List of Contents

The contains two categories of routines which can be called by users. They are listed separately in the two sections below.

Fully Documented Routines

87 routines, for each of which an individual routine document is provided. These are regarded as the primary contents of the .

Fundamental Support Routines

15 comparatively simple routines which are documented in compact form in the relevant Chapter Introductions (X01, X02).

Note: all the routines in the above categories have either six-character names ending in 'F' or seven-character names ending in 'FP'.

Fully Documented Routines

Chapter A00: Library Identification

A00AAFP Prints details of the NAG Parallel Library implementation

Chapter D01: Quadrature

- D01ATFP 1-d quadrature, adaptive, finite interval, allowing for badly behaved integrands
- D01AUFP 1-d quadrature, adaptive, finite interval, suitable for oscillating functions
- D01AXFP 1-d quadrature, adaptive, finite interval, weight functions $\cos(\omega x)$ or $\sin(\omega x)$
- D01DAFP 2-d quadrature, finite region
- D01FAFP Multi-dimensional quadrature, hyper-rectangle, adaptive
- D01GCFP Multi-dimensional quadrature, general product region, number-theoretic method

Chapter E04: Minimising or Maximising a Function

- E04FDFP Unconstrained minimum of a sum of squares, Gauss–Newton algorithm using function values only (easy-to-use)
- E04JBFP Minimum of a general nonlinear function with unconstrained, Gauss–Newton algorithm using function values only (easy-to-use)

Chapter F01: Matrix Operations and Distribution

F01YAFP	Cyclic row block distribution routine for real sparse matrices stored in coordinate storage format
F01YEFP	Distribution routine for real dense vectors distributed conformally to sparse matrices
F01ZPFP	Gathering of a block distributed real vector used for F07 and F08 ScaLAPACK routines
F01ZQFP	Real matrix generation and distribution in cyclic 2-d block fashion, used for F07 and F08
	ScaLAPACK routines
F01ZRFP	Real matrix generation and distribution in block column fashion, used for F02 routines
F01ZSFP	Real matrix generation and distribution in cyclic 2-d block fashion, used for F04 (Black
	Box) routines
F01ZVFP	Complex matrix generation and distribution in cyclic 2-d block fashion, used for F07 and
	F08 ScaLAPACK routines
F01ZWFP	Complex matrix generation and distribution in block column fashion, used for F02 routines
F01ZXFP	Complex matrix generation and distribution in cyclic 2-d block fashion, used for F04 (Black
	Box) routines

Chapter F02: Eigenvalues and Eigenvectors

F02FQFPEigenvalues and eigenvectors of a real symmetric matrix, one-sided Jacobi methodF02FRFPEigenvalues and eigenvectors of a complex Hermitian matrix, one-sided Jacobi methodF02WQFPSingular Value Decomposition (SVD) of a real matrix, one-sided Jacobi method

F02WRFP Singular Value Decomposition (SVD) of a complex matrix, one-sided Jacobi method

Chapter F04: Simultaneous Linear Equations

- F04EBFP Solution of real simultaneous linear equations with multiple right-hand sides (Black Box)
- F04ECFP Solution of complex simultaneous linear equations with multiple right-hand sides (Black Box)
- F04FBFP Solution of real symmetric positive-definite simultaneous linear equations with multiple right-hand sides (Black Box)
- F04FCFP Solution of complex Hermitian positive-definite simultaneous linear equations with multiple right-hand sides (Black Box)
- F04GBFP Solution of a real linear least-squares problem multiple right-hand sides (Black Box)

Chapter F07: Linear Equations (ScaLAPACK)

- F07ADFP LU factorization of a real general matrix (PDGETRF)
- F07AEFP Solution of a real system of linear equations, multiple right-hand sides, matrix already factorized by F07ADFP (PDGETRF)
- F07ARFP LU factorization of a complex general matrix (PZGETRF)
- F07ASFP Solution of a complex system of linear equations, multiple right-hand sides, matrix already factorized by F07ARFP (PZGETRF)
- F07FDFP Cholesky factorization of a real symmetric positive-definite matrix (PDPOTRF)
- **F07FEFP** Solution of a real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FDFP (PDPOTRF)
- F07FRFP Cholesky factorization of a complex Hermitian positive-definite matrix (PZPOTRF)
- F07FSFP Solution of a complex Hermitian positive-definite system of linear equations, multiple righthand sides, matrix already factorized by F07FRFP (PZPOTRF)
- F07TGFP Estimate the condition number of a real triangular matrix (PDTRCON)

Chapter F08: Least-squares Problems (ScaLAPACK)

- FO8AEFP QR factorization of a real general rectangular matrix (PDGEQRF)
- F08AFFP Form all or part of an orthogonal Q from QR factorization determined by F08AEFP (PDGEQRF)
- FO8AGFP Apply the orthogonal transformation determined by FO8AEFP (PDORMQR)
- F08ASFP QR factorization of a complex general rectangular matrix (PZGEQRF)
- FO8ATFP Form all or part of a unitary Q from QR factorization determined by F08ASFP (PZGEQRF)
- F08AUFP Apply the unitary transformation determined by F08ASFP (PZUNMQR)
- F08FEFP Orthogonal reduction of a real symmetric matrix to tridiagonal form (PDSYTRD)
- F08JJFP All or selected eigenvalues of a real symmetric tridiagonal matrix by bisection (PDSTEBZ)

Chapter F11: Sparse Linear Algebra

- F11BAFP Set-up for F11BBFP and F11BCFP, iterative solution of real (unsymmetric) system of simultaneous linear equations, Restarted Generalised Minimal Residual method (RGMRES)
 F11BBFP Main solver, iterative solution of a general (unsymmetric) system of simultaneous linear equations, Restarted Generalised Minimal Residual method (RGMRES)
- F11BCFP Information about the computations carried out by F11BBFP, iterative solution of a general (unsymmetric) system of simultaneous linear equations, Restarted Generalised Minimal Residual method (RGMRES)
- $\label{eq:F11DAFP} F11DAFP \qquad \mbox{Incomplete } LU \mbox{ factorization of the local diagonal blocks of a real sparse matrix, represented in coordinate storage format, distributed on a logical grid of processors in cyclic row block form \\ \end{tabular}$
- F11DBFP Solution of real system of linear equations, involving a real block diagonal sparse matrix, represented in coordinate storage format, distributed on a logical grid of processors in cyclic row block form
- F11DCFP Black-box routine for sparse system of linear equations
- F11GAFPSet-up for F11GBFP and F11GCFP, iterative solution of a symmetric system of simultaneous
linear equations, Conjugate Gradient method or a Lanczos method based on SYMMLQ
- F11GBFP Main solver, iterative solution of a symmetric system of simultaneous linear equations, Conjugate Gradient method or a Lanczos method based on SYMMLQ
- F11GCFP Information about the computations carried out by F11GBFP, iterative solution of a symmetric system of simultaneous linear equations, Conjugate Gradient method or a Lanczos method based on SYMMLQ
- F11XAFP Set-up for F11XBFP, matrix-vector or transposed matrix-vector product involving a real sparse matrix, represented in coordinate storage format, distributed on a logical grid of processors in cyclic row block form
- F11XBFP Computes a matrix-vector or transposed matrix-vector product involving a real sparse matrix, represented in coordinate storage format, distributed on a logical grid of processors in cyclic row block form
- F11ZAFP General set-up routine for real sparse matrices, represented in coordinate storage format, distributed on a logical grid of processors in cyclic row block form

Chapter G05: Random Number Generators

G05AAFPPseudo-random real numbers, uniform distribution over (0, 1), Wichmann-Hill generatorG05ABFPSelect a random number generator and initialise seeds to give repeatable sequence

Chapter X04: Input/Output Utilities

X04AAF	Returns or sets a unit number for error message
X04ABF	Returns or sets a unit number for advisory messages
X04BCFP	Reads a real general matrix from an external file (stored in its natural, non-distributed form)
	into an array in a cyclic 2-d block distribution on 2-d logical processor grid, used for the
	F07 and F08 ScaLAPACK routines
X04BDFP	Outputs a real general matrix stored in a cyclic 2-d block distribution on a 2-d logical
	processor grid to an external file (in its natural, non-distributed form), used with the F07
	and F08 ScaLAPACK routines
X04BFFP	Outputs a set of real general matrices distributed on a 2-d logical processor grid, used with
	the F02 routines
X04BGFP	Reads a general real matrix from an external file (stored in its natural, non-distributed form)
	into an array in a cyclic 2-d block distribution on a 2-d logical processor grid, used for the
	F04 (Black Box) routines
X04BHFP	Outputs a general real matrix stored in a cyclic 2-d block distribution on a 2-d logical
	processor grid to an external file (in its natural, non-distributed form), used with the F04
	(Black Box) routines
X04BRFP	Reads a complex general matrix from an external file (stored in its natural, non-distributed
	form) into an array in a cyclic 2-d block distribution on 2-d logical processor grid, used for
	the F07 and F08 ScaLAPACK routines
X04BSFP	Outputs a complex general matrix stored in a cyclic 2-d block distribution on a 2-d logical
	processor grid to an external file (in its natural, non-distributed form), used with the F07
VADUED	and F08 ScaLAPACK routines
X04BUFP	Outputs a set of complex general matrices distributed on a 2-d logical processor grid, used with the F02 routines
X04BVFP	Reads a general complex matrix from an external file (stored in its natural, non-distributed
XU4DVFF	form) into an array in a cyclic 2-d block distribution on a 2-d logical processor grid, used
	for the F04 (Black Box) routines
X04BWFP	Outputs a general complex matrix stored in a cyclic 2-d block distribution on a 2-d logical
NO IDWI I	processor grid to an external file (in its natural, non-distributed form), used with the F04
	(Black Box) routines
X04YAFP	Outputs a real dense vector, distributed conformally to a sparse matrix on a logical grid of
	processors, to an external file

Chapter Z01: Library Utilities

Z01AAFP Z01ABFP	Defines a 2-d logical processor grid (Library Grid) and returns the BLACS context Undefines the logical processor grid and invalidates the BLACS context initialised by Z01AAFP
Z01ACFP	Root processor identifier
Z01ADFP	Used in creating processes outside the default library mechanism, allows multigridding, used
	in more advanced applications (PVM-based version only)
Z01AEFP	Used in creating processes outside the default library mechanism, allows multigridding, used
	in more advanced applications (MPI-based version only)
Z01BAFP	Row and column indices of the root processor within the logical grid
Z01BBFP	Identifies logical processors in context in the 2-d grid declared by Z01AAFP
Z01BDFP	Information about PVM tasks (PVM-based version only)
Z01BEFP	Topology to be used by BLACS for broadcasting and global operations
Z01BFFP	Enables debugging (PVM-based version only)
Z01BGFP	Information about MPI tasks (MPI-based version only)
Z01CAFP	Number of rows or columns of a matrix held locally on a given processor when the matrix
	is distributed in the cyclic 2-d block fashion (NUMROC)
Z01CBFP	Length of the workspace for F08AEFP and F08AFFP
Z01CCFP	Length of the workspace for F08AGFP

- Z01CDFP Process coordinate which possesses the entry of a distributed matrix specified by a global index (INDXG2P)
- Z01CEFP Length of the workspace for F08FEFP (PDSYTRD)

Fundamental Support Routines

Chapter X01: Mathematical Constants

Chapter X02: Machine Constants

X02AHF	Largest permissible argument for sin and cos
X02AJF	Machine precision
X02AKF	Smallest positive model number
X02ALF	Largest positive model number
X02AMF	Safe range of real floating-point arithmetic
X02ANF	Safe range of complex floating-point arithmetic
X02BBF	Largest representable integer
X02BEF	Maximum number of decimal digits that can be represented
X02BHF	Parameter of floating-point arithmetic model, b
X02BJF	Parameter of floating-point arithmetic model, p
X02BKF	Parameter of floating-point arithmetic model, e_{\min}
X02BLF	Parameter of floating-point arithmetic model, e_{max}
X02DJF	Parameter of floating-point arithmetic model, ROUNDS