex conjugate and then compute the DFT of the conjugated sequence. Calls to C06GBF
and C06EBF respectively at lines 22-23 perform these tasks.

The collection and printing of the results on the root processor are performed by the subroutine SNDRCV
presented by lines 29-54. SNDRCV uses four BLACS routines: IGESD2D, IGERV2D, DGESD2D and
DGERV2D. To print the data, it is necessary to collect them on the root processor. As IGESD2D,
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IGERV2D, DGESD2D and DGERV2D use the coordinate in the 2-d logical grid for their communication
purposes, it is important that we find out the position of the root processor (most machines regard it
as {0, 0} processor). This can be accomplished by a call to Z01BAFP which return the coordinate {
MROOT, NROOT } as the root processor. The IF statement at line 35 checks whether the calling
processor is the root processor or not. If it is not, the data is sent (lines 36-37) by the BLACS routines
IGESD2D (sends integer data) and DGESD2D (sends real data) to the root processor. The root processor
in turn (lines 39-46) receives the integer data and the real data by calls to IGERV2D and DGERV2D
respectively. Finally, once all the data has been received by the root processor the results are printed (as
indicated on lines 47-49).

12 Example 7: Advanced Features
12.1 Reshaping the Grid

This example shows how to un-define a Library Grid and declare a grid of a different size and shape. We
use an optimization problem for this purpose.

The problem that we want to tackle is to minimize Rosenbrock’s function:

F (x1, x2) = f2
1 + f2

2 , where f1 = 10(x2 − x2
1), and f2 = (1− x1). (7)

Chapter E04 of the NAG Parallel Library contains the routine E04FDFP which can solve (7). The
function (7) must be defined in a user-supplied subroutine.

The program declares a 2 by 2 grid and uses it to minimize Rosenbrock’s function. Then it changes the
grid size to 2 by 1 and solves the same problem.

Here is the program which uses the starting point (−1.2, 1.0) to minimize (7) on two different grid sizes;
the minimum of the function occurs at (1.0, 1.0) and has a value 0.0:

1: PROGRAM EX7A
2: INTEGER NOUT,LW,LIW,M,N,NB
3: PARAMETER (NOUT=6,LW=200,LIW=200,M=2,N=2,NB=1)
4: DOUBLE PRECISION FVAL,TAU
5: INTEGER ICNTXT,IFAIL,ITERS,IW,K,MP,NP
6: DOUBLE PRECISION W(LW),X(N)
7: LOGICAL Z01ACFP
8: EXTERNAL FUNC
9: MP = 2
10: NP = 2
11: IFAIL = 0
12: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
13: X(1) = -1.2D0
14: X(2) = 1.0D0
15: TAU = 1.0D-4
16: ITERS = 20
17: IF (Z01ACFP()) WRITE (NOUT,*) ’Testing with ’,NP*MP,’ processors:’
18: CALL E04FDFP(ICNTXT,M,N,NB,ITERS,TAU,X,FVAL,FUNC,W,LW,IW,LIW,
19: + IFAIL)
20: IF (Z01ACFP()) WRITE (NOUT,9999) FVAL, (X(K),K=1,2)
21: CALL Z01ABFP(ICNTXT,’Y’,IFAIL)
22: MP = 2
23: NP = 1
24: IFAIL = 0
25: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
26: X(1) = -1.2D0
27: X(2) = 1.0D0
28: TAU = 1.0D-4
29: ITERS = 20
30: IF (Z01ACFP()) THEN
31: WRITE (NOUT,*)
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32: WRITE (NOUT,*) ’Testing with ’,NP*MP,’ processors:’
33: END IF
34: CALL E04FDFP(ICNTXT,M,N,NB,ITERS,TAU,X,FVAL,FUNC,W,LW,IW,LIW,
35: + IFAIL)
36: IF (Z01ACFP()) WRITE (NOUT,9999) FVAL, (X(K),K=1,2)
37: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
38: STOP
39: 9999 FORMAT (1X,’Minimum value ’,F9.4,’ found at ’,2F9.4)
40: END
41:
42: SUBROUTINE FUNC(M,N,F,X)
43: INTEGER M,N
44: DOUBLE PRECISION F(M),X(N)
45: F(1) = 10.0D0* (X(2)-X(1)*X(1))
46: F(2) = 1.0D0 - X(1)
47: RETURN
48: END

If you run this program, you should get the following results:

Testing with 4 processors:
Minimum value 0.0000 found at 1.0000 1.0000

Testing with 2 processors:
Minimum value 0.0000 found at 1.0000 1.0000

Lines 9-12 declare the initial 2 by 2 grid in the same way as previous examples. This sets the maximum
number of processors that can be used in further Library Grids to 4. Lines 13-16 initialize the input
data for the problem. The array X is an initial guess at the minimization point, TAU is a nominal
accuracy requirement, and ITERS specifies the maximum number of iterations that are allowed before
the routine must give up trying to find the minimum (if all goes well it will reach a solution before this
number of iterations).

Line 18 is the call to the optimization routine E04FDFP and line 20 prints the solution. On line 21
a call to Z01ABFP is made with the continuation argument CONT set to ‘Y’ to inform the Library
mechanism that a further grid will be declared.

Lines 22-25 initialize a 2 by 1 Library Grid and lines 26-29 set up the input arguments to be the
same as the first call to E04FDFP. Another call to E04FDFP is made on line 34 and the solution is
printed once again on line 36 so as to ensure that E04FDFP produces the same result on different
Library Grids.

A call to Z01ABFP on line 37 un-defines the grid and indicates that no further Library calls will be
made by setting CONT = ‘N’.

On lines 42-48, the subroutine argument FUNC defines Rosenbrock’s function.

12.2 Using MPI Calls with the Library

In this section we consider an example of how to use MPI routines with the NAG Parallel Library. The
example program that we consider is program EX6B presented in Section 11. Before we proceed with this
example, we would like to say a few words about the notion of ‘communicators’ in MPI.

We have established that for safe communication the Library operates on the BLACS context. However,
an equivalent terminology (but not the same) to context used in MPI is the communicator. A
communicator is composed of an MPI ‘group’ and an MPI ‘context’ (plus other components, see [3]). A
group is defined as an ordered collection of processes and an MPI context can be thought of a system-
defined tag that is attached to an MPI group. So two MPI processes that belong to the same group
and that use the same context can communicate. This pairing of the group with a context in the MPI
is the most basic form of a communicator. An MPI communicator can be thought as a broader term
than a BLACS context, in that other data can be associated (cached) to it. Provided that we know how
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to translate between the BLACS context and the MPI communicator, then the use of the MPI routines
in the NAG Parallel Library would straightforward. The BLACS provide a routine which allows such
translation. Here is an example which does exactly the same computation and output as program EX6B

1: PROGRAM EX7B
2: INCLUDE ’mpif.h’
3: INTEGER LDX,NIN, NOUT
4: PARAMETER (NIN=1,NOUT=6,LDX=20)
5: INTEGER IFAIL,I,J,ICNTXT,MP,NP,MYRANK,MYCOORD(2),NTASKS,

+ ITMPCOMM,LIBCOMM, N
6: DOUBLE PRECISION X(LDX,4)
7: LOGICAL Z01ACFP
8: MP = 2
9: NP = 2
10: IFAIL = 0
11: CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
12: OPEN (UNIT=NIN,FILE=’./tutorial ex6a.dat’)
13: READ(NIN,*) M, N
14: DO 10 I = 1, N
15: READ(NIN,*) (X(I,J), J = 1, M)
16: 10 CONTINUE
17: CALL BLACS GET(ICNTXT,10,ITMPCOMM)
18: CALL MPI COMM DUP(ITMPCOMM,LIBCOMM,IERMPI)
19: CALL MPI COMM RANK(LIBCOMM,MYRANK,IER)
20: NTASKS = MP * NP
21: IFAIL = 0
22: INDX = MYRANK + 1
23: CALL C06EAF(X(1,INDX),N,IFAIL)
24: IF (Z01ACFP())

+ WRITE (NOUT,*) ’Discrete Fourier transform in Hermitian form’
25: CALL SNDRCV(LIBCOMM,X,MYRANK,NTASKS,M,N,LDX,NOUT)
26: CALL C06GBF(X(1,INDX),N,IFAIL)
27: CALL C06EBF(X(1,INDX),N,IFAIL)
28: IF (Z01ACFP()) WRITE (NOUT,*)

+ ’Original data as restored by inverse transform’
29: CALL SNDRCV(LIBCOMM,X,MYRANK,NTASKS,M,N,LDX,NOUT)
30: CALL MPI COMM FREE(LIBCOMM,IER)
31: CALL Z01ABFP(ICNTXT,’N’,IFAIL)
32: STOP
33: END

34: SUBROUTINE SNDRCV(LIBCOMM,X,MYRANK,NTASKS,M,N,LDX,NOUT)
35: INCLUDE ’mpif.h’
36: INTEGER LIBCOMM,MYRANK,N,INDX,I,J,LDX,NOUT,IFAIL,

+ INDXR,IR,ISTAT(MPI STATUS SIZE)
37: DOUBLE PRECISION X(LDX,M)
38: IFAIL = 0
39: INDX = MYRANK + 1
40: IF (MYRANK .NE. 0) THEN
41: CALL MPI SEND(INDX,1,MPI INTEGER,0,MYRANK,LIBCOMM,IERR)
42: CALL MPI SEND(X(1,INDX),N,MPI DOUBLE PRECISION,0,INDX,

+ LIBCOMM,IERR)
43: ELSE
44: DO 10 IR = 1, NTASKS - 1
45: CALL MPI RECV(INDXR,1,MPI INTEGER,MPI ANY SOURCE,

+ MPI ANY TAG,LIBCOMM,ISTAT,IERR)
46: CALL MPI RECV(X(1,INDXR),N,MPI DOUBLE PRECISION,

+ MPI ANY SOURCE,MPI ANY TAG,LIBCOMM,ISTAT,IERR)
47: 10 CONTINUE
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48: DO 30 I = 1, N
49: WRITE (NOUT,9999) (X(I,J), J = 1, M)
50: 30 CONTINUE
51: WRITE (NOUT,*)
52: END IF
53: RETURN
54: 9999 FORMAT(1X,4F9.4)
55: END

As indicated at line 17, BLACS provide the routine BLACS GET to yield an MPI communicator
(ITMPCOMM) which corresponds to the BLACS context ICNTXT. You are advised to duplicate
this communicator (line 18) and obtain your own communicator. The reason for duplication is that
communicators obtained from a context by the use of BLACS GET can not be manipulated easily in your
program. As an example you won’t be able to use MPI COMM FREE to free this communicator if you
wished so. Since the BLACS allocate this communicator, it will also automatically free when Z01ABFP is
called (or equivalently BLACS EXIT is called). So you should only use the returned communicator from
BLACS GET to form other communicators (or other BLACS contexts, see below). For more detail see [7] .
At line 18 the duplicated communicator LIBCOMM is created using the MPI routine MPI COMM DUP
and this communicator is used throughout the MPI communication routines as specified in subroutine
SNDRCV.

It is also possible to translate an MPI communicator to a BLACS context using the routines provided
in the BLACS (i.e., BLACS GRIDMAP or BLACS GRIDINIT). This facility is very useful if you decide
to use routines from the NAG Parallel Library in a program which you use MPI as your communication
layer.

Since the purpose of this exercise was to illustrate how MPI routines can be used in conjunction with the
routines in the NAG Parallel Library, we do not wish to explain the ways in which the communications
were performed in subroutine SNDRCV. However, it is worth mentioning that there are other (maybe
more robust) ways of collecting the values of the Fourier transforms on the root processor (e.g. using
MPI GATHER).

12.3 Multigridding

In this section we consider an example of multigridding – using more than one logical grid of processors
to achieve different tasks in parallel. It should be emphasised that in this release of the NAG Parallel
Library only one Library Grid can exit in a multigridding environment.

In our example, two separate logical grids of processors are created:

A 2 by 2 Library Grid – this grid will be used to run F04EBFP to to solve the problem specified
in Section 8. using the a grid with the context ICNTXT1.

A 2 by 1 grid – this will be used to evaluate the global sum of an integer value and make the
result available to all the processors in in that grid identified with the context ICNTXT2.

Explicit calls to the BLACS routines are made in the example in this section and we assume that you
are familiar with the BLACS and the terminology associated with them.

In order to create different grids, you should take the following steps.

(1) Claim the number of processors from your parallel environment (in our case 6; 4 with ICNTXT1
and 2 for the ICNTXT2) which you require to participate in your multigridding environment. To
do this first you should extract some initial system information before the BLACS are set up.
The system information contains the number of processors available for BLACS use and a ‘task
identifier’ which uniquely identifies each processor; in our case, 0, 1, ..., 5.

(2) Then you should set up the BLACS internal defaults for the number of processors that you wish
to use in your multigridding environment (6 here) and a system context for input into the BLACS
grid creation routines.

(3) It is essential to create a (global) context for the overall number of processors used in your program
and use this context to create other contexts for different grids.
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(4) The grid with which you wish to use the Library routine (the Library Grid), you must let the
Library mechanism know that you have already created a context without a call to Z01AAFP. To
do this you must make sure that you call the utility routine Z01AEFP prior to a call to the Library
routine; in our case F04EBFP.

You must make sure that the two grids have a different context.

Here is the program which achieves the above tasks:

1: PROGRAM EX7C
2: INTEGER N, LDA, LDB, NRHS, NB, NIN, NOUT, NIP, LDMAP
3: PARAMETER (N=8,LDA=4,LDB=LDA,NRHS=1,NB=2,NIN=1,NOUT=6,

+ NIP=6,LDMAP=2)
4: INTEGER IAM, ICNTXT1, ICNTXT2, IFAIL, ITMPCNTXT, MP, MP1,

+ MP2, MYC, MYR, NP, NP1, NP2, NPROCS
5: CHARACTER*80 FORMAT
6: DOUBLE PRECISION A(LDA,N), B(LDB,NRHS), WORK(N)
7: INTEGER IPIV(NIP), ISUM(1), MAP(LDMAP,2)
8: LOGICAL Z01ACFP
9: CALL BLACS PINFO(IAM,NPROCS)
10: CALL BLACS GET(0,0,ITMPCNTXT)
11: CALL BLACS GRIDINIT(ITMPCNTXT,’Row’,1,NPROCS)

12: IF (IAM.GE.0 .AND. IAM.LE.3) THEN

13: MP1 = 2
14: NP1 = 2
15: CALL BLACS GET(ITMPCNTXT,10,ICNTXT1)
16: MAP(1,1) = 0
17: MAP(1,2) = 1
18: MAP(2,1) = 2
19: MAP(2,2) = 3
20: CALL BLACS GRIDMAP(ICNTXT1,MAP,LDMAP,MP1,NP1)
21: CALL Z01AEFP(ICNTXT1)
22: OPEN (UNIT=NIN,FILE=’./tutorial ex3a.dat’)
23: TRANS = ’N’
24: IFAIL = 0
25: CALL X04BGFP(ICNTXT1,NIN,N,N,NB,A,LDA,IFAIL)
26: CALL X04BGFP(ICNTXT1,NIN,N,NRHS,NB,B,LDB,IFAIL)
27: CALL F04EBFP(ICNTXT1,TRANS,N,NB,A,LDA,NRHS,B,LDB,IPIV,IFAIL)
28: IF (Z01ACFP()) WRITE (NOUT,FMT=*) ’Solution(s)’
29: FORMAT = ’(F9.4)’
30: CALL X04BHFP(ICNTXT1,NOUT,N,NRHS,NB,B,LDB,FORMAT,WORK,IFAIL)
31: CLOSE (NIN)

32: ELSE IF (IAM.GE.4 .AND. IAM.LE.5) THEN

33: MP2 = 2
34: NP2 = 1
35: CALL BLACS GET(ITMPCNTXT,10,ICNTXT2)
36: MAP(1,1) = 4
37: MAP(2,1) = 5
38: CALL BLACS GRIDMAP(ICNTXT2,MAP,LDMAP,MP2,NP2)
39: CALL BLACS GRIDINFO(ICNTXT2,MP,NP,MYR,MYC)
40: ISUM(1) = 1
41: CALL IGSUM2D(ICNTXT2,’ALL’,’ ’,1,1,ISUM,1,-1,-1)
42: IF (MYR.EQ.0 .AND. MYC.EQ.0) THEN
42: OPEN (NOUT,FILE=’ex 7c.res’)
43: WRITE (NOUT,*) ISUM(1)
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44: CLOSE (NOUT)
45: END IF

46: END IF

47: CALL BLACS GRIDEXIT(ITMPCNTXT)
48: CALL BLACS EXIT(0)
49: STOP
50: END

If you run this program by issuing the command:

% mpirun -machinefile hostfile -np 6 ex7c

you should get:

Solution(s)
1.0000
-1.0000
3.0000
-5.0000
1.0000
2.0000
3.0000
-4.0000

and an output file ex_7c.res in your current directory which should contain the value 2.

Line 9 extracts the system information i.e., number of available processors (NPROCS) and a unique
number between 0 and NPROCS − 1. A call to BLACS GET at line 10 obtains information about
various BLACS internals and a default system context ITMPCNTXT (some of these internals control
general BLACS behaviour, and are thus not linked to a particular context). This context is used at
line 11 to create a 1 by NPROCS grid.

The conditional statement spanning lines 12-46 this grid into two different grids; a 2 by 2 logical
grid identified by processors 0, 1, 2 and 3 and a 2 by 1 logical grid identified by processors 4 and 5.
Lines 13-31 sets up the 2 by 2 Library grid by using the BLACS routine BLACS GRIDMAP by first
obtaining a new context ICNTXT1 for this grid at line 15.

Line 21 is a call to Z01AEFP which lets the Library mechanism know that the user has already set up a
grid without using Z01AAFP. Lines 22-31 illustrate that the Library Grid is used to solve the problem
which is specified in Program EX3C.

At this point it you should note that all NAG Parallel Library routines immediately return if they are
not part of the Library processor grid, making the calling processor available for other uses.

Two remaining processors are available for exclusive use as part of another processor grid. Lines 33-39
illustrates how the BLACS routines, BLACS GET and BLACS GRIDMAP are used to map these
processors (identified by 4 and 5) onto a 2 by 1 grid of logical processors with context ICNTXT2.

The call to BLACS GRIDINFO on line 39 returns information about the calling processors’ membership
of the processor grid associated with the context ICNTXT2. Processors with context ICNTXT2
(sometimes referred to as ‘processors in context’) compute a global sum of integers held in a vector
ISUM. ISUM is initialised on line 40 and a call to the BLACS routine IGSUM2D on line 41 computes
the global sum and makes the result available to all processors ‘in context’. One processor (the processor
{0,0} in the grid) is designated to output the result to an external file. The condition on line 42 selects
this processor and ISUM(1) is output to the external file ex_7c.res.

Line 47 undefines the temporary grid by a call to BLACS GRIDEXIT.

Finally, the program de-registers with MPI and BLACS by a call to BLACS EXIT on line 48.
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13 Concluding Remarks

The aim of this Tutorial has been to help you to become familiar with the NAG Parallel Library and to
develop confidence in using it.

If there are topics which are not yet covered, but which you would find helpful, please let us know, so
that we can consider them for a future revision.
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